JP2004100001A - Deposition system - Google Patents
Deposition system Download PDFInfo
- Publication number
- JP2004100001A JP2004100001A JP2002265452A JP2002265452A JP2004100001A JP 2004100001 A JP2004100001 A JP 2004100001A JP 2002265452 A JP2002265452 A JP 2002265452A JP 2002265452 A JP2002265452 A JP 2002265452A JP 2004100001 A JP2004100001 A JP 2004100001A
- Authority
- JP
- Japan
- Prior art keywords
- flow path
- nozzle
- processing
- gas
- processing gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45574—Nozzles for more than one gas
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、処理空間内に複数種類の処理ガスを供給し、この処理ガスにより被処理物の表面に成膜を行う成膜装置に関するものである。
【0002】
【従来の技術】
この種の成膜装置は、種々な方式のものが知られているが、本発明にもっとも近いと思われる先行技術として、下記の特許文献1に開示された「処理装置のシャワーヘッド構造及び処理ガスの供給方法」がある。以下、図9および図10に示す上記先行技術について説明する。
【0003】
真空状態の処理容器60に取付けられたシャワーヘッド本体61から処理ガスが噴出され、処理容器60内に配置した半導体ウエハWの表面に上記処理ガスが吹き付けられて、その表面に絶縁用の酸化膜や配線用の金属膜が形成されるようになっている。処理容器60の底部に支柱62が設けられ、その上に載置台63が結合されている。この載置台63上に半導体ウエハWが載せられている。また、処理容器60の下側に配置した加熱ランプ64により、石英ガラス製の透過窓65を経て載置台63を加熱して、半導体ウエハWをその処理に適した所定の温度に維持している。
【0004】
上記シャワーヘッド本体61は、分厚い板材で構成された上段ブロック66,中段ブロック67,下段ブロック68が一体化されたもので、各ブロックには原料ガス供給路69や還元ガス供給路70が設けられている。図10は、これらの供給路69,70が分岐している状態を分解図の形で示している。原料ガス供給路69は、上段ブロック66において二股に分岐して分岐路69A,69Aを形成し、さらにそれらが中段ブロック67においてそれぞれ二股に分岐して都合4本の分岐路69Bを形成し、さらに、下段ブロック68において都合4本のガス噴出路69Cを形成している。
【0005】
また、同様にして、還元ガス供給路70は上段ブロック66において二股に分岐して分岐路70A,70Aを形成し、さらにそれらが中段ブロック67においてそれぞれ分岐および屈曲して都合5本の分岐路70Bを形成し、さらに、下段ブロック68において都合5本のガス噴出路70Cを形成している。なお、上記説明では、ガス噴出路69Cは都合4本、ガス噴出路70Cは都合5本と記載しているが、これらは図9や図10の断面における本数であり、下段ブロック68を下から見ると多数のガス噴出路69C,70Cが下段ブロック68の下面全域にわたって開口している。
【0006】
処理ガスが半導体ウエハWからの輻射熱により、下段ブロック68のガス噴出路69C内に成膜状態になって付着することを防止するために、シャワーヘッド本体61には冷却水路71が設けてある。この水路71は、上段ブロック66の端部付近から下降して下段ブロック68のガス噴出路69C,70Cを均一に冷却して、反対側の上段ブロック66から流出して行くようになっている。また、加熱手段72により、半導体ウエハWからの輻射熱を受けにくい中段ブロック67や上段ブロック66を加熱して、処理ガスが液化したり熱分解したりすることのないようにしている。なお、排気通路73は真空ポンプ(図示していない)に接続され、成膜形成時に処理容器60内を真空にしている。
【0007】
【特許文献1】
特開平8−291385号公報
【0008】
【発明が解決しようとする課題】
上記のようなシャワーヘッド本体61であると、原料ガスや還元ガスの流路が上段ブロック66,中段ブロック67,下段ブロック68の厚さ方向に各ブロック66,67,68を貫通した形態になっている。同時に、原料ガス供給路69や還元ガス供給路70は、上段ブロック66や中段ブロック67において複雑に分岐しているために、下段ブロック68のガス噴出路69Cや70Cに至る各流路の流路抵抗が均一化しにくい流路構成となっている。特に、上段ブロック66に流入した処理ガスは、例えば、原料ガス供給路69であれば、流路が略直角に屈曲している箇所が、下段ブロック68のガス噴出路69Cまでに4箇所にも及び、このような多数の屈曲箇所による流路抵抗の増大や圧力損失は処理ガスの噴出状態に大きな影響をもたらすことになる。
【0009】
したがって、各ガス噴出路69Cや70Cから噴出される処理ガスの流量にばらつきが発生し、半導体ウエハWの表面における結晶の成長が不均一となり、結晶膜の厚さやその他の成膜品質要件が満足なものとならない。このような問題が発生するのは、原料ガスや還元ガス等の各処理ガスが、それぞれ各ブロック66,67,68を厚さ方向に貫通しながら分岐を重ねて行く流路構成が根本的な原因になっている。
【0010】
上記の上段ブロック66や中段ブロック67は、いずれも処理ガスの流路を分岐させるための構造体として設けられ、しかも最終的には下段ブロック68に多数のガス噴出路69C,70Cが形成された構造となっている。そのために、各ブロック66,67,68には、各処理ガスごとにそれぞれ全く異なった流路を複数形成する必要があるために、各ブロックの流路構造が非常に複雑になり、しかも、各ブロックの製作管理においても得策ではない。また、上記のような複雑多岐にわたる流路構成であると、シャワーヘッド内における処理ガスの滞留容積が大きくなるので、多層膜成形時の残留ガスが完全に除去しきれないことが発生し、それによりALD(Atomic Layer Deposition)の適正な進行が不可能となる。
【0011】
また、各ブロック66,67,68を積層して一体化するときには、例えば、上段ブロック66の分岐路70Aと中段ブロック67の分岐路70Bとを正確に連通させることが、組立て精度の面で非常に困難なこととなり、このような連通性が正しく確保されていない場合には、処理ガスの流路面積がこの連通箇所において小さくなって、適正な流量が確保できなくなり、結果的には成膜品質に悪影響を及ぼすことになる。また、連通箇所において分岐路70Aと70Bがずれていると、そこで処理ガスの流れに乱流が発生し、やはり適正なガス供給ができないこととなる。
【0012】
さらに、冷却水路71は、下段ブロック68のガス噴出路69C,70Cを均一に冷却し、また、加熱手段72により、半導体ウエハWからの輻射熱を受けにくい中段ブロック67や上段ブロック66を加熱する構造になっているために、原料ガスや還元ガス毎に各処理ガスに適した異なった温度で制御することができない。
【0013】
本発明は、このような事情に鑑みなされたもので、ガス噴出ヘッドの各ノズルからのガス噴出状態が適正化された成膜装置の提供を目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するため、本発明の成膜装置は、処理空間内に複数種類の処理ガスを供給するガス噴出ヘッドを有し、上記処理ガスにより被処理物の表面に成膜を行う成膜装置であって、上記ガス噴出ヘッドには、被処理物側に面するヘッド面に各処理ガスを独立して噴出させるノズルがそれぞれ多数設けられ、上記ガス噴出ヘッドは、各処理ガスが独立して導入される流路をそれぞれ有し各処理ガス毎に対応して存在する流路部材から構成されるとともに、上記各流路部材がヘッド面に実質的に沿う方向で分離した積層構造を呈しており、上記各流路部材の流路からそれぞれの処理ガスに対応するノズルに対して処理ガスが供給されるように構成されていることを要旨とする。
【0015】
