[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004111453A - 太陽電池 - Google Patents

太陽電池 Download PDF

Info

Publication number
JP2004111453A
JP2004111453A JP2002268479A JP2002268479A JP2004111453A JP 2004111453 A JP2004111453 A JP 2004111453A JP 2002268479 A JP2002268479 A JP 2002268479A JP 2002268479 A JP2002268479 A JP 2002268479A JP 2004111453 A JP2004111453 A JP 2004111453A
Authority
JP
Japan
Prior art keywords
light
solar cell
transparent substrate
cylindrical
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002268479A
Other languages
English (en)
Inventor
Junji Hirokane
広兼 順司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002268479A priority Critical patent/JP2004111453A/ja
Publication of JP2004111453A publication Critical patent/JP2004111453A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】太陽電池において反射される太陽光を低減し、太陽電池の発電効率を高くする。
【解決手段】上記シリンドリカル状集光曲面群4により集光された光が、直線スリット状光透過孔群6から入射し、太陽電池素子の光電変換層2と光反射層5との間で多重反射されることにより、光電変換層2に照射される光量が増大し、発電効率を高くすることが可能となる。また、シリンドリカル状集光曲面群4により集光される光が、対応する直線スリット状光透過孔を通過するときの通過光量を調節できるように、集光素子3と直線スリット状光透過孔群6とが、相対的に移動可能に支持されている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池に関するものである。
【0002】
【従来の技術】
従来の太陽電池は、図17に示すように、pn接合による光電変換を行う多結晶Si太陽電池(例えば、特許文献2参照)や、図18に示すように、pin接合による光電変換を行う非晶質Si太陽電池である(例えば、特許文献1参照)。また、図示しないが、単結晶Si基板上に、pn接合を形成した単結晶Si太陽電池がある。
【0003】
図17に示す多結晶Si太陽電池においては、支持体を兼ねた基板171上に、光反射効果を有する電極金属層172、電極金属層172と多結晶Si半導体層174との電気的接触を良好にするために設けたn型不純物およびp型不純物の一方を高濃度にドーピングした多結晶Si半導体層173、多結晶Si半導体層173と同じ伝導型不純物をわずかにドーピングした多結晶Si半導体層174、多結晶Si半導体層173、174と反対の伝導型不純物を高濃度にドーピングした多結晶Si半導体層175、電流を取り出すための集電電極176、効率的に光を取り込むための反射防止層177とから構成されている。
【0004】
また、図18に示す非晶質Si太陽電池においては、支持体を兼ねた基板181上に、光反射効果を有する電極金属層182、非晶質Si半導体からなりn型不純物がドーピングされたn層183、非晶質Si半導体からなり真性半導体であるi層184、非晶質Si半導体からなりp型不純物がドーピングされたp層185、電流を取り出すための集電電極186、効率的に光を取り込むための反射防止層187とから構成されている。
【0005】
また、発電効率を上げるため、図17に示す多結晶半導体で構成したpn接合と、図18に示す非晶質半導体で構成したpin接合とを積層したタンデム構造太陽電池が提案されている。
【0006】
これらの太陽電池以外に、基板側から光を入射させる図19に示すような太陽電池が提案されている。この太陽電池は、光入射側から順に、透明基板191、透明基板191上に、効率的に光を取り込むための反射防止層192、電流を取り出すための集電電極193、非晶質Si半導体からなりp型不純物がドーピングされたp層194、非晶質Si半導体からなり真性半導体であるi層195、非晶質Si半導体からなりn型不純物がドーピングされたn層196、光反射効果を有する電極金属層197とから構成されている。
【0007】
【特許文献1】
特開平5−48127号公報 (1993年2月26日公開)
【0008】
【特許文献2】
特開平11−214717号公報 (1999年8月6日公開)
【0009】
【発明が解決しようとする課題】
ところが、上記従来の構成では、以下に記す種々の要因により、発電効率が低いという問題を有している。
【0010】
第1の要因は、反射防止層177、187、192にある。すなわち、表面反射を極力抑えることを目的として、光入射面もしくは光入射面の近傍に導電性透明膜からなる反射防止層177、187、192を設けているが、表面反射を完全に零とすることは困難であり、入射光の一部が反射されるという問題が生じる。また、上記反射防止層177、187、192は、一般に、波長依存性を有しており、設計波長中心から光波長がずれることにより、表面反射が増大してしまうという問題も生じる。特に、比較的広い波長の光を光電変換に利用するタンデム構造太陽電池においては、その悪影響は、さらに大きなものとなる。
【0011】
第2の要因は、集電電極176、186、193にある。すなわち、電流を取り出すため、光入射側に設けられた集電電極176、186、193は、入射光を完全に反射してしまうため、確実に発電効率の低下をもたらすことになる。
【0012】
ところで、光を吸収して電荷を発生させ、発電を行う多結晶Si半導体層174、非晶質Si半導体層184、195は、入射した光を吸収するために十分な膜厚が必要なので、発電効率を上げる目的で、その膜厚を厚くすることが考えられる。しかし、半導体層の膜厚が、あまり厚くなると、電荷の走行距離が増大するため、外部に取り出すことのできる電流が減少するという問題が生じる。また、半導体層の膜厚増加は、製造時間の増加、及び、材料使用量の増加につながるため、コスト増加につながるという問題を生じる。
【0013】
したがって、前述のような半導体層等を含む光電変換層の入射光吸収率を改善するためには、半導体層の膜厚自体を増加させることなく、光電変換層への入射光量を如何に増大させるかが、最大の課題であるといえる。これはまた、太陽光などの外部光を無駄なく利用することで、外部出力電流を減少させることなく、半導体層の膜厚を薄くできるようにするには、どうすればよいか、という課題に換言できる。
【0014】
本発明は、上記問題点を解決するためになされたもので、その目的は、太陽電池からの表面反射による光損失を低減し、さらに、太陽光の中のより広範囲な波長の光を、有効に光電変換に利用して、高い発電効率を実現することが可能な太陽電池を提供することにある。
【0015】
【課題を解決するための手段】
上記の課題を解決する本発明の太陽電池は以下のようなものである。
【0016】
本発明に係る太陽電池は、上記の課題を解決するために、光電変換層を有する太陽電池素子と、集光領域を有する集光素子と、光透過孔を有する光反射層とを有し、該光反射層は、該集光領域により集光された光が該光透過孔を通過した後、該太陽電池素子に入射し、該太陽電池素子からの反射光が該光反射層により反射され、該太陽電池素子に再入射するように、該太陽電池素子と該集光素子との間に形成され、該集光領域により集光される光が、対応する該光透過孔を通過するときの通過光量を調節できるように、上記集光素子と上記光反射層とが、相対的に移動可能に支持されていることを特徴としている。
【0017】
上記の構成により、集光素子に入射した光は、集光領域により集光され、光透過孔を透過して、太陽電池素子を照射する。この場合、集光領域と光透過孔とは、それぞれ複数設けてもよい。また、複数の集光領域のそれぞれの集光位置に1つないし複数の光透過孔を配置してもよい。
【0018】
続いて、太陽電池素子を照射した光の一部は、光電変換層に吸収されるが、一部は太陽電池素子の表面または内部で反射され反射光となる。その一方で、該反射光の少なくとも一部は、光反射層における光透過孔以外の領域で反射され、太陽電池素子の方へ戻される。すなわち、太陽電池素子と反射層との間では、反射光が多重反射されることにより、光電変換層に照射される光量が増大するため、太陽電池の発電効率(光の利用効率)を高くすることが可能になっている。
【0019】
さらに、該集光領域により集光される光が、該光透過孔を通過するときの通過光量を調節できるように、上記集光素子と上記光反射層とを、相対的に移動させることができるので、季節変化や時間変化に伴い太陽光等の光の入射角が変化した場合においても、集光領域により集光された光の位置を、光透過孔の位置に対して調節することが可能となる。
【0020】
従って、光の入射角が変化した場合においても、光を効率良く光透過孔を通過させることが可能となり、季節変化や時間変化に係り無く、太陽電池の発電効率を高くすることができる。
【0021】
本発明に係る太陽電池は、上記の課題を解決するために、上記の構成に加えて、上記集光領域が、シリンドリカル状集光曲面であり、上記光透過孔が直線スリット状光透過孔であり、該シリンドリカル状集光曲面の円筒軸の方向と、該直線スリット状光透過孔の延伸方向とが平行に配置されていることを特徴としている。
【0022】
上記の構成において、集光領域により集光される光が、該光透過孔を通過するときの通過光量をできるだけ多くするためには、光透過孔を通過する光の断面形状が、光透過孔の形状と高い類似性を有していること、好ましくは光の断面面積が光透過孔の面積以内となることである。
【0023】
上記の構成によれば、シリンドリカル状集光曲面は、線状の集光状態を作り出すので、光透過孔として、その延伸方向がシリンドリカル状集光曲面の円筒軸と平行に配置された直線スリット状光透過孔を採用することによって、線状に集光された光は直線スリット状光透過孔へと効率良く集光される。
【0024】
この結果、該直線スリット状光透過孔から入射した光が、光電変換層と光反射層との間で多重反射し、光電変換層に照射される光量が一層増大し、発電効率を一層高くすることが可能となる。さらに、太陽光の入射角度が変化した場合においても、入射太陽光を効率的に光透過孔へと集光することが可能となる。
【0025】
また、シリンドリカル状集光曲面は細長い集光領域をカバーすることができるので、その細長い集光領域を横に並べれば、大きな集光素子を作製することができる。すなわち、より短小な形状の集光領域と比較して、少ない数の集光領域で集光素子を構成することができるため、集光素子の構成を簡素化し、コストを下げることにも役立つ。このメリットは、光反射層の形成についても同様に当てはまる。
【0026】
本発明に係る太陽電池は、上記の課題を解決するために、上記の構成に加えて、少なくとも上記光透過孔を有する光反射層が形成された透明基板を上記集光素子と上記太陽電池素子との間に備え、該透明基板を移動可能としたことを特徴としている。
【0027】
上記の構成により、上記の効果に加えて、該集光素子と該太陽電池素子とを密閉固定して、それらの間に配置した該透明基板を移動させることが可能となり、太陽電池パネル内部への雨水や湿気の侵入を防ぎ、太陽電池パネルの劣化を防止することが可能となる。
【0028】
ここで、上記透明基板を上記太陽電池に固定して、上記集光素子に対して、移動可能に配置することも可能である。ただし、この場合、該集光素子と該太陽電池素子とで密閉構造を形作ることができないため、カバー等を該集光素子に固定配置することにより、別形態の密閉構造を形成することが必要である。
【0029】
従って、上記の構成は、密閉構造の簡素化というメリットを有している。
【0030】
本発明に係る太陽電池は、上記の課題を解決するために、上記の構成に加えて、上記光反射層が、上記透明基板の光入射側に形成され、該透明基板が上記光電変換層の光電変換に寄与する波長の蛍光を発することを特徴としている。
【0031】
上記の構成により、上記の効果に加えて、上記透明基板が、上記光電変換層の光電変換に寄与しない波長の光を吸収し、上記光電変換層の光電変換に寄与する波長の光を蛍光として発生することにより、発生した蛍光は直接、あるいは一旦反射層で反射された後、上記光電変換層に照射される。
【0032】
従って、光電変換に寄与する波長の光の光量が増大するので、太陽電池の発電効率を一層高くすることが可能となる。
【0033】
本発明に係る太陽電池は、上記の課題を解決するために、上記の構成に加えて、上記集光素子と上記太陽電池素子との間に、上記光透過孔を有する上記光反射層が設けられた透明基板が設置され、該透明基板と該太陽電池素子とが透明接着剤により固定されており、かつ、該透明接着剤が、上記光電変換層の光電変換に寄与する波長の蛍光を発することを特徴としている。
【0034】
上記の構成により、上記の効果に加えて、上記集光素子と上記透明基板と上記太陽電池素子とを、それぞれ、独立して形成することが可能である。これにより、製造プロセスにおいて発生する傷等の損傷が抑制され、高い発電効率を有する太陽電池を安定して製造することができる。
【0035】
例えば、集光素子の集光領域に対向する面に、光透過孔を有する光反射層を設けると、光反射層を形成する際に、該集光領域に傷等の損傷を発生することになる。該集光領域は、太陽光の集光性能を決定するものであり、集光領域が損傷することにより、集光性能が大幅に劣化し、発電効率の低下を招くことになる。
【0036】
また、太陽電池素子の光電変換層に対向する面は、光電変換層を形成する際に、傷等の損傷が発生しており、この損傷が存在する面に、光透過孔を設けることにより、集光された太陽光が、傷等の損傷により散乱され、発電効率の低下を招くことになる。
【0037】
また、上記の構成により、上記の効果に加えて、上記透明基板と上記太陽電池素子とが、あらかじめ、接着固定されていることにより、上記透明基板および上記太陽電池素子の機械的強度が高められ、製造プロセスにおいて、破損等による歩留まり低下を抑制することが可能であるとともに、太陽電池の薄型化を実現することができる。
