[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004104206A - Space division multiplex access control method, wireless communication system, base station, and mobile station - Google Patents

Space division multiplex access control method, wireless communication system, base station, and mobile station Download PDF

Info

Publication number
JP2004104206A
JP2004104206A JP2002259692A JP2002259692A JP2004104206A JP 2004104206 A JP2004104206 A JP 2004104206A JP 2002259692 A JP2002259692 A JP 2002259692A JP 2002259692 A JP2002259692 A JP 2002259692A JP 2004104206 A JP2004104206 A JP 2004104206A
Authority
JP
Japan
Prior art keywords
base station
mobile station
antenna
signal
mobile stations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002259692A
Other languages
Japanese (ja)
Other versions
JP4110519B2 (en
JP2004104206A5 (en
Inventor
Hiroaki Takano
高野 裕昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002259692A priority Critical patent/JP4110519B2/en
Publication of JP2004104206A publication Critical patent/JP2004104206A/en
Publication of JP2004104206A5 publication Critical patent/JP2004104206A5/ja
Application granted granted Critical
Publication of JP4110519B2 publication Critical patent/JP4110519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain combination of mobile stations capable of being spatially multiplexed in a comparatively short period of time. <P>SOLUTION: In the case of deciding the combination of mobile stations being spatial multiplex objects, a base station 10 transmits a known signal sequentially from each one of a plurality of antenna elements 11a to 11d in time division. A plurality of the mobile stations 100-1 to 100-m simultaneously receive the known signal to obtain a transfer function as to the signals from each antenna element of the base station. Then each mobile station transmits the transfer function obtained by each to the base station. The base station 10 selects mobile stations capable of being subjected to spatial division multiplexing on the basis of the transfer function received from a plurality of the mobile stations 100-1 to 100-m and informs the mobile stations about it. The base station 10 sets a weight of a plurality of the antenna elements as to the selected mobile stations. Then the selected mobile stations transmit an uplink signal. Further, the base station 10 transmits a downlink signal to the selected mobile stations. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、セルラ無線および無線LAN等の無線通信システムに関し、特にマイクロセルセルラー環境下の無線通信システムおよびホットスポット無線サービスシステムに関する。
【0002】
【従来の技術】
近年、ブロードバンド社会へ向けて無線通信システムにおいても広帯域伝送(ブロードバンド伝送)が求められている。また、増大する加入者を効率良く収容するため、限りある周波数資源を有効に利用するために、高い周波数利用効率を実現できるシステムが求められている。
【0003】
周波数利用効率を向上させるために、従来のマクロセルセルラーシステムに代わってセル半径の小さいマイクロセルセルラーシステムが有望視されている。
【0004】
マイクロセルセルラーシステムにおいて重要な技術がアレーアンテナである。アレーアンテナは、希望の方向にのみメインローブを向け、希望しない方向には低サイドローブにより不要な電波を放射しないといったセクターアンテナ的な方法と、所望移動局方向にはメインローブを向け、干渉局移動局方向にはヌルを向けSINR(シグナル対雑音干渉電力比)を改善する方法がある。
【0005】
基地局に複数のアンテナ素子からなるアレーアンテナを用いて(移動局側は1本のアンテナ)、異なる移動局との間の信号同士の干渉を低減することにより、システムのキャパシティーが増大することが期待されている。
【0006】
システムのキャパシティーを増大させる方法としてマルチプルアクセス方式にSDMA(Space Division Multiple Access:空間分割多重)が用いられる。これは各移動局を空間的に多重するものである。すなわち、基地局と複数の移動局との間の通信に、同一のスロット、同一の周波数を用いるが、空間的にアンテナの指向性を用いて信号を分離することにより多重を行う方法である。マルチプルアクセス方式としてSDMAを行う場合に重要なのは、どの加入者同士を空間的に多重すべき等を決定するスロット割当許可である。アレーアンテナの干渉除去能力よりもこのスロット割当の方法をどのようにするかがよりキャパシティー増加のパフォーマンスに影響を与えるとも言える。
【0007】
このスロット割当の判断基準の1つとして各移動局の基地局から見た角度を用いる方法がある。同時に空間分割多重する移動局同士がある角度以上、基地局から見た角度が離れていれば、アレーアンテナの指向性を制御して、それぞれの移動局からの信号またはそれぞれの移動局への信号を分離できるためである。実際に多く用いられる方法は、空間分割多重(単に空間多重ともいう)を行いたい移動局が、それぞれ、固有の既知信号を送信し、基地局側で、MMSE(Minimum Mean Square Error:誤差最小化法)基準のRLS(Recursive Least Square)アルゴリズムにより、各移動局の信号をそれぞれ分離するようにアダプティブアレーアンテナの重みを決定し、その後で、各移動局の信号に対応するSINRを求めて、その値が一定値以上であれば通信可能と判断し、空間多重が可能である移動局同士の組合わせであると判断する方法である。
【0008】
【発明が解決しようとする課題】
上記のような従来のスロット割当方法は、実際に各移動局から各移動局に固有の既知信号を同時に送信させて基地局で学習する方法であるため、最適な移動局同士の組み合せを得るには時間がかかりすぎる。長い時間をかけて学習しても、その結果のSINRが良好でなければ、改めて、他の組合わせで学習しなおさなければならない。
【0009】
そのような問題点を解決する方法として、基地局側で、各移動局の基地局から見た角度を保存しておいて、ある一定角度以上離れている移動局同士を空間多重可能な組合わせとして判断する方法が考えられる。しかしながら、この方法は、各移動局の角度情報を得る場合に、基地局側で、MUSICアルゴリズム等(複数のアンテナで受信したデータの共分散行列の固有値を解析する方法)で知られる到来方向推定を行う方法や、鋭い指向性を持ったビームを360度回転させる従来のレーダのような使い方等により、移動局の方向を推定することになるが、様々な問題がある。
【0010】
つまり、移動局の送信した受信電力情報をもとに、基地局側で到来方向を推定する方法は、移動局の数が増えた場合に、その到来方向情報と移動局の特定が困難になる恐れがある。また、各移動局毎に到来方向推定を1つ1つ行っていると時間がかかりすぎるという問題点もある。また、角度情報からMMSE基準でのRLSアルゴリズムの結果のSINRが完全に予想できるわけではない。
【0011】
本発明はこのような背景のもとになされたものであり、その目的は、比較的短時間に空間多重可能な移動局の組み合わせを求めることができる空間分割多重アクセス制御方法、無線通信システム、基地局、および移動局を提供することにある。
【0012】
【課題を解決するための手段】