すなわち、本発明の成膜装置は、上記ガス噴出ヘッドには、被処理物側に面するヘッド面に各処理ガスを独立して噴出させるノズルがそれぞれ多数設けられ、上記ガス噴出ヘッドは、各処理ガスが独立して導入される流路をそれぞれ有し各処理ガス毎に対応して存在する流路部材から構成されるとともに、上記各流路部材がヘッド面に実質的に沿う方向で分離した積層構造を呈しており、上記各流路部材の流路からそれぞれの処理ガスに対応するノズルに対して処理ガスが供給されるように構成されている。
【0016】
上記のような構成により、特定の流路部材の流路に供給された1種類の処理ガスは、その流路部材内で分岐されてその処理ガスのためのノズルの方へ仕向けられる。また、他の流路部材の流路に供給された他の種類の処理ガスも同様な流通過程を経て、その処理ガスのためのノズルの方へ仕向けられる。このように積層構造とされた各流路部材において各処理ガス毎にノズルの方へ流通させられるので、ノズルに向かう処理ガスの流路の引き回し構造が簡素化され、それにともなって各流路における流路抵抗も均一化しやすくなり、結果的には多数のノズルにおける噴出ガス量が可及的に均一化されて、安定した成膜の進行がなされ、良好な成膜品質がえられる。また、このような安定した成膜が進行するので、成膜に要する時間も短縮され、生産性向上にとって有効である。
【0017】
例えば、各流路部材の流路は、上記ヘッド面に実質的に沿う方向に所定の箇所まで延ばされてから、その処理ガスのためのノズルの方へ変向される。このような流路構成を基本にして多数のノズルから処理ガスを噴出させることができるので、ガス流路の屈曲箇所は、この場合は1箇所となり、上述のような流路抵抗の増大や圧力損失の問題が回避できるのである。また、ヘッド面に実質的に沿わせた状態で流路部材が積層されているので、流路部材の厚さを利用して流路部材の全域にわたって処理ガスの流路を十分に確保できることとなり、それにより処理ガス毎に多数のノズルに処理ガスを向かわせることが行いやすくなる。
【0018】
本発明の成膜装置において、上記ヘッド面には、複数種類の異なる処理ガスを噴出させるノズルが近接して設けられた処理ガスの噴出部が所定間隔を隔てて複数配置されている場合には、上述のようにして積層された各流路部材内の流路構成によってえられた処理ガスの流路がノズルの状態でヘッド面に開口して上記噴出部を構成し、この噴出部が所定間隔を隔てて複数配置されていることから、各噴出部からの処理ガスの噴出量を被処理物に対して可及的に均一なものとすることができ、良好な成膜形成にとって最良の処理ガス雰囲気がえられる。また、複数配置された噴出部の処理ガス噴出量にわずかな差が発生するような場合には、噴出量の少ない噴出部の配置密度を大きくすることにより、被処理物に対する処理ガスの噴出状態を最適化することができる。
【0019】
本発明の成膜装置において、上記噴出部は、複数種類の異なる処理ガスを独立して噴出させるノズル開口および/またはノズル管が同心円状に配置された多重構造を呈し、上記ノズル管はヘッド面の近傍に開口を有するとともに、そのノズル管が噴出させる処理ガスが導入される流路部材の流路と連通するよう当該流路部材に接続されている場合には、同心円状に配置された上記ノズル開口および/またはノズル管が複数種類の異なる処理ガスを導入する上記流路部材の流路にそれぞれ接続されているので、異なった処理ガスが同心円状に環状の層をなして噴出される。そして、このような噴出はヘッド面の近傍においてなされる。したがって、各種の処理ガスは、ノズル開口および/またはノズル管から噴出された箇所またはその近傍において、成膜にとって良好な混合ないしは反応がなされる。さらに、上記ノズル管が流路部材の流路に接続されていることにより、流路部材を積層させて組立てるときに、ノズル管が位置決め用のノックピンのような機能を果たし、組立て作業が簡素化され、しかも組立て精度が向上する。
【0020】
本発明の成膜装置において、上記ノズル管は、多重構造の内側に位置するノズル管ほど被処理物から遠い側に配置された流路部材と接続している場合には、内側に位置するノズル管が被処理物から遠い側に配置された流路部材と接続していることにより、上記遠い側の流路部材からの処理ガスをこのノズル管によって独立流路として噴出させることができる。同様にして、上記の内側のノズル管の外側のノズル管は、上記流路部材よりも被処理物に近い側の流路部材に接続されているので、異なった処理ガスをこの外側のノズル管から独立流路として噴出させることができる。つまり、積層された各流路部材には個々に異なった処理ガスが導入されているので、それらの各処理ガスを独立した流路形態で同心円状の各ノズル管から噴出させることができるのである。
【0021】
本発明の成膜装置において、上記ガス噴出ヘッドにおいて、各流路部材のうち少なくとも被処理物側に位置する流路部材と、被処理物とは反対側に位置する流路部材とをそれぞれ独立して温度制御するようになっている場合には、被処理物側に位置する流路部材(ヘッド面)は、被処理物からの輻射熱に対する適正な冷却がなされるので、処理ガスが上記噴出部すなわちノズル開口および/またはノズル管内やその近傍において分解したり、あるいは成膜現象が生じたりするのを防止することができる。また、被処理物からの輻射熱によって流路部材が加熱されるまでのあいだ、流路部材を加温することにより、処理ガスとして、露点が低く低温で凝結しやすいガスを用いる場合に、流路内での処理ガスの凝結を防止し、当該処理ガスの噴出不足による成膜不良を防止することができる。
また、被処理物とは反対側に位置する流路部材においても、被処理物からの輻射熱が及びにくい流路部材が適正な温度制御を受けることとなるので、露点が低い処理ガスを用いたときにその凝結等を防止し正常な処理ガスの供給が可能となる。そして、上記のように、被処理物側に位置する流路部材と、被処理物とは反対側に位置する流路部材とをそれぞれ独立して温度制御することにより、各流路部材に対応した処理ガスに対して最も適した温度制御ができ、噴射される処理ガスの性状が成膜にとって最適なものとなる。
【0022】
本発明の成膜装置において、上記ガス噴出ヘッドにおいて、各流路部材をそれぞれ独立して温度制御するようになっている場合には、各流路部材に対応した処理ガスに適合させた温度制御が、各流路部材毎に行われるので、ガス噴出ヘッド全体の温度制御状態が処理ガスの性状等にとって最適化することができる。
【0023】
本発明の成膜装置において、上記各流路部材には、導入された処理ガスを一時的に保持する拡散室が設けられ、上記拡散室の容積は流路部材の大きさよりも十分に小さくなるよう設定されている場合には、拡散室の容積が流路部材の大きさよりも十分に小さくなるように設定してあるので、拡散室配置のために流路部材の厚さ等の寸法を大きくする必要がなく、ガス噴出ヘッドをコンパクトに構成することができる。さらに、拡散室の容積を小さくすることにより、処理ガスが小さな容積の拡散室において一時的にある程度高い圧力で保持され、その状態から各ノズルに供給されるため、各流路に対する供給ガス圧を高く維持し処理ガスの噴出を不足なく行うことができる。
【0024】
そして、拡散室が小容積化されることにより、各流路部材における処理ガスの流通等に必要な容積が著しく小さくなる。したがって、処理ガスの種類を変更して多層膜形成を行う際には、残留ガスが少量化されて処理ガスの種類変更が迅速になされ、例えば、第1の成膜から第2の成膜への変換が明瞭になる、いわゆる多層膜形成時の急峻性が良好にえられる。このような効果は、後述するような流路の簡素化を伴うことにより、一層顕著となる。
【0025】
本発明の成膜装置において、上記流路は、導入された処理ガスを拡散室に導く導入側流路と、拡散室から延びて各ノズルに処理ガスを供給するノズル側流路とから構成されている場合には、上記導入側流路からの処理ガスが拡散室で一時的に保持され、拡散室から延びているノズル側流路を経て複数の上記噴出部に供給されて、良好な処理ガスの噴出がなされる。そして、上記拡散室から多数のノズルに向かってノズル側流路が延びてゆくので、ノズル側流路の分岐に拡散室が配置された構造となり、上述のように流路抵抗や圧力損失の少ない流路構成がえられる。
【0026】
本発明の成膜装置において、上記拡散室は各流路部材の略中央部近傍に設けられ、上記拡散室から放射状に延びるノズル側流路を介して各ノズルに処理ガスが供給されるようになっている場合には、各流路部材の略中央部に位置する拡散室から各ノズルまでのノズル側流路の長さを極力均一にすることができるので、処理ガスの流路抵抗もより均一化されて、各ノズルからの噴射量のばらつきを少なくすることができる。