【0038】
また、上記の構成により、上記の効果に加えて、上記透明接着剤が、上記光電変換層の光電変換に寄与しない波長の光を吸収し、上記光電変換層の光電変換に寄与する波長の光を蛍光として発生することにより、発生した蛍光は直接、あるいは一旦反射層で反射された後、上記光電変換層に照射される。
【0039】
従って、光電変換に寄与する波長の光の光量が増大し、太陽電池の発電効率を一層高くすることが可能となる。
【0040】
本発明に係る太陽電池は、上記の課題を解決するために、上記構成に加えて、上記シリンドリカル状集光曲面と上記光反射層との距離が、上記シリンドリカル状集光曲面の焦点距離よりも短くなされていることを特徴としている。
【0041】
上記の構成において、太陽電池を野外に設置した場合、太陽電池に入射する太陽光線の入射角度には、季節変動が伴う。この季節変動による発電効率の低下を抑制することが、本構成の狙いである。
【0042】
ここで、シリンドリカル状集光曲面を、凸面を上側にして水平面に置いた状態を考え、さらにシリンドリカル状集光曲面を円筒面の一部とする円筒を考える。この状態で、シリンドリカル状集光曲面の真上から入射する光線と上記円筒の中心線(円筒軸)とを含む垂直面を、該中心線の周りに回転させる回転方向のことを、シリンドリカル状集光曲面に対する「横方向」と定義する。
【0043】
シリンドリカル状集光曲面の真上から入射する光線が、横方向に傾いた状態でシリンドリカル状集光曲面に入射すると、コマ収差の発生により、シリンドリカル状集光曲面の側部に入射した光の集光位置が、シリンドリカル状集光曲面の頂部に入射した光の集光焦点位置よりも、シリンドリカル状集光曲面に近い位置となる。すなわち、光の入射位置により集光位置が異なるため集光状態が劣化する。
【0044】
従って、上記光反射層を上記シリンドリカル状集光素子の焦点距離に対応する位置に配置した場合、シリンドリカル状集光曲面の頂部に入射した光は、直線スリット状光透過孔を通過するが、シリンドリカル状集光曲面の側部に入射した光は、直線スリット状光透過孔を通過しづらくなるので、その分、発電効率を低下させることになる。
【0045】
これに対して、上記シリンドリカル状集光曲面と上記光反射層との距離が、上記シリンドリカル状集光曲面の焦点距離よりも短くなるように、該シリンドリカル状集光曲面と該光反射層とを配置することにより、光反射層に形成された直線スリット状光透過孔の位置とシリンドリカル状集光曲面の側部に入射した光の集光位置とが接近する。この結果、シリンドリカル状集光曲面の側部に入射した光は、直線スリット状光透過孔を通過し易くなる。シリンドリカル状集光曲面の頂部に入射した光は、光反射層の位置が光軸方向に変化しても、変わりなく直線スリット状光透過孔を通過する。
【0046】
これにより、シリンドリカル状集光曲面の頂部に入射した光と、側部に入射した光とを、効率良く直線スリット状光透過孔へと集光することが可能となり、太陽光等の光の入射角度が変化した場合においても高い発電効率を得ることが可能となる。
【0047】
なお、本発明に記載した構成を、前記発明に記載した各構成と、必要に応じて任意に組み合わせてもよい。
【0048】
本発明に係る太陽電池は、上記の課題を解決するために、上記の構成に加えて、上記シリンドリカル状集光曲面の円筒軸方向を含み、かつ、集光素子に垂直な平面が、東西方向を向くように設置されていることを特徴としている。
【0049】
上記の構成により、朝方および夕方において、太陽光が東西方向の斜め上からシリンドリカル状集光曲面に入射する場合において、光軸を含みかつ円筒軸を含む平面と、集光素子が設けられた平面とが成す角度を常に一定とすることができ、シリンドリカル状集光曲面により直線状に集光される光は、常に、光軸を含みかつ円筒軸を含む平面上に集光されることになる。
【0050】
また、前述の構成によれば、シリンドリカル状集光曲面の円筒軸の方向と、該直線スリット状光透過孔の延伸方向とが平行に配置されているから、上記直線スリット状光透過孔は、光軸を含みかつ円筒軸を含む平面上に配置されている。
【0051】
従って、1日の太陽光の入射角度変化に対応して、該シリンドリカル状集光曲面と該直線スリット状光透過孔とを相対的に移動させることなく、太陽光を効率良く直線スリット状光透過孔へと集光することが可能となる。
【0052】
なお、本発明に記載した構成を、前記発明に記載した各構成と、必要に応じて任意に組み合わせてもよい。
【0053】
本発明に係る太陽電池は、上記の課題を解決するために、上記の構成に加えて、上記シリンドリカル状集光曲面を有する集光素子と、上記直線スリット状光透過孔を有する光反射層とが、相対的に南北方向に移動可能に支持されていることを特徴としている。
【0054】
上記の構成によれば、上記の効果に加えて、季節変化に伴い、地軸の傾きに起因して発生する太陽光の入射角度の変化に対応して、シリンドリカル状集光曲面と直線スリット状光透過孔とを相対的に移動させることにより、太陽光を効率良く直線スリット状光透過孔へと集光することが可能となり、すべての季節において、高い発電効率を得ることができる。
【0055】
なお、本発明に記載した構成を、前記発明に記載した各構成と、必要に応じて任意に組み合わせてもよい。
【0056】
本発明に係る太陽電池は、上記の課題を解決するために、上記の構成に加えて、太陽電池の設置角度が、春分または秋分の南中時に、太陽電池に対する太陽光入射角度が0°となるように設置されていることを特徴としている。
【0057】
本発明の太陽電池の設置角度を、例えば夏至の南中時に、太陽電池に対する入射角度が0°となるように設置した場合、冬至の南中時には、入射角度が地軸傾きの2倍の大きさ(46.8°)となり、入射角度増大に伴うコマ収差増大により集光特性が劣化し、冬場の発電効率が低下してしまう。
【0058】
これに対して、上記の構成によれば、本発明の太陽電池への太陽光入射角度が最大となる夏至および冬至において、太陽光入射角度を地軸傾きと同じ大きさ(±23.4°)とすることが可能であり、入射角度がそれ以上増大することがない。従って、季節変化にともなう入射角度変化の低減によりコマ収差が抑制され、季節変化にともなう発電効率の変化を低減することが可能となる。
【0059】
なお、本発明に記載した構成を、前記発明に記載した各構成と、必要に応じて任意に組み合わせてもよい。
【0060】
【発明の実施の形態】
以下、本発明の太陽電池を図面を参照しながら詳細に説明する。
【0061】
(本願発明の前提となる構成例)
図20は、特願2001−296409号(本願出願前の確認時点において未公開)において、我々が出願した太陽電池の断面斜視図を示している。該太陽電池は、支持体を兼ねた基板1上に光電変換層2を設けた太陽電池素子と、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6を有する光反射層5とが設けられた集光素子3とで構成されている。
【0062】
図20に示す太陽電池は、集光素子3の光入射側の面に、シリンドリカル状集光曲面群4が形成され、集光素子3の光出射側の面に、光反射層5が形成されている。
【0063】
該シリンドリカル状集光曲面群4は、各シリンドリカル状集光曲面の凸面が光入射側を向き、複数のシリンドリカル状集光曲面が、それぞれの円筒軸を平行にして並列されている。また、該直線スリット状光透過孔群6は、個々の該シリンドリカル状集光曲面に対応した直線スリット状光透過孔で構成されている。さらに、シリンドリカル状集光曲面で直線状に集光された光が、直線スリット状光透過孔を最も効率良く通過するようにとの観点で、該シリンドリカル状集光曲面の円筒軸の方向と、該直線スリット状光透過孔の延伸方向とが平行になるように配置されている。
【0064】
ここで、図20では、該シリンドリカル状集光曲面に対して、真上から入射する光の光軸上であって、その光が集光される位置に、対応する直線スリット状光透過孔が配置されている。
【0065】
シリンドリカル状集光曲面群4に垂直に入射する入射光7は、シリンドリカル状集光曲面群4により、直線スリット状光透過孔群6に線状に集光され、太陽電池素子の光電変換層2へと照射される。光電変換層2からの反射光は、集光素子3に設けられた光反射層5によって反射され、再度、太陽電池素子の光電変換層2へと入射する。このように、直線スリット状光透過孔群6から入射した光が、太陽電池素子と光反射層5との間で多重反射する、すなわち太陽電池素子での吸収と一部反射とを繰り返すことにより、太陽電池素子の発電効率を高めることが可能となる。
【0066】
従って、上記光反射層5としては、少なくとも、光電変換層2からの反射光を、直線スリット状光透過孔群6以外の領域で、反射することが可能であれば良く、光電変換層2に対向する面が、光を反射することが可能な光反射層5であればよい。
【0067】
一方、光反射層5の光入射側の面、すなわち、シリンドリカル状集光曲面群4に対向する面においては、光反射機能を有しても、光吸収機能を有してもかまわない。しかし、光吸収機能を持たせるためには、光吸収機能を有する層を付加する必要があるため、コストアップにつながる。従って、光反射性を有する材料のみで光反射層5を形成した構成、すなわち、該光反射層5の光入射側の面も、光反射機能を有していることが望ましい。
【0068】
また、ここでは、集光領域を有する集光素子として、シリンドリカル状集光曲面を用いて説明したが、直線スリット状光透過孔群6に光を集光する機能を有しておれば良く、これに限られるものではない。例えば、図20においては、常に曲率半径の等しいシリンドリカル状集光曲面が並列配置された集光素子について示しているが、シリンドリカル状集光曲面の頂部から側部にかけて、徐々に曲率半径が小さくなるようなシリンドリカル状集光曲面を用いることにより、側部において発生するコマ収差を低減することが可能となり、入射角増大による発電効率の低下を抑制することが可能となる。
【0069】
また、個々の集光領域をフレネル集光素子により構成することによっても、直線スリット状光透過孔群6に光を集光することが可能である。この場合、凹凸段差の少ないフレネル集光素子を用いることにより、集光素子を薄くすることが可能となり、太陽電池の薄型化を実現することができる。
【0070】
また、光電変換層2としては、従来技術において述べたような多結晶Si太陽電池、非晶質Si太陽電池、タンデム構造の太陽電池等の光電変換層を用いることが可能である。
【0071】
しかしながら、鋭意検討を進めた結果、上記太陽電池においては、時間や季節により太陽光の入射角度が変化した場合、シリンドリカル状集光曲面群4により線状に集光される太陽光の一部または全部が、直線スリット状光透過孔群6を通過しなくなることが明らかとなった。
【0072】
すなわち、図20に示すように、入射光7が、シリンドリカル状集光曲面群4の横方向9の斜め上から入射角Rで入射する場合、光軸が傾くため、発電効率が著しく低下することが確認された。これは、集光された入射光7が、直線スリット状光透過孔群6を通過せず、光反射層5上に集光され、光反射層5により反射されるからであり、太陽電池の光電変換層2に太陽光が照射されなくなるからである。
【0073】
ここで、本明細書においては、図20に示す太陽電池のように、シリンドリカル状集光曲面群4の長軸方向を縦方向8と呼び、縦方向8と直交する方向、すなわち、シリンドリカル状集光曲面群4が並んでいる方向を横方向9と呼ぶこととする。
【0074】
図21は、空気の屈折率n1を1.0とし、集光素子3の屈折率n2を1.5とし、曲率半径10mmのシリンドリカル状集光曲面群4が、一列あたりの幅が12mmで並んでいる場合について、太陽光の集光状態の計算を行った結果である。なお、図中の数値目盛りの単位はmmである。
【0075】
集光素子3と光電変換層2との間の屈折率が集光素子3の屈折率n2と異なる場合、直線スリット状光透過孔群6を透過した光は、屈折することになるが、直線スリット状光透過孔群6を透過した光は、全て発電に寄与することになるため、問題とする必要は無い。そこで、ここでは、集光素子3と光電変換層2との間の屈折率が集光素子3の屈折率n2と等しいとして計算を行った。
【0076】
図21(a)は、上記太陽電池のシリンドリカル状集光曲面群4に対して、入射光7が垂直入射(R=0°)した場合の集光状態を計算した結果を示し、図21(b)は、横方向9の斜め上から入射角度(R=23.4°)で入射光7が入射した際の集光状態を計算した結果を示している。
【0077】
入射光7が垂直入射する図21(a)の場合、入射光7は、全て直線スリット状光透過孔群6に集光されるのに対して、入射光7が横方向9の斜め上から入射する図21(b)の場合、入射光7は、横方向9に沿って集光位置がシフトする。このため、入射光7は光反射層5の上に集光され、光反射層5に反射されることにより、すべての入射光7が反射されることがわかる。
【0078】
(本発明の構成例)
本発明は、上記問題点を解決し、季節や時間により太陽光の入射角度が変化した場合においても、効率良く光透過孔群に太陽光を集光し、高い発電効率を実現するものである。本発明の太陽電池の構成について図1ないし図2に基づいて説明すれば、以下のとおりである。
【0079】
本発明の太陽電池は、図1及び図2に示すように、支持体を兼ねた基板1上に光電変換層2を設けた太陽電池素子と、シリンドリカル状集光曲面群4を有する集光素子3と、太陽電池素子と集光素子3との間に設けられ、直線スリット状光透過孔群6を有する光反射層5が設けられた第1透明基板10とで構成されている。
【0080】
さらに、本発明の重要な特徴点として、入射光7の入射角度に対応して、集光素子3と第1透明基板10とが、横方向9に相対的に移動可能に支持されている。すなわち、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6とが、相対的に移動可能に支持されている。これにより、集光素子3により集光される入射光7が、対応する直線スリット状光透過孔を通過するときの通過光量を調節することができる。
【0081】
なお、移動可能な支持機構及び駆動機構については後述する。また、第1透明基板10以外の構成は、図20で説明した構成と基本的に同じである。
【0082】
例えば、入射光7が垂直真上から入射する場合、図1に示すように、入射光7がシリンドリカル状集光曲面群4により線状に集光される位置に、直線スリット状光透過孔群6が配置され、入射光7が横方向9の斜め上から入射角Rで入射する場合、図2に示すように、入射光7の光軸移動に伴い、線状に集光される位置が横方向9に沿って移動するため、この集光位置の移動に対応して、直線スリット状光透過孔群6を横方向9に沿って移動させる。