本発明による空間分割多重アクセス制御方法は、基地局の複数のアンテナ素子から順次1本ずつ時分割で既知信号を送信するステップと、複数の移動局が同時に前記既知信号を受信し、前記基地局の各アンテナ素子からの信号について伝達関数を求めるステップと、各移動局が自己の求めた前記伝達関数を前記基地局に送信するステップと、前記複数の移動局から受信した伝達関数に基づいて空間分割多重可能な移動局を選択し、当該移動局にその旨を通知するステップと、当該選択された移動局にアップリンク信号の送信を行わせるステップと、当該選択された移動局に対してダウンリンク信号を送信するステップとを備えたことを特徴とする。
【0013】
このように、基地局の各アンテナ素子から順次送信された既知信号に基づいて各移動局が当該伝達関数を求める。伝達関数は可逆的なので、移動局から送信された既知信号も同様の伝達関数で基地局に伝達されると考えられる。そこで、この伝達関数を基地局側に通知し、基地局側でこの伝達関数に基づいて、空間分割可能な移動局を選択することができる。
【0014】
より具体的には、前記空間分割多重可能な移動局を選択する際、前記基地局の複数のアンテナ素子で受信した各移動局からの既知信号から得られる相関行列Rxxを前記伝達関数に基づいて算出した第1の算出結果と、前記複数のアンテナ素子で受信した各移動局からの既知信号と目的の移動局からの既知信号とでつくる相関ベクトルrxrを前記伝達関数に基づいて算出した第2の算出結果とから、前記目的の移動局と前記基地局との間の通信のための前記複数のアンテナ用の重みを算出し、その重みに対応するSINRを事前に評価することにより、当該移動局が空間分割多重可能か否かを判定する。
【0015】
これにより、いちいち、異なる組合わせで移動局から既知信号を送信してもらって各アンテナ素子の重みを学習する、という手間が省かれる。
【0016】
前記アップリンク信号の受信時に、前記基地局が前記選択された各移動局からの既知信号に基づいて前記複数のアンテナ用の重みを求めることも可能である。但し、これは確認的な処理であり、必須のステップではない。
【0017】
この空間分割多重アクセス制御方法で使用する通信フレームは、例えば、前記基地局からフレーム同期信号を送信する第1の領域と、前記基地局から順次異なるアンテナから送信される既知信号に応じて各移動局がアンテナ毎に伝達関数を求める第2の領域と、各移動局が自己の求めた伝達関数を前記基地局へ転送する第3の領域と、前記基地局が転送された伝達関数に基づいて空間分割多重可能な移動局の組み合わせを指定する第4の領域と、指定された移動局からのアップリンク信号を前記基地局が受信する第5の領域と、指定された移動局へダウンリンク信号を前記基地局が送信する第6の領域とから構成される。
【0018】
本発明による無線通信システムは、基地局と複数の移動局との間での無線通信に空間分割多重アクセス制御を採用した無線通信システムであって、前記基地局は、複数のアンテナ素子と、この複数のアンテナ素子の受信信号を重み付け処理するアダプティブアレイアンテナ処理手段と、予め定められた既知信号を前記複数のアンテナ素子から順次1本ずつ時分割で送信する手段と、前記複数の移動局から受信した伝達関数に基づいて特定の移動局の組み合わせについて移動局毎に前記複数のアンテナ素子用の重みを算出し、この重みに基づいて空間分割多重可能な移動局の組み合わせを決定し、当該移動局に対してアップリンク信号の送信およびダウンリンク信号の受信を許可する手段と、前記アダプティブアレイアンテナ処理部において前記選択された各移動局との通信時に前記算出された重みに従って重み付け状態を設定する手段とを備え、各移動局は、アンテナと、このアンテナにより前記基地局からの既知信号を受信し、前記基地局の各アンテナ素子からの信号について伝達関数を求める手段と、各移動局が自己の求めた前記伝達関数を前記アンテナから前記基地局に送信する手段と、前記基地局から許可されたとき、前記アンテナを介して前記基地局へのアップリンク信号の送信およびダウンリンク信号の受信を行う手段とを備えたことを特徴とする。
【0019】
本発明は、このようなシステムではなく、基地局単独、または移動局単独としても把握することができる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
【0021】
図1に、本実施の形態における無線通信システムの概略構成を示す。この無線通信システムは、基地局10と複数の移動局100−1〜100−mとからなる。(なお、複数の移動局のいずれかを区別することなく参照するときは単に移動局100という。)基地局10は、アレイアンテナを構成する複数のアンテナ素子11a〜11dを有する。また、移動局100−1〜100−mにはそれぞれ1本のアンテナ200−1〜200−mが装備されている。このシステムの動作については後に詳述する。以下、基地局でのアンテナ本数4本、各移動局でのアンテナ本数は1本として説明する。シングルセルの場合について説明する。
【0022】
図2に、基地局10の構成例を示す。
【0023】
基地局10は、複数(この例では4本)のアンテナ11a,11b,…11dを配置したアレーアンテナ部と、各アンテナを送受信用に共用するためのアンテナ共用器としてのスイッチ13a,13b,…13dと、各スイッチに接続される受信RF部12rxa,12rxb,…12rxd、および、送信RF部12txa,12txb,…12txd、これらの受信RF部および送信RF部に接続されるアダプティブアレーアンテナ信号処理部14、ならびに、このアダプティブアレーアンテナ信号処理部14に接続され、送受信信号の処理および本システム各部の制御を行う制御部15により構成される。このような基地局10の構成自体は公知のものである。
【0024】
図3に、アダプティブアレーアンテナ信号処理部14の受信系の内部構成例を示す。この例では、アダプティブアレーアンテナ信号処理部14は同時に動作する同様構成の8個の重み処理部140−1〜140−8を有する。これらの重み処理部は、制御部15により制御されるとともに、その出力は制御部15に与えられる。
【0025】
各重み処理部は、重み係数算出および記憶部143と、各受信RF部の出力X[1],X[2],…X[4]にそれぞれ重み係数W[1],W[2],…W[4]を乗算する複数の乗算器141a〜141dと、これらの出力を加算する加算器142とを有する。重み係数算出および記憶部143は、後述する初期設定時に受信信号とレファレンス信号(既知信号r(t))145とに基づいて各乗算器に与える重み係数を決定するとともに、図4に示すように、各移動局についての重み係数(W[1],W[2],…W[4])をデータテーブル30として記憶する。レファレンス信号とは、各移動局に固有の信号であり、移動局の重み学習用に用いられる既知のデータである。このような既知のデータとしては、例えば、相互に異なるランダムパターンデータを用いることができる。8個の重み処理部140−1〜140−8は、最大8個までの移動局に対して同時に対応できることを意味している。重み処理部の個数は8個に限定されるものではなく、これより多くても少なくてもよい。図4に示した重み係数は、図示しないアダプティブアレーアンテナ信号処理部14の送信系においても利用される。
【0026】
図5に本実施の形態における移動局100の構成例を示す。この移動局100は、1本のアンテナ200を持ち、送受共用で当該アンテナを使用する。アンテナ200には、スイッチ(SW)201を介して受信RF部202および送信RF部203が接続され、これらのRF部はさらに変復調、符号化/復号化等の信号処理を行うデジタル信号処理部DSP(Digital Signal Processor)204と接続されている。DSP204は、スピーカ205、マイク206、イヤレシーバ207、および制御部208に接続されている。制御部208はさらに、表示部209、入力操作部211、ROM213、RAM214等に接続され、移動局全体の動作を制御している。制御部208は中央処理装置(CPU)などから構成され、移動局全体の制御を行う。入力操作部211は携帯端末の各種キーやボタン、ジョグダイヤル等に相当する。ROM213には本実施の形態の後述する動作を実現するための制御プログラムが格納されている。ROM213は、フラッシュROMのような再書き込み可能な不揮発性メモリを含んでもよい。
【0027】
さて、このようなシステム構成において、本実施の形態における具体的な動作を説明する。
【0028】
再度図1を参照する。空間多重の対象となる移動局の組み合わせを決定するに当たり、基地局10は、最初に、複数のアンテナ素子のうちの1本から所定の既知信号を送信し、各移動局100は、その既知信号を受信することにより伝達関数を取得する。ここでいう伝達関数とは、基地局からの送信信号に対する受信信号の振幅の変化量(係数)および位相の変化量によって定まるデータであり、例えばAejθで表される。基地局からある移動局への信号送信に関する伝達関数と、逆向きの信号送信に関する伝達関数とはほぼ一致する(可逆的)と考えられる。第1のアンテナ素子からの既知信号の送信から予め定めた一定時間後に、基地局の第2のアンテナ素子から既知信号を送信し、各移動局で、伝達関数を取得する。ついで、第3,第4のアンテナ素子について同様の動作を行う。
【0029】
このようにして、各移動局は、基地局の全てのアンテナ素子との間の伝達関数を求めることができる。各移動局は、別々の位置に存在し、基地局から移動局への距離も場所も異なることから、各移動局で取得した伝達関数自体は、絶対的な値ではない。しかし、1つの移動局で取得した基地局の各アンテナとの間の伝達関数同士は、相対的に比較できる値となっている。これは、予め定めた一定時間ごとに基地局の送信アンテナを切り替えているために伝達関数を取得するタイミングを揃えることが可能であるためである。
【0030】
以上のようにして取得された伝達関数は、移動局が保持している情報である。空間多重を行いたい移動局は、この伝達関数情報を基地局に送信する。基地局では、各移動局で取得した伝達関数をもとに空間多重しやすい組合わせを決定する。以下、どのように組み合せを決定するかについて説明する。
【0031】
最初にMMSE基準のRLSアルゴリズムについて説明する。最小化の対象となる誤差信号e(t)は、各移動局からの既知信号r(t)とアレーアンテナの出力y(t)との差で与えられる。
【数1】