【0027】
【発明の実施の形態】
つぎに、本発明の実施の形態を詳しく説明する。
【0028】
図1は、本発明の成膜装置の一実施の形態を示す。この装置は、内部が処理空間1とされた処理容器2内に分離板3が設けられ、分離板3にあけた開口4に合致させた状態で被処理物であるウエハ5(例えば、半導体ウエハ)が載置されている。ウエハ5の裏面の上方に加熱ヒーターHが配置されている。処理空間1を真空にする真空ポンプ(図示していない)が配置され、排気口6から処理空間1内の空気が吸引されるようになっている。
【0029】
上記ウエハ5に処理ガスを供給するために、ガス噴出ヘッド7が処理空間1内に配置されている。このガス噴出ヘッド7から噴射された処理ガスにより、ウエハ5の表面にCVD(Chemical Vaper Deposition)処理が施されて、絶縁用の酸化膜や配線用の金属膜等が成膜される。図示のガス噴出ヘッド7は、3種類の処理ガスA,B,Cを噴射する形式のものであり、ウエハ5に面するヘッド面8に噴出部9が複数配置されている。図3に示すように、ヘッド面8には複数の上記噴出部9が所定間隔を隔てて配置されている。
【0030】
各処理ガスA,B,C毎に分厚い板状の材料でつくられた流路部材10A,11B,12Cが積層構造とされ、上記各流路部材10A,11B,12Cはヘッド面8に沿った状態で配置されている。各流路部材10A,11B,12Cの中央部には拡散室13A,14B,15Cが配置され、各拡散室には処理ガス供給源(図示していない)から導入側流路16A,17B,18Cを経て処理ガスA,B,Cが導かれるように各流路部材10A,11B,12Cの内部に流路配置がなされている。したがって、各流路部材10A,11B,12Cは処理ガスA,B,C毎に設けられ、それに伴って各拡散室13A,14B,15Cや導入側通路16A,17B,18Cおよびノズル側流路19A,20B,21Cは各処理ガスA,B,C専用のものとして設けられている。また、各拡散室13A,14B,15Cから放射状にノズル側流路19A,20B,21Cが噴出部9の方へ延びている。上記放射状配置の状態は、図8の流路部材10Aの加工図に示されている。
【0031】
上記拡散室13A,14B,15Cは各流路部材10A,11B,12Cの略中央部近傍に設けられ、上記拡散室から放射状に延びるノズル側流路19A,20B,21Cを介して各ノズルに処理ガスが供給されるようになっているので、各流路部材10A,11B,12Cの略中央部に位置する拡散室13A,14B,15Cから各ノズルまでのノズル側流路19A,20B,21Cの長さを極力均一にすることができ、それにともなって処理ガスの流路抵抗もより均一化されて、各ノズルからの噴射量のばらつきを少なくすることができる。
【0032】
上記噴出部9は、複数種類の異なる処理ガスA,B,Cを独立して噴出させるノズル開口および/またはノズル管が、小径のノズル管22とその外側に同心的に配置された大径のノズル管23とさらにその外側に配置されたノズル開口24によって構成されている。このように多重構造とされたノズル管22,23は、内側に位置する小径のノズル管22がウエハ5から遠い側に配置された流路部材10Aに接続され、ノズル管22の外側に位置する大径のノズル管23は流路部材10Aよりもウエハに近い側の流路部材11Bに接続されている。
【0033】
上記のような流路形成によって、処理ガスAはノズル管22内のノズル流路22Aを流れて噴出部9に供給され、処理ガスBはノズル管22とノズル管23とのあいだの隙間で構成されたノズル流路23Bを流れて噴出部9に供給され、処理ガスCはノズル管23の外側に形成されているノズル開口24から噴出部9に供給される。したがって、積層された各流路部材10A,11B,12Cには個々に異なった処理ガスが導入されているので、それらの各処理ガスA,B,Cを独立した流路形態で同心円状の各ノズル管22,23から噴出させることができるのである。
【0034】
上記のような構成により、各流路部材10A,11B,12Cの流路16A,17B,18Cおよび19A,20B,21Cに供給された異なる複数の処理ガスA,B,Cは、その流路部材10A,11B,12C内で分岐されてその処理ガスのためのノズル管22,23および/またはノズル開口24の方へ仕向けられる。このように積層構造とされた各流路部材10A,11B,12Cにおいて各処理ガスA,B,C毎に噴出部9の方へ流通させられるので、噴出部9に向かう処理ガスA,B,Cの流路の引き回し構造が簡素化され、それにともなって各流路における流路抵抗も均一化しやすくなり、結果的には多数の噴出部9における噴出ガス量が可及的に均一化されて、安定した成膜の進行がなされ、良好な成膜品質がえられる。
【0035】
上記のように、各流路部材10A,11B,12Cの流路19A,20B,21Cに流入した処理ガスA,B,Cは、上記ヘッド面8に実質的に沿う方向に所定の箇所まで供給されてから、その処理ガスのためのノズルの方へ変向される。このような流路構成を基本にして多数の噴出部9から処理ガスを噴出させることができるので、ガス流路の屈曲箇所は、この場合は1箇所となり、流路抵抗の増大や圧力損失の問題が回避できるのである。また、ヘッド面8に実質的に沿わせた状態で流路部材10A,11B,12Cが積層されているので、流路部材の厚さを利用して流路部材の全域にわたって処理ガスの流路を十分に確保できることとなり、それにより処理ガス毎に多数のノズル管22,23やノズル開口24に処理ガスを向かわせることが行いやすくなる。
【0036】
上記噴出部9が所定間隔を隔てて複数配置されているので、各噴出部9からの処理ガスの噴出量をウエハ5に対して可及的に均一なものとすることができ、良好な成膜形成にとって最良の処理ガス雰囲気がえられる。また、複数配置された噴出部9の処理ガス噴出量にわずかな差が発生するような場合には、噴出量の少ない噴出部9の配置密度を大きくすることにより、ウエハ5に対する処理ガスの噴出状態を最適化することができる。
【0037】
同心円状に配置された上記ノズル開口24および/またはノズル管22,23が複数種類の異なる処理ガスA,B,Cを導入する上記流路部材10A,11B,12Cの流路にそれぞれ接続されているので、異なった処理ガスが同心円状に環状の層をなして噴出される。そして、このような噴出はヘッド面8の近傍においてなされる。したがって、各種の処理ガスA,B,Cは、ノズル開口24および/またはノズル管22,23から噴出された箇所またはその近傍において、成膜にとって良好な混合ないしは反応がなされる。さらに、上記ノズル管22,23が流路部材10A,11B,12Cの流路に嵌合されていることにより、流路部材を積層させて組立てるときに、ノズル管22,23が位置決め用のノックピンのような機能を果たし、組立て作業が簡素化され、しかも組立て精度が向上する。
【0038】
上記ガス噴出ヘッド7において、各流路部材10A,11B,12Cのうち少なくともウエハ5側に位置する流路部材12Cと、ウエハ5とは反対側に位置する流路部材10Aとをそれぞれ独立して温度制御するようになっている。そのために、流路部材12Cには図1〜図3に示すように、温度制御流体としての冷却水を導く冷却管路25が設けられている。この冷却管路25は、流路部材12Cの表面部をヘッド面8に沿うような状態で配置され、ウエハ5からヘッド面8に及ぶ輻射熱をできるだけ均一に冷却するために、図3(A)に示すようにヘッド面8全域にわたって湾曲した流路を構成している。
【0039】
これにより、ウエハ5側に位置する流路部材12C(ヘッド面)は、加熱されているウエハ5からの輻射熱に対する適正な冷却がなされるので、上記噴出部9すなわちノズル開口24および/またはノズル管22,23内やその近傍において処理ガスA,B,Cが分解したり、あるいは成膜現象が生じたりするのを防止することができる。
【0040】
なお、ウエハ5からの輻射熱によって流路部材12Cが加熱されるまでのあいだ、冷却管路25に温水を流通させて流路部材12Cを加温することもできる。このようにすることにより、処理ガスCとして、露点が低く低温で凝結しやすいガスを用いる場合に、流路内での処理ガスの凝結を防止し、当該処理ガスCの噴出不足による成膜不良を防止することができるのである。また、冷却管路25に流通させる温度制御媒体としては、水に限らず油やガス等の適当な流体を用いることができる。
【0041】