【0083】
このように、横方向9の斜め上から入射する入射光7の入射角Rに対応して、集光素子3と第1透明基板10とを相対的に移動させ、入射光7の線状集光位置と、直線スリット状光透過孔群6の位置とを一致させる。これにより、太陽光の入射角度が変化した場合においても、効率良く直線スリット状光透過孔群6に集光されるように、直線スリット状光透過孔群6を通過した入射光7が光電変換層2へと照射される。そして、光電変換層2からの反射光は、第1透明基板10に設けられた光反射層5で反射され、再度、光電変換層2へと入射する。
【0084】
このように、直線スリット状光透過孔群6に集光された光が、光電変換層2と光反射層5との間で多重反射することにより、太陽電池素子の発電効率を高めることが可能となる。結局、本発明の太陽電池は、太陽光の入射角度の変動によらず、従来よりも高い発電効率を維持することができる。
【0085】
なお、光電変換層2と光反射層5との間での多重反射を実現するためには、該光反射層5は、少なくとも、光電変換層2に対向する面が光反射機能を有することが必要である。
【0086】
上記光電変換層2としては、従来技術において述べたような多結晶Si太陽電池、非晶質Si太陽電池、タンデム構造の太陽電池等の光電変換層を用いることが可能である。また、他に、単結晶Si太陽電池や、CuInSe、Cu(In,Ga)(S,Se)、CuGaSeなどのCIS系太陽電池等に用いられている光電変換層を用いることも可能である。
【0087】
次に、本発明の太陽電池の設置方法について、図3ないし図4に基づいて説明すれば、以下のとおりである。
【0088】
太陽光を光源とする太陽電池においては、太陽光の入射角度によらず、効率の良い発電を行う必要がある。例えば、図3に示すように、朝8時には、太陽光は東斜め上から太陽電池へと入射し、正午12時には、太陽光は垂直上方から太陽電池へと入射し、夕方16時には、太陽光は西斜め上から太陽電池へと入射する。効率の良い発電を行うためには、このように入射角度が日内変化する太陽光を、シリンドリカル状集光曲面群4で集光し、効率良く、直線スリット状光透過孔群6へと入射させることが必要となる。
【0089】
また、23.4°の地軸の傾きが存在するため、季節によっても、太陽光の入射角が変化する。例えば、春分及び秋分の日の南中時に太陽光が垂直入射するように、本発明の太陽電池を設置すると、夏至や冬至の日の南中時には、太陽光が入射角±23.4°で入射することになる。
【0090】
ここで、図2に示すように、シリンドリカル状集光曲面群4の横方向9の斜め上から入射角Rで入射光7が入射する場合、光軸を含みかつ円筒軸を含む平面も入射角Rに対応して傾くため、シリンドリカル状集光曲面群4により線状に集光される位置は、横方向9に沿って移動する。本発明の太陽電池は、上記集光位置の移動に対応して、直線スリット状光透過孔群6の位置を横方向9に沿って移動させるものである。
【0091】
一方、図4に示すように、シリンドリカル状集光曲面群4の縦方向8の斜め上から入射角Qで入射光7が入射する場合、光軸を含みかつ円筒軸を含む平面の傾きは、入射角Qに依存せず一定であり、シリンドリカル状集光曲面群4により線状に集光される位置は該平面上に存在する。そのため、直線スリット状光透過孔群6の位置を移動しなくても、入射光7が直線スリット状光透過孔群6へと集光され、高い発電効率を維持することが可能である。
【0092】
従って、本発明の太陽電池は、図3に示すように、集光素子3のシリンドリカル状集光曲面群4を、該シリンドリカル状集光曲面群4の縦方向8が、太陽の日周運動の進行方向、すなわち、東西方向と一致するように設置する。すなわち、シリンドリカル状集光曲面の円筒軸方向を含み、かつ、集光素子3に垂直な平面が、東西方向を向くように設置する。これにより、太陽光が斜め上から入射する朝方および夕方においても、高い発電効率を実現することが可能である。
【0093】
そして、本発明の太陽電池の横方向9を南北方向と一致するように配置し、季節変化にともなう入射光7の入射角Rの変動に対応して、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6とを相対移動させることにより、全ての季節において高い発電効率を維持することが可能な太陽電池を実現することができる。
【0094】
ここでは、本発明の太陽電池の縦方向8を東西方向に一致させ、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6とを相対的に南北方向に移動させる構成について説明したが、本発明の太陽電池の縦方向8を南北方向に一致させ、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6とを相対的に東西方向に移動させることも可能である。
【0095】
しかしながら、縦方向8を東西方向に一致させた場合、横方向9に対する入射角Rが季節変化することになり、その場合の入射角Rの最大値は、地軸の傾きにより決定され、最大でも23.4°である。従って、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6とを相対的に南北方向に、季節に応じてわずかに移動させることにより、良好な集光状態を得ることが可能である。
【0096】
これに対して、縦方向8を南北方向に一致させた場合、横方向9に対する入射角Rが日内変化することになるため、一日の太陽光の入射角度の変化に対応して、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6とを相対的に東西方向へと移動させることが必要である。この場合、太陽光の入射角度は、±90°の範囲で変化するため、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6との相対移動量をより大きくすることが必要となる。しかも、往復移動させる周期も日単位となるため、移動機構にかかる負荷および消費電力の増大を招来する。
【0097】
さらに、入射光7の横方向9に対する入射角Rが大きくなると、シリンドリカル状集光曲面群4により集光される光に、コマ収差が発生し、良好な集光状態が得られなくなり、直線スリット状光透過孔群6を通過する太陽光が減少し、発電効率が低下するという問題が発生する。従って、本発明の太陽電池においては、縦方向8を東西方向に一致させ、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6とを相対的に南北方向に移動させる構成とすることが望ましい。
【0098】
さらに、本発明の太陽電池の設置方法として、春分の日もしくは秋分の日の南中時に、入射光7が、太陽電池に対して、入射角Q,R共に0°で垂直入射するように設置されていることが望ましい。シリンドリカル状集光曲面群4に対して、横方向9の斜め上から光が入射するとコマ収差が発生し、集光特性が劣化し、全ての入射光7を直線スリット状光透過孔群6へと集光することが困難となる。春分の日もしくは秋分の日の南中時に、入射角が0°となるように、本発明の太陽電池を設置することにより、入射光7の入射角Rが最も大きくなる夏至もしくは冬至の南中時においても、入射光7の入射角Rは、地軸の角度に対応する±23.4°の傾きとなり、これ以上の入射角とはならないことになる。
【0099】
一方、例えば、夏至の南中時に、入射角Q,Rが0°となるように本発明の太陽電池を設置すると、冬至の南中時には、入射角Rが46.8°となり、コマ収差増大にともなう集光特性の劣化により、冬場の発電効率が低下してしまうことになる。
【0100】
次に、本発明の太陽電池の縦方向8を東西方向に一致させて配置した場合について、冬至、春分及び秋分の日、夏至の南中時における太陽光の集光状態を計算した結果を、図5(a)、(b)、(c)に示している。なお、図5(a)、(b)、(c)に記された数値は、シリンドリカル状集光曲面の中央を原点としたときの原点からの距離(単位mm)を示している。
【0101】
春分及び秋分の日に、図5(b)に示すように、太陽光の入射角Rが0°となるように太陽電池を設置した場合、冬至においては、図5(a)に示すように、太陽光の入射角Rが−23.4°となり、夏至においては、図5(c)に示すように、太陽光の入射角Rが23.4°となる。
【0102】
ここで、集光状態の計算は、空気の屈折率n1を1.0とし、集光素子3と第1透明基板10の屈折率n2を1.5とし、曲率半径10mmのシリンドリカル状集光曲面群4が、幅12mmの間隔で並んでいる場合について行った。集光素子3と第1透明基板10との間の屈折率は集光素子3の屈折率n2と異なっており、集光素子3から第1透明基板10へと集光される太陽光は、屈折することになるが、ここでは、集光素子3と第1透明基板10との間隙が小さいものとして、上記屈折による光路の変化は無視して計算を行った。また、直線スリット状光透過孔群6を有する光反射層5と、シリンドリカル状集光曲面群4との距離が、図5(b)に示すように、シリンドリカル状集光曲面群4の焦点距離Fと等しくなる位置に配置されている場合について計算を行っている。
【0103】
入射角Rが0°である図5(b)において、全ての入射光は直線スリット状光透過孔群6へと集光され、高い発電効率を実現することが可能である。また、入射角Rが−23.4°および23.4°である図5(a)、(c)においても、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6とを相対移動させることにより、ほとんどの入射光が、直線スリット状光透過孔群6へと集光され、高い発電効率を実現することが可能であることがわかる。
【0104】
しかしながら、図5(a)、(c)においては、シリンドリカル状集光曲面群4に対して、横方向9の斜め上から太陽光が入射するため、コマ収差が発生し、集光特性が劣化しており、全ての入射光を直線スリット状光透過孔群6に集光させるためには、直線スリット状光透過孔群6の幅を広くすることが必要となる。一方、直線スリット状光透過孔群6の幅が広過ぎると、太陽電池素子と光反射層5との間で多重反射すべき太陽光が、直線スリット状光透過孔群6から放出されるため、発電効率が低下することになる。
【0105】
これに対して、図6(a)、(b)、(c)は、それぞれ、シリンドリカル状集光曲面群4と光反射層5との距離d(図6(a)参照)が、図6(b)に示すように、シリンドリカル状集光曲面群4の焦点距離Fより小さくなる位置に、直線スリット状光透過孔群6を有する光反射層5を設けた場合の集光状態を示している。
【0106】
直線スリット状光透過孔の幅は、図5の場合と同一であるが、図6(b)に示すように、直線スリット状光透過孔群6の光軸上位置は、入射光の集光位置と一致していないが、全ての入射光を直線スリット状光透過孔群6を透過させた後、集光することが可能である。また、図6(a)、(c)においては、図5と同様にコマ収差が発生し、集光特性が劣化しているにもかかわらず、全ての入射光を直線スリット状光透過孔群6を透過させた後、集光することが可能であることがわかる。
【0107】
このように、本発明の太陽電池においては、シリンドリカル状集光曲面群4と光反射層5との距離dが、シリンドリカル状集光曲面群4の焦点距離Fより小さくなる位置に、直線スリット状光透過孔群6を有する光反射層5を設けたので、光反射層5と光電変換層2との間に導入される光量を増大させることができる。しかも、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6とを相対的に移動可能に支持する構成としたので、太陽光が斜めから入射する場合においても、すなわち季節によらず、直線スリット状光透過孔群6への高い集光効率を実現し、発電効率を高くすることが可能となる。
【0108】
【実施例】
〔実施例1〕
本発明の実施例1として、図1に示す構成の太陽電池を作製した。
【0109】
基板1と光電変換層2とからなる太陽電池素子は、図7に示すように、支持体を兼ねたステンレス製の基板1上に、光反射効果を有する膜厚100nmのAl0.95Ti0.05合金からなる電極金属層11をスパッタリングにより形成した後、電極金属層11と半導体層との電気的接触を良好にするために設けたn型の不純物を高濃度にドーピングした多結晶Si半導体層12、多結晶Si半導体層12と同じn型の不純物をわずかにドーピングした多結晶Si半導体層13、多結晶Si半導体層12、13と反対のp型の不純物を高濃度にドーピングした多結晶Si半導体層14をプラズマCVD装置により順次形成した。
【0110】
多結晶Si半導体層12は、基板温度250℃の条件で、SiHガス、Hガス、PHガスの混合比を最適化した混合ガスをCVD装置に導入し、ガス圧20Paとして、100Wの高周波電力を投入することにより形成した。こうして、電極金属層11上には、Pが高濃度にドープされた膜厚30nmの多結晶Si半導体層12を堆積した。
【0111】
次に、多結晶Si半導体層13は、基板温度550℃の条件で、SiHガス、Hガス、PHガスの混合比を最適化した混合ガスをCVD装置に導入し、ガス圧50Paとして、350Wの高周波電力を投入することにより形成した。こうして、多結晶Si半導体層12上には、Pがわずかにドーピングされた膜厚300nmの多結晶Si半導体層13を堆積した。
【0112】
従来の太陽電池においては、多結晶Si半導体層13は、光を吸収し、電荷を発生させ、発電を行う層であり、十分に光を吸収させるため、通常その厚さが5000nm以上50000nm以下に設定される。これに対し、本発明においては、直線状スリット状光透過孔群6からの入射光が、光電変換層2と光反射層5との間で多重反射するため、効率的に光を吸収させることができるので、多結晶Si半導体層13を薄くすることが可能である。すなわち、その膜厚を100nm以上3000nm以下と薄い場合においても高い発電効率を得ることができる。従って、多結晶Si半導体層13の形成時間を大幅に短縮することが可能となり、太陽電池の低コスト化を実現することができる。
【0113】
次に、多結晶Si半導体層14は、基板温度350℃の条件で、SiHガス、Hガス、BFガスの混合比を最適化した混合ガスをCVD装置に導入し、ガス圧50Paとして、100Wの高周波電力を投入することにより形成した。こうして、多結晶Si半導体層13上には、Bがドーピングされた膜厚15nmのp型の多結晶Si半導体層14を堆積した。
【0114】
