【0001】
【発明の属する技術分野】
本発明は、内側に溜まる湯が上下方向に温度勾配を持って貯められる貯湯タンクを備えた給湯システムに関する。
【0002】
【従来の技術】
例えば、圧縮機、ガスクーラ、減圧装置および蒸発器を含む熱源側サイクルを備え、この熱源側サイクルのガスクーラで加熱した水を貯湯タンク内に貯湯可能に構成した給湯システムが知られている(例えば、特許文献1参照)。この種のものでは、近年、フロンのような合成物ではなく、自然界に存在する物質を熱源側サイクルに冷媒として使用する動きが高まり、特に、熱源側サイクルにCO2冷媒を使用する検討が進められている。このCO2冷媒を使用した場合、熱源側サイクルの高圧側が超臨界となる遷臨界サイクル(Transcritical Cycle)になるため、ヒートポンプ給湯機における給湯のように、水の昇温幅が大きい加熱プロセスでは高い成績係数(COP)を期待することができる。
【0003】
【特許文献1】
特開2002−174456号公報(図1)
【0004】
【発明が解決しようとする課題】
しかし、この種の給湯システムでは、一般に、貯湯タンク内の下部から冷たい水を取り出して、ガスクーラで加熱した後、昇温させた湯を貯湯タンク内に環流させて貯湯するため、例えば、貯湯タンクから外部への出湯量が多くなった場合、湯切れする恐れがある。
【0005】
そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、湯切れの少ない給湯システムを提供することにある。
【0006】
【課題を解決するための手段】
請求項1記載の発明は、貯湯タンクと、この貯湯タンク内の水を熱源側に循環し、昇温させて貯湯タンクに環流させる利用側サイクルと、上記貯湯タンク内の上部に貯留された湯を出湯する出湯手段と、出湯時の湯温が所定温度以下の場合、貯湯タンク内の上部の水を上記熱源側に循環し、昇温させて貯湯タンクに環流させる瞬間給湯サイクルとを備えたことを特徴とする。
【0007】
請求項2記載の発明は、圧縮機、ガスクーラ、減圧装置および蒸発器を含む熱源側サイクルと、貯湯タンクと、この貯湯タンク内の水を上記ガスクーラに循環し、昇温させて貯湯タンクに環流させる利用側サイクルと、上記貯湯タンク内の上部に貯留された湯を出湯する出湯手段と、出湯時の湯温が所定温度以下の場合、貯湯タンク内の上部の水を上記ガスクーラに循環し、昇温させて貯湯タンクに環流させる瞬間給湯サイクルとを備えたことを特徴とする。
【0008】
請求項3記載の発明は、請求項2記載のものにおいて、上記熱源側サイクルにCO2冷媒を封入したことを特徴とする。
【0009】
請求項4記載の発明は、請求項1乃至3のいずれか一項記載のものにおいて、上記利用側サイクルと上記瞬間給湯サイクルの各配管が、切換弁を介して、接続されていることを特徴とする。
【0010】
請求項5記載の発明は、圧縮機、ガスクーラ、減圧装置および蒸発器を含む熱源側サイクルを備え、この熱源側サイクルのガスクーラで加熱した水を貯湯タンク内に貯湯可能に構成した給湯システムにおいて、上記貯湯タンク内の上部に貯留された湯を出湯する出湯手段と、出湯時の湯温が所定温度以下の場合、貯湯タンク内の上部の水を上記ガスクーラに循環し、昇温させて貯湯タンクに環流させる瞬間給湯サイクルとを備えたことを特徴とする。
【0011】
請求項6記載の発明は、請求項2又は5記載のものにおいて、前記熱源側サイクルにおいてガスクーラの出口側冷媒と圧縮機の吸込側冷媒との間で熱交換させる内部熱交換器を備えたことを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の一実施形態を、図面に基づいて説明する。
【0013】
図1は、給湯サイクルを示している。1は圧縮機を示し、この圧縮機1には、実線で示す冷媒配管を介して、ガスクーラ(高圧側熱交換器)3、減圧装置(弁装置)5、蒸発器(低圧側熱交換器)7が順に接続されて、熱源側サイクルが構成されている。この熱源側サイクルにはCO2冷媒が使用される。CO2冷媒はオゾン破壊係数が0で、地球温暖化係数が1であるため、環境への負荷が小さく、毒性、可燃性がなく安全で安価である。このCO2冷媒を使用した場合、冷凍サイクルの高圧側が超臨界となる遷臨界サイクル(Transcritical Cycle)になるため、給湯のように、水の昇温幅が大きい加熱プロセスでは高い成績係数(COP)を期待することができる。
【0014】
一方、上記ガスクーラ3は、CO2冷媒が流れる冷媒コイル9と、水が流れる水コイル10とからなり、この水コイル10は水配管21,23を介して貯湯タンク11に接続されている。
【0015】
この貯湯タンク11からガスクーラ3に冷水を供給する水配管21には、循環ポンプ13、三方向切換弁15が接続され、循環ポンプ13が運転されると、貯湯タンク11の水が、三方向切換弁15のポートa,cを経てガスクーラ3を循環し、ここで加熱されて昇温された後、水配管23、流量調整弁17を経て、貯湯タンク11の上部に環流される。一方の水配管21は、貯湯タンク11内の下部に接続され、他方の水配管23は、貯湯タンク11内の上部に接続されている。以上が、利用側サイクルを構成している。なお、この貯湯タンク11内の下部には水配管19が接続され、この水配管19を通じて、当該貯湯タンク11内には市水が供給されている。
【0016】
本実施形態では、貯湯タンク11内に、お湯が上下方向に温度勾配を持って貯湯されている。そして、貯湯タンク11内の設計上定められる基準位置Hに、水配管25が接続され、この水配管25が、三方向切換弁15のポートbに接続されている。この水配管25、ガスクーラ3、流量調整弁17を通るルートが、瞬間給湯サイクルを構成する。
【0017】
つぎに、動作を説明する。
【0018】
通常の運転時には、利用側サイクルにおいて、循環ポンプ13が運転されると、貯湯タンク11の水が、三方向切換弁15のポートa,cを経てガスクーラ3を循環し、ここで加熱されて昇温された後、水配管23、流量調整弁17を経て、貯湯タンク11の上部に環流される。お湯は上層部に溜まり、下層部に行くほど湯温が低下する。
【0019】
貯湯タンク11内の上部に溜まった湯は、貯湯タンク11の上部に接続された出湯管27を通じて外部に出湯される。
【0020】
流量調整弁17の下流には温度センサ31が設置されており、通常時には、温度センサ31で検出される湯温T2が、所定温度になるように流量調整弁17の弁開度が制御される。この場合、流量調整弁17が大きく絞られると、給湯量が減少し、湯切れの恐れが生じる。
【0021】
本実施形態では、出湯管27からの出湯量が増大し、出湯時に、この出湯管27の温度センサ29で検出される湯温T1が、所定温度以下になった場合、三方向切換弁15が切り換えられる。この切り換えにより、三方向切換弁15のポートb,cが連通する。この場合、瞬間給湯サイクルにおいて、循環ポンプ13が運転されると、貯湯タンク11内の基準位置Hのお湯が、三方向切換弁15のポートb,cを経てガスクーラ3を循環し、ここで加熱されて昇温された後、水配管23、流量調整弁17を経て、貯湯タンク11の上部に環流される。この構成では、比較的温度が高い基準位置Hのお湯が、ガスクーラ3を循環し、ここで加熱されて昇温された後、水配管23、流量調整弁17を経て、貯湯タンク11の上部に環流されるため、利用側サイクルを用いての給湯に比べて、短時間の内に、給湯温度を高めることができる。
【0022】
本実施形態では、出湯時に、出湯管27の温度センサ29で検出される湯温T1が、所定温度以下になった場合、瞬間給湯サイクルに切り換えられるため、利用側サイクルを用いての給湯に比べ、短時間の内に、給湯温度を高めることができ、給湯量の減少が抑制され、湯切れの少ないものとなる。
【0023】
図2は、別の実施形態を示す。
【0024】
この実施形態では、熱源側サイクルにおいて、ガスクーラ3の出口側冷媒と圧縮機1の吸込側冷媒との間で熱交換させる内部熱交換器32を備えて構成されている。この内部熱交換器32は、圧縮機1の吸込管30とガスクーラ3の出口管31とを含み、ガスクーラ3の出口の熱を吸込管30側に回収して当該吸込冷媒の温度を上昇させ、これにより圧縮機1の吐出温度を上昇させて、ガスクーラ3での冷媒温度を上昇させることができる。
【0025】
この構成によれば、利用側サイクルを用いての給湯時であれ、瞬間給湯サイクル時であれ、ガスクーラ3での冷媒温度が上昇するので、短時間の内に湯温を上昇させることができ、図1の実施形態に示すものよりも更に湯切れの少ない給湯システムを提供することができる。
【0026】
以上、一実施形態に基づいて本発明を説明したが、本発明は、これに限定されるものでないことは明らかである。
【0027】
【発明の効果】
本発明では、湯切れの少ない給湯システムを実現できる。
【図面の簡単な説明】
【図1】本発明による給湯システムの一実施形態を示す回路図である。
【図2】別の実施形態を示す回路図である。
【符号の説明】
1 圧縮機
3 ガスクーラ
5 減圧装置
7 蒸発器
11 貯湯タンク
13 環ポンプ
15 三方向切換弁
17 流量調整弁
32 内部熱交換器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hot water supply system including a hot water storage tank in which hot water stored inside has a vertical temperature gradient.
[0002]
[Prior art]
For example, there is known a hot water supply system including a heat source side cycle including a compressor, a gas cooler, a decompression device, and an evaporator, and configured to store water heated by a gas cooler of the heat source side cycle in a hot water storage tank (for example, Patent Document 1). In recent years, this type of material has been increasingly used as a refrigerant in the heat source side cycle, rather than a synthetic substance such as chlorofluorocarbons, and the use of CO 2 refrigerant in the heat source side cycle has been particularly studied. Have been. When this CO 2 refrigerant is used, a transcritical cycle (Transcritical Cycle) in which the high pressure side of the heat source side cycle becomes supercritical is high in a heating process in which the temperature rise width of water is large, such as hot water supply in a heat pump water heater. A coefficient of performance (COP) can be expected.
[0003]
[Patent Document 1]
JP-A-2002-174456 (FIG. 1)
[0004]
[Problems to be solved by the invention]
However, in this type of hot water supply system, generally, cold water is taken out from a lower portion in a hot water storage tank, heated by a gas cooler, and then heated and returned to the hot water storage tank for storage. If the amount of hot water flowing from the outside to the outside increases, the hot water may run out.
[0005]
Therefore, an object of the present invention is to solve the problems of the above-described conventional technology and to provide a hot water supply system with less running out of hot water.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 provides a hot water storage tank, a utilization cycle in which water in the hot water storage tank is circulated to the heat source side, and is heated to recirculate the hot water storage tank, and hot water stored in an upper portion of the hot water storage tank. A hot water supply means for discharging hot water, and an instantaneous hot water supply cycle for circulating upper water in the hot water storage tank to the heat source side when the hot water temperature at the time of hot water is equal to or lower than the predetermined temperature, raising the temperature and refluxing the water to the hot water storage tank. It is characterized by the following.
[0007]
The invention according to claim 2 provides a heat source side cycle including a compressor, a gas cooler, a decompression device, and an evaporator, a hot water storage tank, and circulates water in the hot water storage tank to the gas cooler, raises the temperature, and returns to the hot water storage tank. A use-side cycle to be performed, a tapping means for tapping hot water stored in an upper portion of the hot water storage tank, and when the hot water temperature at the time of tapping is equal to or lower than a predetermined temperature, the upper water in the hot water storage tank is circulated to the gas cooler, An instant hot water supply cycle in which the temperature is raised and the hot water is returned to the hot water storage tank.
[0008]
According to a third aspect of the present invention, in the second aspect, a CO 2 refrigerant is sealed in the heat source side cycle.
[0009]
According to a fourth aspect of the present invention, in any one of the first to third aspects, each pipe of the use-side cycle and the instantaneous hot water supply cycle is connected via a switching valve. And
[0010]
The invention according to claim 5 is a hot water supply system comprising a heat source side cycle including a compressor, a gas cooler, a pressure reducing device, and an evaporator, and configured to store water heated by the gas cooler of the heat source side cycle in a hot water storage tank. A tapping means for tapping the hot water stored in the upper portion of the hot water storage tank, and when the hot water temperature at the time of tapping is equal to or lower than a predetermined temperature, circulates the water in the upper portion of the hot water storage tank to the gas cooler, raises the temperature, and raises the temperature. And an instant hot water supply cycle for circulating water.
[0011]
According to a sixth aspect of the present invention, in the second or fifth aspect, an internal heat exchanger for exchanging heat between an outlet-side refrigerant of the gas cooler and a suction-side refrigerant of the compressor in the heat source side cycle is provided. It is characterized by.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 shows a hot water supply cycle. Reference numeral 1 denotes a compressor. The compressor 1 has a gas cooler (high-pressure side heat exchanger) 3, a pressure reducing device (valve device) 5, and an evaporator (low-pressure side heat exchanger) via a refrigerant pipe shown by a solid line. 7 are connected in order to form a heat source side cycle. The heat source side cycle uses a CO 2 refrigerant. Since the CO 2 refrigerant has an ozone depletion potential of 0 and a global warming potential of 1, it has a low environmental load, is safe and inexpensive without toxicity and flammability. When this CO 2 refrigerant is used, the high pressure side of the refrigeration cycle becomes a transcritical cycle (Supercritical Cycle) in which the supercritical state is attained. Therefore, a high coefficient of performance (COP) is used in a heating process such as hot water supply in which the temperature rise width of water is large. Can be expected.
[0014]
On the other hand, the gas cooler 3 includes a refrigerant coil 9 through which a CO 2 refrigerant flows and a water coil 10 through which water flows. The water coil 10 is connected to a hot water storage tank 11 via water pipes 21 and 23.
[0015]
A circulation pump 13 and a three-way switching valve 15 are connected to a water pipe 21 for supplying cold water from the hot water storage tank 11 to the gas cooler 3. When the circulation pump 13 is operated, the water in the hot water storage tank 11 is switched in three directions. After circulating in the gas cooler 3 through the ports a and c of the valve 15, the gas is heated and heated there, and then returned to the upper part of the hot water storage tank 11 through the water pipe 23 and the flow control valve 17. One water pipe 21 is connected to a lower part in the hot water storage tank 11, and the other water pipe 23 is connected to an upper part in the hot water storage tank 11. The above constitutes the user-side cycle. A water pipe 19 is connected to a lower portion of the hot water storage tank 11, and city water is supplied into the hot water storage tank 11 through the water pipe 19.
[0016]
In the present embodiment, hot water is stored in hot water storage tank 11 with a temperature gradient in the vertical direction. Then, a water pipe 25 is connected to a design reference position H in the hot water storage tank 11, and the water pipe 25 is connected to a port b of the three-way switching valve 15. A route passing through the water pipe 25, the gas cooler 3, and the flow control valve 17 forms an instant hot water supply cycle.
[0017]
Next, the operation will be described.
[0018]
During normal operation, when the circulation pump 13 is operated in the utilization side cycle, the water in the hot water storage tank 11 circulates through the gas cooler 3 via the ports a and c of the three-way switching valve 15, and is heated and raised here. After being heated, the water is returned to the upper part of the hot water storage tank 11 via the water pipe 23 and the flow rate control valve 17. Hot water accumulates in the upper part, and the temperature of the water decreases as it goes to the lower part.
[0019]
The hot water stored in the upper part of the hot water storage tank 11 is discharged to the outside through a hot water pipe 27 connected to the upper part of the hot water storage tank 11.
[0020]
A temperature sensor 31 is provided downstream of the flow control valve 17, and the opening degree of the flow control valve 17 is controlled so that the hot water temperature T2 detected by the temperature sensor 31 becomes a predetermined temperature in a normal state. . In this case, if the flow control valve 17 is greatly throttled, the amount of hot water supplied decreases, and there is a risk of running out of hot water.
[0021]
In the present embodiment, when the amount of hot water from the tapping pipe 27 increases, and when the hot water temperature T1 detected by the temperature sensor 29 of the tapping pipe 27 falls below a predetermined temperature at the time of tapping, the three-way switching valve 15 is activated. Can be switched. By this switching, the ports b and c of the three-way switching valve 15 communicate. In this case, when the circulation pump 13 is operated in the instantaneous hot water supply cycle, the hot water at the reference position H in the hot water storage tank 11 circulates through the gas cooler 3 via the ports b and c of the three-way switching valve 15 and is heated here. After being heated and heated, the water is returned to the upper portion of the hot water storage tank 11 via the water pipe 23 and the flow rate control valve 17. In this configuration, the hot water at the reference position H where the temperature is relatively high circulates through the gas cooler 3, and is heated and heated there. Since the water is recirculated, the hot water supply temperature can be increased in a shorter time as compared with the hot water supply using the use side cycle.
[0022]
In the present embodiment, when the hot water temperature T1 detected by the temperature sensor 29 of the hot water pipe 27 at the time of tapping becomes lower than a predetermined temperature, the hot water supply cycle is switched to the instantaneous hot water supply cycle. In addition, the hot water supply temperature can be raised within a short time, the decrease in the amount of hot water supply is suppressed, and the amount of running out of hot water is reduced.
[0023]
FIG. 2 shows another embodiment.
[0024]
In this embodiment, in the heat source side cycle, an internal heat exchanger 32 for exchanging heat between the outlet side refrigerant of the gas cooler 3 and the suction side refrigerant of the compressor 1 is provided. The internal heat exchanger 32 includes the suction pipe 30 of the compressor 1 and the outlet pipe 31 of the gas cooler 3, collects heat at the outlet of the gas cooler 3 to the suction pipe 30 side, and raises the temperature of the suction refrigerant. As a result, the discharge temperature of the compressor 1 is increased, and the refrigerant temperature in the gas cooler 3 can be increased.
[0025]
According to this configuration, the temperature of the refrigerant in the gas cooler 3 increases regardless of whether the hot water is supplied using the use-side cycle or the instant hot water supply cycle, so that the hot water temperature can be increased in a short time, It is possible to provide a hot water supply system with less running out of hot water than that shown in the embodiment of FIG.
[0026]
As described above, the present invention has been described based on one embodiment, but it is apparent that the present invention is not limited to this.
[0027]
【The invention's effect】
According to the present invention, a hot water supply system with less running out of hot water can be realized.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing one embodiment of a hot water supply system according to the present invention.
FIG. 2 is a circuit diagram showing another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 3 Gas cooler 5 Decompression device 7 Evaporator 11 Hot water storage tank 13 Ring pump 15 Three-way switching valve 17 Flow control valve 32 Internal heat exchanger