Figure 2004104206
【0032】
この誤差信号を最小にするアダプティブアレーアンテナの重みWは、以下のようになる。これは、ウイーナー解と呼ばれている。
【数2】
Figure 2004104206
【0033】
通常、アレーアンテナの重みを得るためには、複数の移動局から同時に各移動局固有の既知信号を送信し、基地局で複数のアンテナ素子で受信する。ある移動局の信号を取り出すためには、その特定の移動局用の既知信号r(t)を用いて上記の様にしてWを決定する、このWをアレーアンテナの重みとして使用すると、特定の移動局の信号のみを取り出すことができる。
【0034】
ここで、重みWを計算するにあたって必要な情報は、基地局の複数のアンテナ素子で受信した信号から生成される相関行列Rxxと、同じく複数のアンテナ素子で受信した信号と既知信号から生成される相関ベクトルrxrである。
【0035】
1つの移動局からの信号で考えてみると、1つの移動局が送信した信号は、基地局の複数のアンテナ素子にそれぞれ空間的位置やフェージングによる違いにより、異なる振幅、位相で到達し、それが重みを計算する基になっている。複数の移動局から受信した信号は、この重ね合せにすぎない。また、前述のように、伝達関数は可逆的である。したがって、各移動局と各アンテナ素子間の伝達関数を全て取得していれば、この最適な重みWを計算することができる。したがって、本発明では上記のような複数の移動局からの既知信号の送信による基地局での学習および重みの算出の処理を直接的に行うのではなく、伝達関数を用いて計算により模擬的に重みの算出の処理を行うことができる。
【0036】
すなわち、本発明では、基地局の各アンテナから既知信号を時間をずらして送信することにより、基地局の周りにいる移動局のアンテナと基地局の各アンテナ間の伝達関数を個別に求め、その情報を移動局から基地局側へ送信する。さらに、基地局側で、この情報を基に様々な移動局同士のSDMAの組合わせで、最適なアダプティブアレーの重みを事前に計算し、その重みに対応するSINRを事前に評価することにより、いちいち、異なる組合わせで移動局から既知信号を送信してもらって学習するという手間を省くことができ、より効率的なSDMAの運用を可能とする。
【0037】
以下、そのための具体的な動作について説明する。
【0038】
図6に、本発明の空間分割多重アクセス制御方式における基地局から送出する信号のフレームフォーマットを示す。
【0039】
フレームの先頭には、フレーム同期用の信号51がある。各移動局は、この信号を受信することにより、フレームの位置を認識し、フレームに同期して動作する。ここでのフレームの時間幅は2msとしているが、本発明はこれに限定されるものではない。
【0040】
続く伝達関数取得領域52では、基地局の複数のアンテナから、順次、既知信号を送信し、各移動局は、この既知信号を受信することにより伝達関数を取得する。すなわち、基地局は、最初は、第1のアンテナ11aのみから送信し(521)、第2〜第4のアンテナ11b〜11dからは、信号を送信しない。次いで、第2のアンテナ11bのみから送信し(522)、第1,第3,第4のアンテナからは信号を送信しない。同様に、その次に第3アンテナ11cのみ、さらに第4アンテナ11dのみからの送信を行う(523,524)。移動局では、第1のアンテナの既知信号の先頭の部分で相関検出を行い、伝達関数を取得するためのデータの位置を決める。第2アンテナから第4アンテナまでの伝達関数を取得するためのデータの切り出しは、この最初の相関検出をして決定した位置からフレームフォーマットできめられている間隔をずらすことにより行う。これにより、移動局の1本のアンテナと基地局の4本のアンテナとの間で得られた4つの伝達関数は、同じ基準で得られた伝達関数ということになる。したがって、その4つの伝達関数の位相差は、伝達経路の遅延差に相当する。移動局mで得られた基地局のアンテナnとの間の伝達関数をD[m][n]とする。D[m][n]は複素数である。ここにAは振幅を表す変数(係数)、θは角度を表す変数である。このような伝達関数の値は、受信信号の予め定めた複数のポイントについての平均値として求めることが好ましい。
【0041】
ここで、アレーアンテナの最適な重み係数を得るには、上述したように、
【数3】
Figure 2004104206
という値を取得する必要がある。
【0042】
いま、移動局番号1,2,3番の移動局を空間多重しようとする場合を考える。
【0043】
X[n]を基地局のアンテナnでの入力信号とすると、X(t)は次のように表される。
【数4】
Figure 2004104206
【0044】
3つの移動局が同時に既知信号を送信した場合は、受信電力を全移動局で同じだとすると、
X[n]=D[1][n]+D[2][n]+D[3][n] …(10)
となる。
【0045】
一方、Rxxは次のとおりである。
【数5】
Figure 2004104206
【0046】
この式(11)の右辺は式(10)から伝達関数のみの式に変換することができるので、必要な伝達関数が分かれば、Rxxを求めることができる。
次に、
【数6】
Figure 2004104206
の方は、基地局の各アンテナの入力と受信したい移動局(ここでは、移動局番号1番の移動局の信号を受信しようとする)の既知信号との相関であるから、
【数7】
Figure 2004104206
で求めることができる。
【0047】
以上で示したように、各移動局で取得した伝達関数を基地局側で保持していれば、式(10)(11)と式(13)とにより、保持された伝達関数の中から必要な伝達関数を用いて、移動局の様々な組合わせの空間多重のための最適な重みを計算できる。したがって、個々の組み合わせについて、その求められた重みに対応するSINRを事前に評価することにより、空間多重が可能か否かの判定が行える。なお、このような判定では複数の組み合わせについて並列処理を行うことが好ましい。
【0048】
このような動作によって、様々な移動局同士のSDMAの組合わせで、移動局から既知信号を送信してもらって学習するという手間を省きつつ、空間多重可能か否かを事前に判断することができる。
【0049】
伝達関数転送領域53は、各移動局で取得した伝達関数情報を基地局に転送するための領域である。1つの基地局に対して、移動局が多数(例えば数百)存在する場合、全ての移動局の伝達関数情報を伝達転送領域53で一度に送信することはできない。そこで、例えばCSMA(キャリヤセンスマルチプルアクセス)方式で、あるいはスロッテッドアロハ、時分割スロット等の既存の方法で伝達関数を基地局に転送する。この領域で自己の伝達関数を転送できなかった移動局は次のフレームで再度転送を試みる。また、各移動局は、毎フレームごとに伝達関数を取得するが、前回のフレームで取得した伝達関数と大差がない場合は、あえて移動局に伝達関数情報の転送を省略するようにしてもよい。
【0050】
基地局では、数百の移動局の中の一部の伝達関数情報を取得したら、前述したように、その中から、最適な組合わせを先に説明した方法で探し出す(並列処理可能)。組合わせは、例えば、20台の移動局の伝達関数の情報を取得していた場合に、その中から、8台を空間多重する場合、あらゆる組合わせの数は、20となりかなり大きな数になるが、これらの全てを行う必要はなく、処理能力に応じてある程度の組合わせの中から最適なものを選べばよい。
【0051】
このようにして選ばれた組合わせの移動局に対して、アップリンク信号の送信許可を「複数の移動局の指定」という領域54で行う。上記最適な組み合わせの探索の実行もこの領域54内に含みうる。アップリンク信号送信の許可の対象となる移動局はこの領域54を見て、自己が指定されていれば、アップリンク信号を送信する。アップリンク信号の先頭には、各移動局毎に異なる既知信号があり、基地局では、この既知信号の領域で、再度、実際にMMSE基準の重みWを求めるようにしてもよい。ほぼ同じ計算を事前にして多重可能と判断されたものの組合わせなので、ここでの学習は当然成功する確率が高い。したがって、再度のその学習した重みを用いてアップリンクのデータを受信し、同時に同じ重みを用いてダウンリンク信号を送信する。さらに、続く領域56において基地局から指定された移動局へのダウンリンク信号の送信を行う。
【0052】
以上、本発明の好適な実施の形態について説明したが、上記で言及した以外にも、種々の変形、変更が可能である。
【0053】
【発明の効果】
本発明によれば、基地局の複数のアンテナ素子から順次送信される既知信号に基づいて各移動局で得られる伝達関数を利用して各移動局についての基地局でのアンテナ素子の重みを決定することにより、比較的短時間に空間分割多重可能な移動局の組み合わせを求めることができる。これにより、様々な移動局の組合わせについてのSINRを事前に迅速に予測することが可能となり、結果として、周波数利用効率の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における無線通信システムの概略構成を示すブロック図である。
【図2】図1のシステムにおける基地局の構成例を示すブロック図である。
【図3】図2に示したアダプティブアレーアンテナ信号処理部の受信系の内部構成例を示すブロック図である。
【図4】各移動局についての重み係数を記憶したデータテーブルの構成例を示す図である。
【図5】本発明の実施の形態における移動局の構成例を示すブロック図である。
【図6】本発明のアクセス制御方式における基地局から送出する信号のフレームフォーマットを示す図である。
【符号の説明】
10…基地局、11(11a〜11d)…アンテナ素子、30…データテーブル、100(100−1〜100−m)…移動局、200(200−1〜200−m)…アンテナ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wireless communication system such as a cellular wireless system and a wireless LAN, and more particularly to a wireless communication system and a hot spot wireless service system in a microcellular cellular environment.
[0002]
[Prior art]
2. Description of the Related Art In recent years, broadband transmission (broadband transmission) has been required in a wireless communication system toward a broadband society. There is also a need for a system that can realize high frequency utilization efficiency in order to efficiently accommodate an increasing number of subscribers and effectively use limited frequency resources.
[0003]
In order to improve the frequency use efficiency, a microcellular cellular system having a small cell radius is expected to replace the conventional macrocellular cellular system.
[0004]
An important technology in microcellular cellular systems is the array antenna. The array antenna is a sector antenna method in which the main lobe is directed only in the desired direction, and unnecessary side waves are not radiated by low side lobes in the undesired direction. There is a method for improving the SINR (signal-to-noise-interference power ratio) by pointing the null toward the mobile station.
[0005]
The use of an array antenna consisting of a plurality of antenna elements in the base station (one antenna on the mobile station side) to reduce the interference between signals between different mobile stations, thereby increasing the system capacity. Is expected.
[0006]
As a method for increasing the capacity of the system, SDMA (Space Division Multiple Access) is used for a multiple access method. This spatially multiplexes each mobile station. In other words, this method uses the same slot and the same frequency for communication between a base station and a plurality of mobile stations, but performs multiplexing by spatially separating signals using the directivity of an antenna. What is important when performing SDMA as a multiple access method is a slot allocation permission that determines which subscribers should be spatially multiplexed. It can be said that how to use this slot allocation method affects the performance of capacity increase more than the interference cancellation ability of the array antenna.
[0007]
As one of the criteria for determining the slot allocation, there is a method using the angle of each mobile station as viewed from the base station. If the mobile stations to be simultaneously space-division multiplexed are at a certain angle or more and the angle as viewed from the base station is apart, the directivity of the array antenna is controlled to control the signal from each mobile station or the signal to each mobile station. Can be separated. A method that is often used in practice is that mobile stations that want to perform space division multiplexing (also simply referred to as spatial multiplexing) each transmit a unique known signal, and the base station side performs MMSE (Minimum Mean Square Error: error minimization). Method) The weight of an adaptive array antenna is determined by a reference RLS (Recursive Last Square) algorithm so as to separate the signals of each mobile station, and thereafter, the SINR corresponding to the signal of each mobile station is obtained. If the value is equal to or larger than a certain value, it is determined that communication is possible and that it is a combination of mobile stations capable of spatial multiplexing.
[0008]
[Problems to be solved by the invention]
Since the conventional slot allocation method as described above is a method of actually transmitting a known signal unique to each mobile station from each mobile station at the same time and learning at the base station, it is necessary to obtain an optimal combination of mobile stations. Takes too long. If the resulting SINR is not good even after a long learning period, the learning must be performed again with another combination.
[0009]