また、ウエハ5とは反対側に位置する流路部材10Aにおいても、適正な温度制御を行うために、加温ヒーター26が流路部材10Aの近くに配置されている。こうすることにより、ウエハ5からの輻射熱が及びにくい流路部材10Aが適正な温度制御を受けることとなるので、流路部材10Aにおける露点が低い処理ガスを用いたときに、その凝結を防止し正常な処理ガスの供給が可能となる。そして、上記のように、ウエハ5側に位置する流路部材12Cと、ウエハ5とは反対側に位置する流路部材10Aとをそれぞれ独立して温度制御することにより、各流路部材12C,10Aに対応した処理ガスC,Aに対して最も適した温度制御ができ、噴射される処理ガスの性状が成膜にとって最適なものとなる。
【0042】
上記ガス噴出ヘッド7において、各流路部材10A,11B,12Cをそれぞれ独立して温度制御するために、図示はしていないが、中間部の流路部材11Bに温度制御用の流水管を通すことができる。こうすることにより、各流路部材10A,11B,12Cに対応した処理ガスA,B,Cに適合させた温度制御が、各流路部材10A,11B,12C毎に行われるので、ガス噴出ヘッド7全体の温度制御状態を処理ガスの性状等にとって最適化することができる。なお、上記流水管に流通させる温度制御媒体としては、水に限らず油やガス等の適当な流体を用いることができる。
【0043】
上記各流路部材10A,11B,12Cには、導入された処理ガスA,B,Cを一時的に保持する拡散室13A,14B,15Cが設けられ、上記拡散室の容積は流路部材10A,11B,12Cの大きさよりも十分に小さくなるよう設定されている。上記拡散室13A,14B,15Cからその拡散室が配置された流路部材10A,11B,12C内において、多数のノズルに向かって処理ガスA,B,Cのノズル側流路19A,20B,21Cが延びてゆくので、放射的に流路を形成するような場合であっても、ノズル側流路19A,20B,21Cの分岐に拡散室が配置された構造となり、上述のように流路抵抗や圧力損失の少ない流路構成がえられる。また、拡散室13A,14B,15Cの容積が流路部材10A,11B,12Cの大きさよりも十分に小さくなるように設定してあるので、拡散室配置のために流路部材の厚さ等の寸法を大きくする必要がなく、ガス噴出ヘッド7をコンパクトに構成することができる。さらに、拡散室13A,14B,15Cの容積を小さくすることにより、処理ガスA,B,Cが小さな容積の拡散室において一時的にある程度高い圧力で保持され、その状態からノズルに供給されるため、各流路に対する供給ガス圧を高く維持し処理ガスの噴出を不足なく行うことができる。
【0044】
そして、拡散室13A,14B,15Cが小容積化されることと流路部材10A,11B,12Cの流路が簡素化されることにより、各流路部材における処理ガスA,B,Cの流通等に必要な容積が著しく小さくなる。したがって、処理ガスの種類を変更して多層膜形成を行う際には、残留ガスが少量化されて処理ガスの種類変更が迅速になされ、例えば、第1の成膜から第2の成膜への変換が明瞭になる、いわゆる多層膜形成時の急峻性が良好にえられる。
【0045】
図4に示すように、上記処理ガスの噴出部9は、ヘッド面8の近傍に開口しているのであるが、ウエハ5に噴射される処理ガスA,B,Cの混合や反応の状態をより改善するために、噴射部9をヘッド面8から突出させることが得策である。なお、図3(B)と図4は、小径,中径,大径のノズル管22,27,23を3重に配置して3種類の処理ガスを噴出するようにしている。図4(A)は、ノズル管22,27,23全てが同じ突出長さとされている場合である。(B)は、ノズル管22,27,23を斜めに切断して1仮想平面上に各管の端面を整列させた場合である。(C)は、内側のノズル管ほど短くした場合である。(D)は、(C)のような形態において各ノズル管22,27,23の端部を斜めに切断した場合である。
【0046】
図1,図2等においては、流路である導入側流路16A,17B,18Cやノズル側流路19A,20B,21C等が各流路部材の肉厚内部に形成してある場合であるが、これを図5のような形式に置きかえることができる。すなわち、図5の断面状態で図示された流路部材11Bのように、流路部材11Bの上面側に溝の状態で導入側流路17Bが形成され、それが拡散室14Bに開口している。そして、この拡散室14Bも流路部材11Bの下面側から窪部を設けて構成している。さらに、拡散室14Bから各ノズルへ延びているノズル側流路20Bも、流路部材11Bの下面側に溝の状態で形成されている。なお、符号28,29は、溝状のノズル側流路19Aや導入側流路18Cを封止するカバー板である。このような構成を採用することにより、流路部材10A,11B,12Cを例えば、ダイカスト鋳造等で製作し製造コストを大幅に低減することができる。
【0047】
さらに、図6に示すように、1つの流路部材を複数の部品で構成するようにしてもよい。ここでは流路部材10Aを例にしているもので、上板30に拡散室13Aの一部を構成する窪部31とノズル側流路19Aが形成され、下板32に拡散室13Aの一部を構成する窪部33と導入側流路16Aが形成され、上板30と下板32を接着剤あるいは溶接等により一体化している。このような構造も、流路部材を例えば、ダイカスト鋳造等で製作し製造コストを大幅に低減することができる。
【0048】
また、ヘッド面8は、通常、平面状に形成されているのであるが、流路部材の内部流路の形状や寸法の関係で隣合う流路部材の境界面を傾斜させたり、凹状や凸状にしたりすることができる。こうすることにより、流路部材の形状を自由に選定できて、処理ガスの流通をよりすぐれた成膜品質となるように最適化することが可能となる。
【0049】
図7は、本発明の成膜装置におけるガス噴出ヘッドの他の実施の形態を示す。
【0050】
この実施の形態では、各ノズル側流路19A,20B,21Cから分岐した流路が、噴射部9にノズル開口34A,35B,36Cとして開口している場合である。各ノズル開口34A,35B,36Cは、同図(B)に示すように正三角形をなした状態で接近させて配置とすることも可能であり、また、同図(C)に示すように1直線上に接近させて配列することも可能である。それ以外は、上記実施の形態と同様であり、同様の部分には同じ符号を付している。
【0051】
上記構成により、前述のノズル管22,27,23のような部品を使用することなく、噴出部9を簡単な構造で製造することができる。それ以外は、上記実施の形態と同様の作用効果を奏する。
【0052】
図8は、流路部材10Aを機械加工で製作する場合の説明図である。肉厚の円形の素材板37に直径方向の穴38を複数本あけ、これらの穴38がノズル側流路19Aを形成するものとされ、各穴38が交わる中央部に窪部39を設けて拡散室13Aを構成している。なお、符号40で示した穴に最も小径なノズル管22が接続されるようになっている。また、各穴38の外周側の開口端はプラグ41で封鎖してある。
【0053】
積層構造とされた流路部材10A,11B,12Cは各流路部材を貫通するボルトで強固に結合したり、各流路部材の端部を図2の符号42で示す溶接部で溶着したり、あるいは接着剤等で接合して一体化することができる。
【0054】
上記の実施の形態では、各流路部材10A,11B,12Cにそれぞれ1つの拡散室13A,14B,15Cが配置されている場合であるが、この拡散室を各流路部材または特定の流路部材に複数、例えば、2つ配置して、処理ガスの分配性を自由に選定することも可能である。
【0055】
【発明の効果】
以上のように、本発明の成膜装置によれば、上記のような構成により、特定の流路部材の流路に供給された1種類の処理ガスは、その流路部材内で分岐されてその処理ガスのためのノズルの方へ仕向けられる。また、他の流路部材の流路に供給された他の種類の処理ガスも同様な流通過程を経て、その処理ガスのためのノズルの方へ仕向けられる。このように積層構造とされた各流路部材において各処理ガス毎にノズルの方へ流通させられるので、ノズルに向かう処理ガスの流路の引き回し構造が簡素化され、それにともなって各流路における流路抵抗も均一化しやすくなり、結果的には多数のノズルにおける噴出ガス量が可及的に均一化されて、安定した成膜の進行がなされ、良好な成膜品質がえられる。また、このような安定した成膜が進行するので、成膜に要する時間も短縮され、生産性向上にとって有効である。
【0056】