次に、多結晶Si半導体層12〜14で構成されるpn接合を形成した基板1をスパッタリング装置に取り付け、くし型集電電極15の形状に対応した遮蔽マスクを基板1の多結晶Si半導体層14の表面に装着した状態で、AlTi合金ターゲットを用いて膜厚100nmのAl0.95Ti0.05合金膜からなる幅0.1mm、間隔5mmのくし型集電電極15を形成した。
【0115】
最後に、Inターゲットを用い、酸素雰囲気中で反応性スパッタリングを行うことにより、多結晶Si半導体層14及びくし型集電電極15上に、膜厚65nmの導電性透明膜16を形成した。
【0116】
一方、図1に示す集光素子3としては、板厚26mmのポリカーボネート樹脂製の集光素子を、射出成形法により作製した。集光曲面群としては、曲率半径10mmのシリンドリカル状集光曲面群4が、幅12mmの間隔で並んだ構成とし、その焦点距離Fは28mmであった。
【0117】
次に、図1に示す第1透明基板10として、板厚10mmのポリカーボネート樹脂製の基板上に、直線スリット状光透過孔群6に対応した遮蔽マスクを装着し、AlTi合金ターゲットを用いたスパッタリングにより、膜厚100nmのAl0.95Ti0.05合金膜を成膜し、第1透明基板10上に、12mm間隔で直線スリット状光透過孔群6が設けられた光反射層5を形成した。なお、直線スリット状光透過孔群6およびシリンドリカル状集光曲面群4の繰り返しピッチを等しくしている。
【0118】
該直線スリット状光透過孔群6のスリット幅WSは、シリンドリカル状集光曲面群4の1列あたりの幅Wの1/6の幅(WS=2mm)とした。ここで、上記スリット幅WSは、(W/8)以上、(2W/3)以下とすることが望ましい。
【0119】
本発明の太陽電池においては、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6とを相対的に移動させて、太陽光が斜め上から入射した場合においても、高い発電効率が得られる構成となっているが、太陽光の入射角が大きくなった場合、コマ収差が発生することにより、良好な集光状態が得られなくなる。
【0120】
ここで、WSが(W/8)より狭くなると、太陽光の入射角が大きくなる季節(例えば夏至や冬至の日)に、集光状態が悪くなることにより、直線スリット状光透過孔群6に入射しなくなる太陽光の割合が高くなり、発電効率の低下を招くことになる。また、WSが(2W/3)より広くなると、光電変換層2と光反射層5との間で多重反射すべき光が、直線スリット状光透過孔群6から放出され、入射光の利用効率が低下し、発電効率が低下することになる。
【0121】
以上のようにして作製した上記基板1と上記光電変換層2とからなる太陽電池素子17と、第1透明基板10と、集光素子3とを、それぞれ、図8及び図9に示すように配置し、太陽電池パネルとした。図8は、本発明の太陽電池パネルの断面図を示しており、図9は、本発明の太陽電池パネルの平面図を示している。
【0122】
なお、図9において、集光素子3のシリンドリカル状集光曲面群4および直線スリット状光透過孔群6は、それらの伸長方向(図1の縦方向8)が、紙面上下方向、すなわち第1透明基板10の移動方向に垂直となるように配置した。
【0123】
太陽電池素子17は、太陽電池パネルの台座18に固定配置され、第1透明基板10は、台座18に設けられた6個のベアリング22を介して、台座18に対して、図1に示す横方向9に沿って移動可能に支持されており、集光素子3は、台座18に立設された固定支持部21に固定配置され、台座18の上面全体を覆っている。ここでは、6個のベアリング22を用いた例を示しているが、これに限られず、4個または8個のベアリングを用いることも可能である。
【0124】
また、第1透明基板10の片方の端面は、台座18に固定されたバネ支持部19に対して、バネ20を介して固定されており、第1透明基板10の他方の端面が、回転駆動モータ23に対して偏心固定された駆動ローター24が回転することにより、第1透明基板10は、図1に示す横方向9に沿って移動可能とされている。
【0125】
ここで、第1透明基板10に、その移動方向に長い長円形状のベアリング受け部25を設けることにより、第1透明基板10を安定して移動させることが可能となる。また、第1透明基板10の移動方向に沿った両端面を支持するためのベアリング26を設けることにより、第1透明基板10の移動をさらに安定にすることが可能となる。
【0126】
ここで、本発明の太陽電池パネルは、シリンドリカル状集光曲面群4の縦方向8が東西方向に一致するように配置されているので、1日の間に、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6とを相対的に移動させる必要は無い。しかし、シリンドリカル状集光曲面群4により集光される光が、全ての季節において、直線スリット状光透過孔群6に集光されるためには、1日に1回程度、若しくは、1週間に1回程度、若しくは、1ヶ月に1回程度、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6とを相対的に南北方向に移動させることが必要である。
【0127】
シリンドリカル状集光曲面群4と直線スリット状光透過孔群6との相対移動を1日に1回行う場合、1日あたりの太陽光の入射角Rの変化は、0.26°と小さなものとなる。従って、1日あたり、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6とを、約0.07mm程度相対移動させることにより、日々直線スリット状光透過孔群6への最適な集光状態が得られることになる。しかし、この場合、約0.07mmの相対移動を行うことが可能な精密な駆動システムが必要となり、太陽電池パネルのコスト上昇につながる。
【0128】
次に、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6との相対移動を1ヶ月に1回行う場合、1ヶ月あたりの太陽光の入射角Rの変化は、7.67°となる。従って、1ヶ月ごとに、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6とを、約2.0mm程度相対移動させることが必要となる。この場合、1ヶ月ごとに、直線スリット状光透過孔群6への最適な集光状態が得られるが、相対移動を行う前日には、入射光7の集光位置が約2.0mm程度ずれており、直線スリット状光透過孔群6の幅を適度に広く形成することが必要となる。以上のことより、この場合、相対移動を行うための精密な駆動システムは不要であるが、発電効率の低下をまねくことになる。
【0129】
従って、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6との相対移動は、1週間に1回程度行われることが望ましい。この場合、1週間あたりの太陽光の入射角Rの変化は、1.79°となり、1週間ごとに、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6とを、約0.5mm程度相対移動させることにより、1週間ごとに、最適な集光状態が得られる。1週間での集光位置の移動が、約0.5mm程度と小さいことにより、幅の狭い直線スリット状光透過孔群6を用いた場合においても、発電効率は変化しない。さらに、1週間ごとに、約0.5mm程度相対移動させれば良く、精密な駆動システムが不要となり、太陽電池パネルの低コスト化を実現することができる。
【0130】
図8及び図9に示す太陽電池パネルにおける相対移動の制御方法について、図10に示すブロック図を用いて説明すれば、以下のとおりである。
【0131】
まず、ROM(read only memory)等の記憶手段を有する月日指定部27から、現在の日付とそれに対応した相対位置情報(例えば、回転駆動モータ23の停止位置情報)等のROM情報が、制御部28に送られる。次に、該ROM情報に基づき、制御部28から、回転駆動モータ23に対する駆動信号が生成されて、モータ駆動部29へ送られ、その結果、回転駆動モータ23が必要量回転する。
【0132】
これにより、日付に対応して、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6との相対位置が最適となる位置に、第1透明基板10が固定される。太陽電池パネル30からは、日々刻々の発電量に関する情報が制御部28に送られ、制御部28からの指示に基づき、発電量等の情報が状況表示部31に送られ、視覚可能な形態で出力される。
【0133】
ここでは、日付に対応して、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6との相対位置を制御するシステムについて説明したが、太陽の南中高度は、日々大きく変化するものではないため、1週間に一度、若しくは、1ヶ月に一度、相対位置を最適化するシステムとすることも可能である。
【0134】
さらに、太陽電池パネルにおいて、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6との相対位置を検出し、検出された相対位置と、日付に基づく最適相対位置とを、制御部28において比較し、太陽電池パネルの異常検出を行うシステムを構築することにより、太陽電池パネルの異常に対する早期メンテナンスを実施することが可能となる。
【0135】
さらに、上記ROM等の記憶手段に、日付に対応した発電量の期待値に関する情報を記憶しておき、日々得られる上記発電量の実測値に関する情報と比較し、該実測値が該期待値を所定量下回った場合、異常警告を発する異常検出システムを構築することによっても、太陽電池パネルの異常に対する早期メンテナンスを実施することが可能となる。
【0136】
また、上記発電量の実測値が最大となるように、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6との相対位置を制御することにより、常に最大の発電量を得ることが可能な太陽電池パネルを実現することができる。
【0137】
上記実施例においては、集光素子3が固定され、第1透明基板10(少なくとも直線スリット状光透過孔群6を有する光反射層5が形成された透明基板)を、集光素子3と太陽電池素子17との間で移動させる構成の太陽電池パネルについて説明したが、第1透明基板10が固定され、集光素子3を移動する構成とすることも可能である。但し、太陽電池パネル内部への雨水や湿気の侵入を防ぐためには、集光素子3を固定した構造にして、集光素子3と台座18と固定支持部21とで、太陽電池パネルが密閉される構成とすることが望ましい。
【0138】
ここで、実施例1の太陽電池パネルの発電効率と、比較例1の太陽電池パネルとして、上記太陽電池パネルの集光素子3と第1透明基板10とを取り除いた太陽電池の発電効率を、光源として太陽光シミュレーターを用い、100mW/cmの光の入射角を変えて照射することにより調査した。
【0139】
【表1】
Figure 2004111453
【0140】
表1は、入射角Rが、−23.4°、−20°、−10°、0°、10°、20°、23.4°の場合において、太陽電池パネルの開放電圧Vと短絡電流Iとが最大となるように、直線スリット状光透過孔群6を有する第1透明基板10を移動して、実施例1の太陽電池パネルの開放電圧Vと短絡電流Iを、比較例1の開放電圧Vと短絡電流Iを100%として求めたものである。
【0141】
実施例1aは、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6との間隔を、シリンドリカル状集光曲面群の焦点距離Fと同じ28mmとした場合の開放電圧V及び短絡電流Iを示しており、実施例1bは、集光素子3の板厚を26mmから20mmに薄くし、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6との間隔が、焦点距離Fよりも6mm小さい22mmとした場合の開放電圧Vと短絡電流Iを示している。
【0142】
実施例1aと実施例1bの両方とも、開放電圧Vと短絡電流Iが100%より大きくなっている。これは、太陽光の入射角Rが、−23.4°以上23.4°以下の範囲で変化しても、シリンドリカル状集光曲面群4により集光された太陽光が、直線スリット状光透過孔群6を通過し、光電変換層2と光反射層5との間での多重反射が実現することにより、発電効率が高くなっていることを示している。
【0143】
次に、実施例1aと実施例1bとを比較すると、実施例1aにおいては、入射角Rの絶対値が大きくなるにつれて、開放電圧Vと短絡電流Iとが相対的に小さくなっているのに対して、実施例1bにおいては、入射角Rに関係なく、相対的に大きな開放電圧Vと短絡電流Iとが得られていることがわかる。これは、実施例1aにおいては、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6との間隔を、シリンドリカル状集光曲面群の焦点距離Fと同じ28mmとしたため、入射角の傾きに伴うコマ収差の発生により、直線スリット状光透過孔群6への集光特性が劣化しているのに対して、実施例1bにおいては、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6との間隔を、シリンドリカル状集光曲面群の焦点距離Fより短い22mmとすることにより、コマ収差の発生にもかかわらず、直線スリット状光透過孔群6への効率的な集光特性が実現していることによるものである。
【0144】
すなわち、本実施例から、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6との間隔を、シリンドリカル状集光曲面群の焦点距離Fより小さくすることにより、直線スリット状光透過孔群6への一層効率的な集光特性が実現し、入射角Rに依存しない高い発電効率を得ることができることがわかる。
【0145】
次に、光入射側に光反射層5が形成された上記第1透明基板10として、粒径5μmのYS:Eu,Mg,Tiの蛍光粒子を、15体積%含有させた第1透明基板10を用いた太陽電池を作製した。この蛍光粒子は、光電変換に利用されない波長400nm近傍の光を、光電変換に利用される波長600nm近傍の光に変換する。このため、蛍光粒子から発生する波長600nm近傍の光も、光反射層5と光電変換層2との間で多重反射することにより、太陽電池の発電効率をさらに高くすることが可能となる。
【0146】
蛍光粒子を含有しない第1透明基板10を用いた太陽電池と、蛍光粒子を含有した第1透明基板10を用いた太陽電池に対して、太陽光シミュレーターを用い、100mW/cmの光の入射角Rを変えて照射して、両者の開放電圧Vと短絡電流Iを比較した結果、蛍光粒子を含有した第1透明基板10を用いることにより、全ての入射角Rにおいて、開放電圧Vが5〜8%大きくなり、短絡電流Iが13〜15%大きくなることが確認された。
【0147】
〔実施例2〕
次に、本発明の実施例2として、図11に示す構成の太陽電池を作製した。図1及び図2に示す太陽電池においては、集光素子3と光電変換層2が形成された基板1とが固定配置され、光反射層5と直線スリット状光透過孔群6を有する第1透明基板10が移動可能とされていたが、本実施例においては、光電変換層2が形成された基板1と第1透明基板10とを、透明接着剤32により接着し、発電構造体33(図12参照)を構成し、該発電構造体33と集光素子3とを相対的に移動させることにより、集光素子3に対して斜めから入射した太陽光を、直線スリット状光透過孔群6へと、効率良く集光する構成となっている。
【0148】
この場合、図12に示すように、図8と同様な構造を用いて、発電構造体33と集光素子3とを相対的に移動させることにより、発電効率の高い太陽電池パネルを形成することができる。実施例2の太陽電池パネルは、実施例1の太陽電池パネルと比べて、光電変換層2が形成された基板1が固定されているか、移動しているかの違いが存在するが、その集光特性は同一であり、実施例1において示した表1と全く同様な発電効率の増大が確認された。
【0149】
ここで、図12に示す構成においては、移動体である発電構造体33から発電された電力を取り出すことが必要であるが、図5からわかるように、1年間の移動距離は、±10mm程度の範囲内であり、可撓性を有する導電性金属板を用いることにより、安定した電力の取り出しを行うことができる。また、図8に示す実施例1の太陽電池パネルにおいては、光電変換層2を有する基板1と透明第1基板10とが独立しており、破損を防ぐために、それぞれに強度を持たせることが必要であった。
【0150】
しかし、図11および図12に示すように、あらかじめ、光電変換層2を有する基板1と第1透明基板10とを接着固定し発電構造体33として、太陽電池パネルを組み立てることにより、接着固定された発電構造体33の強度が増大される。従って、基板1および第1透明基板10を薄くしても、発電構造体33としての強度が大きくなり、太陽電池パネルを薄くすることが可能となる。
【0151】
次に、実施例2の第1透明基板10として、実施例1と同じく、粒径5μmのYS:Eu,Mg,Tiの蛍光粒子を、15体積%含有させた第1透明基板を用いた太陽電池を作製した。実施例1と同様にして、蛍光特性を有する第1透明基板10を用いた実施例2の太陽電池パネルの発電効率の調査を行った結果、実施例2においても、蛍光特性を有する第1透明基板10を用いることにより、全ての入射角において、開放電圧Vが5〜8%大きくなり、短絡電流Iが13〜15%大きくなることが確認された。
【0152】
次に、実施例2の透明接着剤32として、粒径5μmのYS:Eu,Mg,Tiの蛍光粒子を15体積%含有させた紫外線硬化樹脂を用いて、集光素子3と太陽電池素子とを接着固定した太陽電池を作成した。該透明接着剤層の厚さは、0.2mmであった。この蛍光粒子が、光反射層5と光電変換層2との間に導入されたけれども、光電変換に利用されない波長400nm近傍の光を、光電変換に利用される波長600nm近傍の光に変換する。従って、さらに、蛍光粒子から発生する波長600nm近傍の光が、光反射層5と光電変換層2との間で多重反射することにより、太陽電池の発電効率をさらに高くすることが可能となる。
【0153】
蛍光粒子を含有しない紫外線硬化樹脂を用いた太陽電池パネルと、蛍光粒子を含有した紫外線硬化樹脂を用いた太陽電池パネルとに対して、実施例1と同様にして、発電効率の調査を行った結果、蛍光粒子を含有した紫外線硬化樹脂を用いた太陽電池パネルにおいて、全ての入射角において、開放電圧Vが5〜8%大きくなり、短絡電流Iが10〜11%大きくなることが確認された。
【0154】
ここで、第1透明基板10に蛍光粒子を含有させた場合と、透明接着剤32に蛍光粒子を含有させた場合とを比較すると、第1透明基板10に蛍光粒子を含有させた場合に、より大きな短絡電流が得られていることがわかる。この結果は、第1透明基板10の板厚が10mmであるのに対して、透明接着剤32の層厚が0.2mmと薄いため、含有される蛍光粒子の量が異なることに起因している。
【0155】
しかし、いずれの場合も、蛍光粒子の含有量を増やすことにより、より大きな短絡電流を得ることが可能である。さらに、第1透明基板10と透明接着剤32の両方に蛍光粒子を含有させることによっても、より大きな短絡電流を得ることが可能である。
【0156】
実施例1および実施例2に記載の太陽電池においては、ステンレス製の基板1上に、電極金属層11、多結晶Si半導体層12、多結晶Si半導体層13、多結晶Si半導体層14、くし型集電電極15、導電性透明膜16を形成した多結晶Si太陽電池を用いたが、これに限られるものではない。光電変換層2として、非晶質Si半導体層を用いることも可能であり、また、さらに発電効率を上げるため、多結晶Si半導体で構成したpn接合と、非晶質Si半導体で構成したpin接合とを積層したタンデム構造太陽電池素子を用いることも可能である。
【0157】
また、他に、単結晶Si太陽電池や、CuInSe、Cu(In,Ga)(S,Se)、CuGaSeなどのCIS系太陽電池等に用いられている光電変換層を用いることも可能である。
【0158】
また、実施例1および実施例2に記載の太陽電池においては、集光素子3として射出成形法により作製したポリカーボネート製の集光素子3を用いたが、これに限られるものではない。その他の樹脂材料として、スチレン系透明樹脂、オレフィン系透明樹脂、エチレン系透明樹脂、アクリル系透明樹脂等を用いることが可能であり、また、作製方法も射出成形法に限られるものでなく、キャスティング法や熱間成形法等を用いることが可能である。さらに、モールド法やロール成形法により作製したガラス製の集光素子3を用いることも可能である。集光素子をガラス製とすることにより、耐環境性が著しく改善され、長期使用に対しても安定して高い発電効率を維持することが可能である。
【0159】
また、実施例1および実施例2に記載の太陽電池においては、蛍光粒子として、粒径5μmのYS:Eu,Mg,Tiの蛍光粒子を用いたが、これに限られるものではない。
【0160】
例えば、蛍光粒子として、粒径2〜20μmのYS:Eu,Mg,Tiの蛍光粒子を使用することにより、200〜450nmの波長の光を吸収し、625nmの波長の光を放射させることが可能である。また、Er3+イオンを含有した酸化フッ化物系結晶化ガラスを用いることにより、800nm近傍の波長の光を吸収し、550〜660nmの波長の光を放射させることが可能である。
【0161】
これら以外の蛍光材料として、酸化ストロンチウムと酸化アルミニウムからなる化合物に希土類元素のユウロピウム(Eu)とジスプロシウム(Dy)を添加したSrAl:Eu,Dyや、SrAl1425:Eu,Dyや、CaAl:Eu,Dyや、ZnS:Cu等の蛍光材料を用いることも可能である。
【0162】
また、シアニン系色素、ピリジン系色素、ローダミン系色素等の有機色素を含有させることによっても、同様に、短波長の光を長波長の光に変換することが可能であり、発電効率を高くすることが可能である。
【0163】
さらに、これらの蛍光材料を任意の組み合わせで複数同時に用いることにより、より高い発電効率を得ることが可能である。
【0164】
また、実施例1及び実施例2の太陽電池においては、太陽光が、シリンドリカル状集光曲面群4により、直線スリット状光透過孔群6へと集光され、第1透明基板10を透過して、光電変換層2と反射層5との間で、入射光が多重反射する構成であったが、直線スリット状光透過孔群6を有する第1透明基板10を上下反転させ、太陽光が、シリンドリカル状集光曲面群4により集光され、第1透明基板10を透過した後、直線スリット状光透過孔群6を通過し、光電変換層2と光反射層5との間で、入射光が多重反射する構成とすることも可能である。ただし、この場合、第1透明基板10は、多重反射系の外に存在するため、蛍光特性を有する透明基板を用いても、発電効率改善の効果を得ることはできない。
【0165】
〔実施例3〕
本発明の実施例3として、図13に示す構成の太陽電池を作製した。
【0166】
実施例3の太陽電池は、実施例1に記載のシリンドリカル状集光曲面群4を有する集光素子3と、太陽電池素子用透明基板34の両面に、それぞれ、直線スリット状光透過孔群6を有する光反射層5、及び、光電変換層35が形成された発電構造体とで構成されている。この場合、シリンドリカル状集光曲面群4から入射した光は、直線スリット状光透過孔群6に集光され、太陽電池素子用透明基板34を透過し、光電変換層35へと入射し、光電変換層35からの反射光が、光反射層5により反射され、再度光電変換層35へと再入射する。従って、光電変換層35と光反射層5との間で、入射光が多重反射することにより、高い発電効率が実現する。
【0167】
実施例3の光電変換層35は、図14に示す構成であり、次のようにして作製した。
【0168】
板厚5mmの太陽電池素子用透明ガラス基板34上に、膜厚30nmのSnO透明導電層36を反応性スパッタリングにより形成した後、遮蔽マスクを基板34上に形成した透明導電層36表面に装着した状態で、AlTi合金ターゲットを用いたスパッタリングにより、膜厚100nmのAl0.95Ti0.05合金からなる、幅0.1mm、間隔5mmのくし型集電電極37を形成した。
【0169】
次に、p型不純物ドープ半導体層であるp層38、真性半導体であるi層39、n型不純物ドープ層であるn層40がこの順に積層された非晶質Si半導体からなる光電変換層をプラズマCVD装置による気相成長法で形成した。各半導体層は、それぞれ、SiHガス・Hガス・CHガス・Bガスの混合ガスを用いて気相成長した膜厚15nmのa−SiC:Hのp層38、SiHガス・Hガスの混合ガスを用いて気相成長した膜厚100nmのa−Si:Hのi層39、SiHガス・Hガス・PHガスの混合ガスを用いて気相成長した膜厚15nmのa−Si:Hのn層40とした。
【0170】
上記光電変換層35を形成した後、膜厚100nmのAlからなる光反射効果を有する電極金属層41をスパッタリングにより形成し、紫外線硬化樹脂を電極金属層41上に塗布し、電極金属層41の保護膜とした。次に、上記太陽電池用素子用透明ガラス基板34の光電変換層35が設けられていない面に、直線スリット状光透過孔群6に対応する遮蔽マスクを取り付けた後、AlTi合金ターゲットを用いたスパッタリングにより、膜厚100nmのAl0.95Ti0.05合金からなる光反射層5を形成して、図13に示す発電構造体とした。
【0171】
上記発電構造体と集光素子3とを用いて、図12と同じ構成の太陽電池パネルを作製し、実施例3の太陽電池パネルとした。また、上記実施例3の太陽電池用素子用透明ガラス基板34と光電変換層35のみからなる太陽電池パネルを比較例3の太陽電池パネルとした。実施例3及び比較例3の太陽電池パネルを実施例1と同様に、太陽光シミュレーターを用い、100mW/cmの光の入射角を変えて照射して、両者の開放電圧Vと短絡電流Iを測定した。
【0172】
【表2】
Figure 2004111453
【0173】
表2は、入射角Rが、−23.4°、−20°、−10°、0°、10°、20°、23.4°の場合において、太陽電池パネルの開放電圧Vと短絡電流Iとが最大となるように太陽電池素子を移動して、実施例3の太陽電池パネルの開放電圧Vと短絡電流Iとを、比較例3の開放電圧Vと短絡電流Iを100%として求めたものである。
【0174】
実施例3aは、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6との間隔を、シリンドリカル状集光曲面群の焦点距離Fと同じ28mmとした場合の開放電圧V及び短絡電流Iを示しており、実施例3bは、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6との間隔が、焦点距離Fよりも6mm小さい22mmとした場合の開放電圧Vと短絡電流Iを示している。
【0175】
実施例3aと実施例3bの両方とも、開放電圧Vと短絡電流Iが100%より大きくなっている。これは、シリンドリカル状集光曲面群4により集光された太陽光が、直線スリット状光透過孔群6を通過し、光電変換層35と光反射層5との間での多重反射が実現することにより、発電効率が高くなっていることを示している。
【0176】
また、実施例1の場合と同様に、実施例3bにおいては、入射角Rの増大にともなうコマ収差の発生にもかかわらず、直線スリット状光透過孔群6への効率的な集光特性が実現し、入射角Rが±23.4°の場合においても、入射角Rが0°の場合と同程度の開放電圧と短絡電流が得られていることがわかる。
【0177】
すなわち、実施例3においても、実施例1と同様に、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6との間隔を、シリンドリカル状集光曲面群4の焦点距離Fより小さくすることにより、直線スリット状光透過孔群6への一層効率的な集光特性が実現し、入射角Rに依存しない高い発電効率を得ることができることがわかる。
【0178】
ここで、実施例1(表1)と実施例3(表2)とを比較すると、実施例1の場合、短絡電流Iが145%まで増大しているのに対して、実施例3の場合、短絡電流Iが130%程度までしか増大していないことがわかる。
【0179】
これは、実施例3において、太陽電池素子用透明基板34の両面に光電変換層35と、直線スリット状光透過孔群6を有する光反射層5とを設けたことにより、太陽電池素子用透明基板34の一方の面に光電変換層35を形成する際、光反射層5を形成すべき太陽電池素子用透明基板34の他方の面における、傷発生や塵埃付着により、入射光の散乱反射と光反射層5の反射率低下が発生したことによるものである。
【0180】
従って、より高い発電効率を実現するためには、光電変換層2と光反射層5とを別々の基板上に形成する実施例1の構成や、別々に形成したあと接着剤で一体化する実施例2の構成が望ましい。しかしながら、実施例3の構成によれば、基板枚数を削減することができ、太陽電池パネルの低コスト化及び薄型化を実現することが可能である。
【0181】
実施例3においては、太陽電池用素子用透明ガラス基板34上に、光電変換層35を形成した後、光反射層5を形成した場合について説明したが、光反射層5を形成した後、光電変換層35を形成することも可能である。しかしながら、光反射層5を形成した後、光電変換層35を形成した場合、光反射層5の形成時に、光電変換層35を形成する面に発生した傷や塵埃付着により、光電変換層35自体の特性劣化が発生し、極端な発電効率低下につながるおそれがある。従って、実施例3において説明したように、光電変換層35を形成した後、光反射層5を形成することが望ましい。
【0182】
次に、上記太陽電池素子用透明基板34として、粒径5μmのYS:Eu,Mg,Tiの蛍光粒子を、15体積%含有させたガラス基板を用いた太陽電池を作製した。この蛍光粒子は、光電変換に利用されない波長400nm近傍の光を、光電変換に利用される波長600nm近傍の光に変換することが可能であり、さらに、蛍光粒子から発生する波長600nm近傍の光が、集光素子3と太陽電池素子との間で多重反射することにより、太陽電池の発電効率を一層高くすることが可能となる。
【0183】
蛍光粒子を含有しない太陽電池素子用透明基板34を用いた実施例3の太陽電池と、蛍光粒子を含有した太陽電池素子用透明基板34を用いた実施例3の太陽電池に対して、太陽光シミュレーターを用い、100mW/cmの光の入射角を変えて照射して、両者の開放電圧Vと短絡電流Iを測定した結果、蛍光粒子を含有した太陽電池素子用透明基板34を用いることにより、全ての入射角において、開放電圧Vが6〜9%大きくなり、短絡電流Iが13〜15%大きくなることが確認された。
【0184】
実施例3においては、光電変換を行うための半導体として、p型不純物ドープ半導体層であるp層38、真性半導体であるi層39、n型不純物ドープ層であるn層40がこの順に積層された非晶質Si半導体を用いた実施例について記載しているが、実施例1及び実施例2において記載した多結晶Si半導体を用いることも可能である。
【0185】
ただし、多結晶Si半導体を用いる場合、その形成順序を入れ替えることが望ましい。すなわち、透明導電層36上に設けたくし型集電電極37上に、p型の不純物を高濃度にドーピングした多結晶Si半導体層、n型の不純物をわずかにドーピングした多結晶Si半導体層、n型の不純物を高濃度にドーピングした多結晶Si半導体層を順次形成した構成とすることが望ましい。
【0186】
また、同様に、実施例1及び実施例2において、実施例3に記載した非晶質Si半導体を用いることも可能である。
【0187】
〔実施例4〕
実施例3の太陽電池においては、太陽電池素子用透明基板34の両面に、光電変換層35と光反射層5とをそれぞれ設けた構成としたが、実施例4の太陽電池は、図15に示すように、太陽電池素子用透明基板34に対しては、光電変換層35のみを設け、実施例1と同様な第1透明基板10を、集光素子3と太陽電池素子用透明基板34との間に、移動可能に設けた構成である。
【0188】
実施例3においては、太陽電池素子用透明基板34の両面に、光電変換層35と、直線スリット状光透過孔群6を有する光反射層5とを設けたことにより、太陽電池素子用透明基板34の一方の面に光電変換層35を形成する際、光反射層5を形成すべき太陽電池素子用透明基板34の他方の面における、傷発生や塵埃付着により、入射光の散乱反射と光反射層5の反射率低下が発生することにより、発電効率が低下するという問題があったが、実施例4に示すように、光電変換層35と光反射層5とを、別々の基板上に形成することにより、上記問題が解消され、実施例1と同程度(145%)の短絡電流Iの増大を実現することができた。
【0189】
この場合、入射光7は、シリンドリカル状集光曲面群4により、直線スリット状光透過孔群6に集光され、第1透明基板10と太陽電池素子用透明基板34とを透過して、光電変換層35と光反射層5との間で、入射光が多重反射することになる。従って、第1透明基板10または太陽電池素子用透明基板34として、実施例1と同様な蛍光特性を有する透明基板を用いることにより、発電効率を一層高めることが可能となる。
【0190】
実施例1においては、光電変換層2と光反射層5との間に存在する第1透明基板10のみを蛍光特性を有する透明基板とすることにより、発電効率を高めることができた。これに対して、本実施例においては、光電変換層35と光反射層5との間に、第1透明基板10と太陽電池用透明基板34とが存在しており、その両方の基板として、蛍光特性を有する透明基板を用いることが可能である。従って、第1透明基板10と太陽電池用透明基板34との両方で光電変換に寄与する波長の光を蛍光として発生させることが可能となり、実施例1と比較して、さらに発電効率を高めることが可能となる。
【0191】
また、図15に示す構成で、直線スリット状光透過孔群6を有する第1透明基板10を上下反転させ、太陽光が、シリンドリカル状集光曲面群4により集光され、第1透明基板10を透過した後、直線スリット状光透過孔群6を通過し、太陽電池素子用透明基板34を透過した後、光電変換層35と光反射層5との間で、入射光が多重反射する構成とすることも可能である。この場合、第1透明基板10は、多重反射系の外に存在するため、第1透明基板10をとして蛍光特性を有する透明基板を用いても、発電効率を向上させることはできない。しかし、太陽電池素子用透明基板34として蛍光特性を有する透明基板を用いることにより、発電効率が向上する。
【0192】
次に、図16に示すように、光電変換層35を有する太陽電池素子用透明基板34と、光反射層5を有する第1透明基板10とを、透明接着剤42により接着した構成とし、第1透明基板10と光電変換層35を有する太陽電池素子用透明基板34とを一体的に移動させることにより、シリンドリカル状集光曲面群4と直線スリット状光透過孔群6とを相対的に移動させることも可能である。
【0193】
この場合、第1透明基板10と光電変換層35を有する太陽電池素子用透明基板34とが接着固定されることにより、機械的強度が高くなり、図15に示す太陽電池パネルに比較して、第1透明基板10と太陽電池素子用透明基板34の基板厚を薄くすることが可能となり、太陽電池パネルを薄型化できる。
【0194】
また、第1透明基板10または太陽電池素子用透明基板34として、実施例1と同様な蛍光特性を有する透明基板を用いることにより、発電効率を高めることが可能となる。
【0195】
さらに、図15の場合と同様に、第1透明基板10と太陽電池素子用透明基板34との両方の基板として、蛍光特性を有する透明基板を用いることにより、第1透明基板10と太陽電池用透明基板34との両方で光電変換に寄与する波長の光を蛍光として発生させることが可能となり、さらに発電効率を高めることが可能となる。
【0196】
また、実施例2と同様に、透明接着剤42に蛍光粒子を含有させ、蛍光特性を持たせた透明接着剤42を用いることによっても、発電効率を高めることが可能となる。さらに、第1透明基板10と太陽電池素子用透明基板34との両方の基板として、蛍光特性を有する透明基板を用い、かつ、蛍光特性を持たせた透明接着剤42を用いることにより、一層高い発電効率を得ることが可能である。
【0197】
本発明に係る太陽電池は、図1、図11、図15及び図16に示すように、上記集光曲面群が設けられた集光素子と、上記光電変換層を有する太陽電池素子との間に、第1透明基板が移動可能に設けられており、該第1透明基板上に上記光透過孔群を有する上記光反射層が設けられていることを特徴としている。
【0198】
上記の構成により、上記集光素子と上記第1透明基板と上記太陽電池素子とを、それぞれ、独立して形成することが可能であり、製造プロセスにおいて発生する傷等の損傷が抑制され、高い発電効率を有する太陽電池を安定して製造することができる。
【0199】
また、本発明に係る太陽電池は、上記の構成に加えて、上記第1透明基板と上記太陽電池素子とが、透明接着剤により固定されていることを特徴としている。
【0200】
上記の構成により、上記の効果に加えて、上記第1透明基板と上記太陽電池素子とが、あらかじめ、接着固定されていることにより、上記第1透明基板および上記太陽電池素子の機械的強度が高められ、製造プロセスにおいて、破損等による歩留まり低下を抑制することが可能であるとともに、太陽電池の薄型化を実現することができる。
【0201】
また、本発明に係る太陽電池は、図13に示すように、上記光電変換層が太陽電池素子用透明基板の一方の面に設けられており、上記太陽電池素子用透明基板の上記光電変換層に対向する面に、上記光透過孔群を有する上記光反射層が設けられていることを特徴としている。
【0202】
上記の構成により、上記太陽電池素子用透明基板上に、上記光電変換層と上記光反射層の両方を形成することが可能であり、必要最小限の基板枚数で、太陽電池を製造することが可能であり、太陽電池の低コスト化が実現するとともに、太陽電池の薄型化を実現することができる。
【0203】
また、本発明に係る太陽電池は、図15及び図16に示すように、上記集光素子と、上記太陽電池素子との間に第1透明基板が設けられており、該第1透明基板に、上記光透過孔群を有する上記光反射層が設けられており、上記光電変換層が太陽電池素子用透明基板上に設けられていることを特徴としている。
【0204】
上記の構成により、上記集光素子と上記第1透明基板と上記太陽電池素子とを、それぞれ、独立して形成することが可能であり、製造プロセスにおいて発生する傷等の損傷が抑制され、高い発電効率を有する太陽電池を安定して製造することができる。
【0205】
また、本発明に係る太陽電池は、上記の構成に加えて、上記第1透明基板と上記太陽電池素子とが、透明接着剤により固定されていることを特徴としている。
【0206】
上記の構成により、上記の効果に加えて、上記第1透明基板と上記太陽電池素子とが、あらかじめ、接着固定されていることにより、上記第1透明基板および上記太陽電池素子の機械的強度が高められ、製造プロセスにおいて、破損等による歩留まり低下を抑制することが可能である。
【0207】
また、本発明に係る太陽電池は、光反射層と光電変換層との間に、蛍光特性を有する透明基板が設けられていることを特徴としている。
【0208】
上記の構成により、光電変換に寄与する波長の光の光量が増大するので、太陽電池の発電効率を一層高くすることが可能となる。
【0209】
また、本発明に係る太陽電池は、上記光反射層と上記光電変換層との間の積層構造中に、蛍光特性を有する透明接着剤層が含まれていることを特徴としている。
【0210】
上記の構成において、光反射層と上記光電変換層との間には、透明接着剤層が介在する色々な態様の積層構造を含めることができる。例えば、集光素子の太陽電池素子側の面に光反射層を形成した集光素子を、透明接着剤層を介して太陽電池素子に接着固定してもよい。あるいは、集光素子と太陽電池素子との間隔を制御する透明基板を、透明接着剤層を介して集光素子と太陽電池素子との間に接着固定してもよい。あるいは、集光素子側の面に光反射層を形成した透明基板を、透明接着剤層を介して太陽電池素子に接着固定してもよい。
【0211】
上記のように、各種態様を取り得る積層構造中に、蛍光特性を有する透明接着剤層が介在することにより、太陽電池の発電効率を一層高めることができる。
【0212】
本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態および実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態および実施例についても本発明の技術的範囲に含まれる。
【0213】
【発明の効果】
本発明によれば、集光領域から入射した光が、光透過孔に集光され、光電変換層を有する太陽電池素子へと入射し、太陽電池素子からの反射光が、光反射層により反射され、再度太陽電池素子へと再入射する。従って、入射光が、光反射層と太陽電池素子との間で多重反射することにより、太陽電池の発電効率を高くすることが可能となる。
【0214】
さらに、集光領域と光透過孔とを相対的に移動可能に支持し、太陽光の入射角度に対応して、集光領域により集光された太陽光が、常に、光透過孔へと集光されるように、集光領域と光透過孔の位置を制御することにより、地軸の傾きに伴う太陽光入射角度の変化が発生するような場合においても、高い変換効率を維持することが可能な太陽電池を実現することが可能となる。
【0215】
また、本発明において、透明基板及び透明接着剤として、蛍光特性を有する透明基板及び透明接着剤を用いることにより、光電変換層において光電変換に使用できない波長の光を、光電変換に使用できる波長の光に変換することができるので、太陽電池の発電効率をさらに高くすることが可能となる。
【図面の簡単な説明】
【図1】本発明の太陽電池の模式的な断面斜視図である。
【図2】本発明の太陽電池において、横方向斜め上から入射する光の集光位置と、光透過孔群の位置との関係を示す模式的な断面斜視図である。
【図3】本発明の太陽電池の設置方法を説明する図面である。
【図4】本発明の太陽電池において、縦方向斜め上から入射する光の集光位置と、光透過孔群の位置との関係を示す模式的な断面斜視図である。
【図5】(a)〜(c)は、本発明の太陽電池の集光状態を、入射角度を変えて計算した結果を示す説明図である。
【図6】(a)〜(c)は、本発明の太陽電池において、光透過孔群を集光曲面群に近づけた場合の集光状態を、入射角度を変えて計算した結果を示す説明図である。
【図7】本発明の太陽電池素子の模式的な断面図である。
【図8】本発明の太陽電池パネルの要部断面図である。
【図9】本発明の太陽電池パネルの概略的平面図である。
【図10】本発明の太陽電池パネルにおいて、集光素子と該光透過孔群との相対位置を制御する制御システムの構成を示すブロック図である。
【図11】本発明の太陽電池の別構成を示す模式的な断面斜視図である。
【図12】本発明の太陽電池パネルの別構成を示す模式的な断面図である。
【図13】本発明の太陽電池のさらに別構成を示す模式的な断面斜視図である。
【図14】本発明の太陽電池素子の別構成を示す模式的な断面図である。
【図15】本発明の太陽電池のさらに別構成を示す模式的な断面斜視図である。
【図16】本発明の太陽電池のさらに別構成を示す模式的な断面斜視図である。
【図17】従来の太陽電池の一例を示す模式的な断面図である。
【図18】従来の太陽電池の他の例を示す模式的な断面図である。
【図19】従来の太陽電池のさらに他の例を示す模式的な断面図である。
【図20】本発明に関連する太陽電池の模式的な断面斜視図である。
【図21】(a)(b)は、本発明に関連する太陽電池の集光状態を、入射角度を変えて計算した結果を示す説明図である。
【符号の説明】
1 基板(太陽電池素子)
2 光電変換層(太陽電池素子)
3 集光素子
4 シリンドリカル状集光曲面群(集光領域の集まり)
5 光反射層
6 直線スリット状光透過孔群
7 入射光
8 縦方向
9 横方向
10 第1透明基板
32 透明接着剤
33 発電構造体
34 太陽電池素子用透明基板
35 光電変換層
42 透明接着剤
F 焦点距離
Q 入射角度
R 入射角度

Claims (9)

  1. 光電変換層を有する太陽電池素子と、
    集光領域を有する集光素子と、
    光透過孔を有する光反射層とを有し、
    該光反射層は、該集光領域により集光された光が該光透過孔を通過した後、該太陽電池素子に入射し、該太陽電池素子からの反射光が該光反射層により反射され、該太陽電池素子に再入射するように、該太陽電池素子と該集光素子との間に形成され、
    該集光領域により集光される光が、対応する該光透過孔を通過するときの通過光量を調節できるように、上記集光素子と上記光反射層とが、相対的に移動可能に支持されていることを特徴とする太陽電池。
  2. 請求項1に記載の太陽電池において、
    上記集光領域が、シリンドリカル状集光曲面であり、上記光透過孔が直線スリット状光透過孔であり、該シリンドリカル状集光曲面の円筒軸の方向と、該直線スリット状光透過孔の延伸方向とが平行に配置されていることを特徴とする太陽電池。
  3. 請求項1、または、請求項2に記載の太陽電池において、
    少なくとも上記光透過孔を有する光反射層が形成された透明基板を上記集光素子と上記太陽電池素子との間に備え、該透明基板を移動可能としたことを特徴とする太陽電池。
  4. 請求項3に記載の太陽電池において、
    上記光反射層は、上記透明基板の光入射側に形成され、該透明基板が上記光電変換層の光電変換に寄与する波長の蛍光を発することを特徴とする太陽電池。
  5. 請求項1、または、請求項2に記載の太陽電池において、
    上記集光素子と上記太陽電池素子との間に、上記光透過孔を有する上記光反射層が設けられた透明基板が設置され、
    該透明基板と該太陽電池素子とが透明接着剤により固定されており、かつ、該透明接着剤が、上記光電変換層の光電変換に寄与する波長の蛍光を発することを特徴とする太陽電池。
  6. 請求項2に記載の太陽電池において、
    上記シリンドリカル状集光曲面と上記光反射層との距離が、上記シリンドリカル状集光曲面の焦点距離よりも短くなされていることを特徴とする太陽電池。
  7. 請求項2に記載の太陽電池において、
    上記シリンドリカル状集光曲面の円筒軸方向を含み、かつ、集光素子に垂直な平面が、東西方向を向くように設置されていることを特徴とする太陽電池。
  8. 請求項7に記載の太陽電池において、
    上記シリンドリカル状集光曲面を有する集光素子と、上記直線スリット状光透過孔を有する反射層とが、相対的に南北方向に移動可能に支持されていることを特徴とする太陽電池。
  9. 請求項8に記載の太陽電池において、
    太陽電池の設置角度が、春分または秋分の南中時に、太陽電池に対する太陽光入射角度が0°となるように設置されていることを特徴とする太陽電池。
JP2002268479A 2002-09-13 2002-09-13 太陽電池 Pending JP2004111453A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002268479A JP2004111453A (ja) 2002-09-13 2002-09-13 太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002268479A JP2004111453A (ja) 2002-09-13 2002-09-13 太陽電池

Publications (1)

Publication Number Publication Date
JP2004111453A true JP2004111453A (ja) 2004-04-08

Family

ID=32266680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002268479A Pending JP2004111453A (ja) 2002-09-13 2002-09-13 太陽電池

Country Status (1)

Country Link
JP (1) JP2004111453A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063822A1 (ja) * 2007-11-14 2009-05-22 Keisuke Mizokami 装飾具及び太陽光受光モジュール
WO2009109084A1 (zh) * 2008-03-05 2009-09-11 玉晶光电(厦门)有限公司 太阳能电池芯片保护结构
KR101081071B1 (ko) 2009-11-03 2011-11-07 엘지이노텍 주식회사 태양광 발전장치
JP2012523688A (ja) * 2009-04-08 2012-10-04 ソーラーエクセル ベスローテン フェノーツハップ 光起電力装置のためのカバープレートの製造方法
CN102969374A (zh) * 2012-11-26 2013-03-13 中山市创科科研技术服务有限公司 一种可调透光率的单晶硅电池组件
US11923475B2 (en) 2010-07-13 2024-03-05 S.V.V. Technology Innovations, Inc. Method of making light converting systems using thin light trapping structures and photoabsorptive films
KR102682567B1 (ko) * 2023-07-24 2024-07-08 케이알파워 주식회사 풍력 센서를 구비한 방재형 태양광 발전 시스템

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115192A (en) * 1977-03-18 1978-10-07 Semiyonouitsuchi Sut Domitorii Photocell
JPS5560281A (en) * 1978-10-31 1980-05-07 Univ Tohoku Internal reflection type pigment sensitizing wet photo cell
JPS56118377A (en) * 1980-02-21 1981-09-17 Nec Corp Solar cell module
JPS62124779A (ja) * 1985-11-25 1987-06-06 Fuji Electric Co Ltd 太陽電池モジユ−ル
JPS63102279A (ja) * 1986-08-04 1988-05-07 エンテク、インコ−パレイテイド 太陽エネルギ−収集装置、光電池カバ−及び光電池カバ−用プリズム
US4960468A (en) * 1988-10-20 1990-10-02 The Board Of Trustees Of The Leland Stanford Junior University Photovoltaic converter having apertured reflective enclosure
JPH04354378A (ja) * 1991-05-31 1992-12-08 Ikeda Takeshi 光エネルギの波長変換装置
JPH05315634A (ja) * 1992-05-12 1993-11-26 Honda Motor Co Ltd 太陽電池
JPH07193267A (ja) * 1993-12-27 1995-07-28 Toyota Motor Corp 太陽電池の出力制御装置
JPH07326789A (ja) * 1994-05-30 1995-12-12 Kyocera Corp 太陽電池モジュール
JPH09199749A (ja) * 1996-01-19 1997-07-31 Toyota Motor Corp 集光型太陽電池装置
JP2000091614A (ja) * 1998-09-16 2000-03-31 Hitachi Ltd 太陽電池モジュール並びに太陽電池アレイ
JP2000150942A (ja) * 1998-11-18 2000-05-30 Sekisui Chem Co Ltd 太陽電池モジュール及びその製造方法
JP2000156518A (ja) * 1998-09-17 2000-06-06 Nippon Telegr & Teleph Corp <Ntt> 太陽光発電システム
JP2001516149A (ja) * 1997-08-19 2001-09-25 デイスター・テクノロジーズ・インク 反射集中式太陽電池アセンブリ
JP2001313410A (ja) * 2000-04-27 2001-11-09 Kazuhito Sakaguchi 集光式密閉型太陽光発電
JP2003046108A (ja) * 2001-07-31 2003-02-14 Sharp Corp 薄膜太陽電池及びその設置方法
JP2003046103A (ja) * 2001-07-31 2003-02-14 Sharp Corp 薄膜太陽電池及びその設置方法
JP2003069067A (ja) * 2001-08-27 2003-03-07 Sharp Corp 薄膜太陽電池及び集光反射素子
JP2003078156A (ja) * 2001-09-06 2003-03-14 Sharp Corp 薄膜太陽電池及び集光反射素子
JP2003078151A (ja) * 2001-09-06 2003-03-14 Sharp Corp 薄膜太陽電池
JP2003086823A (ja) * 2001-09-14 2003-03-20 Sharp Corp 薄膜太陽電池
JP2003101059A (ja) * 2001-09-27 2003-04-04 Sharp Corp 薄膜太陽電池
JP2003110130A (ja) * 2001-09-28 2003-04-11 Sharp Corp 薄膜太陽電池
JP2003110131A (ja) * 2001-09-28 2003-04-11 Sharp Corp 薄膜太陽電池
JP2003346927A (ja) * 2002-05-27 2003-12-05 Sony Corp 光電変換装置

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115192A (en) * 1977-03-18 1978-10-07 Semiyonouitsuchi Sut Domitorii Photocell
JPS5560281A (en) * 1978-10-31 1980-05-07 Univ Tohoku Internal reflection type pigment sensitizing wet photo cell
JPS56118377A (en) * 1980-02-21 1981-09-17 Nec Corp Solar cell module
JPS62124779A (ja) * 1985-11-25 1987-06-06 Fuji Electric Co Ltd 太陽電池モジユ−ル
JPS63102279A (ja) * 1986-08-04 1988-05-07 エンテク、インコ−パレイテイド 太陽エネルギ−収集装置、光電池カバ−及び光電池カバ−用プリズム
US4960468A (en) * 1988-10-20 1990-10-02 The Board Of Trustees Of The Leland Stanford Junior University Photovoltaic converter having apertured reflective enclosure
JPH04354378A (ja) * 1991-05-31 1992-12-08 Ikeda Takeshi 光エネルギの波長変換装置
JPH05315634A (ja) * 1992-05-12 1993-11-26 Honda Motor Co Ltd 太陽電池
JPH07193267A (ja) * 1993-12-27 1995-07-28 Toyota Motor Corp 太陽電池の出力制御装置
JPH07326789A (ja) * 1994-05-30 1995-12-12 Kyocera Corp 太陽電池モジュール
JPH09199749A (ja) * 1996-01-19 1997-07-31 Toyota Motor Corp 集光型太陽電池装置
JP2001516149A (ja) * 1997-08-19 2001-09-25 デイスター・テクノロジーズ・インク 反射集中式太陽電池アセンブリ
JP2000091614A (ja) * 1998-09-16 2000-03-31 Hitachi Ltd 太陽電池モジュール並びに太陽電池アレイ
JP2000156518A (ja) * 1998-09-17 2000-06-06 Nippon Telegr & Teleph Corp <Ntt> 太陽光発電システム
JP2000150942A (ja) * 1998-11-18 2000-05-30 Sekisui Chem Co Ltd 太陽電池モジュール及びその製造方法
JP2001313410A (ja) * 2000-04-27 2001-11-09 Kazuhito Sakaguchi 集光式密閉型太陽光発電
JP2003046108A (ja) * 2001-07-31 2003-02-14 Sharp Corp 薄膜太陽電池及びその設置方法
JP2003046103A (ja) * 2001-07-31 2003-02-14 Sharp Corp 薄膜太陽電池及びその設置方法
JP2003069067A (ja) * 2001-08-27 2003-03-07 Sharp Corp 薄膜太陽電池及び集光反射素子
JP2003078156A (ja) * 2001-09-06 2003-03-14 Sharp Corp 薄膜太陽電池及び集光反射素子
JP2003078151A (ja) * 2001-09-06 2003-03-14 Sharp Corp 薄膜太陽電池
JP2003086823A (ja) * 2001-09-14 2003-03-20 Sharp Corp 薄膜太陽電池
JP2003101059A (ja) * 2001-09-27 2003-04-04 Sharp Corp 薄膜太陽電池
JP2003110130A (ja) * 2001-09-28 2003-04-11 Sharp Corp 薄膜太陽電池
JP2003110131A (ja) * 2001-09-28 2003-04-11 Sharp Corp 薄膜太陽電池
JP2003346927A (ja) * 2002-05-27 2003-12-05 Sony Corp 光電変換装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063822A1 (ja) * 2007-11-14 2009-05-22 Keisuke Mizokami 装飾具及び太陽光受光モジュール
WO2009109084A1 (zh) * 2008-03-05 2009-09-11 玉晶光电(厦门)有限公司 太阳能电池芯片保护结构
JP2012523688A (ja) * 2009-04-08 2012-10-04 ソーラーエクセル ベスローテン フェノーツハップ 光起電力装置のためのカバープレートの製造方法
KR101081071B1 (ko) 2009-11-03 2011-11-07 엘지이노텍 주식회사 태양광 발전장치
US11923475B2 (en) 2010-07-13 2024-03-05 S.V.V. Technology Innovations, Inc. Method of making light converting systems using thin light trapping structures and photoabsorptive films
CN102969374A (zh) * 2012-11-26 2013-03-13 中山市创科科研技术服务有限公司 一种可调透光率的单晶硅电池组件
KR102682567B1 (ko) * 2023-07-24 2024-07-08 케이알파워 주식회사 풍력 센서를 구비한 방재형 태양광 발전 시스템

Similar Documents

Publication Publication Date Title
US8039731B2 (en) Photovoltaic concentrator for solar energy system
JP3174549B2 (ja) 太陽光発電装置及び太陽光発電モジュール並びに太陽光発電システムの設置方法
US20100108133A1 (en) Thin Film Semiconductor Photovoltaic Device
US20100319755A1 (en) Solar Augmentation System
US20080210292A1 (en) Stationary Photovoltaic Module With Low Concentration Ratio of Solar Radiation
US20080264486A1 (en) Guided-wave photovoltaic devices
US9905718B2 (en) Low-cost thin-film concentrator solar cells
US20060086386A1 (en) Thin-film solar cell of tandem type
US20100206379A1 (en) Rotational Trough Reflector Array With Solid Optical Element For Solar-Electricity Generation
WO2013047424A1 (ja) 太陽光発電装置
US20080041440A1 (en) Solar panel condenser
CA2738647A1 (en) Solar collector panel
JP4438293B2 (ja) 太陽電池及びその設置方法
KR20080021652A (ko) 복수의 광발전 영역을 사용하는 통합된 솔라 셀 시스템 및방법
JP2004111453A (ja) 太陽電池
JP2004111742A (ja) 太陽電池
JP5258805B2 (ja) 太陽光発電装置、及び太陽光発電装置の製造方法
JP2004128419A (ja) 太陽電池
JP2004186334A (ja) 太陽電池、および太陽電池用集光素子とその製造方法
JP2003078156A (ja) 薄膜太陽電池及び集光反射素子
JP2003086823A (ja) 薄膜太陽電池
JP2003046103A (ja) 薄膜太陽電池及びその設置方法
KR20110123922A (ko) 태양광 집광기
US20110259421A1 (en) Photovoltaic module having concentrator
JP3206341B2 (ja) 太陽電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127