As a method of solving such a problem, the base station stores the angles of each mobile station viewed from the base station, and a combination capable of spatially multiplexing mobile stations separated by a certain angle or more. It is conceivable to judge as. However, in this method, when the angle information of each mobile station is obtained, the direction of arrival estimation known on the base station side by the MUSIC algorithm or the like (a method of analyzing the eigenvalue of the covariance matrix of data received by a plurality of antennas) is used. Is performed, or the direction of the mobile station is estimated by using a conventional radar that rotates a beam having sharp directivity by 360 degrees. However, there are various problems.
[0010]
That is, the method of estimating the direction of arrival on the base station side based on the received power information transmitted by the mobile station makes it difficult to specify the direction of arrival and the mobile station when the number of mobile stations increases. There is fear. Further, there is also a problem that it takes too much time when the direction of arrival estimation is performed for each mobile station one by one. Also, the SINR of the result of the RLS algorithm based on the MMSE standard cannot be completely predicted from the angle information.
[0011]
The present invention has been made under such a background, and an object of the present invention is to provide a space division multiplex access control method, a radio communication system, It is to provide a base station and a mobile station.
[0012]
[Means for Solving the Problems]
A space division multiple access control method according to the present invention comprises the steps of sequentially transmitting a known signal one by one from a plurality of antenna elements of a base station in a time-division manner, wherein a plurality of mobile stations simultaneously receive the known signal, Determining a transfer function for signals from each of the antenna elements, transmitting each of the transfer functions determined by the mobile station to the base station, and determining a space based on the transfer functions received from the plurality of mobile stations. Selecting a mobile station capable of division multiplexing and notifying the mobile station to that effect; causing the selected mobile station to transmit an uplink signal; Transmitting a link signal.
[0013]
As described above, each mobile station obtains the transfer function based on the known signal sequentially transmitted from each antenna element of the base station. Since the transfer function is reversible, it is considered that a known signal transmitted from the mobile station is also transmitted to the base station with a similar transfer function. Therefore, the transfer function can be notified to the base station side, and the base station can select a mobile station capable of space division based on the transfer function.
[0014]
More specifically, when selecting the mobile station capable of space division multiplexing, a correlation matrix Rxx obtained from a known signal from each mobile station received by a plurality of antenna elements of the base station is determined based on the transfer function. The calculated first calculation result and a correlation vector r xr formed by a known signal from each mobile station received by the plurality of antenna elements and a known signal from the target mobile station are calculated based on the transfer function. By calculating the weights for the plurality of antennas for communication between the target mobile station and the base station from the calculation result of 2, and evaluating the SINR corresponding to the weights in advance, It is determined whether the mobile station can perform space division multiplexing.
[0015]
This eliminates the need to have each mobile station transmit a known signal in a different combination to learn the weight of each antenna element.
[0016]
When receiving the uplink signal, the base station may determine a weight for the plurality of antennas based on a known signal from each of the selected mobile stations. However, this is a confirmatory process and is not an essential step.
[0017]
The communication frame used in this space division multiplex access control method is, for example, each mobile station according to a first area for transmitting a frame synchronization signal from the base station and a known signal transmitted from a different antenna sequentially from the base station. A second area in which the station obtains a transfer function for each antenna, a third area in which each mobile station transfers its own transfer function to the base station, and a transfer function in which the base station transfers the transfer function. A fourth area for specifying a combination of mobile stations capable of space division multiplexing, a fifth area for receiving the uplink signal from the specified mobile station by the base station, and a downlink signal to the specified mobile station. And a sixth area transmitted by the base station.
[0018]
A wireless communication system according to the present invention is a wireless communication system employing space division multiple access control for wireless communication between a base station and a plurality of mobile stations, wherein the base station includes a plurality of antenna elements, Adaptive array antenna processing means for weighting received signals of a plurality of antenna elements; means for transmitting predetermined known signals sequentially from the plurality of antenna elements one by one in a time-division manner; Calculating a weight for the plurality of antenna elements for each mobile station for a specific combination of mobile stations based on the obtained transfer function; determining a combination of mobile stations capable of space division multiplexing based on the weight; Means for permitting transmission of an uplink signal and reception of a downlink signal to the adaptive array antenna processing unit. Means for setting a weighted state according to the calculated weight during communication with each of the selected mobile stations, wherein each mobile station receives an antenna and a known signal from the base station using the antenna, and Means for determining a transfer function for a signal from each antenna element of the station, means for transmitting the transfer function determined by each mobile station to the base station from the antenna, and when permitted by the base station, Means for transmitting an uplink signal and receiving a downlink signal to the base station via an antenna.
[0019]
The present invention can be understood not as such a system but also as a base station alone or a mobile station alone.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0021]
FIG. 1 shows a schematic configuration of a wireless communication system according to the present embodiment. This wireless communication system includes a base station 10 and a plurality of mobile stations 100-1 to 100-m. (Note that when any one of the plurality of mobile stations is referred to without distinction, it is simply referred to as the mobile station 100.) The base station 10 includes a plurality of antenna elements 11a to 11d that constitute an array antenna. The mobile stations 100-1 to 100-m are equipped with one antenna 200-1 to 200-m, respectively. The operation of this system will be described later in detail. The following description is based on the assumption that the number of antennas at the base station is four and the number of antennas at each mobile station is one. The case of a single cell will be described.
[0022]
FIG. 2 shows a configuration example of the base station 10.
[0023]
The base station 10 includes an array antenna section in which a plurality (four in this example) of antennas 11a, 11b,... 11d are arranged, and switches 13a, 13b,. 12rxa, 12rxb,... 12rxd connected to each switch, and the transmission RF units 12txa, 12txb,. 14 and a control unit 15 connected to the adaptive array antenna signal processing unit 14 for processing transmission / reception signals and controlling each unit of the system. The configuration itself of such a base station 10 is known.
[0024]