例えば、各流路部材の流路に流入した処理ガスは、上記ヘッド面に実質的に沿う方向に所定の箇所まで延ばされてから、その処理ガスのためのノズルの方へ変向される。このような流路構成を基本にして多数のノズルから処理ガスを噴出させることができるので、ガス流路の屈曲箇所は、この場合は1箇所となり、上述のような流路抵抗の増大や圧力損失の問題が回避できるのである。また、ヘッド面に実質的に沿わせた状態で流路部材が積層されているので、流路部材の厚さを利用して流路部材の全域にわたって処理ガスの流路を十分に確保できることとなり、それにより処理ガス毎に多数のノズルに処理ガスを向かわせることが行いやすくなる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の成膜装置を示す断面図である。
【図2】上記成膜装置の拡大図である。
【図3】(A)はガス噴出ヘッドの平面図、(B)はノズル管の開口部を示す平面図である。
【図4】ノズル管の変形例を示す断面図である。
【図5】流路部材の変形例を示す断面図である。
【図6】流路部材の他の変形例を示す断面図である。
【図7】(A)は第2の実施の形態におけるガス噴出ヘッドの断面図、(B)および(C)はノズル開口の開口位置を示す平面図である。
【図8】流路部材の加工状態を示す平面図である。
【図9】従来の成膜装置を示す断面図である。
【図10】上記成膜装置のブロック体を分解して示した断面図である。
【符号の説明】
1 処理空間
2 処理容器
3 分離板
H 加熱ヒーター
4 開口
5 ウエハ
6 排気口
7 ガス噴出ヘッド
8 ヘッド面
9 噴出部
10A 流路部材
11B 流路部材
12C 流路部材
13A 拡散室
14B 拡散室
15C 拡散室
16A 導入側流路
17B 導入側流路
18C 導入側流路
19A ノズル側流路
20B ノズル側流路
21C ノズル側流路
22 小径のノズル管
22A ノズル流路
23 大径のノズル管
23B ノズル流路
24 ノズル開口
25 冷却管路
26 加温ヒーター
27 中径のノズル管
28 カバー板
29 カバー板
30 上板
31 窪部
32 下板
33 窪部
34A ノズル開口
35B ノズル開口
36C ノズル開口
37 素材板
38 穴
39 窪部
40 穴
41 プラグ
42 溶接部
60 処理容器
61 シャワーヘッド本体
62 支柱
63 載置台
64 加熱ランプ
65 透過窓
66 上段ブロック
67 中段ブロック
68 下段ブロック
69 原料ガス供給路
69A 分岐路
69B 分岐路
69C ガス噴出路
70 還元ガス供給路
70A 分岐路
70B 分岐路
70C ガス噴出路
71 冷却水路
72 加熱手段
73 排気通路
W 半導体ウエハ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a film forming apparatus that supplies a plurality of types of processing gases into a processing space and forms a film on a surface of an object to be processed using the processing gases.
[0002]
[Prior art]
Various types of film forming apparatuses of this type are known, but as a prior art that seems to be closest to the present invention, a “shower head structure and a processing apparatus of a processing apparatus” disclosed in
[0003]
A processing gas is ejected from a shower head
[0004]
The shower head
[0005]
Similarly, the reducing
[0006]
The shower head
[0007]
[Patent Document 1]
JP-A-8-291385
[0008]
[Problems to be solved by the invention]
In the shower head
[0009]
Therefore, the flow rate of the processing gas ejected from each of the
[0010]
Each of the
[0011]
When the
[0012]
Further, the
[0013]
The present invention has been made in view of such circumstances, and has as its object to provide a film forming apparatus in which a gas ejection state from each nozzle of a gas ejection head is optimized.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a film forming apparatus of the present invention has a gas ejection head for supplying a plurality of types of processing gases into a processing space, and forms a film on a surface of an object to be processed by the processing gas. In the apparatus, the gas ejection head is provided with a number of nozzles for independently ejecting each processing gas on a head surface facing the object to be processed, and the gas ejection head is configured such that each processing gas is independent. And a flow path member which has a flow path to be introduced and is provided corresponding to each processing gas, and has a laminated structure in which the flow path members are separated in a direction substantially along the head surface. The gist is that the processing gas is supplied from the flow path of each flow path member to a nozzle corresponding to each processing gas.
[0015]
That is, in the film forming apparatus of the present invention, the gas ejection head is provided with a large number of nozzles for independently ejecting each processing gas on the head surface facing the object to be processed. Each of the processing gas includes a flow path member that has a flow path into which the processing gas is independently introduced, and is provided corresponding to each processing gas, and the flow path members are separated in a direction substantially along the head surface. The processing gas is supplied from the flow paths of the flow path members to the nozzles corresponding to the processing gases.
[0016]
With the above-described configuration, one type of processing gas supplied to the flow path of the specific flow path member is branched in the flow path member and directed to the nozzle for the processing gas. Further, another type of processing gas supplied to the flow path of another flow path member is also directed to a nozzle for the processing gas through a similar circulation process. Since each processing gas is circulated toward the nozzle in each of the flow path members having the laminated structure as described above, the routing structure of the processing gas flow path toward the nozzle is simplified, and accordingly, the flow path in each flow path is reduced. The flow path resistance also becomes easy to be uniform, and as a result, the amount of gas ejected from a large number of nozzles is made as uniform as possible, so that stable film formation can be performed and good film formation quality can be obtained. Further, since such a stable film formation proceeds, the time required for the film formation is shortened, which is effective for improving the productivity.
[0017]
For example, the flow path of each flow path member extends to a predetermined position in a direction substantially along the head surface, and is then turned to a nozzle for the processing gas. Since the processing gas can be ejected from a large number of nozzles based on such a flow path configuration, the bending point of the gas flow path becomes one in this case, and the increase in the flow path resistance and the pressure as described above. The problem of loss can be avoided. Further, since the flow path members are laminated substantially along the head surface, the flow path of the processing gas can be sufficiently secured over the entire area of the flow path members by utilizing the thickness of the flow path members. This makes it easier to direct the processing gas to a number of nozzles for each processing gas.
[0018]
In the film forming apparatus of the present invention, in the case where a plurality of nozzles for ejecting a plurality of types of different processing gases are arranged at predetermined intervals on the head surface at predetermined intervals, The flow path of the processing gas obtained by the flow path configuration in each of the flow path members stacked as described above opens to the head surface in the state of a nozzle to form the above-described ejection section, and this ejection section is a predetermined ejection section. Since the plurality of nozzles are arranged at intervals, the amount of the processing gas ejected from each ejection part can be made as uniform as possible with respect to the object to be processed, and is the best for good film formation. A processing gas atmosphere is obtained. In the case where a slight difference occurs in the amount of processing gas ejected from a plurality of arranged ejection parts, the arrangement density of the ejection parts having a small amount of ejection is increased to increase the ejection state of the processing gas to the workpiece. Can be optimized.
[0019]
In the film forming apparatus of the present invention, the ejection section has a multiplex structure in which nozzle openings and / or nozzle tubes for ejecting a plurality of different processing gases independently are concentrically arranged, and the nozzle tube has a head surface. And the nozzle tube is concentrically arranged when the nozzle tube is connected to the flow path member so as to communicate with the flow path of the flow path member into which the processing gas to be ejected is introduced. Since the nozzle openings and / or nozzle tubes are respectively connected to the flow paths of the flow path member for introducing a plurality of different processing gases, different processing gases are ejected concentrically in an annular layer. Such ejection is performed in the vicinity of the head surface. Therefore, the various processing gases are favorably mixed or reacted for the film formation at or near the location ejected from the nozzle opening and / or the nozzle tube. Further, since the nozzle tube is connected to the flow path of the flow path member, the nozzle pipe functions as a knock pin for positioning when the flow path members are stacked and assembled, thereby simplifying the assembling work. And the assembling accuracy is improved.
[0020]
In the film forming apparatus of the present invention, the nozzle tube is located at the inner side of the multiplex structure when the nozzle tube is connected to the flow path member arranged farther from the workpiece. Since the pipe is connected to the flow path member located far from the object to be processed, the processing gas from the flow path member on the far side can be ejected by the nozzle pipe as an independent flow path. Similarly, since the outer nozzle pipe of the inner nozzle pipe is connected to the flow path member closer to the workpiece than the flow path member, a different processing gas is supplied to the outer nozzle pipe. Can be spouted out as an independent flow path. That is, since different processing gases are individually introduced into the laminated flow path members, the processing gases can be ejected from the concentric nozzle tubes in an independent flow path form. .
[0021]
In the film forming apparatus of the present invention, in the gas ejection head, the flow path member located at least on the processing object side and the flow path member located on the opposite side to the processing object among the flow path members are respectively independent. When the temperature is controlled in such a manner, the flow member (head surface) located on the processing object side is appropriately cooled against radiant heat from the processing object. It is possible to prevent decomposition or a film formation phenomenon in or near the portion, ie, the nozzle opening and / or the nozzle tube. Further, by heating the flow path member until the flow path member is heated by radiant heat from the object to be processed, when a gas having a low dew point and easy to condense at a low temperature is used as a processing gas, the flow path It is possible to prevent the process gas from condensing in the inside, and to prevent film formation failure due to insufficient ejection of the process gas.
Also, in the flow path member located on the opposite side to the processing target, the flow path member to which the radiant heat from the processing target does not easily undergo appropriate temperature control, so a processing gas having a low dew point was used. Occasionally, such condensation and the like are prevented, and normal processing gas supply becomes possible. As described above, by independently controlling the temperature of the flow path member located on the processing object side and the flow path member located on the side opposite to the processing object, it is possible to correspond to each flow path member. The most suitable temperature control can be performed on the processed processing gas, and the properties of the injected processing gas become optimal for film formation.
[0022]
In the film forming apparatus of the present invention, in the case where the gas ejection head is configured to independently control the temperature of each flow path member, the temperature control adapted to the processing gas corresponding to each flow path member Is performed for each flow path member, so that the temperature control state of the entire gas ejection head can be optimized for the properties of the processing gas and the like.
[0023]
In the film forming apparatus of the present invention, each of the flow path members is provided with a diffusion chamber for temporarily holding the introduced processing gas, and the volume of the diffusion chamber is sufficiently smaller than the size of the flow path member. In such a case, since the volume of the diffusion chamber is set to be sufficiently smaller than the size of the flow path member, the dimensions such as the thickness of the flow path member are increased for the diffusion chamber arrangement. Therefore, the gas ejection head can be made compact. Further, by reducing the volume of the diffusion chamber, the processing gas is temporarily held at a relatively high pressure in the diffusion chamber having a small volume, and is supplied to each nozzle from that state. It can be maintained at a high level and the processing gas can be ejected without shortage.
[0024]
And, by reducing the volume of the diffusion chamber, the volume required for the flow of the processing gas and the like in each flow path member is significantly reduced. Therefore, when a multilayer film is formed by changing the type of the processing gas, the amount of the residual gas is reduced and the type of the processing gas can be changed quickly, for example, from the first film formation to the second film formation. The conversion becomes clear, that is, the so-called steepness at the time of forming a multilayer film is favorably obtained. Such an effect becomes more remarkable due to the simplification of the flow path as described later.
[0025]
In the film forming apparatus of the present invention, the flow path includes an introduction-side flow path that guides the introduced processing gas to the diffusion chamber, and a nozzle-side flow path that extends from the diffusion chamber and supplies the processing gas to each nozzle. In this case, the processing gas from the introduction-side flow path is temporarily held in the diffusion chamber, and is supplied to the plurality of ejection units via the nozzle-side flow path extending from the diffusion chamber, thereby achieving good processing. A jet of gas is made. Since the nozzle-side flow path extends from the diffusion chamber toward a large number of nozzles, the diffusion chamber is arranged at the branch of the nozzle-side flow path, and the flow path resistance and the pressure loss are low as described above. A flow path configuration is obtained.
[0026]
In the film forming apparatus of the present invention, the diffusion chamber is provided near a substantially central portion of each flow path member, and the processing gas is supplied to each nozzle via a nozzle-side flow path extending radially from the diffusion chamber. In this case, the length of the nozzle-side flow path from the diffusion chamber located at the approximate center of each flow path member to each nozzle can be made as uniform as possible, so that the flow resistance of the processing gas is also higher. The uniformity makes it possible to reduce the variation in the injection amount from each nozzle.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail.
[0028]
FIG. 1 shows an embodiment of the film forming apparatus of the present invention. In this apparatus, a
[0029]
In order to supply a processing gas to the
[0030]
The
[0031]
The
[0032]
The jetting
[0033]
By the flow path formation as described above, the processing gas A flows through the
[0034]
With the above-described configuration, a plurality of different processing gases A, B, and C supplied to the
[0035]
As described above, the processing gases A, B, and C flowing into the
[0036]
Since the plurality of
[0037]
The concentrically arranged
[0038]
In the
[0039]
Accordingly, the
[0040]
Until the
[0041]
Also, in the
[0042]
In the
[0043]
Each of the
[0044]
Since the
[0045]
As shown in FIG. 4, the processing
[0046]
1 and 2 and the like, there is a case where introduction-
[0047]
Further, as shown in FIG. 6, one flow path member may be composed of a plurality of components. Here, the
[0048]
In addition, the
[0049]
FIG. 7 shows another embodiment of the gas ejection head in the film forming apparatus of the present invention.
[0050]
In this embodiment, the flow paths branched from the respective nozzle-
[0051]
According to the above configuration, the jetting
[0052]
FIG. 8 is an explanatory diagram in the case where the
[0053]
The
[0054]
In the above embodiment, one
[0055]
【The invention's effect】
As described above, according to the film forming apparatus of the present invention, with the above configuration, one type of processing gas supplied to the flow path of a specific flow path member is branched in the flow path member. It is directed towards a nozzle for the process gas. Further, another type of processing gas supplied to the flow path of another flow path member is also directed to a nozzle for the processing gas through a similar circulation process. Since each processing gas is circulated toward the nozzle in each of the flow path members having the laminated structure as described above, the routing structure of the processing gas flow path toward the nozzle is simplified, and accordingly, the flow path in each flow path is reduced. The flow path resistance also becomes easy to be uniform, and as a result, the amount of gas ejected from a large number of nozzles is made as uniform as possible, so that stable film formation can be performed and good film formation quality can be obtained. Further, since such a stable film formation proceeds, the time required for the film formation is shortened, which is effective for improving the productivity.
[0056]
For example, the processing gas that has flowed into the flow path of each flow path member is extended to a predetermined position in a direction substantially along the head surface, and is then diverted toward a nozzle for the processing gas. . Since the processing gas can be ejected from a large number of nozzles based on such a flow path configuration, the bending point of the gas flow path becomes one in this case, and the increase in the flow path resistance and the pressure as described above. The problem of loss can be avoided. Further, since the flow path members are laminated substantially along the head surface, the flow path of the processing gas can be sufficiently secured over the entire area of the flow path members by utilizing the thickness of the flow path members. This makes it easier to direct the processing gas to a number of nozzles for each processing gas.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a film forming apparatus according to an embodiment of the present invention.
FIG. 2 is an enlarged view of the film forming apparatus.
FIG. 3A is a plan view of a gas ejection head, and FIG. 3B is a plan view showing an opening of a nozzle tube.
FIG. 4 is a sectional view showing a modified example of the nozzle tube.
FIG. 5 is a cross-sectional view showing a modification of the flow path member.
FIG. 6 is a cross-sectional view showing another modification of the flow path member.
FIG. 7A is a cross-sectional view of a gas ejection head according to a second embodiment, and FIGS. 7B and 7C are plan views showing positions of nozzle openings.
FIG. 8 is a plan view showing a processing state of a flow path member.
FIG. 9 is a cross-sectional view showing a conventional film forming apparatus.
FIG. 10 is an exploded sectional view showing a block body of the film forming apparatus.
[Explanation of symbols]
1 Processing space
2 Processing container
3 Separation plate
H heater
4 opening
5 Wafer
6 Exhaust port
7 Gas ejection head
8 Head side
9 spout
10A channel member
11B channel member
12C channel member
13A diffusion room
14B diffusion room
15C diffusion room
16A Inlet flow path
17B Introductory channel
18C Introductory channel
19A nozzle side flow path
20B nozzle side flow path
21C Nozzle side flow path
22 Small diameter nozzle tube
22A nozzle flow path
23 Large-diameter nozzle tube
23B nozzle flow path
24 Nozzle opening
25 Cooling pipeline
26 Heating heater
27 Medium diameter nozzle tube
28 Cover plate
29 Cover plate
30 Upper plate
31 hollow
32 lower plate
33 hollow
34A nozzle opening
35B nozzle opening
36C nozzle opening
37 material plate
38 holes
39 hollow
40 holes
41 plug
42 welds
60 processing container
61 Shower head body
62 columns
63 Mounting table
64 heating lamp
65 Transmission window
66 Upper block
67 Middle block
68 Lower block
69 Source gas supply path
69A branch road
69B fork
69C gas ejection path
70 Reducing gas supply path
70A branch road
70B branch road
70C gas ejection path
71 Cooling channel
72 heating means
73 Exhaust passage
W semiconductor wafer
Claims (9)
上記ガス噴出ヘッドには、被処理物側に面するヘッド面に各処理ガスを独立して噴出させるノズルがそれぞれ多数設けられ、
上記ガス噴出ヘッドは、各処理ガスが独立して導入される流路をそれぞれ有し各処理ガス毎に対応して存在する流路部材から構成されるとともに、上記各流路部材がヘッド面に実質的に沿う方向で分離した積層構造を呈しており、
上記各流路部材の流路からそれぞれの処理ガスに対応するノズルに対して処理ガスが供給されるように構成されていることを特徴とする成膜装置。A film forming apparatus that has a gas ejection head that supplies a plurality of types of processing gases in a processing space and performs film formation on a surface of an object to be processed by the processing gas,
The gas ejection head is provided with a number of nozzles for independently ejecting each processing gas on a head surface facing the object side,
The gas ejection head has a flow path member into which each processing gas is independently introduced, and includes a flow path member corresponding to each processing gas. It has a laminated structure that is separated in a direction substantially along,
A film forming apparatus, wherein a processing gas is supplied from a flow path of each flow path member to a nozzle corresponding to the processing gas.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002265452A JP3869778B2 (en) | 2002-09-11 | 2002-09-11 | Deposition equipment |
TW92125093A TW200412375A (en) | 2002-09-11 | 2003-09-10 | Film forming device |
PCT/JP2003/011599 WO2004024982A1 (en) | 2002-09-11 | 2003-09-10 | Film forming device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002265452A JP3869778B2 (en) | 2002-09-11 | 2002-09-11 | Deposition equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004100001A true JP2004100001A (en) | 2004-04-02 |
JP3869778B2 JP3869778B2 (en) | 2007-01-17 |
Family
ID=31986583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002265452A Expired - Fee Related JP3869778B2 (en) | 2002-09-11 | 2002-09-11 | Deposition equipment |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3869778B2 (en) |
TW (1) | TW200412375A (en) |
WO (1) | WO2004024982A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007148692A1 (en) * | 2006-06-20 | 2007-12-27 | Tokyo Electron Limited | Film forming apparatus and film forming method |
WO2009031413A1 (en) * | 2007-09-06 | 2009-03-12 | Tokyo Electron Limited | Top panel and plasma processing apparatus using the same |
KR100931331B1 (en) * | 2007-08-24 | 2009-12-15 | 주식회사 케이씨텍 | Injection unit of thin film deposition apparatus |
JP2010084190A (en) * | 2008-09-30 | 2010-04-15 | Sharp Corp | Vapor deposition system and vapor deposition method |
JP2013174023A (en) * | 2006-09-16 | 2013-09-05 | Piezonics Co Ltd | Chemical vapor deposition apparatus having shower head for actively adjusting spray speed of reaction gas, and method for the same |
JP2014037565A (en) * | 2012-08-13 | 2014-02-27 | Kaneka Corp | Method for manufacturing vacuum deposition apparatus and organic el apparatus |
JP2017157678A (en) * | 2016-03-01 | 2017-09-07 | 株式会社ニューフレアテクノロジー | Deposition apparatus |
KR101817254B1 (en) | 2016-09-23 | 2018-01-10 | 주식회사 동원파츠 | Gas distributor and manufacturing method of the same |
JP2018026482A (en) * | 2016-08-10 | 2018-02-15 | 株式会社東芝 | Passage structure and processing unit |
WO2024210004A1 (en) * | 2023-04-03 | 2024-10-10 | 東京エレクトロン株式会社 | Shower plate and substrate processing device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8562785B2 (en) * | 2011-05-31 | 2013-10-22 | Lam Research Corporation | Gas distribution showerhead for inductively coupled plasma etch reactor |
CN103103501B (en) * | 2013-01-14 | 2016-05-11 | 东莞市中镓半导体科技有限公司 | A kind of material vapour phase epitaxy Fan spray head structure |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2969596B2 (en) * | 1989-10-06 | 1999-11-02 | アネルバ株式会社 | CVD equipment |
JPH0638235U (en) * | 1992-10-14 | 1994-05-20 | 沖電気工業株式会社 | Chemical vapor deposition equipment |
JPH08186107A (en) * | 1994-12-29 | 1996-07-16 | Sony Corp | Film forming apparatus |
JP3360098B2 (en) * | 1995-04-20 | 2002-12-24 | 東京エレクトロン株式会社 | Shower head structure of processing equipment |
JP3702068B2 (en) * | 1997-04-09 | 2005-10-05 | 東京エレクトロン株式会社 | Substrate processing equipment |
JP2000144432A (en) * | 1998-11-04 | 2000-05-26 | Ebara Corp | Gas injection head |
-
2002
- 2002-09-11 JP JP2002265452A patent/JP3869778B2/en not_active Expired - Fee Related
-
2003
- 2003-09-10 WO PCT/JP2003/011599 patent/WO2004024982A1/en active Application Filing
- 2003-09-10 TW TW92125093A patent/TW200412375A/en unknown
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007148692A1 (en) * | 2006-06-20 | 2007-12-27 | Tokyo Electron Limited | Film forming apparatus and film forming method |
US8133323B2 (en) | 2006-06-20 | 2012-03-13 | Tokyo Electron Limited | Film forming apparatus and method, gas supply device and storage medium |
JP2013174023A (en) * | 2006-09-16 | 2013-09-05 | Piezonics Co Ltd | Chemical vapor deposition apparatus having shower head for actively adjusting spray speed of reaction gas, and method for the same |
KR100931331B1 (en) * | 2007-08-24 | 2009-12-15 | 주식회사 케이씨텍 | Injection unit of thin film deposition apparatus |
WO2009031413A1 (en) * | 2007-09-06 | 2009-03-12 | Tokyo Electron Limited | Top panel and plasma processing apparatus using the same |
JP2009064988A (en) * | 2007-09-06 | 2009-03-26 | Tokyo Electron Ltd | Top panel structure, and plasma processing apparatus using the same |
CN101796615B (en) * | 2007-09-06 | 2012-03-21 | 东京毅力科创株式会社 | Top panel and plasma processing apparatus using the same |
TWI391998B (en) * | 2007-09-06 | 2013-04-01 | Tokyo Electron Ltd | Top panel and plasma processing device using the same |
JP2010084190A (en) * | 2008-09-30 | 2010-04-15 | Sharp Corp | Vapor deposition system and vapor deposition method |
JP2014037565A (en) * | 2012-08-13 | 2014-02-27 | Kaneka Corp | Method for manufacturing vacuum deposition apparatus and organic el apparatus |
JP2017157678A (en) * | 2016-03-01 | 2017-09-07 | 株式会社ニューフレアテクノロジー | Deposition apparatus |
WO2017150400A1 (en) * | 2016-03-01 | 2017-09-08 | 株式会社ニューフレアテクノロジー | Film deposition device |
TWI630282B (en) * | 2016-03-01 | 2018-07-21 | 紐富來科技股份有限公司 | Film-forming device |
US10896831B2 (en) | 2016-03-01 | 2021-01-19 | Nuflare Technology, Inc. | Film forming apparatus |
JP2018026482A (en) * | 2016-08-10 | 2018-02-15 | 株式会社東芝 | Passage structure and processing unit |
WO2018030009A1 (en) * | 2016-08-10 | 2018-02-15 | 株式会社東芝 | Flow channel structure and processing device |
TWI661870B (en) * | 2016-08-10 | 2019-06-11 | 東芝股份有限公司 | Flow path structure and processing device |
KR101817254B1 (en) | 2016-09-23 | 2018-01-10 | 주식회사 동원파츠 | Gas distributor and manufacturing method of the same |
WO2024210004A1 (en) * | 2023-04-03 | 2024-10-10 | 東京エレクトロン株式会社 | Shower plate and substrate processing device |
Also Published As
Publication number | Publication date |
---|---|
WO2004024982A1 (en) | 2004-03-25 |
JP3869778B2 (en) | 2007-01-17 |
TW200412375A (en) | 2004-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI424084B (en) | High temperature ald inlet manifold | |
KR102546317B1 (en) | Gas supply unit and substrate processing apparatus including the same | |
US8668775B2 (en) | Machine CVD shower head | |
TWI393802B (en) | Chemical vapor deposition apparatus capable of controlling discharging fluid flow path in reaction chamber | |
KR101297933B1 (en) | Film-forming apparatus | |
JP2004100001A (en) | Deposition system | |
US8216419B2 (en) | Drilled CVD shower head | |
KR100509231B1 (en) | Apparatus for depositing thin film on wafer | |
KR20180070971A (en) | Substrate processing apparatus | |
KR20110011270A (en) | Shower head and chemical vapor deposition device having the same | |
JP2009167520A (en) | Shower head and chemical vapor deposition apparatus having the same | |
KR20100105764A (en) | Heated showerhead assembly | |
KR101670383B1 (en) | Purge gas injection plate and apparatus for removing fume with same | |
JP3663400B2 (en) | Deposition equipment | |
KR101409974B1 (en) | Gas injection-suction unit and atomic layer deposition apparatus having the same | |
KR101765754B1 (en) | Shower head and device for manufacturing a semiconductor substrate having the same | |
JP6629248B2 (en) | Gas injection device for epitaxial chamber | |
KR101541155B1 (en) | atomic layer deposition apparatus | |
KR20140076796A (en) | atomic layer deposition apparatus | |
KR101541154B1 (en) | atomic layer deposition apparatus | |
JP2009516077A (en) | ALD reaction vessel | |
WO2016155152A1 (en) | Temperature-controllable double-gas channel spraying plate with the uniform gas spraying function | |
US20020062790A1 (en) | Processing apparatus and processing system | |
TW201801795A (en) | Fluid-temperature-controlled gas distributor in layer design | |
JP2001052975A (en) | Resin supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060718 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060908 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061010 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061013 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3869778 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101020 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111020 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121020 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131020 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |