[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004113979A - Apparatus for washing filter by using supercritical or subcritical fluid - Google Patents

Apparatus for washing filter by using supercritical or subcritical fluid Download PDF

Info

Publication number
JP2004113979A
JP2004113979A JP2002283554A JP2002283554A JP2004113979A JP 2004113979 A JP2004113979 A JP 2004113979A JP 2002283554 A JP2002283554 A JP 2002283554A JP 2002283554 A JP2002283554 A JP 2002283554A JP 2004113979 A JP2004113979 A JP 2004113979A
Authority
JP
Japan
Prior art keywords
filter
supercritical
cleaning
fluid
subcritical fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002283554A
Other languages
Japanese (ja)
Other versions
JP3729799B2 (en
Inventor
Takao Ito
伊藤 隆夫
Masakazu Hasegawa
長谷川 雅一
Hiroshi Inomata
猪股 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Dan Co Ltd
Original Assignee
Dai Dan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Dan Co Ltd filed Critical Dai Dan Co Ltd
Priority to JP2002283554A priority Critical patent/JP3729799B2/en
Publication of JP2004113979A publication Critical patent/JP2004113979A/en
Application granted granted Critical
Publication of JP3729799B2 publication Critical patent/JP3729799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for washing filter by using a supercritical or subcritical fluid, by which a filter is washed efficiently without being damaged so that the released stain is not stuck to the filter again. <P>SOLUTION: This apparatus is characterized by being provided with a washing tank 50 for washing an air filter 25 by making the supercritical or subcritical fluid pass through there and a main body 41 of the tank 50 and a cap 47 between which the filter 25 is held in the tank 50 so that the supercritical or subcritical fluid is made to pass through the filter medium of the filter 25 and which are arranged for forming flow passages of prescribed lengths on the upstream and downstream sides of the filter 25. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、超臨界または亜臨界流体を用いて流体浄化用フィルタを洗浄する装置に関するもので、特に、エアフィルタ洗浄用として好適な洗浄装置に関するものである。
【0002】
【従来の技術】
建築物の空気調和設備に設置される空気清浄装置のエアフィルタは、粉塵の負荷により性能が劣化するため、定期的な交換が必要である。これまで多くは産業廃棄物として処理され新品と交換されてきたが、いわゆる中性能フィルタを中心として洗浄再生し再利用される機会が増えている。
【0003】
図7はセパレータ型エアフィルタの一例を示す一部切欠斜視図である。セパレータ型エアフィルタの構成は、ガラス繊維やポリプロピレン等の不織布のろ材1を折り込んで、アルミニウムまたは木製などのフレーム2にウレタン樹脂接着剤やエポキシ樹脂接着剤で接着固定したもので、ろ材1の強度が弱いためにアルミニウム製などのセパレータ3でろ材1を挟みこんで押さえてある。すなわち、ろ材1に空気等の流体を流通させることにより流体中の粒子等の不純物を捕集し取り除くことができる。セパレータ型エアフィルタは処理風量が大きい場合に利用される。
【0004】
図8はミニプリーツ型エアフィルタの一例を示す一部切欠斜視図である。ミニプリーツ型エアフィルタの構成は、ガラス繊維やポリプロピレン等の不織布のろ材4を折り込んで、アルミニウムまたは木製などのフレーム5にウレタン樹脂接着剤やエポキシ樹脂接着剤で接着固定したもので、ろ材4の強度が弱いためにエチレン樹脂等のビード6で補強してある。すなわち、ろ材4に空気等の流体を流通させることにより流体中の粒子等の不純物を捕集し取り除くことができる。ミニプリーツ型エアフィルタはセパレータ型エアフィルタほど処理風量を大きくとれないが、薄型であり、垂直層流型クリーンルームなどで利用されている。
【0005】
エアフィルタの洗浄再生技術として、従来、界面活性剤等の洗剤を含む液体溶媒を用いるもの(例えば、特許文献1参照。)や、洗浄液体中に保持したフィルタ面上で超音波によるキャビテーション現象を発生させるもの(例えば、特許文献2参照。)が知られている。この洗浄方式に好適なエアフィルタは、ポリプロピレンなど耐水性の不織布で形成されたフィルタ繊維を有し、かつ、中性能フィルタ程度の繊維密度を持つものである。この方法では洗浄工程の後にすすぎ工程、脱水、乾燥工程など多数の工程を経由して再生されている。
【0006】
一方、液体以外の洗浄溶媒で、微細な構造物の洗浄に優れた方法として、超臨界状態や亜臨界状態の流体を利用する洗浄方法がある。
【0007】
この種の洗浄方法として、例えば、被洗浄物を超臨界流体を循環流通(気化、液化状態での蒸気圧差による圧送、蒸気圧差を基にしたレベル差設定の重力落下搬送を利用)させて洗浄する方法(例えば、特許文献3〜5参照。)、超臨界流体循環経路の気体状態の場所に気体用フィルタを設けて汚染物が再付着するのを防ぐ方法(例えば、特許文献6参照。)、洗浄器内の超臨界流体を洗浄器外に急速に流出させること等により、汚染物質表面で強い撹乱や大量の気泡を発生させ、この流れやバブリング作用により汚染物質を迅速に強制剥離・強制溶解させて被洗浄物の洗浄を行う方法(例えば、特許文献7参照。)、ノズルから超臨界流体をジェット噴流で投射し、被洗浄物の汚れを剥離する方法(例えば、特許文献3,4参照。)などが提案されている。
【0008】
図9は二酸化炭素を例とした状態線図を示す温度−圧力特性図である。臨界点を越えた温度・圧力の流体が超臨界流体であり、その臨界点近傍の状態が亜臨界流体である。
【0009】
超臨界状態とはどんなに加圧を行っても液体にならない状態である。超臨界流体は、粘度、拡散係数、密度、溶解力が気体と液体の中間の値を持ち、その密度は液体に近く、その粘度は気体のような挙動を示すことから、浸透力と高拡散性に優れるという特徴を持つ。さらに高拡散性から物質移動の面でも優れている。また超臨界流体は、わずかな圧力変化で大きな密度変化が得られるという特徴を有している。一般に物質の溶解度は密度と比例するので、超臨界流体は圧力変化のみにより大きな溶解度差を得ることができ、洗浄媒体として優れた利点を持つ。
【0010】
また、超臨界流体を用いた洗浄は、従来からの湿式洗浄と比較し、微細な対象の洗浄効果に優れる、洗浄後の乾燥が不要、短時間の処理が可能、気化させることにより廃液がでない。添加剤を加えることで溶解力を自由に制御できる、ランニングコストが安いなど、その利点は非常に大きい。
【0011】
なお、このような超臨界流体は、分離抽出操作において古くから工業的に利用されている。原料物質から目的の物質を超臨界流体中に溶解させてから取り出し、超臨界流体を減圧気化させることにより目的成分を抽出する。このプロセスは原料を洗浄していることに非常に類似するが、抽出された成分が対象となる抽出操作は、分離された後の元の素材が重要となる洗浄操作と基本的に目的が異なる。また、超臨界による洗浄は、抽出操作とは異なり、被洗浄物が損傷しないための配慮が必要であり、さらに、一度取り除いた汚れが、再び被洗浄物に付着しないようにしなければ、完全な洗浄が行えないことに留意する必要がある。
【0012】
【特許文献1】
特開2001−17809号公報
【0013】
【特許文献2】
特開平11−188322号公報
【0014】
【特許文献3】
特開平10−94766号公報
【0015】
【特許文献4】
特開平10−163152号公報
【0016】
【特許文献5】
特開2000−153244号公報
【0017】
【特許文献6】
特開平7−284739号公報
【0018】
【特許文献7】
特開平8−290128号公報
【0019】
【発明が解決しようとする課題】
従来のフィルタ洗浄再生技術は液体溶媒を用いて洗剤や超音波を利用するもので、洗浄槽内の液体溶媒にフィルタを液浸し洗浄するため、一度取り除いた汚れが、フィルタの繊維に再付着する可能性がある。またフィルタの繊維構造が高性能フィルタのように、数ミクロン〜サブミクロンオーダーの繊維の充填構造になると、フィルタ深層に洗浄溶媒が浸透しにくいためうまく洗浄することさえできない。
【0020】
特に繊維材質がガラス繊維で構成された高性能フィルタの場合、ガラス繊維は疎水性であるため繊維内部まで洗浄溶媒を浸透させることができず効果的に洗浄することができない。
【0021】
さらに液体溶媒により洗剤や超音波を利用するエアフィルタの洗浄方法では、洗浄後に液体溶媒に液浸したフィルタを乾燥する工程が必要であるため、乾燥のための熱や送風等の多大なエネルギーが要求される。
【0022】
被洗浄物を超臨界流体に浸漬させる方法で洗浄する場合、剥離した汚染物が流体中に浮遊して残るためフィルタ繊維に再付着する問題を持つ。これを解決するためには清浄な流体に再度浸漬させるすすぎ工程が必要となるため不経済である。同様に超音波を併用する方法も、浮遊した汚染物の再付着はさけられないため、清浄な流体でのすすぎ工程が必要である。
【0023】
フィルタの汚れは繊維表面のろ過と繊維深層部のろ過があり、繊維表面がもっとも汚れの捕集量が多い。表面ろ過で捕集できない微細な汚れは、繊維内部を流れる過程において、慣性やさえぎりや拡散などの機構により上流側から捕集されていく。そのためフィルタに捕集される汚れは、上流側がもっとも付着量が大きい。捕集効率が99.99%を超える高性能エアフィルタの場合、下流側の繊維表面に到達するまでに粒子等の汚れは付着している。
【0024】
超臨界流体を循環流通させる方法(例えば、特許文献3〜5参照。)では、溶媒の搬送をこの気化、液化状態での蒸気圧差による圧送、蒸気圧差を基にしたレベル差設定の重力落下搬送で全て達成できる利点を持つ。この方法では一見流通により、再付着の問題は解決できるかのように見てとれるが、実際にはフィルタ繊維の表面層にのみ流体が流通し、表面に付着した汚れは再付着を低減しながら洗浄することができるが、深層部では流体の流れが弱いため洗浄できない。また表面の汚れが繊維深層部や背面の汚れの程度が低い部分に拡散で再付着することもある。
【0025】
被洗浄物が数ミクロン〜サブミクロンオーダーのガラス繊維フィルタでは、高圧の超臨界流体をノズルなどから投与する場合、流体の圧力によりフィルタが洗浄槽にあたり繊維を破損する場合がある。
【0026】
洗浄器内の超臨界流体を洗浄器外に急速に流出させること等により、汚染物質表面で強い撹乱や大量の気泡を発生させ、この流れやバブリング作用により汚染物質を迅速に強制剥離・強制溶解させて被洗浄物の洗浄を行う方法(例えば、特許文献7参照。)では、十分な強度を持った被洗浄物の洗浄には効果を発揮するが、衝撃などに弱いガラス繊維フィルタではバブリングの振動などにより洗浄槽壁に衝突し破損してしまう恐れがある。またこの方法も汚れの再付着は避けられない。
【0027】
ノズルから超臨界流体をジェット噴流で投射し、被洗浄物の汚れを剥離する方法(例えば、特許文献3,4参照。)では、フィルタと洗浄槽の接触で繊維を破損するとともに、フィルタ繊維深層部の洗浄効果が弱い。
【0028】
洗浄槽内でプロペラなどにより強制攪拌等の動作を伴うことも、フィルタ表面の汚れの剥離には効果があるが、ガラス繊維内部の洗浄効果は低い。また表面の汚れが深層部や背面に付着する恐れがある。
【0029】
このように洗浄時のガラス繊維の破損は、流動により生じるフィルタと洗浄槽内壁などの衝突に起因する。複数のフィルタを導入した場合ではフィルタ同士の衝突が破損の原因となる場合もある。
【0030】
本発明は上記の事情に鑑みてなされたもので、例えば数ミクロン〜サブミクロンオーダーのガラス繊維で構成された低強度の微細構造物であるエアフィルタ等を洗浄する装置として、液体洗浄等に必要な乾燥などの余分な工程部をなくし、超臨界または亜臨界流体を用いて例えば微細ガラス繊維等のフィルタろ材を破損することなく洗浄し、さらに脱離した汚れが再付着しないように効率よく洗浄する超臨界または亜臨界流体を用いたフィルタ洗浄装置を提供することを目的とする。
【0031】
【課題を解決するための手段】
上記目的を達成するために本発明のフィルタ洗浄装置は、フィルタを洗浄槽内に入れ、洗浄槽内に超臨界または亜臨界状態の流体を導入し流通させ、超臨界または亜臨界流体の拡散係数が大きいことによる微細構造への浸透性と、動粘度が極めて小さいことによる界面流動と対流が発生しやすいことを利用して、汚染物質を迅速に強制剥離・強制溶解させてフィルタの洗浄を行うフィルタ洗浄装置において、フィルタが流体の流れで洗浄槽の内壁などに衝突し破損しないように、フィルタを洗浄槽内で固定したり、保持部材にフィルタを入れ保持部材を洗浄槽内に固定することを特徴とする。
【0032】
また超臨界・亜臨界流体を流通させる場合において、フィルタのフレームを固定し例えば繊維等のろ材部分にのみ流体を流したり、保持部材の中に個別にフィルタを導入し、お互いの脱離した汚染物が再付着しないように配列して複数個のフィルタを洗浄槽にいれて洗浄することを特徴とする。そしてフィルタの使用時と逆方向に超臨界・亜臨界流体を流通できるように一方向流を形成することを特徴とする。
【0033】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態例を詳細に説明する。
【0034】
図1は本発明の実施形態例に係るフィルタ浄化装置の基本構成例を示す構成説明図である。図において、11は二酸化炭素を供給するボンベ(二酸化炭素供給手段)、12はポンプ(二酸化炭素の加圧送液手段)、13は温度調節器、14は洗浄溶媒の導入手段と排出手段を持つ洗浄槽、15は圧力制御弁(圧力調節手段)、Tは温度計、Pは圧力計、FMは流量計である。
【0035】
すなわち、洗浄槽14内には被洗浄物のガラス繊維製エアフィルタ等が保持部材に収納されて導入される。ボンベ11から供給された二酸化炭素は、ポンプ12、温度調節器13、及び圧力制御弁15を介して、40〜60度の気体状態の超臨界二酸化炭素ガスとされて15〜20MPaで洗浄槽14内に1時間程度流通され、被洗浄物のガラス繊維製エアフィルタ等を洗浄する。
【0036】
なお、洗浄槽14内の温度や圧力は被洗浄物の材質の強度および、汚れ成分により適宜決定されるものであり、被洗浄物によってはこれ以外の温度、圧力でもよい。また洗浄時の二酸化炭素は臨界点より下の亜臨界状態でもかまわない。
【0037】
図2(a)は本発明の実施形態例に係るエアフィルタを収納する保持部材を示す縦断面図であり、図2(b)は図2(a)のAA線断面図である。ステンレスで構成される直方体状の保持部材本体21には一面が開放されたフィルタ取付空間部22が設けられ、前記フィルタ取付空間部22の底面側下部には排出部(出口)23が外部に連通して設けられ、前記フィルタ取付空間部22の開放面側上部には導入部(入口)24が外部に連通して設けられる。前記フィルタ取付空間部22にはエアフィルタ25が上流側(吸込側)を底面側にすると共に下流側(吹出側)を開放面側にして挿入される。前記フィルタ取付空間部22の開放面側にはステンレスで構成される板状よりなる蓋26が前記エアフィルタ25のフレームを挟持するようにして固定ボルト27により着脱自在に取り付けられる。前記蓋26には前記導入部(入口)24と前記フィルタ取付空間部22を連通する連通孔29が設けられる。この場合、超臨界または亜臨界流体が保持部材28内の流路をよどみなく通流するよう、前記蓋26と前記エアフィルタ25の間、及び前記フィルタ取付空間部22の底面と前記エアフィルタ25の間には挟持されたエアフィルタ25の上流側及び下流側に所定長の流路を形成するようにそれぞれ空間が形成される。前記保持部材本体21及び蓋26より保持部材28が構成される。
【0038】
前記エアフィルタ25を実際の使用時の上流側(吸込側)を保持部材本体21の底面にむけて挿入した後に、蓋26で閉じて収納する。保持部材本体21には超臨界または亜臨界流体の導入部24と排出部23があり、超臨界または亜臨界流体(二酸化炭素)の導入部24から流入した超臨界または亜臨界流体が、エアフィルタ25の使用時と逆方向に繊維(ろ材)間を流れ、排出部23から汚れを含んだ超臨界または亜臨界流体が排出される構造になっている。
【0039】
図3(a)は本発明の実施形態例に係るエアフィルタ付き保持部材を固定した洗浄槽を示す縦断面図であり、図3(b)は図3(a)のBB線断面図である。すなわち、有底筒状の洗浄槽本体31内には支持桿32が設けられると共に洗浄槽本体31の内周面には支持段部33が設けられ、前記洗浄槽本体31の底部には超臨界または亜臨界流体(二酸化炭素)の排出部34が設けられる。前記洗浄槽本体31の開口部には洗浄槽蓋35が固定部材例えば蓋固定ボルト36により着脱自在に取り付けられ、洗浄槽蓋35には超臨界または亜臨界流体(二酸化炭素)の導入部37が設けられる。
【0040】
洗浄槽本体31内には図2に示すようなエアフィルタ25を保持した保持部材28が3個横方向に並んで並列に挟持されるように配置され、支持桿32及び支持段部33上に設置される。この場合、保持部材28の排出部23を洗浄槽本体31の排出部34にむけて保持部材28を挿入し、超臨界または亜臨界流体の導入部37をもつ洗浄槽蓋35を締めて密閉する。超臨界または亜臨界流体が洗浄槽本体31内の流路をよどみなく通流するよう、保持部材28と洗浄槽蓋35の間、及び洗浄槽本体31の底部と保持部材28の間には上流側および下流側に所定長の流路を形成するように空間が形成される。この例では3個の保持部材28を平行に挿入して同時に洗浄することができる。超臨界または亜臨界流体は、導入部37、保持部材28の導入部24、エアフィルタ25のろ材、保持部材28の排出部23、排出部34の順に流れていく。このように超臨界または亜臨界流体の一方向流を形成することで、エアフィルタ25の洗浄の際に超臨界または亜臨界流体中に離散したエアフィルタ25の汚れが他のエアフィルタ25に付着しない構造になっている。
【0041】
なお、上記実施形態例では3個の保持部材を用いて3個のエアフィルタを同時に洗浄する場合について説明したが、これに限らず、複数個の保持部材を用いて複数個のエアフィルタを同時に洗浄するようにしてもよい。
【0042】
図4(a)は本発明の実施形態例に係るエアフィルタを直接固定した洗浄槽を示す縦断面図であり、図4(b)は図4(a)のCC線断面図である。すなわち、有底筒状の洗浄槽本体41の内周面には支持段部42が設けられ、前記洗浄槽本体41の底部には超臨界または亜臨界流体(二酸化炭素)の排出部43が設けられる。前記洗浄槽本体41の上部近傍内周面には固定用段部44が設けられる。前記支持段部42にはエアフィルタ25が配置され、前記固定用段部44には固定部材45が固定用ねじ46により着脱自在に取り付けられ、前記固定部材45によりエアフィルタ25が押圧されて挟持するように取り付けられる。前記エアフィルタ25は上流側(吸込側)を底面側にすると共に下流側(吹出側)を開放面側にして設置される。前記洗浄槽本体41の開放面側には板状よりなる蓋47がふた固定ボルト48により着脱自在に取り付けられ、前記蓋47には超臨界または亜臨界流体(二酸化炭素)の導入部(入口)49が設けられる。超臨界または亜臨界流体が洗浄槽50内の流路をよどみなく通流するよう、エアフィルタ25と洗浄槽蓋47の間、及び洗浄槽本体41の底部とエアフィルタ25の間には上流側および下流側に所定長の流路を形成するように空間が形成される。
【0043】
洗浄槽本体41と蓋47で形成された密閉空間の洗浄槽50の内部に導入部49から導入された超臨界または亜臨界流体は、ピストンフローを形成して排出部43から排出される。洗浄槽内部にはエアフィルタ25を固定するために固定部材45があり、固定用ねじ46でエアフィルタ25のフレームを圧迫して固定する。通常、エアフィルタ25の外周部はアルミニウムや木材などよりなるフレームで形成されていて、空調ダクトや空気清浄器に密閉して取り付けるために、上流部および/または下流部にブチルゴムなどのパッキングが取り付けられている。このエアフィルタ25のフレームとパッキングを利用してエアフィルタ25を洗浄槽内部の棚(支持段部42)に圧着して固定する。超臨界または亜臨界流体はエアフィルタ25内部のろ材部にだけ流れるようになっている。超臨界または亜臨界流体中に離散した汚れは即座に下流側に移動する。なお、エアフィルタ25は使用時(粒子捕集時)と逆方向に超臨界または亜臨界二酸化炭素を流通したほうが洗浄効果は高い。エアフィルタ25の固定方法は、図4のように固定部材45を使用してもよいし、蓋と固定部材を一体形成して、蓋の閉動作と一緒に行ってもよい。
【0044】
図5は本発明の実施形態例に係る一方向流でのフィルタ洗浄を行った結果を示す説明図である。中心粒径0.3μmの多分散のフタル酸ジオクチル粒子を用いて、圧力損失が新品の2倍に上昇するまで汚したエアフィルタを温度40℃、圧力20MPaの超臨界二酸化炭素で120分間洗浄を行った。重量変化の結果から超臨界二酸化炭素で洗浄することにより、ほとんどの汚れが落ちているのがわかる。また圧力損失と捕集効率の測定結果から、エアフィルタの捕集性能は洗浄によりほぼ完全に回復しているのがわかる。
【0045】
図6は本発明の実施形態例に係る塩化亜鉛粒子を用いてフィルタの粒子径ごとの透過率(=1−捕集効率)を測定した特性図である。粒子径に対する透過率曲線は、最大透過となる粒子径やその時の透過率からフィルタの繊維構造を間接的に評価する指標であり、洗浄前後の透過率曲線から、洗浄によるフィルタ繊維への影響を見ることができる。図6の結果から洗浄前後において、どの粒径においてもほとんど透過率が影響を受けないのがわかる。このことから本発明の実施形態例に係るフィルタ洗浄装置がフィルタに損傷を与えることなく洗浄再生できることがわかる。
【0046】
なお、本発明の実施形態例では洗浄流体として二酸化炭素を使用した例について説明したが、これに限らず本発明を実施するときはその他の超臨界または亜臨界状態の洗浄に適した流体を使用するこができる。また、フィルタのサイズと洗浄槽または保持部材のサイズは、必ずしも同じである必要がなく、フィルタのサイズが洗浄槽または保持部材よりも小さい場合は、隙間材などを利用してフィルタを保持しても良い。
【0047】
【発明の効果】
以上述べたように本発明によれば、洗浄溶媒として超臨界または亜臨界状態の流体を利用し、微細構造をもつフィルタ繊維の繊維深層まで洗浄可能にするとともに、液体洗浄に必要な乾燥工程などを省き洗浄工程の短縮化が可能となる。フィルタを洗浄槽の内部に固定することにより、強度の弱いフィルタが洗浄時に洗浄槽に衝突し損傷するのを防ぐ。また洗浄槽内の流体の流れを一方向流に制御することで、脱離した汚れの再付着を減少する。同時に複数のフィルタの洗浄を可能とする。
【図面の簡単な説明】
【図1】本発明の実施形態例に係るフィルタ浄化装置の基本構成例を示す構成説明図である。
【図2】(a)は本発明の実施形態例に係るエアフィルタを収納する保持部材を示す縦断面図であり、(b)は(a)のAA線断面図である。
【図3】(a)は本発明の実施形態例に係るエアフィルタ付き保持部材を固定した洗浄槽を示す縦断面図であり、(b)は(a)のBB線断面図である。
【図4】(a)は本発明の実施形態例に係るエアフィルタを直接固定した洗浄槽を示す縦断面図であり、(b)は(a)のCC線断面図である。
【図5】本発明の実施形態例に係る一方向流でのフィルタ洗浄を行った結果を示す説明図である。
【図6】本発明の実施形態例に係る塩化亜鉛粒子を用いてフィルタの粒子径ごとの透過率(=1−捕集効率)を測定した特性図である。
【図7】セパレータ型エアフィルタの一例を示す一部切欠斜視図である。
【図8】ミニプリーツ型エアフィルタの一例を示す一部切欠斜視図である。
【図9】二酸化炭素を例とした状態線図を示す温度−圧力特性図である。
【符号の説明】
11 二酸化炭素を供給するボンベ(二酸化炭素供給手段)
12 ポンプ(二酸化炭素の加圧送液手段)
13 温度調節器
14 洗浄溶媒の導入手段と排出手段を持つ洗浄槽
15 圧力制御弁(圧力調節手段)
T 温度計
P 圧力計
FM 流量計
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a device for cleaning a fluid purification filter using a supercritical or subcritical fluid, and particularly to a cleaning device suitable for cleaning an air filter.
[0002]
[Prior art]
The performance of an air filter of an air purifying device installed in an air conditioner of a building deteriorates due to a dust load, and therefore, it needs to be periodically replaced. Until now, most of them have been treated as industrial waste and replaced with new ones. However, opportunities for washing and regenerating and reusing mainly so-called medium-performance filters are increasing.
[0003]
FIG. 7 is a partially cutaway perspective view showing an example of a separator type air filter. The separator type air filter has a structure in which a filter medium 1 made of a non-woven fabric such as glass fiber or polypropylene is folded and adhered and fixed to a frame 2 made of aluminum or wood with a urethane resin adhesive or an epoxy resin adhesive. Therefore, the filter medium 1 is sandwiched and held by a separator 3 made of aluminum or the like. That is, by allowing a fluid such as air to flow through the filter medium 1, impurities such as particles in the fluid can be collected and removed. The separator type air filter is used when the processing air volume is large.
[0004]
FIG. 8 is a partially cutaway perspective view showing an example of a mini-pleated air filter. The configuration of the mini-pleated air filter is such that a filter medium 4 made of non-woven fabric such as glass fiber or polypropylene is folded and fixed to a frame 5 made of aluminum or wood with a urethane resin adhesive or an epoxy resin adhesive. Because of its low strength, it is reinforced with beads 6 of ethylene resin or the like. That is, by allowing a fluid such as air to flow through the filter medium 4, impurities such as particles in the fluid can be collected and removed. The mini-pleat type air filter does not have a large processing air volume as the separator type air filter, but is thin and is used in a vertical laminar flow type clean room or the like.
[0005]
As a technique for cleaning and regenerating an air filter, a technique using a liquid solvent containing a detergent such as a surfactant (for example, see Patent Literature 1) and a technique of cavitation due to ultrasonic waves on a filter surface held in a cleaning liquid have been known. What generates it (for example, see Patent Document 2) is known. An air filter suitable for this cleaning method has a filter fiber formed of a water-resistant nonwoven fabric such as polypropylene, and has a fiber density on the order of a medium-performance filter. In this method, regeneration is performed through a number of steps such as a rinsing step, a dehydration step, and a drying step after the washing step.
[0006]
On the other hand, as a method excellent in cleaning fine structures using a cleaning solvent other than a liquid, there is a cleaning method using a fluid in a supercritical state or a subcritical state.
[0007]
As a cleaning method of this kind, for example, a cleaning object is cleaned by circulating and flowing a supercritical fluid (e.g., vaporization, liquefied state by pumping by a vapor pressure difference, and using gravity drop transfer with a level difference set based on the vapor pressure difference). (For example, refer to Patent Documents 3 to 5), and a method for preventing a contaminant from re-adhering by providing a gas filter at a gaseous place in a supercritical fluid circulation path (for example, see Patent Document 6). , The supercritical fluid in the washer quickly flows out of the washer, etc., causing strong disturbance and a large amount of air bubbles on the surface of the contaminant. A method of dissolving and cleaning an object to be cleaned (for example, see Patent Document 7), a method of projecting a supercritical fluid from a nozzle by a jet jet to remove dirt from the object to be cleaned (for example, Patent Documents 3 and 4). See.) It is draft.
[0008]
FIG. 9 is a temperature-pressure characteristic diagram showing a state diagram using carbon dioxide as an example. A fluid having a temperature and pressure exceeding the critical point is a supercritical fluid, and a state near the critical point is a subcritical fluid.
[0009]
The supercritical state is a state where the liquid does not become a liquid even if pressure is applied. Supercritical fluids have viscosity, diffusion coefficient, density, and dissolving power that are intermediate values between gas and liquid.The density is close to that of liquid, and its viscosity behaves like gas. It has the characteristic that it is excellent. Furthermore, it is excellent in mass transfer due to its high diffusivity. The supercritical fluid has a feature that a large change in density can be obtained with a slight change in pressure. In general, since the solubility of a substance is proportional to the density, a supercritical fluid can obtain a large difference in solubility only by a change in pressure, and has an excellent advantage as a cleaning medium.
[0010]
In addition, cleaning using a supercritical fluid is superior to conventional wet cleaning in cleaning effects of fine objects, requires no drying after cleaning, can be processed in a short time, and has no waste liquid due to vaporization. . The advantages are very large, for example, the dissolving power can be freely controlled by adding additives, and the running cost is low.
[0011]
In addition, such a supercritical fluid has been industrially used for a long time in the separation and extraction operation. A target substance is dissolved from a raw material in a supercritical fluid and then taken out, and the target component is extracted by evaporating the supercritical fluid under reduced pressure. This process is very similar to washing raw materials, but the extraction operation on the extracted components is fundamentally different from the cleaning operation where the original material after separation is important . In addition, unlike the extraction operation, supercritical cleaning requires care to prevent damage to the object to be cleaned, and complete cleaning must be performed unless the dirt once removed does not adhere to the object to be cleaned again. It must be noted that cleaning cannot be performed.
[0012]
[Patent Document 1]
JP 2001-17809 A
[Patent Document 2]
JP-A-11-188322
[Patent Document 3]
JP-A-10-94766
[Patent Document 4]
JP-A-10-163152
[Patent Document 5]
JP 2000-153244 A
[Patent Document 6]
JP-A-7-284739
[Patent Document 7]
JP-A-8-290128
[Problems to be solved by the invention]
Conventional filter cleaning and regeneration technology uses detergents and ultrasonic waves with a liquid solvent.Since the filter is immersed in the liquid solvent in the cleaning tank for cleaning, the soil removed once adheres to the fiber of the filter. there is a possibility. Further, when the filter has a fiber structure of several micron to submicron order, such as a high-performance filter, the cleaning solvent does not easily penetrate into the deep layer of the filter, so that the filter cannot be cleaned well.
[0020]
Particularly, in the case of a high-performance filter made of glass fiber, the glass fiber is hydrophobic, so that the cleaning solvent cannot penetrate into the fiber and cannot be effectively cleaned.
[0021]
Further, in the method of cleaning an air filter using a detergent or ultrasonic waves with a liquid solvent, a step of drying the filter immersed in the liquid solvent after the cleaning is required, so that a large amount of energy such as heat or air for drying is required. Required.
[0022]
When the object to be washed is washed by a method of immersing it in a supercritical fluid, there is a problem that the separated contaminants are left floating in the fluid and reattach to the filter fibers. In order to solve this, a rinsing step of immersing in a clean fluid again is necessary, which is uneconomical. Similarly, the method using ultrasonic waves also requires a rinsing step with a clean fluid since reattachment of suspended contaminants cannot be avoided.
[0023]
Filtration of the filter includes filtration of the fiber surface and filtration of the deep part of the fiber, and the fiber surface has the largest amount of dirt collected. Fine dirt that cannot be collected by surface filtration is collected from the upstream side by a mechanism such as inertia, interception, or diffusion in the process of flowing inside the fiber. Therefore, the amount of dirt collected by the filter is the largest on the upstream side. In the case of a high-performance air filter having a collection efficiency exceeding 99.99%, dirt such as particles adheres before reaching the fiber surface on the downstream side.
[0024]
In the method of circulating and circulating a supercritical fluid (see, for example, Patent Documents 3 to 5), the solvent is conveyed by vaporization or liquefaction by a vapor pressure difference, or by gravity drop conveyance with a level difference set based on the vapor pressure difference. With all the advantages that can be achieved. In this method, at first glance, it can be seen that the problem of re-adhesion can be solved by circulation, but in actuality, fluid flows only to the surface layer of the filter fiber, and dirt attached to the surface reduces redeposition while reducing Although it can be washed, it cannot be washed in the deep part because the fluid flow is weak. Further, the surface dirt may re-attach by diffusion to the deep part of the fiber or the lower part of the dirt.
[0025]
When a high-pressure supercritical fluid is applied from a nozzle or the like to a glass fiber filter having an order of several microns to a submicron, the filter may hit the cleaning tank due to the pressure of the fluid and damage the fiber.
[0026]
The supercritical fluid in the washer is rapidly discharged out of the washer, causing strong disturbance and a large amount of air bubbles on the surface of the contaminant. The method of cleaning the object to be cleaned (see, for example, Patent Document 7) is effective for cleaning the object to be cleaned having sufficient strength, but the bubbling of a glass fiber filter that is weak against impacts is effective. There is a risk of collision with the cleaning tank wall due to vibration or the like and breakage. Also in this method, reattachment of dirt is inevitable.
[0027]
In a method in which a supercritical fluid is jetted from a nozzle by a jet jet to remove dirt from an object to be cleaned (see, for example, Patent Documents 3 and 4), a fiber is damaged by contact between a filter and a cleaning tank, and a deep layer of the filter fiber is formed. The cleaning effect of the part is weak.
[0028]
An operation such as forced agitation by a propeller or the like in the cleaning tank is effective for removing dirt on the filter surface, but the effect of cleaning the inside of the glass fiber is low. In addition, surface dirt may adhere to the deep layer and the back surface.
[0029]
As described above, the breakage of the glass fiber at the time of cleaning is caused by the collision between the filter and the inner wall of the cleaning tank caused by the flow. When a plurality of filters are introduced, collision between the filters may cause damage.
[0030]
The present invention has been made in view of the above circumstances, and is necessary for liquid cleaning and the like as an apparatus for cleaning an air filter or the like, which is a low-strength microstructure composed of glass fibers of several micron to submicron order. Eliminates unnecessary process steps such as dry drying, and uses supercritical or subcritical fluids to clean filter media such as fine glass fibers without damaging them. It is an object of the present invention to provide a filter cleaning device using a supercritical or subcritical fluid.
[0031]
[Means for Solving the Problems]
In order to achieve the above object, a filter cleaning apparatus of the present invention includes a filter placed in a cleaning tank, a supercritical or subcritical fluid introduced and circulated in the cleaning tank, and a diffusion coefficient of a supercritical or subcritical fluid. Clean the filter by quickly forcibly peeling and dissolving the contaminants by utilizing the permeability to the microstructure due to the large particle size, and the easy occurrence of interfacial flow and convection due to the extremely small kinematic viscosity. In the filter cleaning device, fix the filter in the cleaning tank, or insert the filter into the holding member and fix the holding member in the cleaning tank so that the filter does not collide with the inner wall of the cleaning tank due to the flow of the fluid and is not damaged. It is characterized by.
[0032]
In the case where supercritical or subcritical fluid is allowed to flow, the filter frame is fixed and the fluid is allowed to flow only through the filter medium, for example, fibers, or the filters are individually introduced into the holding member, and the desorbed contamination It is characterized in that a plurality of filters are arranged in a washing tank and washed so that the objects do not adhere again. And it is characterized in that a unidirectional flow is formed so that a supercritical / subcritical fluid can flow in a direction opposite to the direction in which the filter is used.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0034]
FIG. 1 is a configuration explanatory view showing a basic configuration example of a filter purification device according to an embodiment of the present invention. In the figure, 11 is a cylinder for supplying carbon dioxide (carbon dioxide supply means), 12 is a pump (carbon dioxide pressurized liquid sending means), 13 is a temperature controller, 14 is a washing having a washing solvent introducing means and a discharging means. The tank, 15 is a pressure control valve (pressure adjusting means), T is a thermometer, P is a pressure gauge, and FM is a flow meter.
[0035]
That is, a glass fiber air filter to be cleaned is housed in the holding member and introduced into the cleaning tank 14. The carbon dioxide supplied from the cylinder 11 is converted into a 40 to 60 degree gaseous supercritical carbon dioxide gas through a pump 12, a temperature controller 13, and a pressure control valve 15, and is supplied to the cleaning tank 14 at 15 to 20 MPa. Circulates for about one hour to clean the glass fiber air filter and the like to be cleaned.
[0036]
The temperature and pressure in the cleaning tank 14 are appropriately determined depending on the strength of the material of the object to be cleaned and the dirt components, and may be other temperatures and pressures depending on the object to be cleaned. The carbon dioxide at the time of washing may be in a subcritical state below the critical point.
[0037]
FIG. 2A is a longitudinal sectional view showing a holding member for accommodating the air filter according to the embodiment of the present invention, and FIG. 2B is a sectional view taken along line AA of FIG. 2A. A rectangular parallelepiped holding member body 21 made of stainless steel is provided with a filter mounting space portion 22 having an open surface, and a discharge portion (outlet) 23 communicates with the outside at a lower portion on the bottom side of the filter mounting space portion 22. An introduction portion (entrance) 24 is provided at an upper portion on the open surface side of the filter mounting space portion 22 so as to communicate with the outside. An air filter 25 is inserted into the filter mounting space 22 with the upstream side (suction side) on the bottom side and the downstream side (blowing side) on the open side. A plate-like lid 26 made of stainless steel is detachably attached to the open surface side of the filter attachment space 22 by fixing bolts 27 so as to sandwich the frame of the air filter 25. The lid 26 is provided with a communication hole 29 for communicating the introduction portion (entrance) 24 and the filter mounting space 22. In this case, between the lid 26 and the air filter 25 and between the bottom surface of the filter mounting space 22 and the air filter 25 so that the supercritical or subcritical fluid flows through the flow path in the holding member 28 without stagnation. Spaces are respectively formed between the air filters 25 so as to form flow paths of a predetermined length upstream and downstream of the air filter 25 sandwiched therebetween. A holding member 28 is composed of the holding member main body 21 and the lid 26.
[0038]
After the air filter 25 is inserted with the upstream side (suction side) in actual use facing the bottom surface of the holding member main body 21, the air filter 25 is closed with the lid 26 and stored. The holding member main body 21 has a supercritical or subcritical fluid introduction part 24 and a discharge part 23. The supercritical or subcritical fluid flowing from the supercritical or subcritical fluid (carbon dioxide) introduction part 24 is supplied to the air filter. The structure is such that a supercritical or subcritical fluid containing dirt is discharged from the discharge part 23 by flowing between the fibers (filter media) in the opposite direction to the time of use.
[0039]
FIG. 3A is a longitudinal sectional view showing a cleaning tank to which a holding member with an air filter according to an embodiment of the present invention is fixed, and FIG. 3B is a sectional view taken along line BB of FIG. 3A. . That is, a support rod 32 is provided in a bottomed cylindrical cleaning tank main body 31, and a supporting step 33 is provided on an inner peripheral surface of the cleaning tank main body 31. Alternatively, a subcritical fluid (carbon dioxide) discharge unit 34 is provided. A cleaning tank lid 35 is detachably attached to an opening of the cleaning tank main body 31 by a fixing member, for example, a lid fixing bolt 36, and a supercritical or subcritical fluid (carbon dioxide) introduction part 37 is provided in the cleaning tank lid 35. Provided.
[0040]
Two holding members 28 holding the air filters 25 as shown in FIG. 2 are arranged in the washing tank main body 31 so as to be sandwiched in parallel in the horizontal direction, and are provided on the support rod 32 and the support step 33. Will be installed. In this case, the holding member 28 is inserted so that the discharge portion 23 of the holding member 28 faces the discharge portion 34 of the cleaning tank main body 31, and the cleaning tank lid 35 having the supercritical or subcritical fluid introduction portion 37 is closed and sealed. . Upstream between the holding member 28 and the washing tank lid 35 and between the bottom of the washing tank body 31 and the holding member 28 so that the supercritical or subcritical fluid flows through the flow path in the washing tank body 31 without stagnation. A space is formed so as to form a flow path of a predetermined length on the side and the downstream side. In this example, three holding members 28 can be inserted in parallel to perform cleaning at the same time. The supercritical or subcritical fluid flows in the order of the introduction part 37, the introduction part 24 of the holding member 28, the filter medium of the air filter 25, the discharge part 23 of the holding member 28, and the discharge part 34. By forming the unidirectional flow of the supercritical or subcritical fluid in this way, the dirt of the air filter 25 dispersed in the supercritical or subcritical fluid adheres to another air filter 25 when the air filter 25 is washed. It is not structured.
[0041]
In the above-described embodiment, the case where three air filters are simultaneously cleaned using three holding members has been described. However, the present invention is not limited to this, and a plurality of air filters are simultaneously used using a plurality of holding members. You may make it wash | clean.
[0042]
FIG. 4A is a longitudinal sectional view showing a cleaning tank to which an air filter according to an embodiment of the present invention is directly fixed, and FIG. 4B is a sectional view taken along line CC of FIG. 4A. That is, a support step 42 is provided on the inner peripheral surface of the bottomed cylindrical cleaning tank main body 41, and a supercritical or subcritical fluid (carbon dioxide) discharge section 43 is provided at the bottom of the cleaning tank main body 41. Can be A fixing step 44 is provided on the inner peripheral surface near the upper portion of the cleaning tank main body 41. An air filter 25 is disposed on the supporting step 42, and a fixing member 45 is detachably attached to the fixing step 44 by a fixing screw 46, and the air filter 25 is pressed by the fixing member 45 to be pinched. To be installed. The air filter 25 is installed with the upstream side (suction side) on the bottom side and the downstream side (blowing side) on the open side. A plate-shaped lid 47 is detachably attached to the open surface side of the cleaning tank main body 41 with a lid fixing bolt 48, and a supercritical or subcritical fluid (carbon dioxide) introduction portion (inlet) is attached to the lid 47. 49 are provided. An upstream side is provided between the air filter 25 and the cleaning tank lid 47 and between the bottom of the cleaning tank main body 41 and the air filter 25 so that the supercritical or subcritical fluid flows through the flow path in the cleaning tank 50 without stagnation. A space is formed on the downstream side so as to form a flow path of a predetermined length.
[0043]
The supercritical or subcritical fluid introduced from the introduction part 49 into the inside of the cleaning tank 50 in the closed space formed by the cleaning tank body 41 and the lid 47 forms a piston flow and is discharged from the discharge part 43. A fixing member 45 for fixing the air filter 25 is provided inside the cleaning tank, and the frame of the air filter 25 is pressed and fixed by a fixing screw 46. Normally, the outer peripheral portion of the air filter 25 is formed of a frame made of aluminum, wood, or the like, and a packing such as butyl rubber is attached to an upstream portion and / or a downstream portion in order to hermetically attach the air filter 25 to an air conditioning duct or an air purifier. Have been. Using the frame and the packing of the air filter 25, the air filter 25 is pressed and fixed to a shelf (supporting step 42) inside the cleaning tank. The supercritical or subcritical fluid flows only to the filter medium inside the air filter 25. The fouling that is dispersed in the supercritical or subcritical fluid immediately moves downstream. The cleaning effect of the air filter 25 is higher when supercritical or subcritical carbon dioxide is flowed in the opposite direction to the use (at the time of collecting particles). As a method for fixing the air filter 25, the fixing member 45 may be used as shown in FIG. 4, or the lid and the fixing member may be integrally formed and performed together with the closing operation of the lid.
[0044]
FIG. 5 is an explanatory diagram showing a result of performing filter cleaning in one-way flow according to the embodiment of the present invention. Using a polydispersed dioctyl phthalate particle having a central particle diameter of 0.3 μm, the soiled air filter is washed with supercritical carbon dioxide at a temperature of 40 ° C. and a pressure of 20 MPa for 120 minutes until the pressure loss rises to twice that of a new product. went. From the results of the weight change, it can be seen that most of the dirt has been removed by washing with supercritical carbon dioxide. The measurement results of the pressure loss and the collection efficiency show that the collection performance of the air filter has been almost completely recovered by the washing.
[0045]
FIG. 6 is a characteristic diagram in which the transmittance (= 1−collection efficiency) for each particle diameter of the filter is measured using the zinc chloride particles according to the embodiment of the present invention. The transmittance curve for the particle diameter is an index for indirectly evaluating the fiber structure of the filter from the particle diameter at which the maximum transmission occurs and the transmittance at that time.From the transmittance curves before and after washing, the effect on the filter fiber due to washing can be determined. You can see. From the results shown in FIG. 6, it can be seen that the transmittance is hardly affected by any particle size before and after washing. This shows that the filter cleaning device according to the embodiment of the present invention can perform cleaning and regeneration without damaging the filter.
[0046]
In the embodiment of the present invention, an example in which carbon dioxide is used as the cleaning fluid has been described. However, the present invention is not limited to this, and other fluids suitable for cleaning in a supercritical or subcritical state are used. Can do it. In addition, the size of the filter and the size of the cleaning tank or the holding member need not necessarily be the same, and when the size of the filter is smaller than the size of the cleaning tank or the holding member, the filter may be held using a gap material or the like. Is also good.
[0047]
【The invention's effect】
As described above, according to the present invention, a supercritical or subcritical fluid is used as a cleaning solvent, and a filter layer having a fine structure can be cleaned to a deep fiber layer, and a drying step required for liquid cleaning, etc. And the cleaning process can be shortened. By fixing the filter inside the cleaning tank, it is possible to prevent the weak filter from colliding with the cleaning tank during cleaning and being damaged. In addition, by controlling the flow of the fluid in the cleaning tank to a one-way flow, reattachment of the detached dirt is reduced. It is possible to wash a plurality of filters at the same time.
[Brief description of the drawings]
FIG. 1 is a configuration explanatory view showing a basic configuration example of a filter purification device according to an embodiment of the present invention.
2A is a longitudinal sectional view showing a holding member for accommodating an air filter according to an embodiment of the present invention, and FIG. 2B is a sectional view taken along line AA of FIG.
3A is a longitudinal sectional view showing a cleaning tank to which a holding member with an air filter according to an embodiment of the present invention is fixed, and FIG. 3B is a sectional view taken along the line BB of FIG.
4A is a longitudinal sectional view showing a cleaning tank to which an air filter according to an embodiment of the present invention is directly fixed, and FIG. 4B is a sectional view taken along line CC of FIG.
FIG. 5 is an explanatory diagram showing a result of performing filter cleaning with a one-way flow according to the embodiment of the present invention.
FIG. 6 is a characteristic diagram in which transmittance (= 1−collection efficiency) for each particle diameter of a filter is measured using zinc chloride particles according to the embodiment of the present invention.
FIG. 7 is a partially cutaway perspective view showing an example of a separator type air filter.
FIG. 8 is a partially cutaway perspective view showing an example of a mini-pleated air filter.
FIG. 9 is a temperature-pressure characteristic diagram showing a state diagram using carbon dioxide as an example.
[Explanation of symbols]
11 Cylinder for supplying carbon dioxide (carbon dioxide supply means)
12 Pump (Pressurized liquid sending means of carbon dioxide)
13 Temperature controller 14 Cleaning tank having cleaning solvent introduction means and discharge means 15 Pressure control valve (pressure control means)
T Thermometer P Pressure gauge FM Flow meter

Claims (5)

超臨界または亜臨界流体を通流させてフィルタを洗浄する洗浄槽と、
超臨界または亜臨界流体がフィルタろ材を通流するように洗浄槽内にフィルタを挟持させ、かつ、挟持されたフィルタの上流側および下流側に所定長の流路を形成させるように設けられるフィルタ挟持手段と
を具備することを特徴とする超臨界または亜臨界流体を用いたフィルタ洗浄装置。
A washing tank for washing the filter by flowing a supercritical or subcritical fluid,
A filter provided so as to sandwich a filter in a washing tank so that a supercritical or subcritical fluid flows through a filter medium, and to form a flow path of a predetermined length upstream and downstream of the sandwiched filter. A filter cleaning apparatus using a supercritical or subcritical fluid, comprising: a holding means.
フィルタ挟持手段が、
フィルタの上流側からフィルタを挟持する固定部材と、
フィルタの下流側からフィルタを挟持する有底筒状の洗浄装置本体と
より構成されることを特徴とする請求項1に記載の超臨界または亜臨界流体を用いたフィルタ洗浄装置。
Filter holding means,
A fixing member for holding the filter from the upstream side of the filter,
The filter cleaning device using a supercritical or subcritical fluid according to claim 1, comprising a bottomed cylindrical cleaning device main body that sandwiches the filter from the downstream side of the filter.
超臨界または亜臨界流体を通流させてフィルタを洗浄する洗浄槽と、
前記洗浄槽内に着脱可能に設けられるとともに、超臨界または亜臨界流体がフィルタろ材を通流するように内部にフィルタを保持し、かつ、保持されたフィルタの上流側および下流側に所定長の流路が形成されるフィルタ保持部材と
を具備することを特徴とする超臨界または亜臨界流体を用いたフィルタ洗浄装置。
A washing tank for washing the filter by flowing a supercritical or subcritical fluid,
The filter is detachably provided in the washing tank, holds the filter inside such that a supercritical or subcritical fluid flows through the filter medium, and has a predetermined length on the upstream and downstream sides of the held filter. A filter cleaning apparatus using a supercritical or subcritical fluid, comprising: a filter holding member in which a flow path is formed.
複数個のフィルタ保持部材が洗浄槽内に並列に設けられ、複数個のフィルタ保持部材に保持された複数個のフィルタを同時に洗浄することを特徴とする請求項3に記載する超臨界または亜臨界流体を用いたフィルタ洗浄装置。The supercritical or subcritical method according to claim 3, wherein a plurality of filter holding members are provided in parallel in the cleaning tank, and the plurality of filters held by the plurality of filter holding members are washed at the same time. Filter cleaning device using fluid. フィルタを洗浄するときは、フィルタの空気流出側から超臨界流体または亜臨界流体が導入されるとともに、フィルタの空気流入側から超臨界流体または亜臨界流体が排出されることを特徴とする請求項1乃至4のいずれか1項に記載の超臨界または亜臨界流体を用いたフィルタ洗浄装置。When cleaning the filter, a supercritical fluid or a subcritical fluid is introduced from an air outflow side of the filter, and a supercritical fluid or a subcritical fluid is discharged from an air inflow side of the filter. A filter cleaning device using the supercritical or subcritical fluid according to any one of claims 1 to 4.
JP2002283554A 2002-09-27 2002-09-27 Filter cleaning equipment using supercritical or subcritical fluid Expired - Lifetime JP3729799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283554A JP3729799B2 (en) 2002-09-27 2002-09-27 Filter cleaning equipment using supercritical or subcritical fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283554A JP3729799B2 (en) 2002-09-27 2002-09-27 Filter cleaning equipment using supercritical or subcritical fluid

Publications (2)

Publication Number Publication Date
JP2004113979A true JP2004113979A (en) 2004-04-15
JP3729799B2 JP3729799B2 (en) 2005-12-21

Family

ID=32277383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283554A Expired - Lifetime JP3729799B2 (en) 2002-09-27 2002-09-27 Filter cleaning equipment using supercritical or subcritical fluid

Country Status (1)

Country Link
JP (1) JP3729799B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222715A (en) * 2006-02-21 2007-09-06 Dai-Dan Co Ltd Filter washing vessel
JP2007222716A (en) * 2006-02-21 2007-09-06 Dai-Dan Co Ltd Filter washing vessel
WO2010134688A1 (en) * 2009-05-19 2010-11-25 서울대학교산학협력단 Membrane filter washing method
JP2011045818A (en) * 2009-08-26 2011-03-10 Japan Organo Co Ltd Cleaning method of filter, cleaning and drying method of body to be treated
EP2446952A1 (en) * 2010-11-02 2012-05-02 Hanspeter Mayer Device for cleaning a filter or catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222715A (en) * 2006-02-21 2007-09-06 Dai-Dan Co Ltd Filter washing vessel
JP2007222716A (en) * 2006-02-21 2007-09-06 Dai-Dan Co Ltd Filter washing vessel
JP4612556B2 (en) * 2006-02-21 2011-01-12 ダイダン株式会社 Filter cleaning method
JP4612557B2 (en) * 2006-02-21 2011-01-12 ダイダン株式会社 Filter cleaning method
WO2010134688A1 (en) * 2009-05-19 2010-11-25 서울대학교산학협력단 Membrane filter washing method
KR101122250B1 (en) * 2009-05-19 2012-03-20 서울대학교산학협력단 Method for cleaning the membrane filter
JP2011045818A (en) * 2009-08-26 2011-03-10 Japan Organo Co Ltd Cleaning method of filter, cleaning and drying method of body to be treated
EP2446952A1 (en) * 2010-11-02 2012-05-02 Hanspeter Mayer Device for cleaning a filter or catalyst
EP2446952B1 (en) 2010-11-02 2016-03-30 Hirtenberger Aktiengesellschaft Device for cleaning a filter or catalyst

Also Published As

Publication number Publication date
JP3729799B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
JP2857087B2 (en) Dry cleaning method and apparatus for clothes using agitation by gas injection
US9149744B2 (en) Filtration method, method for purifying polishing composition using it, method for regenerating filter to be used for filtration, and filter regenerating apparatus
KR101589763B1 (en) Method for cleaning Filtering Membrane
CN102145257B (en) Method for cleaning filtering membrane modules
CN101314158A (en) Washing drying apparatus
JP3729799B2 (en) Filter cleaning equipment using supercritical or subcritical fluid
CN102059231A (en) Ultrasonic cleaning equipment
US7111632B2 (en) Ultrasonic cleaning device for removing undesirable particles from an object
WO2014073947A1 (en) An ultrafiltration system for concentration of latices
JP3457758B2 (en) Cleaning device using supercritical fluid
CN205495354U (en) Vibrating milipore filter processing apparatus
JP3913126B2 (en) Cleaning device using supercritical or subcritical fluid
KR101019032B1 (en) Treatment apparatus and method for wafer waste water
JP2014024031A (en) Membrane filtration apparatus
CN208449073U (en) A kind of disc tube reverse osmosis (dt-ro) Membrane cleaning system
JP5641989B2 (en) Filter cleaning device
Veerasamy et al. Evaluating the use of in-situ ultrasonication to reduce fouling during natural rubber skim latex (waste latex) recovery by ultrafiltration
US5851305A (en) Washing apparatus and washing method
JP4167720B2 (en) Solvent washer
CN210699592U (en) Reverse osmosis unit&#39;s wiper mechanism
JPH11333215A (en) Apparatus for preventing air lock of filtration filter
CN208643510U (en) A kind of online dedusting of optical film disappears electrostatic mechanism
JPH06277637A (en) Washing apparatus
CN219681793U (en) Separator
CN221492078U (en) Filter equipment of fine solid material of high-efficient filtration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051004

R150 Certificate of patent or registration of utility model

Ref document number: 3729799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term