FIG. 3 shows an example of the internal configuration of the receiving system of the adaptive array antenna signal processing unit 14. In this example, the adaptive array antenna signal processing unit 14 has eight weight processing units 140-1 to 140-8 having the same configuration and operating simultaneously. These weight processing units are controlled by the control unit 15, and outputs thereof are given to the control unit 15.
[0025]
Each weight processing unit stores a weight coefficient W [1], W [2], W [2], and a weight coefficient calculation and storage unit 143 and outputs X [1], X [2],. .. Have a plurality of multipliers 141a to 141d for multiplying W [4] and an adder 142 for adding their outputs. The weighting factor calculation and storage unit 143 determines the weighting factor to be given to each multiplier based on the received signal and the reference signal (known signal r (t)) 145 at the time of initialization described later, and as shown in FIG. , W [4],... W [4] for each mobile station. The reference signal is a signal unique to each mobile station, and is known data used for weight learning of the mobile station. As such known data, for example, mutually different random pattern data can be used. The eight weight processing units 140-1 to 140-8 mean that up to eight mobile stations can be handled simultaneously. The number of weight processing units is not limited to eight, and may be more or less. The weight coefficients shown in FIG. 4 are also used in the transmission system of the adaptive array antenna signal processing unit 14 (not shown).
[0026]
FIG. 5 shows a configuration example of mobile station 100 in the present embodiment. The mobile station 100 has one antenna 200 and uses the antenna for both transmission and reception. The reception RF unit 202 and the transmission RF unit 203 are connected to the antenna 200 via a switch (SW) 201. These RF units further perform a digital signal processing unit DSP for performing signal processing such as modulation / demodulation and encoding / decoding. (Digital Signal Processor) 204. The DSP 204 is connected to a speaker 205, a microphone 206, an ear receiver 207, and a control unit 208. The control unit 208 is further connected to the display unit 209, the input operation unit 211, the ROM 213, the RAM 214, and the like, and controls the operation of the entire mobile station. The control unit 208 includes a central processing unit (CPU) and controls the entire mobile station. The input operation unit 211 corresponds to various keys and buttons, a jog dial, and the like of the mobile terminal. The ROM 213 stores a control program for realizing the operation of the present embodiment described later. The ROM 213 may include a rewritable nonvolatile memory such as a flash ROM.
[0027]
Now, a specific operation in this embodiment in such a system configuration will be described.
[0028]
FIG. 1 is referred to again. In determining a combination of mobile stations to be spatially multiplexed, the base station 10 first transmits a predetermined known signal from one of a plurality of antenna elements, and each mobile station 100 transmits the known signal. To obtain a transfer function. The transfer function referred to here is data determined by the amount of change (coefficient) and the amount of phase change of the received signal with respect to the signal transmitted from the base station, and is represented by Aejθ , for example. It is considered that the transfer function related to signal transmission from the base station to a certain mobile station and the transfer function related to signal transmission in the opposite direction are almost the same (reversible). After a predetermined period of time from the transmission of the known signal from the first antenna element, the known signal is transmitted from the second antenna element of the base station, and each mobile station acquires a transfer function. Next, the same operation is performed for the third and fourth antenna elements.
[0029]
In this way, each mobile station can obtain a transfer function between the mobile station and all antenna elements of the base station. Since each mobile station exists at a different position and the distance from the base station to the mobile station and the location are different, the transfer function itself obtained at each mobile station is not an absolute value. However, the transfer functions between the base station and each antenna acquired by one mobile station are relatively comparable values. This is because the transmission antennas of the base station are switched at predetermined time intervals, so that the transfer function acquisition timings can be aligned.
[0030]
The transfer function obtained as described above is information held by the mobile station. A mobile station that wishes to perform spatial multiplexing transmits this transfer function information to a base station. The base station determines a combination that is easy to spatially multiplex based on the transfer function acquired by each mobile station. Hereinafter, how to determine the combination will be described.
[0031]
First, the MMSE-based RLS algorithm will be described. The error signal e (t) to be minimized is given by the difference between the known signal r (t) from each mobile station and the output y (t) of the array antenna.
(Equation 1)
Figure 2004104206
[0032]
The weight W of the adaptive array antenna that minimizes this error signal is as follows. This is called the Wiener solution.
(Equation 2)
Figure 2004104206
[0033]
Usually, in order to obtain the weight of the array antenna, a known signal unique to each mobile station is simultaneously transmitted from a plurality of mobile stations, and received by a plurality of antenna elements at a base station. In order to extract the signal of a certain mobile station, W is determined as described above using the known signal r (t) for the specific mobile station. When this W is used as the weight of the array antenna, Only the signal of the mobile station can be extracted.
[0034]
Here, information necessary for calculating the weight W is generated from a correlation matrix Rxx generated from signals received by a plurality of antenna elements of the base station, and from a signal received by the plurality of antenna elements and a known signal. The correlation vector is r xr .
[0035]
Considering a signal from one mobile station, a signal transmitted by one mobile station reaches a plurality of antenna elements of a base station with different amplitudes and phases due to differences in spatial position and fading, respectively. Is the basis for calculating the weight. Signals received from multiple mobile stations are just superpositions. Also, as described above, the transfer function is reversible. Therefore, if all transfer functions between each mobile station and each antenna element have been obtained, the optimum weight W can be calculated. Therefore, in the present invention, instead of directly performing the processing of learning and calculating weights at the base station by transmitting known signals from a plurality of mobile stations as described above, simulations are performed by calculation using transfer functions. The processing of calculating the weight can be performed.
[0036]
That is, in the present invention, the transmission function between the antenna of the mobile station around the base station and each antenna of the base station is individually obtained by transmitting a known signal from each antenna of the base station at a shifted time. Information is transmitted from the mobile station to the base station. Furthermore, on the base station side, by calculating the optimal adaptive array weight in advance by combining SDMA between various mobile stations based on this information and evaluating the SINR corresponding to the weight in advance, It is possible to save the trouble of having a mobile station transmit a known signal in different combinations for learning, thereby enabling more efficient SDMA operation.
[0037]
Hereinafter, a specific operation for that will be described.
[0038]
FIG. 6 shows a frame format of a signal transmitted from the base station in the space division multiple access control system of the present invention.
[0039]
At the beginning of the frame, there is a signal 51 for frame synchronization. By receiving this signal, each mobile station recognizes the position of the frame and operates in synchronization with the frame. Here, the time width of the frame is 2 ms, but the present invention is not limited to this.
[0040]
In the subsequent transfer function acquisition area 52, known signals are sequentially transmitted from a plurality of antennas of the base station, and each mobile station acquires the transfer function by receiving the known signal. That is, the base station initially transmits only from the first antenna 11a (521), and does not transmit signals from the second to fourth antennas 11b to 11d. Next, transmission is performed only from the second antenna 11b (522), and no signal is transmitted from the first, third, and fourth antennas. Similarly, next, transmission is performed only from the third antenna 11c and further only from the fourth antenna 11d (523, 524). The mobile station performs correlation detection at the head of the known signal of the first antenna, and determines the position of data for acquiring a transfer function. The data for obtaining the transfer function from the second antenna to the fourth antenna is cut out by shifting the interval determined by the frame format from the position determined by the first correlation detection. Thus, the four transfer functions obtained between one antenna of the mobile station and the four antennas of the base station are transfer functions obtained on the same basis. Therefore, the phase difference between the four transfer functions corresponds to the delay difference of the transfer path. The transfer function between the mobile station m and the base station antenna n is D [m] [n]. D [m] [n] is a complex number. Here, A is a variable (coefficient) representing the amplitude, and θ is a variable representing the angle. Such a value of the transfer function is preferably obtained as an average value of a plurality of predetermined points of the received signal.
[0041]
Here, in order to obtain the optimal weight coefficient of the array antenna, as described above,
[Equation 3]
Figure 2004104206
Needs to be obtained.
[0042]
Now, consider a case where spatial multiplexing is to be performed on mobile stations having mobile station numbers 1, 2, and 3.
[0043]
Assuming that X [n] is an input signal at antenna n of the base station, X (t) is expressed as follows.
(Equation 4)
Figure 2004104206
[0044]
If three mobile stations transmit a known signal at the same time, and if the received power is the same for all mobile stations,
X [n] = D [1] [n] + D [2] [n] + D [3] [n] (10)
It becomes.
[0045]
On the other hand, Rxx is as follows.
(Equation 5)
Figure 2004104206
[0046]
Since the right-hand side of the equation (11) can be converted from the equation (10) into an equation having only a transfer function, if a necessary transfer function is known, Rxx can be obtained.
next,
(Equation 6)
Figure 2004104206
Is the correlation between the input of each antenna of the base station and the known signal of the mobile station to be received (here, the signal of the mobile station with the mobile station number 1 is to be received),
(Equation 7)
Figure 2004104206
Can be obtained by
[0047]
As described above, if the transfer function acquired by each mobile station is held at the base station side, it is necessary to select the transfer function from the held transfer functions according to Equations (10), (11) and (13). Optimal weights for spatial multiplexing of various combinations of mobile stations can be calculated using simple transfer functions. Therefore, for each combination, it is possible to determine whether or not spatial multiplexing is possible by previously evaluating the SINR corresponding to the obtained weight. In such a determination, it is preferable to perform parallel processing on a plurality of combinations.
[0048]
By such an operation, it is possible to determine in advance whether or not spatial multiplexing is possible while saving the trouble of having a mobile station transmit a known signal and learning by combining SDMAs of various mobile stations. .
[0049]
The transfer function transfer area 53 is an area for transferring the transfer function information obtained by each mobile station to the base station. When there are a large number (for example, several hundreds) of mobile stations for one base station, transfer function information of all the mobile stations cannot be transmitted in the transfer transfer area 53 at one time. Therefore, the transfer function is transferred to the base station by, for example, a CSMA (Carrier Sense Multiple Access) method or an existing method such as slotted Aloha or time division slot. A mobile station that could not transfer its own transfer function in this area will try to transfer again in the next frame. In addition, each mobile station acquires a transfer function for each frame, but if there is not much difference from the transfer function acquired in the previous frame, the transfer of the transfer function information to the mobile station may be omitted. .
[0050]
When the base station obtains some transfer function information from several hundred mobile stations, as described above, it searches for an optimal combination from the transfer function information by the method described above (parallel processing is possible). Combinations, for example, when to get information of 20 units transfer function of a mobile station, from among them, in the case of spatial multiplexing the eight, the number of all combinations is 20 C 8 next sizable number However, it is not necessary to perform all of them, and it is sufficient to select an optimum one from a certain number of combinations according to the processing capacity.
[0051]
The mobile station of the combination selected in this way is permitted to transmit an uplink signal in the area 54 "designating a plurality of mobile stations". The execution of the search for the optimal combination may be included in this area 54. The mobile station to which the transmission of the uplink signal is permitted looks at this area 54 and transmits the uplink signal if its own is designated. At the head of the uplink signal, there is a known signal that differs for each mobile station, and the base station may actually obtain the MMSE reference weight W again in this known signal area. Since almost the same calculation is a combination of those previously determined to be multiplexable, the learning here naturally has a high probability of success. Therefore, the uplink data is received using the learned weight again, and the downlink signal is transmitted using the same weight at the same time. Further, in the following area 56, a downlink signal is transmitted from the base station to the designated mobile station.
[0052]
Although the preferred embodiment of the present invention has been described above, various modifications and changes other than those described above are possible.
[0053]
【The invention's effect】
According to the present invention, a weight of an antenna element at a base station is determined for each mobile station using a transfer function obtained at each mobile station based on known signals sequentially transmitted from a plurality of antenna elements of the base station. By doing so, a combination of mobile stations capable of space division multiplexing can be obtained in a relatively short time. As a result, it is possible to quickly predict the SINR for various combinations of mobile stations in advance, and as a result, it is possible to improve the frequency use efficiency.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a schematic configuration of a wireless communication system according to an embodiment of the present invention.
FIG. 2 is a block diagram showing a configuration example of a base station in the system of FIG.
FIG. 3 is a block diagram illustrating an example of an internal configuration of a receiving system of the adaptive array antenna signal processing unit illustrated in FIG. 2;
FIG. 4 is a diagram showing a configuration example of a data table storing weighting factors for each mobile station.
FIG. 5 is a block diagram illustrating a configuration example of a mobile station according to the embodiment of the present invention.
FIG. 6 is a diagram showing a frame format of a signal transmitted from a base station in the access control method of the present invention.
[Explanation of symbols]
10: Base station, 11 (11a to 11d): Antenna element, 30: Data table, 100 (100-1 to 100-m): Mobile station, 200 (200-1 to 200-m): Antenna

Claims (8)

空間分割多重アクセス制御方法であって、
基地局の複数のアンテナ素子から順次1本ずつ時分割で既知信号を送信するステップと、
複数の移動局が同時に前記既知信号を受信し、前記基地局の各アンテナ素子からの信号について伝達関数を求めるステップと、
各移動局が自己の求めた前記伝達関数を前記基地局に送信するステップと、
前記複数の移動局から受信した伝達関数に基づいて空間分割多重可能な移動局を選択し、当該移動局にその旨を通知するステップと、
当該選択された移動局にアップリンク信号の送信を行わせるステップと、
当該選択された移動局に対してダウンリンク信号を送信するステップと
を備えたことを特徴とする空間分割多重アクセス制御方法。
A space division multiple access control method,
Transmitting a known signal in a time-division manner one by one sequentially from a plurality of antenna elements of the base station;
A plurality of mobile stations simultaneously receiving the known signal, and obtaining a transfer function for a signal from each antenna element of the base station;
Each mobile station transmitting the transfer function determined by itself to the base station;
Selecting a mobile station capable of space division multiplexing based on the transfer functions received from the plurality of mobile stations, and notifying the mobile station of that,
Causing the selected mobile station to transmit an uplink signal;
Transmitting a downlink signal to the selected mobile station.
前記空間分割多重可能な移動局を選択する際、
前記基地局の複数のアンテナ素子で受信した各移動局からの既知信号から得られる相関行列Rxxを前記伝達関数に基づいて算出した第1の算出結果と、前記複数のアンテナ素子で受信した各移動局からの既知信号と目的の移動局からの既知信号とでつくる相関ベクトルrxrを前記伝達関数に基づいて算出した第2の算出結果とから、前記目的の移動局と前記基地局との間の通信のための前記複数のアンテナ用の重みを算出し、その重みに対応するシグナル対雑音干渉電力比を事前に評価することにより、当該移動局が空間分割多重可能か否かを判定することを特徴とする請求項1記載の空間分割多重アクセス制御方法。
When selecting the mobile station capable of space division multiplexing,
A first calculation result of calculating a correlation matrix Rxx obtained from a known signal from each mobile station received by a plurality of antenna elements of the base station based on the transfer function; From a second calculation result calculated based on the transfer function, a correlation vector r xr formed by a known signal from a station and a known signal from a target mobile station, a value between the target mobile station and the base station is calculated. Calculating weights for the plurality of antennas for communication, and evaluating in advance a signal-to-noise interference power ratio corresponding to the weights to determine whether the mobile station is capable of space division multiplexing. 2. The space division multiple access control method according to claim 1, wherein
前記アップリンク信号の受信時に、前記基地局が前記選択された各移動局からの既知信号に基づいて前記複数のアンテナ用の重みを求めることを特徴とする請求項2記載の空間分割多重アクセス制御方法。3. The space division multiple access control according to claim 2, wherein upon receiving the uplink signal, the base station obtains a weight for the plurality of antennas based on a known signal from each of the selected mobile stations. Method. 通信フレームとして、前記基地局からフレーム同期信号を送信する第1の領域と、前記基地局から順次異なるアンテナから送信される既知信号に応じて各移動局がアンテナ毎に伝達関数を求める第2の領域と、各移動局が自己の求めた伝達関数を前記基地局へ転送する第3の領域と、前記基地局が転送された伝達関数に基づいて空間分割多重可能な移動局の組み合わせを指定する第4の領域と、指定された移動局からのアップリンク信号を前記基地局が受信する第5の領域と、指定された移動局へダウンリンク信号を前記基地局が送信する第6の領域とから構成されることを特徴とする請求項1記載の空間分割多重アクセス制御方法。As a communication frame, a first region for transmitting a frame synchronization signal from the base station, and a second region in which each mobile station obtains a transfer function for each antenna according to a known signal transmitted from the base station sequentially from a different antenna. A combination of an area, a third area in which each mobile station transfers its own transfer function to the base station, and a mobile station capable of space division multiplexing based on the transfer function transferred by the base station is specified. A fourth region, a fifth region where the base station receives an uplink signal from a designated mobile station, and a sixth region where the base station transmits a downlink signal to a designated mobile station. 2. The space division multiple access control method according to claim 1, comprising: 基地局と複数の移動局との間での無線通信に空間分割多重アクセス制御を採用した無線通信システムであって、
前記基地局は、
複数のアンテナ素子と、
この複数のアンテナ素子の受信信号を重み付け処理するアダプティブアレイアンテナ処理手段と、
予め定められた既知信号を前記複数のアンテナ素子から順次1本ずつ時分割で送信する手段と、
前記複数の移動局から受信した伝達関数に基づいて特定の移動局の組み合わせについて移動局毎に前記複数のアンテナ素子用の重みを算出し、この重みに基づいて空間分割多重可能な移動局の組み合わせを決定し、当該移動局に対してアップリンク信号の送信およびダウンリンク信号の受信を許可する手段と、
前記アダプティブアレイアンテナ処理部において前記選択された各移動局との通信時に前記算出された重みに従って重み付け状態を設定する手段とを備え、
各移動局は、
アンテナと、
このアンテナにより前記基地局からの既知信号を受信し、前記基地局の各アンテナ素子からの信号について伝達関数を求める手段と、
各移動局が自己の求めた前記伝達関数を前記アンテナから前記基地局に送信する手段と、
前記基地局から許可されたとき、前記アンテナを介して前記基地局へのアップリンク信号の送信およびダウンリンク信号の受信を行う手段とを備えた
ことを特徴とする無線通信システム。
A wireless communication system employing space division multiple access control for wireless communication between a base station and a plurality of mobile stations,
The base station comprises:
A plurality of antenna elements,
Adaptive array antenna processing means for weighting the reception signals of the plurality of antenna elements,
Means for transmitting a predetermined known signal sequentially from the plurality of antenna elements one by one in a time-division manner;
A weight for the plurality of antenna elements is calculated for each mobile station for a specific combination of mobile stations based on transfer functions received from the plurality of mobile stations, and a combination of mobile stations capable of space division multiplexing is calculated based on the weight. Means to determine the transmission of the uplink signal and reception of the downlink signal for the mobile station,
Means for setting a weighted state according to the calculated weight at the time of communication with each of the selected mobile stations in the adaptive array antenna processing unit,
Each mobile station
Antenna and
Means for receiving a known signal from the base station by the antenna, and determining a transfer function for a signal from each antenna element of the base station;
Means for transmitting the transfer function determined by each mobile station from the antenna to the base station,
Means for transmitting an uplink signal to the base station via the antenna and receiving a downlink signal when permitted by the base station.
基地局と複数の移動局との間での無線通信に空間分割多重アクセス制御を採用した無線通信システムにおける基地局であって、
複数のアンテナ素子と、
この複数のアンテナ素子の受信信号を重み付け処理するアダプティブアレイアンテナ処理手段と、
予め定められた既知信号を前記複数のアンテナ素子から順次1本ずつ時分割で送信する手段と、
前記複数の移動局から受信した伝達関数に基づいて特定の移動局の組み合わせについて移動局毎に前記複数のアンテナ素子用の重みを算出し、この重みに基づいて空間分割多重可能な移動局の組み合わせを決定し、当該移動局に対してアップリンク信号の送信およびダウンリンク信号の受信を許可する手段と、
前記アダプティブアレイアンテナ処理部において前記選択された各移動局との通信時に前記算出された重みに従って重み付け状態を設定する手段と
を備えたことを特徴とする基地局。
A base station in a wireless communication system that employs space division multiple access control for wireless communication between a base station and a plurality of mobile stations,
A plurality of antenna elements,
Adaptive array antenna processing means for weighting the reception signals of the plurality of antenna elements,
Means for transmitting a predetermined known signal sequentially from the plurality of antenna elements one by one in a time-division manner;
A weight for the plurality of antenna elements is calculated for each mobile station for a specific combination of mobile stations based on transfer functions received from the plurality of mobile stations, and a combination of mobile stations capable of space division multiplexing is calculated based on the weight. Means to determine the transmission of the uplink signal and reception of the downlink signal for the mobile station,
Means for setting a weighted state in accordance with the calculated weight during communication with each of the selected mobile stations in the adaptive array antenna processing unit.
前記アダプティブアレーアンテナ信号処理手段は、前記複数の送受信アンテナの受信信号に重み付けした信号を加算する重み処理部を、空間分割多重可能な移動局の個数だけ有することを特徴とする請求項6記載の基地局。7. The mobile station according to claim 6, wherein the adaptive array antenna signal processing unit has as many weight processing units as there are mobile stations capable of space division multiplexing for adding weighted signals to the reception signals of the plurality of transmission / reception antennas. base station. 基地局と複数の移動局との間での無線通信に空間分割多重アクセス制御を採用した無線通信システムにおける移動局であって、
アンテナと、
このアンテナにより前記基地局からの既知信号を受信し、前記基地局の各アンテナ素子からの信号について伝達関数を求める手段と、
各移動局が自己の求めた前記伝達関数を前記アンテナから前記基地局に送信する手段と、
前記基地局から許可されたとき、前記アンテナを介して前記基地局へのアップリンク信号の送信およびダウンリンク信号の受信を行う手段と
を備えたことを特徴とする移動局。
A mobile station in a wireless communication system that employs space division multiple access control for wireless communication between a base station and a plurality of mobile stations,
Antenna and
Means for receiving a known signal from the base station by the antenna, and determining a transfer function for a signal from each antenna element of the base station;
Means for transmitting the transfer function determined by each mobile station from the antenna to the base station,
Means for transmitting an uplink signal and receiving a downlink signal to the base station via the antenna when permitted by the base station.
JP2002259692A 2002-09-05 2002-09-05 Space division multiple access control method, radio communication system, base station, and mobile station Expired - Fee Related JP4110519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002259692A JP4110519B2 (en) 2002-09-05 2002-09-05 Space division multiple access control method, radio communication system, base station, and mobile station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259692A JP4110519B2 (en) 2002-09-05 2002-09-05 Space division multiple access control method, radio communication system, base station, and mobile station

Publications (3)

Publication Number Publication Date
JP2004104206A true JP2004104206A (en) 2004-04-02
JP2004104206A5 JP2004104206A5 (en) 2005-10-27
JP4110519B2 JP4110519B2 (en) 2008-07-02

Family

ID=32260613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259692A Expired - Fee Related JP4110519B2 (en) 2002-09-05 2002-09-05 Space division multiple access control method, radio communication system, base station, and mobile station

Country Status (1)

Country Link
JP (1) JP4110519B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010154238A (en) * 2008-12-25 2010-07-08 Kyocera Corp Wireless base station and wireless communication method
JP2012156589A (en) * 2011-01-21 2012-08-16 Fujitsu Ltd Radio base station and antenna weight setting method
JP2012523206A (en) * 2009-04-06 2012-09-27 クゥアルコム・インコーポレイテッド System and method for supporting multiple reverse link data streams
JP2013102272A (en) * 2011-11-07 2013-05-23 Nippon Telegr & Teleph Corp <Ntt> Radio communication method and radio communication device
JP2013128304A (en) * 2013-01-29 2013-06-27 Kyocera Corp Radio base station and radio communication method
US8654715B2 (en) 2008-10-24 2014-02-18 Qualcomm Incorporated Systems and methods providing mobile transmit diversity
US8971380B2 (en) 2004-04-02 2015-03-03 Rearden, Llc System and method for adjusting DIDO interference cancellation based on signal strength measurements
US9386465B2 (en) 2004-04-02 2016-07-05 Rearden, Llc System and method for distributed antenna wireless communications
US9819403B2 (en) 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US9826537B2 (en) 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US9923657B2 (en) 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10200094B2 (en) 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US10243623B2 (en) 2004-07-30 2019-03-26 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US10320455B2 (en) 2004-04-02 2019-06-11 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10349417B2 (en) 2004-04-02 2019-07-09 Rearden, Llc System and methods to compensate for doppler effects in multi-user (MU) multiple antenna systems (MAS)
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
US10547358B2 (en) 2013-03-15 2020-01-28 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US12147001B2 (en) 2023-06-19 2024-11-19 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10200094B2 (en) 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US9826537B2 (en) 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US11190247B2 (en) 2004-04-02 2021-11-30 Rearden, Llc System and method for distributed antenna wireless communications
US11196467B2 (en) 2004-04-02 2021-12-07 Rearden, Llc System and method for distributed antenna wireless communications
US11190246B2 (en) 2004-04-02 2021-11-30 Rearden, Llc System and method for distributed antenna wireless communications
US11070258B2 (en) 2004-04-02 2021-07-20 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US8971380B2 (en) 2004-04-02 2015-03-03 Rearden, Llc System and method for adjusting DIDO interference cancellation based on signal strength measurements
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US9819403B2 (en) 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US11923931B2 (en) 2004-04-02 2024-03-05 Rearden, Llc System and method for distributed antenna wireless communications
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US11646773B2 (en) 2004-04-02 2023-05-09 Rearden, Llc System and method for distributed antenna wireless communications
US9386465B2 (en) 2004-04-02 2016-07-05 Rearden, Llc System and method for distributed antenna wireless communications
US10320455B2 (en) 2004-04-02 2019-06-11 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10333604B2 (en) 2004-04-02 2019-06-25 Rearden, Llc System and method for distributed antenna wireless communications
US10349417B2 (en) 2004-04-02 2019-07-09 Rearden, Llc System and methods to compensate for doppler effects in multi-user (MU) multiple antenna systems (MAS)
US10727907B2 (en) 2004-07-30 2020-07-28 Rearden, Llc Systems and methods to enhance spatial diversity in distributed input distributed output wireless systems
US10243623B2 (en) 2004-07-30 2019-03-26 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US8654715B2 (en) 2008-10-24 2014-02-18 Qualcomm Incorporated Systems and methods providing mobile transmit diversity
US8654705B2 (en) 2008-10-24 2014-02-18 Qualcomm Incorporated System and method for supporting multiple reverse link data streams
JP2010154238A (en) * 2008-12-25 2010-07-08 Kyocera Corp Wireless base station and wireless communication method
JP2012523206A (en) * 2009-04-06 2012-09-27 クゥアルコム・インコーポレイテッド System and method for supporting multiple reverse link data streams
US8886254B2 (en) 2011-01-21 2014-11-11 Fujitsu Limited Radio base station and antenna weight setting method
JP2012156589A (en) * 2011-01-21 2012-08-16 Fujitsu Ltd Radio base station and antenna weight setting method
JP2013102272A (en) * 2011-11-07 2013-05-23 Nippon Telegr & Teleph Corp <Ntt> Radio communication method and radio communication device
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11818604B2 (en) 2012-11-26 2023-11-14 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
JP2013128304A (en) * 2013-01-29 2013-06-27 Kyocera Corp Radio base station and radio communication method
US9923657B2 (en) 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11901992B2 (en) 2013-03-12 2024-02-13 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11451281B2 (en) 2013-03-12 2022-09-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10848225B2 (en) 2013-03-12 2020-11-24 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10547358B2 (en) 2013-03-15 2020-01-28 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US11581924B2 (en) 2013-03-15 2023-02-14 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US11146313B2 (en) 2013-03-15 2021-10-12 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US12147001B2 (en) 2023-06-19 2024-11-19 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques

Also Published As

Publication number Publication date
JP4110519B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP4110519B2 (en) Space division multiple access control method, radio communication system, base station, and mobile station
JP4559270B2 (en) Wireless communication system
JP4131702B2 (en) Reduce interference using a simple antenna array
KR101772040B1 (en) Method and apparatus for fast beam-link construction scheme in the mobile communication system
US20060189356A1 (en) Mobile communication terminal apparatus
JP2003244060A (en) Antenna system for base station in cdma communication system, and how to use the antenna system
JP3600218B2 (en) Wireless terminal device, transmission directivity control method, and transmission directivity control program
JP2002124900A (en) Method for adaptive antenna array and device to be used in multiplex connection wireless communication system
WO2020084672A1 (en) Wireless relay apparatus and wireless communication system
WO2006109786A1 (en) Wireless base station device, terminal, and wireless communication method
JP2000022612A (en) Adaptive transmission/reception equipment
JP2007228211A (en) Wireless communication method, base station, and wireless communication system
JP2007235761A (en) Multi-input/multi-output communication device
KR100957413B1 (en) Apparatus and method for cancelling interference in wireless mobile communication system and system thereof
JP2002026789A (en) Communication unit and directivity transmission method
JP4755629B2 (en) Transmission / reception device and communication method thereof
JP3920794B2 (en) Transmission method and wireless device using the same
CN104639220B (en) A kind of signal receiving/transmission device and method using smart antenna
JP2003258770A (en) Transmitter
WO2018228697A1 (en) Beam selection
JP3559231B2 (en) Multiple beam control adaptive antenna device and communication method using the same
US7069054B2 (en) Radio device
JP4019767B2 (en) Single frequency network system and repeater
JP2004140642A (en) Wireless base station apparatus and antenna directivity control method
WO2020101756A2 (en) Method and apparatus of antenna array group selection and antenna array selection for device communications

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050901

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080327

R151 Written notification of patent or utility model registration

Ref document number: 4110519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees