[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004196874A - Method for producing hydrocarbons by fischer-tropsch method - Google Patents

Method for producing hydrocarbons by fischer-tropsch method Download PDF

Info

Publication number
JP2004196874A
JP2004196874A JP2002364200A JP2002364200A JP2004196874A JP 2004196874 A JP2004196874 A JP 2004196874A JP 2002364200 A JP2002364200 A JP 2002364200A JP 2002364200 A JP2002364200 A JP 2002364200A JP 2004196874 A JP2004196874 A JP 2004196874A
Authority
JP
Japan
Prior art keywords
catalyst
mass
reaction
ruthenium
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002364200A
Other languages
Japanese (ja)
Other versions
JP4006328B2 (en
Inventor
Shigenori Nakashizu
茂徳 中静
Yutaka Miyata
豊 宮田
Hiroaki Hara
浩昭 原
Toshio Shimizu
俊夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Oil Gas and Metals National Corp
Original Assignee
Cosmo Oil Co Ltd
Japan National Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Japan National Oil Corp filed Critical Cosmo Oil Co Ltd
Priority to JP2002364200A priority Critical patent/JP4006328B2/en
Publication of JP2004196874A publication Critical patent/JP2004196874A/en
Application granted granted Critical
Publication of JP4006328B2 publication Critical patent/JP4006328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a hydrocarbon, by which a Fischer-Tropsch reaction exhibiting a stable catalytic activity for a long time, having high chain growth probability and having excellent lower hydrocarbon olefin selectivity can stably and smoothly be carried out for a long time. <P>SOLUTION: This method for producing the hydrocarbon comprises preliminarily applying a reducing treatment to a catalyst, dispersing a prescribed amount of the reduced catalyst in a liquid hydrocarbon and then bringing the catalyst into contact with a mixed gas consisting mainly of hydrogen and carbon monoxide at a prescribed pressure and at a prescribed reaction temperature. The catalyst is prepared by treating a catalyst precursor prepared by carrying prescribed amounts of a sodium compound and ruthenium on a carrier comprising aluminum oxide and a manganese oxide in which the average charge number of manganese exceeds Mn<SP>2+</SP>, with an alkaline aqueous solution, and has a specific surface area and a bulk density in prescribed ranges, respectively. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水素と一酸化炭素を主成分とする混合ガス(以下「合成ガス」という)から炭化水素類を製造する方法に関する。さらに詳しくは、合成ガスを、液状炭化水素類中に分散せしめた、アルミニウム酸化物およびマンガン酸化物からなる担体にナトリウムおよびルテニウムを担持させた触媒に接触させ、炭化水素類、とりわけ灯軽油留分に容易に変換できるワックス分と共にオレフィン分に富む炭化水素類を製造する方法に関する。
【0002】
【従来の技術】
合成ガスから炭化水素類を合成する方法として、フィッシャー・トロプシュ反応(Fischer−Tropsch反応)、メタノール合成反応などが良く知られている。そして、フィッシャー・トロプシュ反応は鉄、コバルト、ルテニウム系触媒で進行することが知られている(例えば、非特許文献1参照)。
【0003】
ところで、近年、大気環境保全の観点から、低硫黄分の軽油が望まれており、今後その傾向はますます強くなるものと考えられる。また、原油資源は有限であるとの観点から、それに代わるエネルギー源の開発が望まれており、今後ますます強く望まれるようになるものと考えられる。これらの要望に応える技術として、エネルギー換算で石炭に匹敵する究極埋蔵量があるといわれる天然ガス(主成分メタン)(例えば、非特許文献2参照)から灯軽油等の液体燃料を合成する技術である所謂GTL(gas to liquid)がある。天然ガスは、硫黄分を含まないか、含んでいても脱硫が容易な硫化水素(H2S)やメルカプタン(CH3SH)等であるため、得られる灯軽油等の液体燃料には、その中に殆ど硫黄分が無く、またセタン価の高い高性能ディーゼル燃料に利用できるなどの利点があるため、このGTLは近年ますます注目されるようになってきている。
【0004】
上記GTLの主要な技術として、合成ガスからフィッシャー・トロプシュ反応(以下「FT反応」という)によって炭化水素類を製造する方法(以下「FT法」という)が盛んに研究されている。一般に、FT反応における炭化水素類生成物の炭素数分布はシュルツ・フローリー(Shultz-Flory)則に従うとされている。灯軽油留分を効率的に合成するためには、長時間安定した活性を示す触媒、連鎖成長確率が高い触媒、活性が高い触媒が必要である。触媒活性が不足するような場合にはプロセス設計(反応器設計等)で補うことができるが、触媒の安定性や連鎖成長確率は触媒そのものの特性に依存しやすい傾向があるため、安定性が高く、連鎖成長確率の高い触媒開発が技術的課題となっている。連鎖成長確率については高いほど良いが、確率が高くなりすぎると生成物中に占めるワックス分が多くなり、プロセス運転が煩雑になる虞がある。実質的な上限は0.95程度と考えられる。
【0005】
灯軽油留分の得率を高めるためには、FT反応で生成したワックス分を水素化分解して灯軽油留分に変換することが効果的であるが、さらに灯軽油留分の得率を高めるためにはFT反応中に低級オレフィンを生成させ、二量化、三量化等によって該留分を生成させることも視野に入れる必要がある。この灯軽油留分の得率のなお一層の向上は、連鎖成長確率が高く、かつ生成低級炭化水素中のオレフィン選択性に優れるFT反応を行うことにより達成することができると考えられる。
しかし、現在のところ、長時間安定した触媒活性を示し、連鎖成長確率が高く、かつオレフィン選択性が優れていて、上記灯軽油留分得率のなお一層の向上を達成できるFT反応を行い得る触媒、プロセスは未だ提案されていない。従来から、種々のFT反応用の触媒が提案されており、オレフィン類への高選択性を目的とした触媒として、マンガン酸化物担体にルテニウムを担持させた触媒、このルテニウム担持触媒にさらに第三成分を加えた触媒などのルテニウム系触媒が提案されている(例えば、特許文献1、特許文献2参照)。しかし、これらのルテニウム系触媒を用いたFT法では、上記灯軽油留分得率のなお一層の向上を十分達成することができない。すなわち、上記ルテニウム系触媒は、主として固定床式で用いることを目的として開発された触媒であって、このルテニウム系触媒を用いた固定床式のFT法では、このルテニウム系触媒の連鎖成長確率もさることながら、固定床式の反応形式では、ワックス分が多量に生成したとき、この生成したワックス分が触媒の活性点に付着してそれを覆い、触媒の活性が低下する問題や、触媒床の局所が過熱するヒートスポットが生ずる等の問題が発生し易く、安定して円滑に反応を行うことができなくなるという問題がある。
【0006】
【非特許文献1】
「C1ケミストリー」、触媒学会編、講談社
【非特許文献2】
S. Hamakawa, Materials Integration, Vol.12, p12 (1999)
【特許文献1】
特公平3−70691号公報
【特許文献2】
特公平3−70692号公報
【0007】
【発明が解決しようとする課題】
本発明の目的は、長時間安定した触媒活性を示し、連鎖成長確率が高く、低級炭化水素のオレフィン選択性に優れたFT反応を長時間安定して円滑に行うことができ、液状炭化水素類を効率的に製造できるFT法を提供することにあり、他の目的は、生成したワックス分の水素化分解、生成したオレフィンの二量化、三量化等により、灯軽油留分の増産に従来に比べて一層大きく寄与できる可能性が高いFT法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究した結果、触媒として、アルミニウム酸化物および一定のマンガン酸化物からなる担体に、ナトリウム化合物とルテニウムを一定量担持させた後、アルカリ性水溶液で処理した、比較的大きな一定の比表面積と比較的小さな一定の嵩密度を示す触媒を用いることによって上記目的を達成できることを見出して、本発明を完成した。
【0009】
すなわち、本発明は、上記目的を達成するために、アルミニウム酸化物およびマンガンの平均荷電数がMn2+を超えるマンガン酸化物からなる担体に、ナトリウム化合物を触媒基準、Na2O換算で0.1〜1.3質量%担持し、さらに、ルテニウムを触媒基準で0.8〜4.5質量%担持した触媒前駆体を、アルカリ性水溶液で処理して得た触媒であって、比表面積が90〜180m2/gで、嵩密度が1.00〜1.70g/mlである触媒を、予め還元処理を施した後、液状炭化水素類中に濃度1〜40質量%にて分散せしめ、該触媒に水素および一酸化炭素を主成分とする混合ガスを、圧力1〜10MPa、反応温度200〜300℃で接触させる炭化水素類の製造方法を提供する。
【0010】
本発明では、上記のように所定の担体に所定量のナトリウム化合物およびルテニウムを担持させたものを触媒前駆体とし、該触媒前駆体をアルカリ性水溶液で処理したもの(但し、上記のように所定の比表面積および嵩密度を有する要がある)を触媒としてFT反応に供する(但し、上記のように予め還元処理を施した後)炭化水素類の製造方法である。したがって、本発明で用いるFT反応に供せられる触媒は、上記触媒前駆体からアルカリ性水溶液可溶性成分がアルカリ性水溶液処理によって溶解除去、もしくはその含有量が低減されたものである。この除去ないし含有量が低減されるアルカリ性水溶液可溶性成分としては、担体に担持させたナトリウム化合物、後記するようにルテニウムを担持させるに当たりルテニウム源として塩化ルテニウムを用いた場合のように触媒前駆体に塩素が含まれている場合の塩素等が挙げられる。そして、本発明でFT反応に供せられる触媒は、長時間安定した触媒活性を示し、連鎖成長確率が高く、低級炭化水素のオレフィン選択性に優れたFT反応を長時間安定して円滑に行うことができる、優れた性能の触媒であるが、かかる優れた性能は、上記の担体、担持触媒種とその担持量、比表面積と嵩密度の触媒の構成に関る要件と、一旦触媒前駆体を調製してそれをアルカリ性水溶液処理するという調製操作に関る要件とが相俟って達成されるものである。なお、本発明において、一旦触媒前駆体を調製してそれをアルカリ性水溶液処理するという調製操作に関る要件は、本発明者らが、図らずも、アルカリ性水溶液処理をする前の触媒前駆体をFT反応に供した場合より、アルカリ性水溶液処理をした後の触媒をFT反応に供した場合の方が長時間安定した反応が円滑に行われるという知見によるものであるが、このメカニズムの詳細は定かではない。
【0011】
【発明の実施の形態】
以下に発明を詳細に説明する。
(本発明で用いる触媒の調製工程)
本発明で用いる触媒の調製は、その調製方法の基本操作自体は、従来から知られた担持触媒の一般的調製方法の基本操作に準じて行うことができる。本発明で用いる触媒は、一般に、アルミニウム酸化物およびマンガン酸化物からなる担体に、先ずナトリウム化合物を担持させ、水分を除去した後焼成する。次いでルテニウムを担持させ、水分を除去したあと充分乾燥し、粉砕、分級および必要に応じて平均粒子径を整えて触媒前駆体を得る。この触媒前駆体をアルカリ性水溶液で処理し、乾燥して得られる。以下、触媒前駆体の調製から炭化水素類の製造方法までを順次説明する。
【0012】
(触媒前駆体の調製)
本発明において、触媒前駆体の調製に当たっては、一般に、まず、アルミニウム酸化物およびマンガンの平均荷電数がMn2+を超えるマンガン酸化物からなる担体に、ナトリウム化合物を触媒基準、Na2O換算で0.1〜1.3質量%、担持させ、水分を除去した後乾燥し、しかる後焼成する。次に、該焼成物にルテニウムを触媒基準で0.8〜4.5質量%担持させ、水分を除去した後充分に乾燥し、かくして触媒前駆体を得る。
担体へのナトリウム化合物あるいはルテニウムの担持は、例えば、担体をナトリウム化合物あるいはルテニウム化合物の如き触媒種化合物の溶液中に浸漬して、触媒種化合物を担体上に吸着させたり、イオン交換して付着させたり、アルカリなどの沈殿剤を加えて沈着させたり、溶液を蒸発乾固したり、あるいは触媒種化合物の溶液を担体上へ滴下して行うなど、担体と触媒種化合物の溶液とを接触させて行うことができる。
上記担持に用いるナトリウム化合物としては、ナトリウムの炭酸塩、塩化物、硝酸塩、アンモニア塩等が挙げられ、炭酸塩を好ましく用いることができ。また、ルテニウム化合物としては、従来からルテニウム担持触媒の調製に用いられている各種のルテニウム化合物を適宜選択して用いることができる。その例として、塩化ルテニウム、硝酸ルテニウム、酢酸ルテニウム、塩化六アンモニアルテニウムなどの水溶性ルテニウム塩や、ルテニウムカルボニル、ルテニウムアセチルアセトナートなどの有機溶剤に可溶なルテニウム化合物などが好ましく挙げられ、塩化ルテニウムを好ましく用いることができる。
上記の如く、ナトリウム化合物を担持させた担体、あるいはルテニウム化合物を担持させた焼成物は乾燥されるが、このいずの乾燥も、一般に、常温〜300℃で行う。乾燥時間は触媒量や乾燥機の能力によって異なるため一概に決まらないが、通常10〜48時間保持することにより行うことができる。
また、上記のナトリウム化合物を担持させ、乾燥させた担体の焼成温度は、400〜750℃が好ましく、500〜700℃がより好ましく、550〜650℃が最も好ましい。400℃未満では焼成が不十分となる可能性が生じ、この温度を超えるとシンタリングなどが生ずる可能性が高くなる。焼成時間は0.5時間以上が好ましく、1時間以上がより好ましい。焼成時間の上限は特にないが、生産効率等の観点から72時間程度が実質的な上限と考えられる。
【0013】
このようにして得た触媒前駆体は、一般に、適宜粉砕し、分級して、後記するFT反応に供する触媒に求められる所望の触媒粒子径分布、さらに必要に応じて所望の平均粒子径などを有する粉末状とされる。この粉砕、分級、必要に応じた平均粒子径に整える工程は、アルミナとマンガン酸化物からなる担体を製造する工程の後で行っても良いし、ナトリウム化合物を担持後、焼成する工程を経た後で行っても良いし、ルテニウムを担持、乾燥する工程を経た後で行っても良いし、後記するアルカリ性水溶液処理とそれに続く乾燥工程の後に行っても良く、触媒調製の任意の段階で行うことができるが、一般に、上記のようにアルカリ性水溶液処理前の触媒前駆体について行うことが好ましい。そうすることによって、触媒前駆体からのアルカリ性水溶可溶性成分の溶解除去を一層円滑に行うことができる。
【0014】
本発明の触媒調製で使用する触媒前駆体において、その担体の一つの成分のアルミニウム酸化物としては、得られる触媒が高い連鎖成長率や安定した反応活性を示すために、中性アルミナやアルカリ性アルミナが好ましく用いられる。酸性アルミナを用いた場合は、得られる触媒の連鎖成長確率の低下や反応活性の低下を招く虞がある。担体の他の一つの成分のマンガン酸化物としては、前記の如くマンガンの平均荷電数がMn2+を超えるマンガン酸化物が用いられる。マンガンの平均荷電数がMn2+以下のマンガン酸化物は、例えば米国特許第4206134号明細書に示されているように、ガス状炭化水素(C2〜C4)のオレフィンの生成に適するものであり、本発明が目的とする液状炭化水素類の生産には適さない。マンガンの平均荷電数がMn2+を超えるマンガン酸化物の例としては、MnO2、Mn23、Mn34などが好ましく挙げられる。また、硝酸マンガンのような酸化物以外の塩を出発物質とし、これらから得られたマンガンの平均荷電数がMn2+を超えるマンガン酸化物を用いることもできる。例えば、硝酸マンガンを空気中で焼成して得られるMn23などを好ましく使用できる。担体におけるアルミニウム酸化物とマンガン酸化物の割合は、一般に、アルミニウム酸化物100質量部に対してマンガン酸化物18〜160質量部が適当であり、好ましくは18〜100質量部であり、最も好ましくは20〜45質量部である。マンガン酸化物の割合が18質量部未満では、得られる触媒の連鎖成長率、C5+選択率およびオレフィン/パラフィン比がいずれも低下し、液状炭化水素の生産に適さなくなる虞があり、一方、160質量部を超える場合は、得られる触媒の嵩密度あるいは比表面積が好適な範囲を満たすことができなくなる虞がある。また、この担体の調製は、常法に従って行うことができ、所定割合のアルミニウム酸化物原料とマンガン酸化物原料とを混合、焼成して行うことができる。さらにまた、この担体は、粉末状、顆粒状、打錠成形体、押し出し成形体等の任意の形状であってよい。
【0015】
また、本発明で用いる触媒前駆体においては、ナトリウムの担持量は、前記の如く触媒基準、Na2O換算で0.1〜1.3質量%であるが、好ましくは0.14〜1.20質量%であり、さらに好ましくは0.50〜1.20質量%である。また、ルテニウムの担持量は、前記の如く触媒基準で0.8〜4.5質量%であるが、好ましくは1.5〜4.5質量%、さらに好ましくは2.0〜4.0質量%である。これらの担持量は、後記するアルカリ性水溶液処理後のFT反応に供せられる触媒に求められる担持量を基にして採用された担持量である。
また、ルテニウムを担持させるに当たり、塩化ルテニウム等のルテニウム塩化物をルテニウム源の全てまたは一部に用いた場合には、触媒前駆体中に当該ルテニウム塩化物に起因する塩素が含有され、その塩素含有量は、ルテニウム源として用いたルテニウム塩化物の多寡に比例して増減する。例えば、ルテニウム源として全量塩化ルテニウムを用いてルテニウムを担持させた場合、触媒前駆体の塩素含有量は、上記ルテニウムの担持量の各範囲に対応して示せば、触媒基準、Cl換算で、ルテニウムの担持量が0.8〜4.5質量%の範囲のとき0.8〜4.2質量%、好ましい範囲のとき1.0〜4.0質量%、さらに好ましい範囲のとき2.0〜4.0質量%となる。
なお、触媒前駆体及び後記するアルカリ性水溶液処理後のFT反応に供する触媒の化学組成は、誘導結合プラズマ質量分析法(ICP法)およびイオンクロマトグラフィーによって求めた。
【0016】
本発明においては、前記のとおり、触媒調製の任意の段階で粉砕、分級、必要に応じた平均粒子径に整える工程を行うことができるが、本発明で用いる触媒前駆体の比表面積、嵩密度、粒子径の分布範囲、平均粒子径などは、一般に、後記するアルカリ性水溶液処理後のFT反応に供せられる触媒に求められるそれらと同等であることが、触媒前駆体からのアルカリ性水溶可溶性成分の溶解除去を一層円滑に行う上で好ましい。後記アルカリ性水溶液処理によって触媒前駆体の比表面積、嵩密度、粒子径の分布範囲、平均粒子径などが実質的に変化を受けることはない。
【0017】
(触媒前駆体のアルカリ性水溶液処理)
上記の如くして得られた触媒前駆体をアルカリ性水溶液に漬浸して後処理する。アルカリ性水溶液としては、アンモニア水、苛性ソーダ水、苛性カリ水、炭酸ソーダ水、炭酸カリ水等を適宜選択して用いることができ、アンモニア水を好ましく用いることができる。アルカリ性水溶液中のアルカリの濃度は0.05N〜1.2Nが好ましく、0.05〜0.5Nがより好ましく、0.05〜0.2Nが最も好ましい。0.05N未満では後処理効果が希薄となり安定した触媒活性を長期間保てなくなる、また1.2Nを超えると未反応アルカリ分が多くなり不経済となるほか、洗浄工程に要する時間や水量が多くなるなど産業上の技術的な意味が無くなる。アルカリ性水溶液で後処理したのち、水洗し常温〜120℃で乾燥する。乾燥時間は、触媒の量や乾燥機の能力によって異なるため一概には決まらないが、通常10〜48時間保持することにより乾燥することができる。前記したとおり、このアルカリ性水溶液処理によって、触媒前駆体中のアルカリ性水溶液可溶性成分が溶解除去もしくは低減され、この除去ないし低減されるアルカリ性水溶液可溶性成分として、担体に担持させたナトリウム化合物、塩化ルテニウムを用いてルテニウムを担持させた場合の該塩化ルテニウムに起因する塩素等が挙げられる。ナトリウム化合物および塩素の除去量は、必要に応じて適宜設定することができる。触媒前駆体に含まれるナトリウム量やアルカリ性水溶液の濃度、アルカリの種類によって触媒中のナトリウム量は異なる。一般に、アルカリ性水溶液処理によって、触媒中のナトリウム量は触媒基準、Na2O換算で0.01〜1.10質量%の範囲にすることができる。また、塩素量は触媒基準、Cl換算で0.01〜0.13質量%の範囲にすることができる。また、このアルカリ性水溶液処理によって、ルテニウムの担持量や担体の組成は実質的に変化せず、また、触媒前駆体の比表面積、嵩密度、粒子径の分布範囲、平均粒子径などの物性も実質的に変化しない。かくして本発明で用いる所定の諸物性を有する触媒を得ることができる。
【0018】
(本発明で用いる触媒)
本発明で用いる触媒、すなわちFT反応に供する触媒において、担体は、前記触媒前駆体の調整に用いた前記したとおりのアルミニウム酸化物およびマンガンの平均荷電数がMn2+を超えるマンガン酸化物からなる担体である。
また、ルテニウムの担持量は、アルカリ性水溶液処理後も前記触媒前駆体の担持量が実質的に維持される。すなわち、ルテニウムの担持量は、触媒基準で0.8〜4.5質量%であり、好ましくは1.5〜4.5質量%、さらに好ましくは2.0〜4.0質量%である。ルテニウムの担持量が、上記所定範囲未満では、活性点数が不足となり十分な触媒活性が得られなくなる虞があり、上記所定範囲を超える場合は、触媒活性の向上効果が飽和し、技術的な意義が希薄になる。
また、ナトリウムの担持量(Na2O換算)は、前記の通り、アルカリ性水溶液処理によって、触媒基準で0.01〜1.10質量%の範囲にすることができる。FT反応に供する触媒におけるナトリウムの担持量は、一般に、触媒基準で0.01〜1.10質量%であり、好ましくは0.01〜0.07質量%、さらに好ましくは0.02〜0.07質量%である。
さらにまた、触媒前駆体が塩素を含有する場合は、この塩素も、前記のとおりアルカリ性水溶液処理によって適宜低減することができる。触媒前駆体に含まれる塩素量やアルカリ性水溶液の濃度、アルカリの種類によって、触媒中の塩素量は異なる。一般に、アルカリ性水溶液処理によって、触媒中の塩素量は触媒基準、Cl換算で0.01〜0.13質量%の範囲にすることができる。例えば、ルテニウム源として全量塩化ルテニウムを用いて触媒前駆体にルテニウムを担持させた場合、FT反応に供する触媒における塩素含有量は、一般に、触媒基準、Cl換算で0.01〜0.13質量%であり、好ましくは0.02〜0.10質量%、さらに好ましくは0.05〜0.08質量%である。
ナトリウムの含有量が上記所定範囲を逸脱して少ない、あるいは多い場合、および塩素の含有量が上記所定範囲を逸脱して多い場合は、所望の改善効果が得られ難くなる。
【0019】
また、本発明で用いる触媒の比表面積は、90〜180m2/gであり、好ましくは100〜180m2/g、さらに好ましくは130〜180m2/gである。比表面積が90m2/g未満では、ルテニウムの分散性が低下する虞があり好ましくない。また、比表面積の上限に関しては、一般に固体触媒を扱うに当たっては、広いほど気液固の接触頻度が高まるため好ましい。しかし、本発明で用いるアルミニウム酸化物およびマンガン酸化物からなる担体単独の比表面積の現実的な上限値は250〜300m2/g程度であることを考えると、これにルテニウム化合物を担持した触媒のそれは最大200m2/g程度と考えられる。なお、触媒の比表面積は、高純度窒素をプローブとしBET法(Braunauer-Emett-Tailor 法)で求めた。
【0020】
また、本発明で用いる触媒の嵩密度は、0.80〜1.70g/mlであり、好ましくは0.80〜1.60g/ml、さらに好ましくは0.80〜1.30g/mlである。嵩密度が1.8g/mlを超える場合は、触媒重量あたりのC5+生産性が低くなる可能性が出てくる。
【0021】
また、本発明で用いる触媒は、その触媒粒子径の分布範囲が10〜220μmであることが好ましく、20〜200μmであることがさらに好ましく、20〜180μmであることがなおさらに好ましい。本発明では、触媒は液状炭化水素類中に分散させて分散状態で使用されるため、その粒子径分布を考慮することが望ましい。5μm未満のような細かい粒子は、フィルター等を通過して下流側に溢出して、反応容器内の触媒濃度が減少したり、下流側機器が触媒微粒子によって不具合が発生する可能性が高くなる。また、200μmを超えるような大きい粒子は、反応容器全体にわたって液状炭化水素類中に均一に分散させることが難しくなったり、触媒を分散したスラリーが不均一となったりして、反応活性が低下する可能性が高くなる。
【0022】
粒子径分布が上記10〜220μmの範囲内でも、液状炭化水素類中に分散させたとき、分散に偏りが生じる場合がある。かかる場合には、触媒粒子を液状炭化水素類中に偏りを生じることなく均一に分散させるために、平均粒子径をも考慮することが望ましい。本発明で用いる触媒の平均粒子径は、40〜150μmが好ましく、40〜80μmがさらに好ましく、40〜70μmがなおさらに好ましい。平均粒子径が、上記40〜150μmの範囲の上下限を外れた場合には、触媒粒子の液状炭化水素類中への分散が不均一となり、反応活性が低下する場合がある。
【0023】
(炭化水素類の製造方法)
本発明の炭化水素類の製造方法においては、上記の如くして調製された触媒は、FT反応に供する前に予め還元処理(活性化処理)される。この還元処理により、触媒がFT反応において所望の触媒活性を示すように活性化される。この還元処理を行わなかった場合には、担体上に担持されたルテニウム種が十分に還元されず、FT反応において所望の触媒活性を示さない。この還元処理は、触媒を液状炭化水素類に分散させたスラリー状態で還元性ガスと接触させる方法(分散媒中での還元)でも、炭化水素類を用いず単に触媒に還元性ガスを通気、接触させる方法(分散媒を用いない還元)でも好ましく行うことができる。前者の方法における触媒を分散させる液状炭化水素類としては、処理条件下において液状のものであれば、オレフィン類、アルカン類、脂環式炭化水素、芳香族炭化水素を始めとする種々の炭化水素類を使用できる。また、含酸素、含窒素等のヘテロ元素を含む炭化水素であっても良い。これらの炭化水素類の炭素数は、処理条件下において液状のものであれば特に制限する必要はないが、一般にC6〜C40のものが好ましく、C9〜C40のものがより好ましく、C9〜C35のものが最も好ましい。C6の炭化水素類より軽質なものでは溶媒の蒸気圧が高くなり、処理条件幅が制限されるようになる。また、C40の炭化水素類より重質のものでは還元性ガスの溶解度が低下して、十分な還元処理ができなくなる懸念がある。また、炭化水素類中に分散させる触媒量は、1〜40質量%の濃度が適当あり、好ましくは5〜30質量%、より好ましくは10〜30質量%の濃度である。触媒量が1質量%未満では、触媒の還元効率が低下する可能性がある。触媒の還元効率の低下を防ぐ方法として、還元性ガスの通気量を減少させる方法があるが、還元性ガスの通気量を低下させると気(還元性ガス)−液(溶媒)−固(触媒)の分散が損なわれるため好ましくない。一方、触媒量が40質量%を超えて多量の場合は、炭化水素類に触媒を分散させたスラリーの粘性が高くなり過ぎ、気泡分散が悪くなり、触媒の還元が十分なされなくなる虞もあるため好ましくない。還元処理温度は、130〜230℃が好ましく、150〜230℃がより好ましく、160〜220℃が最も好適である。130℃未満では、ルテニウムが十分に還元されず、十分な反応活性が得られない。また、230℃を超えると、担体のマンガン酸化物などの相転位、酸化状態の変化等が進行してルテニウムとの複合体を形成したり、これによって触媒がシンタリング(sintering) して、活性低下を招く可能性が高くなる。この還元処理には、水素を主成分とする還元性ガスを好ましく用いることができる。用いる還元性ガスには、水素以外の成分、例えば水蒸気、窒素、希ガス、メタン、エタンなどの炭化水素などを、還元を妨げない範囲である程度の量を含んでいても良い。この還元処理は、上記処理温度と共に、水素分圧および処理時間にも影響されるが、水素分圧は、0.7〜6MPaが好ましく、1〜5MPaがより好ましく、1〜3MPaが最も好ましい。還元処理時間は、触媒量、水素通気量等によっても異なるが、一般に、0.1〜50時間が好ましく、1〜48時間がより好ましく、4〜48時間が最も好ましい。処理時間が0.1時間未満では、触媒の活性化が不十分となる。また、50時間を超える長時間還元処理しても、触媒に与える悪影響は無い。しかし、触媒性能の向上が期待できない可能性を含むため処理コストが嵩むなど好ましくない。
【0024】
上記の如く還元処理した触媒がFT反応、すなわち炭化水素類の合成反応に供せられる。本発明におけるFT反応は、触媒を液状炭化水素類中に分散せしめた分散状態となし、この分散状態の触媒に合成ガスを接触させる。この際、触媒を分散させる炭化水素類としては、上記の予め行う還元処理で用いられる炭化水素類と同様のものを用いることができる。すなわち、反応条件下において液状のものであれば、オレフィン類、アルカン類、脂環式炭化水素、芳香族炭化水素を始めとする種々の炭化水素類、含酸素、含窒素等のヘテロ元素を含む炭化水素等を用いることができ、その炭素数は特に制限する必要はないが、一般にC6〜C40のものが好ましく、C9〜C40のものがより好ましく、C9〜C35のものが最も好ましい。C6の炭化水素類より軽質なものでは溶媒の蒸気圧が高くなり、反応条件幅が制限されるようになる。また、C40の炭化水素類より重質のものでは原料の合成ガスの溶解度が低下して、反応活性が低下する懸念がある。上記の予め行う還元処理において、触媒を液状炭化水素類に分散させて行う方法が採用されている場合は、該還元処理で用いられた液状炭化水素類をそのままこのFT反応において用いることができる。炭化水素類中に分散させる触媒量は、1〜40質量%の濃度が適当あり、好ましくは5〜30質量%、より好ましくは10〜30質量%の濃度である。触媒量が1質量%未満では活性が低下する。活性の低下を防ぐ方法として、合成ガスの通気量を減少させる方法があるが、合成ガスの通気量を低下させると気(合成ガス)−液(溶媒)−固(触媒)の分散が損なわれるため好ましくない。一方、触媒量が50質量%を超えて多量の場合は、炭化水素類に触媒を分散させたスラリーの粘性が高くなりすぎ、気泡分散が悪くなり、反応活性が十分得られなくなるため好ましくない。
【0025】
FT反応に用いる合成ガスは、水素および一酸化炭素を主成分としていれば良く、反応を妨げない物質が混入されていても差し支えない。FT反応の速度(k)は、水素分圧に約一次で依存するので、水素および一酸化炭素の分圧比(H2/COモル比)が0.5以上であることが望まれる。この反応は、体積減少を伴う反応であるため、水素および一酸化炭素の分圧の合計値が高いほど好ましい。水素および一酸化炭素の分圧比は、その上限は特に制限されないが、現実的なこの分圧比の範囲としては0.5〜2.5が適当であり、好ましくは0.8〜2.5、より好ましくは1〜2.3である。この分圧比が0.5未満では、生成する炭化水素類の収量が低下し、また、この分圧比が2.7を超えると生成する炭化水素類において軽質分が増える傾向が見られる。水素および一酸化炭素の分圧の合計値は、1〜10MPaが好ましく、1〜4MPaがより好ましく、1〜3MPaが最も好ましい。1MPa未満では、FT反応の速度が不十分となりガソリン分、灯軽油分、ワックス分などの収率が低下する傾向が見られるため好ましくない。平衡上は、水素および一酸化炭素の分圧が高いほど有利になるが、該分圧が高まるほどプラント建設コスト等が高まったり、圧縮に必要な圧縮機などの大型化により運転コストが上昇するなどの産業上の観点から該分圧の上限は規制される。
【0026】
このFT反応においては、一般に、合成ガスのH2/COモル比が同一であれば、反応温度が低いほど連鎖成長が進み、かつオレフィン選択性が高くなるが、CO転化率は低くなる。逆に、反応温度が高くなれば、連鎖成長、オレフィン選択性は低くなるが、CO転化率は高くなる。また、H2/CO比が高くなれば、CO転化率が高くなり、連鎖成長、オレフィン選択性は低下し、H2/CO比が低くなれば、その逆となる。これらのファクターが反応に及ぼす効果は、用いる触媒の種類等によってその大小が異なるが、本発明においては、反応温度は200〜300℃が好ましく、210〜290℃がより好ましく、240〜290℃が最も好ましい。
【0027】
以上述べた本発明の炭化水素類の製造方法に従って、水素および一酸化炭素を主成分とする混合ガスから炭化水素類を合成すれば、触媒の再生や補充をすることなく数千時間を超える長時間にわたってCO転化率がワンパス(once through conversion) で約60%以上、連鎖成長確率(α)が0.89〜0.95、低級炭化水素中のオレフィン/パラフィン比が、例えばC3炭化水素では3〜5、C5+の生産性が250〜850g/kg/hrをたもつ。このように本発明の炭化水素類の製造方法においては、安定してプラントを操業することができる。
なお、CO転化率、連鎖成長確率(α)およびC5+の生産性は下記式で定義されるものである。
〔CO転化率〕
【0028】
【数1】

Figure 2004196874
【0029】
〔連鎖成長確率(α)〕
炭素数nの炭化水素の生成物中の質量分率をMn、連鎖成長確率をαとした場合、シュルツ・フローリー分布に従うと、下式のような関係が成り立つ。従って、log(Mn/n)とnをプロットしたときの傾きlog αからα値を知ることができる。
【0030】
log(Mn/n)=log((1−α)2/α)+n・logα
【0031】
〔C5+の生産性〕
5+の生産性とは、触媒重量当たりの単位時間におけるC5+の生成量を指し、下式で定義される。
5+生産性=C5+生産量[g]/触媒重量[kg]/[hr]
【0032】
【実施例】
以下、実施例および比較例によりさらに具体的に本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
なお、以下の実施例において、COおよびCH4の分析には、Active Carbon (60/80mesh) を分離カラムに用い熱伝導度型ガスクロマトグラフ(TCD-GC)で行った。なお、Arを内部標準として10vol%添加した合成ガスを用いた。なお、COおよびCH4の同定(定性分析)は、COおよびCH4の標準ガスが示すピーク位置(保持時間)と比較し、定量(定量分析)はCOおよびCH4のピーク面積とArのピーク面積を比較した(内部標準法)。C1〜C6炭化水素類の分析には、Capillary Column(Al23/KCl PLOT)を分離カラムに用い水素炎イオン化検出型ガスクロマトグラフ(FID-GC)を用い、TCD−GCおよびFID-GCで共通に検出できるC1(メタン)と比較して該炭化水素類の定性、定量を行った。さらに、C5〜C40炭化水素類の分析にはCapillary Column(TC-1)を備えたFID−GCを用い、軽質炭化水素(C1〜C6)と共通に分析できるC5およびC6と比較して該炭化水素類の定性、定量を行った。触媒(担体を含む)比表面積の測定は自動表面積測定装置(ベルソープ28、日本ベル製)を用い窒素をプローブ分子に用いてBET法で測定した。触媒の化学成分の同定はICP(CQM-10000P、島津製作所製)により、粒度分布はレーザー光散乱法による粒度測定装置(Mastersizer MSX-46型、マルバーン製)により、マンガン酸化物の構造はX線回析(RINT2500、理想電機工業製)で求めた。
【0033】
実施例1
予め充分乾燥したアルミナ粉末(Pural SB, 比表面積250m2/g、Condea製)に純水(以下水と略記)を滴下し、飽和吸水量を求めた。この時の飽和吸水量は0.9ml/gだった。水27mlに硝酸マンガン6水和物168gを溶解した水溶液を酸化アルミニウム30gに含浸させ、約4時間放置した後、空気中、温度110℃で乾燥し、マッフル炉にて空気中600℃で3時間焼成した。得られたアルミニウム酸化物とマンガン酸化物からなる担体に水27gに炭酸ナトリウム(Na Assay 43.2質量%)0.2gを溶解した水溶液を含浸した。これを、空気中、温度110℃で乾燥し、マッフル炉にて温度600℃で3時間焼成した。その後、アルミニウム酸化物およびマンガン酸化物からなる担体にナトリウムを含浸した担体に、水27gに塩化ルテニウム(Ru Assay 36質量%)2.2gを溶解した水溶液を含浸し、1時間放置した後、空気中、温度50℃で乾燥した。これをメノウ乳鉢に移して粉砕し、粒子分布10〜200μmに篩分けし平均粒子径150μm、Ru換算で1質量%、Na2O換算で0.14質量%、Mn2O3換算で59.3質量%、残部アルミナを含む触媒前駆体Aを得た。触媒前駆体Aに300mlの0.1N-アンモニア水を25℃で加え、マグネティックスターラーで約100r.p.m.で1時間攪拌しアルカリ性水溶液処理した後、300mlの水を加え洗浄し触媒を濾別し濾液pHが9.00〜10.00の所定範囲になるまで、この操作を繰り返した。繰返し回数は3回で濾液pHが所定範囲に到達した。水洗後、これを空気中50℃で24時間乾燥し触媒Aを得た。触媒Aの粒子分布、平均細孔径は触媒前駆体Aとほぼ同一であった。触媒Aの嵩密度は1.52g/ml、比表面積は100m2/gであった。X線回析にて構造分析を行った結果、酸化マンガンはMn23であり、平均荷電数Mn3+であった。また、ICPおよびイオンクロマトグラフを用いて組成分析を行った結果、Ru換算で1質量%、Na2O換算で0.02質量%、Mn2359.9質量%、塩素0.02質量%、残部アルミニウム酸化物(アルミニウム酸化物100質量部:マンガン酸化物154質量部)であった。触媒A0.3gを分散媒のノルマルヘキサデカン(n−C1634、以下溶媒という)30ml(スラリー濃度1g/100ml)と共に内容積100mlの反応器に充填し、水素分圧1MPa・G、温度140℃、流量100ml/min(STP:standard temperature and pressure)で水素を触媒Aに接触させて1時間還元した。還元後、ヘリウムガスで置換し、温度を100℃、圧力を常圧にした。その後、アルゴン10vol.%、一酸化炭素56.3vol.%、残り水素の混合ガス(H2/CO比 0.6、以下合成ガスという)に切り換え、温度210℃、水素および一酸化炭素の分圧合計圧力(以下H2+CO圧力という)10MPa・GにてFT反応を行った。合成ガスの通気量は、ワンパスCO転化率(以下転化率という)60%付近となるように調節した。反応開始100時間後、CO転化率61%を示したときのW/F(weight/flow[g・hr/mol])18.3g・hr/molであった。この時の連鎖成長確率は0.92、C5+選択率は92%、C3中のオレフィン/パラフィン比は4.1、およびC5+生産性は270g/kg/hrであった。反応開始1000時間後、CO転化率58%を示した時のW/Fは18.3g・hr/molであった。この時の連鎖成長確率は0.92、C5+選択率は92%、C3中のオレフィン/パラフィン比は4.3、およびC5+生産性は260g/kg/hrであった。
【0034】
実施例2
実施例1と同じ調製手法にて、アルミナ粉末30gに硝酸マンガン113gを、次いで、炭酸ナトリウム0.3gを、次いで塩化ルテニウム2.6gを含浸させ、粉砕および篩い分けして粒子分布20〜200μm、平均粒子径80μm、Ru換算で1.5質量%、Na2O換算で0.28質量%、Mn2349.2質量%、残部アルミナを含む触媒前駆体Bを得た。これに300mlの1.0-Nアンモニア水を加えてアルカリ性水溶液処理し、水洗、乾燥後、嵩密度1.30g/mlおよび比表面積140m2/gの物性を有し、Ru換算で1.5質量%、Na2O換算で0.05質量%、Cl換算で0.04質量%、Mn2350質量%、残りアルミニウム酸化物(アルミニウム酸化物100質量部:マンガン酸化物103質量部)からなる触媒Bを得た。触媒B1.7gを溶媒30ml(スラリー濃度5g/100ml)と共に反応器に充填し、水素分圧5MPa・G、温度220℃、流量100ml/min(STP)で水素を触媒Bに接触させて6時間還元した。還元後、ヘリウムガスで置換し、温度を100℃、圧力を常圧にした。その後、アルゴン10vol.%、一酸化炭素50vol.%、残り水素の合成ガス(H2/CO比 0.8)に切り換え、温度230℃、H2+CO圧力1MPa・Gの条件でFT反応を行った。反応開始100時間後、CO転化率60%を示した時の合成ガスの通気量は、W/F10.7g・hr/molであった。この時の連鎖成長確率は0.92、C5+選択率は90%、C3中のオレフィン/パラフィン比は4.2、およびC5+生産性は390g/kg/hrであった。反応開始1000時間後CO転化率61%を示したときのW/Fは10.7g・hr/molであった。この時の連鎖成長確率は0.92、C5+選択率は90%、C3中のオレフィン/パラフィン比は4.0、およびC5+生産性は395g/kg/hrであった。
【0035】
実施例3
実施例1と同じ調製手法にて、アルミナ粉末30gに硝酸マンガン49.5gを、次いで、炭酸ナトリウム0.52gを、次いで塩化ルテニウム2.5gを含浸させ、粉砕および篩い分けして粒子分布20〜180μm、平均粒子径60μm、Ru換算で2質量%、Na2O換算で0.66質量%、Mn23 29.8質量%、残部アルミナを含む触媒前駆体Cを得た。これに300mlの0.5-Nアンモニア水を加えてアルカリ性水溶液処理し、水洗、乾燥後、嵩密度0.80g/mlおよび比表面積160m2/gの物性を有し、Ru換算で2.0質量%、Na2O換算で0.07質量%、Cl換算で0.06質量%、Mn2330.4質量%、残りアルミニウム酸化物(アルミニウム酸化物100質量部:マンガン酸化物45.4質量部)からなる触媒Cを得た。触媒C3.3gを溶媒30ml(スラリー濃度10g/100ml)と共に反応器に充填し、水素分圧2MPa・G、温度170℃、流量100ml/min(STP)で水素を触媒Cに接触させて24時間還元した。還元後、ヘリウムガスで置換し、温度を100℃、圧力を常圧にした。その後、アルゴン10vol.%、一酸化炭素45vol.%、残り水素の合成ガス(H2/CO比 1.0)に切り換え、温度240℃、H2+CO圧力4MPa・Gの条件でFT反応を行った。反応開始100時間後、CO転化率59%を示した時の合成ガスの通気量は、W/F4.6g・hr/molであった。FT反応を行った結果、連鎖成長確率は0.91、C5+選択率は86%、C3中のオレフィン/パラフィン比は4.0、およびC5+生産性は730g/kg/hrであった。反応開始1000時間後CO転化率62%を示したときのW/Fは4.6g・hr/molであった。この時の連鎖成長確率は0.91、C5+選択率は86%、C3中のオレフィン/パラフィン比は4.0およびC5+生産性は770g/kg/hrであった。
【0036】
実施例4
実施例1と同じ調製手法にて、アルミナ粉末30gに硝酸マンガン39gを、次いで、炭酸ナトリウム0.9gを、次いで塩化ルテニウム3.6gを含浸させ、粉砕および篩い分けして粒子分布20〜180μm、平均粒子径50μm,Ru換算で3質量%、Na2O換算で1.19質量%、Mn23 24.4質量%、残部アルミナを含む触媒前駆体Dを得た。これに300mlの0.1-Nアンモニア水を加えてアルカリ性水溶液処理し、水洗、乾燥後、嵩密度1.10g/mlおよび比表面積165m2/gの物性を有し、Ru換算で3.0質量%、Na2O換算で0.03質量%、Cl換算で0.07質量%、Mn2325.2質量%、残りアルミニウム酸化物(アルミニウム酸化物100質量部:マンガン酸化物35.8質量部)からなる触媒Dを得た。触媒D9.0gを溶媒30ml(スラリー濃度30g/100ml)と共に反応器に充填し、水素分圧2MPa・G、温度170℃、流量100ml/min(STP)で水素を触媒Dに接触させて12時間還元した。還元後、ヘリウムガスで置換し、温度を100℃、圧力を常圧にした。その後、アルゴン10vol.%、一酸化炭素30vol.%、残り水素の合成ガス(H2/CO比 2.0)に切り換え、温度270℃、H2+CO圧力2MPa・Gの条件でFT反応を行った。反応開始100時間後、CO転化率60%を示したときの合成ガスの通気量は、W/F4.7g・hr/molであった。FT反応を行った結果、連鎖成長確率は0.90、C5+選択率は85%、C3中のオレフィン/パラフィン比は4.2、およびC5+生産性は500g/kg/hrであった。反応開始1000時間後CO転化率60%を示したときのW/Fは4.7g・hr/molであった。この時の連鎖成長確率は0.90、C5+選択率は85%、C3中のオレフィン/パラフィン比は4.0およびC5+生産性は500g/kg/hrであった。
【0037】
実施例5
実施例1と同じ調製手法にて、アルミナ粉末30gに硝酸マンガン30gを、次いで、炭酸ナトリウム0.84gを、次いで塩化ルテニウム4.5gを含浸させ、粉砕および篩い分けして粒子分布20〜125μm、平均粒子径40μm、Ru換算で4質量%,Na2O換算で1.19質量%、Mn23 19.6質量%、残部アルミナを含む触媒前駆体Eを得た。これに300mlの0.2-Nアンモニア水を加えてアルカリ性水溶液処理し、水洗、乾燥後、嵩密度1.20g/mlおよび比表面積170m2/gの物性を有し、Ru換算で4.0質量%、Na2O換算で1.0質量%、Cl換算で0.1質量%、Mn2320.5質量%、残りアルミニウム酸化物(アルミニウム酸化物100質量部:マンガン酸化物27.5質量部)からなる触媒Eを得た。触媒E12.0gを溶媒30ml(スラリー濃度40g/100ml)と共に反応器に充填し、水素分圧2MPa・G、温度170℃、流量100ml/min(STP)で水素を触媒Eに接触させて48時間還元した。還元後、ヘリウムガスで置換し、温度を100℃、圧力を常圧にした。その後、アルゴン10vol.%、一酸化炭素30vol.%、残り水素の合成ガス(H2/CO比 2.0)に切り換え、温度290℃、H2+CO圧力2MPa・Gの条件でFT反応を行った。反応開始100時間後、CO転化率61%を示したときの合成ガスの通気量は、W/F2.8g・hr/molであった。FT反応を行った結果、連鎖成長確率は0.90、C5+選択率は82%、C3中のオレフィン/パラフィン比は3.8、およびC5+生産性は830g/kg/hrであった。反応開始1000時間後CO転化率62%を示したW/Fは2.8g・hr/molであった。この時の連鎖成長確率は0.90、C5+選択率は82%、C3中のオレフィン/パラフィン比は3.8およびC5+生産性は840g/kg/hrであった。
上記実施例1〜5の実験条件を含めて実験結果を表にして表1に示す。
【0038】
【表1】
Figure 2004196874
【0039】
【発明の効果】
本発明によれば、長時間安定した触媒活性を示し、連鎖成長確率が高く、低級炭化水素のオレフィン選択性に優れたFT反応を長時間安定して円滑に行うことができ、液状炭化水素類を効率的に製造できる炭化水素類の製造方法が提供される。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing hydrocarbons from a mixed gas containing hydrogen and carbon monoxide as main components (hereinafter referred to as “synthesis gas”). More specifically, the synthesis gas is contacted with a catalyst in which sodium and ruthenium are supported on a carrier composed of aluminum oxide and manganese oxide dispersed in liquid hydrocarbons, and the hydrocarbons, especially kerosene oil fraction The present invention relates to a process for producing hydrocarbons rich in olefins together with waxes which can be easily converted into olefins.
[0002]
[Prior art]
As a method for synthesizing hydrocarbons from synthesis gas, a Fischer-Tropsch reaction, a methanol synthesis reaction, and the like are well known. It is known that the Fischer-Tropsch reaction proceeds with an iron-, cobalt-, and ruthenium-based catalyst (for example, see Non-Patent Document 1).
[0003]
By the way, in recent years, light oil with low sulfur content has been desired from the viewpoint of atmospheric environment protection, and it is considered that the tendency will be further strengthened in the future. In addition, from the viewpoint that crude oil resources are limited, the development of alternative energy sources is desired, and it is thought that it will be more and more desired in the future. As a technology to meet these demands, a technology for synthesizing liquid fuels such as kerosene gas oil from natural gas (main component methane), which is said to have the ultimate reserve equivalent to coal in energy conversion (for example, see Non-Patent Document 2). There is a so-called GTL (gas to liquid). Natural gas contains no hydrogen or hydrogen sulfide (H Two S) or mercaptan (CH Three SH) and the like, the resulting liquid fuel such as kerosene light oil has the advantage that it has almost no sulfur content and can be used for high-performance diesel fuel with a high cetane number. It is getting more and more attention.
[0004]
As a major technology of the GTL, a method of producing hydrocarbons from a synthesis gas by a Fischer-Tropsch reaction (hereinafter, referred to as an "FT reaction") (hereinafter, referred to as an "FT method") has been actively studied. Generally, it is said that the carbon number distribution of hydrocarbon products in the FT reaction follows the Shultz-Flory rule. In order to efficiently synthesize a kerosene light oil fraction, a catalyst exhibiting a stable activity for a long time, a catalyst having a high chain growth probability, and a catalyst having a high activity are required. If the catalyst activity is insufficient, it can be compensated by process design (reactor design, etc.), but the stability and chain growth probability of the catalyst tend to depend on the characteristics of the catalyst itself. Development of a catalyst with a high and high chain growth probability is a technical issue. The higher the probability of chain growth is, the better. However, if the probability is too high, the wax content in the product increases, and the process operation may be complicated. The practical upper limit is considered to be about 0.95.
[0005]
In order to increase the yield of the kerosene gas oil fraction, it is effective to hydrocrack the wax component generated by the FT reaction and convert it to a kerosene gas oil fraction. In order to increase the content, it is necessary to consider generation of a lower olefin during the FT reaction and generation of the fraction by dimerization, trimerization, or the like. It is thought that this further improvement in the yield of the kerosene gas oil fraction can be achieved by performing an FT reaction having a high chain growth probability and excellent olefin selectivity in the produced lower hydrocarbon.
However, at present, it is possible to carry out an FT reaction which shows stable catalytic activity for a long time, has a high chain growth probability, and has excellent olefin selectivity, and can achieve a further improvement in the kerosene oil fraction yield. Catalysts and processes have not yet been proposed. Conventionally, various FT reaction catalysts have been proposed. As a catalyst for high selectivity to olefins, a catalyst in which ruthenium is supported on a manganese oxide carrier, and a third catalyst is further added to this ruthenium-supported catalyst. Ruthenium-based catalysts such as a catalyst to which a component is added have been proposed (for example, see Patent Documents 1 and 2). However, in the FT method using these ruthenium-based catalysts, it is not possible to sufficiently achieve the above-mentioned kerosene oil fraction yield. That is, the ruthenium-based catalyst is a catalyst developed mainly for use in a fixed-bed catalyst. In the fixed-bed FT method using the ruthenium-based catalyst, the chain growth probability of the ruthenium-based catalyst is also low. On the other hand, in the fixed-bed type reaction system, when a large amount of wax is generated, the generated wax adheres to and covers the active site of the catalyst, and the activity of the catalyst is reduced. However, there is a problem that a problem such as generation of a heat spot where a local portion is overheated easily occurs, and the reaction cannot be performed stably and smoothly.
[0006]
[Non-patent document 1]
"C 1 Chemistry ", edited by the Catalysis Society of Japan, Kodansha
[Non-patent document 2]
S. Hamakawa, Materials Integration, Vol. 12, p12 (1999)
[Patent Document 1]
Japanese Patent Publication No. 3-70691
[Patent Document 2]
Japanese Patent Publication No. 3-70692
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a long-term stable catalytic activity, a high chain growth probability, and an FT reaction excellent in olefin selectivity for lower hydrocarbons, which can be performed stably and smoothly for a long time. Another object of the present invention is to provide an FT process capable of efficiently producing a kerosene gas oil fraction by increasing the production of a kerosene gas oil fraction by hydrocracking the produced wax, dimerizing and trimerizing the produced olefin. An object of the present invention is to provide an FT method that has a high possibility of making a greater contribution than the above.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, after supporting a fixed amount of a sodium compound and ruthenium on a support made of aluminum oxide and a certain manganese oxide as a catalyst, treated with an alkaline aqueous solution. The inventors have found that the above object can be achieved by using a catalyst having a relatively large constant specific surface area and a relatively small constant bulk density, and completed the present invention.
[0009]
That is, according to the present invention, in order to achieve the above object, the average charge number of aluminum oxide and manganese is Mn. 2+ Manganese oxides on a carrier, sodium compound as catalyst standard, Na Two A catalyst obtained by treating an alkaline aqueous solution with a catalyst precursor loaded with 0.1 to 1.3% by mass in terms of O and further loaded with 0.8 to 4.5% by mass of ruthenium on a catalyst basis with an alkaline aqueous solution. , Specific surface area is 90 ~ 180m Two / G, a catalyst having a bulk density of 1.00 to 1.70 g / ml is subjected to a reduction treatment in advance, and then dispersed in liquid hydrocarbons at a concentration of 1 to 40% by mass. And a method for producing hydrocarbons in which a mixed gas containing carbon monoxide as a main component is brought into contact at a pressure of 1 to 10 MPa and a reaction temperature of 200 to 300 ° C.
[0010]
In the present invention, a catalyst carrier is obtained by supporting a predetermined amount of a sodium compound and ruthenium on a predetermined carrier as described above, and the catalyst precursor is treated with an alkaline aqueous solution (however, as described above, This is a method for producing hydrocarbons in which FT reaction is performed using a catalyst having a specific surface area and a bulk density as a catalyst (however, after a reduction treatment is performed in advance as described above). Therefore, the catalyst used for the FT reaction used in the present invention is one obtained by dissolving or removing the alkaline aqueous solution-soluble component from the catalyst precursor by the alkaline aqueous solution treatment or reducing the content thereof. The alkaline aqueous solution-soluble component whose removal or content is reduced includes a sodium compound supported on a carrier, and chlorine as a catalyst precursor as in the case of using ruthenium chloride as a ruthenium source for supporting ruthenium as described later. And the like when chlorine is contained. The catalyst used for the FT reaction in the present invention exhibits stable catalytic activity for a long time, has a high chain growth probability, and performs the FT reaction excellent in olefin selectivity of lower hydrocarbons stably for a long time. It can be a catalyst with excellent performance, but such excellent performance, the above-mentioned carrier, the supported catalyst species and the amount supported, the requirements relating to the configuration of the specific surface area and bulk density of the catalyst, once the catalyst precursor And the requirements for the preparation operation of treating it with an alkaline aqueous solution. In the present invention, the requirements relating to the preparation operation of once preparing a catalyst precursor and treating it with an alkaline aqueous solution are as follows: This is based on the finding that a stable reaction can be performed smoothly for a long time when the catalyst after the treatment with the alkaline aqueous solution is subjected to the FT reaction than when the catalyst is subjected to the FT reaction. is not.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
(Preparation step of catalyst used in the present invention)
The preparation of the catalyst used in the present invention can be performed according to the basic operation itself of a conventionally known general method for preparing a supported catalyst. In general, the catalyst used in the present invention is prepared by first supporting a sodium compound on a support made of an aluminum oxide and a manganese oxide, removing water, and then calcining. Next, ruthenium is supported, water is removed and dried sufficiently, and pulverization, classification and, if necessary, adjustment of the average particle size are performed to obtain a catalyst precursor. This catalyst precursor is obtained by treating with an alkaline aqueous solution and drying. Hereinafter, the steps from the preparation of the catalyst precursor to the method for producing hydrocarbons will be sequentially described.
[0012]
(Preparation of catalyst precursor)
In the present invention, in preparing the catalyst precursor, generally, first, the average charge number of aluminum oxide and manganese is Mn. 2+ Manganese oxides on a carrier, sodium compound as catalyst standard, Na Two 0.1 to 1.3% by mass in terms of O is carried, dried after removing moisture, and then calcined. Next, ruthenium is supported on the calcined product in an amount of 0.8 to 4.5% by mass based on the catalyst, and after removing water, it is sufficiently dried to obtain a catalyst precursor.
The support of the sodium compound or ruthenium on the carrier is carried out, for example, by immersing the carrier in a solution of a catalyst species compound such as a sodium compound or ruthenium compound, to adsorb the catalyst species compound on the carrier, or to attach the catalyst species compound by ion exchange. Or by adding a precipitant such as an alkali to deposit the solution, evaporating the solution to dryness, or dropping the solution of the catalyst seed compound onto the carrier, and bringing the carrier into contact with the solution of the catalyst seed compound. It can be carried out.
Examples of the sodium compound used for the above support include sodium carbonate, chloride, nitrate, and ammonium salt, and a carbonate can be preferably used. As the ruthenium compound, various ruthenium compounds conventionally used for preparing a ruthenium-supported catalyst can be appropriately selected and used. Preferred examples thereof include ruthenium chloride, ruthenium nitrate, ruthenium acetate, water-soluble ruthenium salts such as ruthenium hexaammonium chloride, and ruthenium compounds soluble in organic solvents such as ruthenium carbonyl and ruthenium acetylacetonate. Can be preferably used.
As described above, the carrier supporting the sodium compound or the calcined product supporting the ruthenium compound is dried, and this drying is generally performed at room temperature to 300 ° C. The drying time varies depending on the amount of the catalyst and the capacity of the dryer, and thus cannot be unconditionally determined. However, the drying can be usually carried out by holding for 10 to 48 hours.
Further, the calcination temperature of the carrier on which the sodium compound is supported and dried is preferably 400 to 750 ° C, more preferably 500 to 700 ° C, and most preferably 550 to 650 ° C. If the temperature is lower than 400 ° C., the firing may be insufficient. If the temperature is higher than this temperature, the possibility of sintering or the like may increase. The firing time is preferably 0.5 hours or more, more preferably 1 hour or more. Although there is no particular upper limit for the firing time, about 72 hours is considered to be a substantial upper limit from the viewpoint of production efficiency and the like.
[0013]
In general, the catalyst precursor obtained in this manner is appropriately pulverized and classified, and a desired catalyst particle size distribution required for a catalyst to be subjected to an FT reaction described later, and further, if necessary, a desired average particle size are determined. Powder. The pulverization, classification, and, if necessary, the step of adjusting to an average particle diameter may be performed after the step of producing a carrier composed of alumina and manganese oxide, or after carrying a sodium compound, and after the step of firing. May be carried out, or may be carried out after a step of supporting and drying ruthenium, or may be carried out after an alkaline aqueous solution treatment to be described later and a subsequent drying step, and may be carried out at any stage of catalyst preparation. However, it is generally preferable to carry out the reaction on the catalyst precursor before the treatment with the alkaline aqueous solution as described above. By doing so, the dissolution and removal of the alkaline water-soluble component from the catalyst precursor can be performed more smoothly.
[0014]
In the catalyst precursor used in the preparation of the catalyst of the present invention, as the aluminum oxide as one component of the carrier, neutral alumina or alkaline alumina is used in order to obtain a high chain growth rate and stable reaction activity. Is preferably used. When acidic alumina is used, there is a possibility that the probability of chain growth of the resulting catalyst or the reaction activity may be reduced. As the manganese oxide as another component of the carrier, as described above, the average charge number of manganese is Mn. 2+ Manganese oxides are used. The average charge number of manganese is Mn 2+ The following manganese oxides can be used, for example, as shown in US Pat. No. 4,206,134, for gaseous hydrocarbons (C Two ~ C Four ) Is not suitable for producing liquid hydrocarbons, which is the object of the present invention. The average charge number of manganese is Mn 2+ Examples of manganese oxides exceeding Two , Mn Two O Three , Mn Three O Four And the like. Further, salts other than oxides such as manganese nitrate are used as starting materials, and the average charge number of manganese obtained therefrom is Mn. 2+ Can be used. For example, Mn obtained by calcining manganese nitrate in air Two O Three And the like can be preferably used. The proportion of aluminum oxide and manganese oxide in the carrier is generally 18 to 160 parts by mass of manganese oxide per 100 parts by mass of aluminum oxide, preferably 18 to 100 parts by mass, and most preferably 20 to 45 parts by mass. When the proportion of the manganese oxide is less than 18 parts by mass, the chain growth rate of the resulting catalyst, C 5+ Both the selectivity and the olefin / paraffin ratio may decrease, and may not be suitable for the production of liquid hydrocarbons. On the other hand, if it exceeds 160 parts by mass, the bulk density or specific surface area of the resulting catalyst satisfies a suitable range. May not be possible. The preparation of the carrier can be carried out according to a conventional method, and can be carried out by mixing and firing a predetermined ratio of an aluminum oxide raw material and a manganese oxide raw material. Furthermore, the carrier may be in any shape such as a powder, a granule, a tablet, and an extrusion.
[0015]
In the catalyst precursor used in the present invention, the amount of sodium carried is determined based on the catalyst as described above, Two It is 0.1 to 1.3% by mass in terms of O, preferably 0.14 to 1.20% by mass, and more preferably 0.50 to 1.20% by mass. The amount of supported ruthenium is 0.8 to 4.5% by mass, preferably 1.5 to 4.5% by mass, and more preferably 2.0 to 4.0% by mass based on the catalyst as described above. These loadings are the loadings adopted based on the loadings required for the catalyst to be used in the FT reaction after the treatment with the alkaline aqueous solution described later.
Further, when ruthenium chloride such as ruthenium chloride is used for all or a part of the ruthenium source in supporting ruthenium, chlorine caused by the ruthenium chloride is contained in the catalyst precursor, and the chlorine content The amount increases or decreases in proportion to the amount of ruthenium chloride used as the ruthenium source. For example, when ruthenium is supported using ruthenium chloride in its entirety as a ruthenium source, the chlorine content of the catalyst precursor is expressed as ruthenium on a catalyst basis, in terms of Cl, in accordance with each range of the supported amount of ruthenium. Is 0.8 to 4.2% by mass when the carried amount is in the range of 0.8 to 4.5% by mass, 1.0 to 4.0% by mass in the preferred range, and 2.0 to 4.0% by mass in the more preferred range.
The chemical composition of the catalyst precursor and the catalyst used for the FT reaction after the alkaline aqueous solution treatment described below was determined by inductively coupled plasma mass spectrometry (ICP method) and ion chromatography.
[0016]
In the present invention, as described above, at any stage of catalyst preparation, pulverization, classification, and a step of adjusting the average particle diameter as necessary can be performed. , The distribution range of the particle diameter, the average particle diameter, etc., are generally the same as those required for the catalyst subjected to the FT reaction after the treatment with the alkaline aqueous solution described below, the alkaline water-soluble component from the catalyst precursor This is preferable in that the dissolution and removal are performed more smoothly. The specific surface area, bulk density, distribution range of particle diameter, average particle diameter, and the like of the catalyst precursor are not substantially changed by the alkaline aqueous solution treatment described below.
[0017]
(Alkaline aqueous solution treatment of catalyst precursor)
The catalyst precursor obtained as described above is immersed in an alkaline aqueous solution and post-treated. As the alkaline aqueous solution, ammonia water, caustic soda water, caustic potassium water, sodium carbonate water, potassium carbonate water, or the like can be appropriately selected and used, and ammonia water can be preferably used. The concentration of the alkali in the alkaline aqueous solution is preferably 0.05 N to 1.2 N, more preferably 0.05 to 0.5 N, and most preferably 0.05 to 0.2 N. If it is less than 0.05 N, the post-treatment effect is dilute and the stable catalytic activity cannot be maintained for a long time. If it exceeds 1.2 N, the amount of unreacted alkali increases, which is uneconomical. Industrial technical meaning, such as increased, is lost. After post-treatment with an alkaline aqueous solution, it is washed with water and dried at normal temperature to 120 ° C. The drying time varies depending on the amount of the catalyst and the capacity of the dryer, and thus cannot be unconditionally determined. However, the drying can be usually carried out by holding for 10 to 48 hours. As described above, the alkaline aqueous solution component in the catalyst precursor is dissolved or removed or reduced by the alkaline aqueous solution treatment. As the alkaline aqueous solution component to be removed or reduced, a sodium compound supported on a carrier and ruthenium chloride are used. And chlorine caused by the ruthenium chloride when ruthenium is supported. The removal amount of the sodium compound and chlorine can be appropriately set as needed. The amount of sodium in the catalyst varies depending on the amount of sodium contained in the catalyst precursor, the concentration of the alkaline aqueous solution, and the type of alkali. In general, the amount of sodium in the catalyst is adjusted to the catalyst standard, Two It can be in the range of 0.01 to 1.10% by mass in terms of O. Further, the amount of chlorine can be in a range of 0.01 to 0.13% by mass in terms of Cl on a catalyst basis. In addition, the treatment of ruthenium and the composition of the carrier are not substantially changed by the alkaline aqueous solution treatment, and the physical properties such as the specific surface area, the bulk density, the distribution range of the particle diameter, and the average particle diameter of the catalyst precursor are substantially reduced. Does not change. Thus, a catalyst having predetermined physical properties used in the present invention can be obtained.
[0018]
(Catalyst used in the present invention)
In the catalyst used in the present invention, that is, the catalyst used for the FT reaction, the carrier has an average charge number of Mn of the aluminum oxide and manganese used for preparing the catalyst precursor as described above. 2+ Is a carrier composed of a manganese oxide having a content of more than 1.
Further, the supported amount of ruthenium is substantially maintained even after the alkaline aqueous solution treatment. That is, the supported amount of ruthenium is 0.8 to 4.5% by mass, preferably 1.5 to 4.5% by mass, and more preferably 2.0 to 4.0% by mass based on the catalyst. If the supported amount of ruthenium is less than the above-mentioned predetermined range, the number of active points may be insufficient and sufficient catalytic activity may not be obtained. If it exceeds the above-mentioned predetermined range, the effect of improving the catalytic activity is saturated, and the technical significance Becomes sparse.
The amount of sodium carried (Na Two As described above, the value (in terms of O) can be set in the range of 0.01 to 1.10% by mass based on the catalyst by the treatment with the alkaline aqueous solution. The amount of sodium carried in the catalyst used for the FT reaction is generally 0.01 to 1.10% by mass, preferably 0.01 to 0.07% by mass, and more preferably 0.02 to 0.07% by mass based on the catalyst.
Further, when the catalyst precursor contains chlorine, the chlorine can be appropriately reduced by the alkaline aqueous solution treatment as described above. The amount of chlorine in the catalyst varies depending on the amount of chlorine contained in the catalyst precursor, the concentration of the alkaline aqueous solution, and the type of alkali. In general, the amount of chlorine in the catalyst can be adjusted to the range of 0.01 to 0.13% by mass in terms of Cl, based on the catalyst, by treatment with an alkaline aqueous solution. For example, when ruthenium is supported on a catalyst precursor using ruthenium chloride in its entirety as a ruthenium source, the chlorine content of the catalyst to be subjected to the FT reaction is generally 0.01 to 0.13 mass% in terms of a catalyst, in terms of Cl, preferably Is 0.02 to 0.10% by mass, more preferably 0.05 to 0.08% by mass.
When the content of sodium is small or large outside the above-mentioned predetermined range, and when the content of chlorine is large outside the above-mentioned predetermined range, it is difficult to obtain a desired improvement effect.
[0019]
The specific surface area of the catalyst used in the present invention is 90 to 180 m. Two / G, preferably 100-180 m Two / G, more preferably 130-180 m Two / G. 90m specific surface area Two If it is less than / g, the dispersibility of ruthenium may decrease, which is not preferable. Regarding the upper limit of the specific surface area, in general, when handling a solid catalyst, the larger the specific surface area, the higher the frequency of gas-liquid-solid contact. However, the practical upper limit of the specific surface area of the carrier composed of the aluminum oxide and the manganese oxide used in the present invention is 250 to 300 m. Two / G of the catalyst supporting the ruthenium compound, the maximum is 200 m Two / G. The specific surface area of the catalyst was determined by a BET method (Braunauer-Emett-Tailor method) using high-purity nitrogen as a probe.
[0020]
The bulk density of the catalyst used in the present invention is 0.80 to 1.70 g / ml, preferably 0.80 to 1.60 g / ml, and more preferably 0.80 to 1.30 g / ml. If the bulk density exceeds 1.8 g / ml, C 5+ There is a possibility that productivity will decrease.
[0021]
The catalyst used in the present invention preferably has a catalyst particle size distribution range of 10 to 220 μm, more preferably 20 to 200 μm, and still more preferably 20 to 180 μm. In the present invention, since the catalyst is used in a dispersed state by being dispersed in liquid hydrocarbons, it is desirable to consider its particle size distribution. Fine particles having a particle size of less than 5 μm pass through a filter or the like and overflow to the downstream side, so that there is a high possibility that the concentration of the catalyst in the reaction vessel is reduced, or that the downstream side device is deficient due to the catalyst fine particles. In addition, large particles exceeding 200 μm make it difficult to uniformly disperse the liquid hydrocarbons throughout the entire reaction vessel, or the slurry in which the catalyst is dispersed becomes non-uniform, thereby deteriorating the reaction activity. The likelihood increases.
[0022]
Even when the particle size distribution is within the above range of 10 to 220 μm, the dispersion may be uneven when dispersed in liquid hydrocarbons. In such a case, it is desirable to consider the average particle diameter in order to uniformly disperse the catalyst particles in the liquid hydrocarbons without causing unevenness. The average particle size of the catalyst used in the present invention is preferably from 40 to 150 μm, more preferably from 40 to 80 μm, even more preferably from 40 to 70 μm. When the average particle size is outside the upper and lower limits of the range of 40 to 150 μm, the dispersion of the catalyst particles in the liquid hydrocarbons becomes uneven, and the reaction activity may decrease.
[0023]
(Method for producing hydrocarbons)
In the method for producing hydrocarbons of the present invention, the catalyst prepared as described above is subjected to a reduction treatment (activation treatment) before being subjected to the FT reaction. By this reduction treatment, the catalyst is activated so as to exhibit a desired catalytic activity in the FT reaction. If this reduction treatment is not performed, the ruthenium species supported on the carrier will not be sufficiently reduced, and will not exhibit the desired catalytic activity in the FT reaction. In this reduction treatment, a method in which a catalyst is dispersed in liquid hydrocarbons and brought into contact with a reducing gas in a slurry state (reduction in a dispersion medium) is also used. The contacting method (reduction without using a dispersion medium) can also be preferably performed. As the liquid hydrocarbons in which the catalyst is dispersed in the former method, various hydrocarbons including olefins, alkanes, alicyclic hydrocarbons, and aromatic hydrocarbons can be used as long as they are liquid under the processing conditions. Kind can be used. Further, hydrocarbons containing hetero elements such as oxygen-containing and nitrogen-containing may be used. The number of carbon atoms of these hydrocarbons is not particularly limited as long as they are liquid under the treatment conditions. 6 ~ C 40 Are preferred, and C 9 ~ C 40 Are more preferred, and C 9 ~ C 35 Are most preferred. C 6 If the hydrocarbons are lighter than the above hydrocarbons, the vapor pressure of the solvent will be high, and the range of processing conditions will be limited. Also, C 40 If it is heavier than the above hydrocarbons, there is a concern that the solubility of the reducing gas decreases, and a sufficient reduction treatment cannot be performed. The amount of the catalyst dispersed in the hydrocarbons is appropriately 1 to 40% by mass, preferably 5 to 30% by mass, more preferably 10 to 30% by mass. If the amount of the catalyst is less than 1% by mass, the reduction efficiency of the catalyst may decrease. As a method of preventing the reduction efficiency of the catalyst from decreasing, there is a method of reducing the amount of gas passing through the reducing gas. However, when the amount of gas passing through the reducing gas is reduced, gas (reducing gas) -liquid (solvent) -solid (catalyst) is used. ) Is unfavorable because the dispersion of) is impaired. On the other hand, if the amount of the catalyst exceeds 40% by mass, the viscosity of the slurry in which the catalyst is dispersed in the hydrocarbons becomes too high, and the dispersion of bubbles becomes poor, and there is a possibility that the catalyst may not be sufficiently reduced. Not preferred. The reduction treatment temperature is preferably from 130 to 230C, more preferably from 150 to 230C, and most preferably from 160 to 220C. If the temperature is lower than 130 ° C., ruthenium is not sufficiently reduced, and sufficient reaction activity cannot be obtained. On the other hand, when the temperature exceeds 230 ° C., phase transition of the manganese oxide or the like of the carrier, change in oxidation state, and the like proceed to form a complex with ruthenium, whereby the catalyst sinters, and the catalyst becomes active. It is more likely to cause a decrease. In this reduction treatment, a reducing gas containing hydrogen as a main component can be preferably used. The reducing gas to be used may contain a certain amount of components other than hydrogen, for example, steam, nitrogen, rare gas, hydrocarbons such as methane and ethane, as long as the reduction is not hindered. Although this reduction treatment is affected by the hydrogen partial pressure and the processing time as well as the processing temperature, the hydrogen partial pressure is preferably 0.7 to 6 MPa, more preferably 1 to 5 MPa, and most preferably 1 to 3 MPa. The reduction time varies depending on the amount of the catalyst, the amount of hydrogen introduced, and the like, but is generally preferably 0.1 to 50 hours, more preferably 1 to 48 hours, and most preferably 4 to 48 hours. If the treatment time is less than 0.1 hour, the activation of the catalyst becomes insufficient. Further, even if the reduction treatment is performed for a long time exceeding 50 hours, there is no adverse effect on the catalyst. However, it is not preferable that the treatment cost increases because the possibility that improvement in catalyst performance cannot be expected is included.
[0024]
The catalyst thus reduced is subjected to the FT reaction, that is, the synthesis reaction of hydrocarbons. In the FT reaction in the present invention, the catalyst is formed in a dispersed state in which the catalyst is dispersed in liquid hydrocarbons, and the synthesis gas is brought into contact with the catalyst in the dispersed state. At this time, as the hydrocarbons in which the catalyst is dispersed, the same hydrocarbons as those used in the above-described reduction treatment can be used. That is, if it is a liquid under the reaction conditions, it contains various hydrocarbons including olefins, alkanes, alicyclic hydrocarbons, aromatic hydrocarbons, oxygen-containing, and nitrogen-containing hetero elements. Hydrocarbons and the like can be used, and the number of carbon atoms is not particularly limited. 6 ~ C 40 Are preferred, and C 9 ~ C 40 Are more preferred, and C 9 ~ C 35 Are most preferred. C 6 If the hydrocarbons are lighter than the above hydrocarbons, the vapor pressure of the solvent will increase, and the range of reaction conditions will be limited. Also, C 40 If the hydrocarbons are heavier than the above hydrocarbons, there is a concern that the solubility of the raw material synthesis gas is reduced and the reaction activity is reduced. In the case where a method in which the catalyst is dispersed in liquid hydrocarbons is employed in the above-described reduction treatment, the liquid hydrocarbons used in the reduction treatment can be used as they are in the FT reaction. The amount of the catalyst dispersed in the hydrocarbons is appropriately 1 to 40% by mass, preferably 5 to 30% by mass, more preferably 10 to 30% by mass. If the amount of the catalyst is less than 1% by mass, the activity decreases. As a method of preventing the activity from decreasing, there is a method of reducing the amount of gas flow of the synthesis gas. However, if the amount of gas flow of the synthesis gas is reduced, the dispersion of gas (synthesis gas) -liquid (solvent) -solid (catalyst) is impaired. Therefore, it is not preferable. On the other hand, when the amount of the catalyst is more than 50% by mass, the viscosity of the slurry in which the catalyst is dispersed in the hydrocarbons becomes too high, the bubble dispersion becomes poor, and the reaction activity is not sufficiently obtained.
[0025]
The synthesis gas used for the FT reaction may contain hydrogen and carbon monoxide as main components, and may contain a substance that does not hinder the reaction. Since the rate (k) of the FT reaction is approximately linearly dependent on the hydrogen partial pressure, the partial pressure ratio of hydrogen and carbon monoxide (H Two / CO molar ratio) is desired to be 0.5 or more. Since this reaction is a reaction accompanied by volume reduction, the higher the total value of the partial pressures of hydrogen and carbon monoxide, the more preferable. Although the upper limit of the partial pressure ratio of hydrogen and carbon monoxide is not particularly limited, a practical range of the partial pressure ratio is 0.5 to 2.5, and preferably 0.8 to 2.5. More preferably, it is 1 to 2.3. When the partial pressure ratio is less than 0.5, the yield of the generated hydrocarbons decreases, and when the partial pressure ratio exceeds 2.7, the light components in the generated hydrocarbons tend to increase. The total value of the partial pressures of hydrogen and carbon monoxide is preferably 1 to 10 MPa, more preferably 1 to 4 MPa, and most preferably 1 to 3 MPa. If it is less than 1 MPa, the rate of the FT reaction becomes insufficient, and the yields of gasoline, kerosene and gas oil, wax and the like tend to decrease, which is not preferable. In terms of equilibrium, the higher the partial pressure of hydrogen and carbon monoxide, the more advantageous, but the higher the partial pressure, the higher the plant construction cost and the like, and the larger the compressor required for compression, the higher the operating cost. From the industrial point of view, the upper limit of the partial pressure is regulated.
[0026]
In this FT reaction, generally, H Two If the / CO molar ratio is the same, the lower the reaction temperature, the higher the chain growth and the higher the olefin selectivity, but the lower the CO conversion. Conversely, when the reaction temperature increases, the chain growth and olefin selectivity decrease, but the CO conversion increases. Also, H Two As the / CO ratio increases, the CO conversion increases, chain growth and olefin selectivity decrease, and H Two The converse is true when the / CO ratio decreases. The effect of these factors on the reaction varies depending on the type of catalyst used, etc., but in the present invention, the reaction temperature is preferably 200 to 300 ° C, more preferably 210 to 290 ° C, and more preferably 240 to 290 ° C. Most preferred.
[0027]
According to the method for producing hydrocarbons of the present invention described above, if hydrocarbons are synthesized from a mixed gas containing hydrogen and carbon monoxide as main components, a long time exceeding several thousand hours can be obtained without regenerating or replenishing the catalyst. The CO conversion over time is about 60% or more in one pass (once through conversion), the chain growth probability (α) is 0.89 to 0.95, and the olefin / paraffin ratio in the lower hydrocarbon is, for example, C Three 3-5 for hydrocarbons, C 5+ Has a productivity of 250 to 850 g / kg / hr. As described above, in the method for producing hydrocarbons of the present invention, the plant can be stably operated.
In addition, CO conversion rate, chain growth probability (α) and C 5+ Is defined by the following equation.
[CO conversion rate]
[0028]
(Equation 1)
Figure 2004196874
[0029]
[Chain growth probability (α)]
Assuming that the mass fraction of the hydrocarbon product having n carbon atoms in the product is Mn and the chain growth probability is α, the following relationship is established according to the Schulz-Flory distribution. Accordingly, the α value can be known from the slope log α when log (Mn / n) and n are plotted.
[0030]
log (Mn / n) = log ((1-α) Two / Α) + n · log α
[0031]
[C 5+ Productivity)
C 5+ Is the productivity of C per unit time per catalyst weight. 5+ And is defined by the following equation.
C 5+ Productivity = C 5+ Production [g] / Catalyst weight [kg] / [hr]
[0032]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
In the following examples, CO and CH Four Was analyzed by thermal conductivity gas chromatography (TCD-GC) using Active Carbon (60 / 80mesh) as a separation column. Note that a synthesis gas containing 10 vol% of Ar as an internal standard was used. Note that CO and CH Four (Qualitative analysis) of CO and CH Four Quantitative analysis (quantitative analysis) was compared with the peak position (retention time) indicated by the standard gas of CO and CH. Four And the peak area of Ar were compared (internal standard method). C 1 ~ C 6 For analysis of hydrocarbons, use Capillary Column (Al Two O Three / KCl PLOT) as a separation column, using a flame ionization detection type gas chromatograph (FID-GC), which can be detected by TCD-GC and FID-GC in common. 1 The hydrocarbons were qualitatively and quantitatively compared with (methane). Furthermore, C Five ~ C 40 For the analysis of hydrocarbons, FID-GC equipped with a Capillary Column (TC-1) was used. 1 ~ C 6 C) that can be analyzed in common with Five And C 6 The hydrocarbons were qualitatively and quantitatively compared with the above. The specific surface area of the catalyst (including the carrier) was measured by the BET method using an automatic surface area measuring device (Bellsoap 28, manufactured by Nippon Bell) using nitrogen as a probe molecule. The chemical components of the catalyst were identified by ICP (CQM-10000P, manufactured by Shimadzu Corporation), the particle size distribution was measured by a particle size analyzer (Mastersizer MSX-46, Malvern) by laser light scattering, and the structure of manganese oxide was X-ray. It was determined by diffraction (RINT 2500, manufactured by Riso Denki Kogyo).
[0033]
Example 1
Preliminarily dried alumina powder (Pural SB, specific surface area 250m Two / g, manufactured by Condea), pure water (hereinafter abbreviated as water) was dropped, and the saturated water absorption was determined. At this time, the saturated water absorption was 0.9 ml / g. 30 g of aluminum oxide is impregnated with an aqueous solution of 168 g of manganese nitrate hexahydrate dissolved in 27 ml of water, left for about 4 hours, dried in air at 110 ° C., and muffle furnace at 600 ° C. in air for 3 hours. Fired. An aqueous solution in which 0.2 g of sodium carbonate (Na Assay 43.2% by mass) was dissolved in 27 g of water was impregnated with the obtained carrier composed of aluminum oxide and manganese oxide. This was dried in air at a temperature of 110 ° C. and fired in a muffle furnace at a temperature of 600 ° C. for 3 hours. Thereafter, a carrier made of aluminum oxide and manganese oxide impregnated with sodium was impregnated with an aqueous solution in which 2.2 g of ruthenium chloride (Ru Assay 36% by mass) was dissolved in 27 g of water. Medium and dried at a temperature of 50 ° C. This was transferred to an agate mortar and pulverized, sieved to a particle distribution of 10 to 200 μm, an average particle diameter of 150 μm, 1% by mass in terms of Ru, Two 0.14% by mass in terms of O, Mn Two O Three Catalyst precursor A containing 59.3% by mass in conversion and the balance being alumina was obtained. To the catalyst precursor A, 300 ml of 0.1N-ammonia water was added at 25 ° C., and the mixture was stirred with a magnetic stirrer at about 100 rpm for 1 hour and treated with an alkaline aqueous solution. Then, 300 ml of water was added and washed. This operation was repeated until was within a predetermined range of 9.0 to 10.0. The number of repetitions was three and the filtrate pH reached a predetermined range. After washing with water, this was dried in air at 50 ° C. for 24 hours to obtain a catalyst A. The particle distribution and average pore size of catalyst A were almost the same as catalyst precursor A. Catalyst A has a bulk density of 1.52 g / ml and a specific surface area of 100 m. Two / G. Structural analysis by X-ray diffraction showed that manganese oxide was Mn. Two O Three And the average charge number Mn 3+ Met. Further, as a result of composition analysis using ICP and ion chromatography, 1% by mass in terms of Ru, Na Two 0.02% by mass in terms of O, Mn Two O Three The content was 59.9% by mass, 0.02% by mass of chlorine, and the balance aluminum oxide (100 parts by mass of aluminum oxide: 154 parts by mass of manganese oxide). 0.3 g of catalyst A was mixed with normal hexadecane (n-C 16 H 34 , 30 ml (slurry concentration: 1 g / 100 ml) into a reactor having an internal volume of 100 ml, and hydrogen at a partial pressure of 1 MPa · G, a temperature of 140 ° C., and a flow rate of 100 ml / min (STP: standard temperature and pressure). It was brought into contact with catalyst A and reduced for 1 hour. After reduction, the atmosphere was replaced with helium gas, the temperature was set to 100 ° C., and the pressure was set to normal pressure. Thereafter, 10 vol. %, Carbon monoxide 56.3 vol. %, Remaining hydrogen mixed gas (H Two / CO ratio 0.6, hereinafter referred to as synthesis gas), temperature 210 ° C, total partial pressure of hydrogen and carbon monoxide (hereinafter H Two The FT reaction was performed at 10 MPa · G (referred to as + CO pressure). The gas flow rate of the synthesis gas was adjusted so as to be close to 60% of one-pass CO conversion (hereinafter referred to as conversion). 100 hours after the start of the reaction, the W / F (weight / flow [g · hr / mol]) was 18.3 g · hr / mol when the CO conversion rate was 61%. The chain growth probability at this time is 0.92, C 5+ Selectivity 92%, C Three The olefin / paraffin ratio in the medium is 4.1, and C 5+ The productivity was 270 g / kg / hr. 1000 hours after the start of the reaction, when the CO conversion was 58%, the W / F was 18.3 g · hr / mol. The chain growth probability at this time is 0.92, C 5+ Selectivity 92%, C Three The olefin / paraffin ratio in the is 4.3, and C 5+ The productivity was 260 g / kg / hr.
[0034]
Example 2
In the same preparation method as in Example 1, 113 g of manganese nitrate was impregnated with 30 g of alumina powder, then 0.3 g of sodium carbonate, and then 2.6 g of ruthenium chloride, and crushed and sieved to obtain a particle distribution of 20 to 200 μm. Average particle diameter 80 μm, 1.5 mass% in terms of Ru, Na Two 0.28% by mass in terms of O, Mn Two O Three Catalyst precursor B containing 49.2% by mass and the balance being alumina was obtained. To this, 300 ml of 1.0-N aqueous ammonia was added, treated with an aqueous alkaline solution, washed with water and dried, and then had a bulk density of 1.30 g / ml and a specific surface area of 140 m. Two / G, 1.5 mass% in terms of Ru, Na Two 0.05% by mass in terms of O, 0.04% by mass in terms of Cl, Mn Two O Three A catalyst B comprising 50% by mass and the remaining aluminum oxide (100 parts by mass of aluminum oxide: 103 parts by mass of manganese oxide) was obtained. 1.7 g of catalyst B was charged into a reactor together with 30 ml of solvent (slurry concentration 5 g / 100 ml), and hydrogen was brought into contact with catalyst B at a hydrogen partial pressure of 5 MPa · G at a temperature of 220 ° C. and a flow rate of 100 ml / min (STP) for 6 hours. Reduced. After reduction, the atmosphere was replaced with helium gas, the temperature was set to 100 ° C., and the pressure was set to normal pressure. Thereafter, 10 vol. %, Carbon monoxide 50 vol. %, The remaining hydrogen syngas (H Two / CO ratio 0.8), temperature 230 ° C, H Two The FT reaction was performed under the conditions of + CO pressure 1 MPa · G. 100 hours after the start of the reaction, when the CO conversion rate was 60%, the amount of the synthetic gas passed was 10.7 g · hr / mol of W / F. The chain growth probability at this time is 0.92, C 5+ 90% selectivity, C Three The olefin / paraffin ratio in the medium is 4.2, and C 5+ The productivity was 390 g / kg / hr. 1000 hours after the start of the reaction, when the CO conversion was 61%, the W / F was 10.7 g · hr / mol. The chain growth probability at this time is 0.92, C 5+ Selectivity is 90%, C Three The olefin / paraffin ratio in the medium is 4.0, and C 5+ The productivity was 395 g / kg / hr.
[0035]
Example 3
In the same preparation method as in Example 1, 30 g of alumina powder was impregnated with 49.5 g of manganese nitrate, then 0.52 g of sodium carbonate, and then 2.5 g of ruthenium chloride, and pulverized and sieved to obtain a particle distribution of 20 to 50 g. 180 μm, average particle diameter 60 μm, 2% by mass in terms of Ru, Na Two 0.66% by mass in terms of O, Mn Two O Three Catalyst precursor C containing 29.8% by mass and the balance being alumina was obtained. To this, 300 ml of 0.5-N ammonia water was added, treated with an alkaline aqueous solution, washed with water and dried, and then had a bulk density of 0.80 g / ml and a specific surface area of 160 m 2. Two / G, 2.0% by mass in terms of Ru, Na Two 0.07% by mass in terms of O, 0.06% by mass in terms of Cl, Mn Two O Three A catalyst C comprising 30.4% by mass and the remaining aluminum oxide (100 parts by mass of aluminum oxide: 45.4 parts by mass of manganese oxide) was obtained. 3.3 g of catalyst C was charged into a reactor together with 30 ml of a solvent (slurry concentration: 10 g / 100 ml), and hydrogen was brought into contact with catalyst C at a hydrogen partial pressure of 2 MPa · G at a temperature of 170 ° C. and a flow rate of 100 ml / min (STP) for 24 hours. Reduced. After reduction, the atmosphere was replaced with helium gas, the temperature was set to 100 ° C., and the pressure was set to normal pressure. Thereafter, 10 vol. %, Carbon monoxide 45 vol. %, The remaining hydrogen syngas (H Two / CO ratio 1.0), temperature 240 ° C, H Two The FT reaction was performed under the conditions of + CO pressure 4 MPa · G. 100 hours after the start of the reaction, when the CO conversion rate was 59%, the amount of gas fed into the synthesis gas was 4.6 g / hr / mol of W / F. As a result of performing the FT reaction, the chain growth probability was 0.91, C 5+ 86% selectivity, C Three The olefin / paraffin ratio in the medium is 4.0, and C 5+ The productivity was 730 g / kg / hr. 1000 hours after the start of the reaction, when the CO conversion was 62%, the W / F was 4.6 g · hr / mol. The chain growth probability at this time is 0.91, C 5+ 86% selectivity, C Three The olefin / paraffin ratio in the medium is 4.0 and C 5+ The productivity was 770 g / kg / hr.
[0036]
Example 4
According to the same preparation method as in Example 1, 39 g of manganese nitrate was impregnated into 30 g of alumina powder, then 0.9 g of sodium carbonate, and then 3.6 g of ruthenium chloride, and pulverized and sieved to obtain a particle distribution of 20 to 180 μm. Average particle diameter 50 μm, 3 mass% in terms of Ru, Na Two 1.19 mass% in terms of O, Mn Two O Three Catalyst precursor D containing 24.4% by mass and the balance being alumina was obtained. To this, 300 ml of 0.1-N ammonia water was added, treated with an aqueous alkaline solution, washed with water and dried, and the bulk density was 1.10 g / ml and the specific surface area was 165 m Two / G, 3.0 mass% in terms of Ru, Na Two 0.03% by mass in terms of O, 0.07% by mass in terms of Cl, Mn Two O Three 25.2% by mass of a catalyst D comprising the remaining aluminum oxide (100 parts by mass of aluminum oxide: 35.8 parts by mass of manganese oxide) was obtained. 9.0 g of the catalyst D was charged into a reactor together with 30 ml of a solvent (slurry concentration 30 g / 100 ml), and hydrogen was brought into contact with the catalyst D at a hydrogen partial pressure of 2 MPa · G at a temperature of 170 ° C. and a flow rate of 100 ml / min (STP) for 12 hours. Reduced. After reduction, the atmosphere was replaced with helium gas, the temperature was set to 100 ° C., and the pressure was set to normal pressure. Thereafter, 10 vol. %, Carbon monoxide 30 vol. %, The remaining hydrogen syngas (H Two / CO ratio 2.0), temperature 270 ° C, H Two The FT reaction was performed under the condition of + CO pressure 2 MPa · G. 100 hours after the start of the reaction, when the CO conversion rate was 60%, the amount of the synthetic gas passed was 4.7 g / hr / mol of W / F. As a result of the FT reaction, the chain growth probability was 0.90, C 5+ 85% selectivity, C Three The olefin / paraffin ratio in the medium is 4.2, and C 5+ The productivity was 500 g / kg / hr. 1000 hours after the start of the reaction, when the CO conversion was 60%, the W / F was 4.7 g · hr / mol. The chain growth probability at this time is 0.90, C 5+ 85% selectivity, C Three The olefin / paraffin ratio in the medium is 4.0 and C 5+ The productivity was 500 g / kg / hr.
[0037]
Example 5
In the same preparation method as in Example 1, 30 g of manganese nitrate was impregnated with 30 g of alumina powder, then 0.84 g of sodium carbonate, and then 4.5 g of ruthenium chloride, and crushed and sieved to obtain a particle distribution of 20 to 125 μm. Average particle diameter 40 μm, 4 mass% in terms of Ru, Na Two 1.19 mass% in terms of O, Mn Two O Three A catalyst precursor E containing 19.6% by mass and the balance being alumina was obtained. To this, 300 ml of 0.2-N ammonia water was added, treated with an aqueous alkaline solution, washed with water and dried, and then had a bulk density of 1.20 g / ml and a specific surface area of 170 m. Two / G, 4.0 mass% in terms of Ru, Na Two 1.0% by mass in terms of O, 0.1% by mass in terms of Cl, Mn Two O Three 20.5 mass%, the catalyst E consisting of the remaining aluminum oxide (100 mass parts of aluminum oxide: 27.5 mass parts of manganese oxide) was obtained. The reactor was charged with 12.0 g of the catalyst E together with 30 ml of a solvent (slurry concentration: 40 g / 100 ml), and hydrogen was brought into contact with the catalyst E at a hydrogen partial pressure of 2 MPa · G at a temperature of 170 ° C. and a flow rate of 100 ml / min (STP) for 48 hours. Reduced. After reduction, the atmosphere was replaced with helium gas, the temperature was set to 100 ° C., and the pressure was set to normal pressure. Thereafter, 10 vol. %, Carbon monoxide 30 vol. %, The remaining hydrogen syngas (H Two / CO ratio 2.0), temperature 290 ° C, H Two The FT reaction was performed under the condition of + CO pressure 2 MPa · G. 100 hours after the start of the reaction, when the CO conversion rate was 61%, the amount of the synthetic gas passed was 2.8 g · hr / mol of W / F. As a result of the FT reaction, the chain growth probability was 0.90, C 5+ Selectivity 82%, C Three The olefin / paraffin ratio in the medium is 3.8, and C 5+ The productivity was 830 g / kg / hr. 1000 hours after the start of the reaction, the W / F showing a CO conversion of 62% was 2.8 g · hr / mol. The chain growth probability at this time is 0.90, C 5+ Selectivity 82%, C Three The olefin / paraffin ratio in the medium is 3.8 and C 5+ The productivity was 840 g / kg / hr.
Table 1 shows the experimental results including the experimental conditions of Examples 1 to 5.
[0038]
[Table 1]
Figure 2004196874
[0039]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, a stable FT reaction which shows stable catalyst activity for a long time, has a high chain growth probability, and is excellent in olefin selectivity of lower hydrocarbons can be performed stably and smoothly for a long time. Provided is a method for producing hydrocarbons, which can efficiently produce.

Claims (3)

アルミニウム酸化物およびマンガンの平均荷電数がMn2+を超えるマンガン酸化物からなる担体に、ナトリウム化合物を触媒基準、Na2O換算で0.1〜1.3質量%担持し、さらに、ルテニウムを触媒基準で0.8〜4.5質量%担持した触媒前駆体を、アルカリ性水溶液で処理して得た触媒であって、比表面積が90〜180m2/gで、嵩密度が0.80〜1.70g/mlである触媒を、予め還元処理を施した後、液状炭化水素類中に濃度1〜40質量%にて分散せしめ、該触媒に水素および一酸化炭素を主成分とする混合ガスを、圧力1〜10MPa、反応温度200〜300℃で接触させる炭化水素類の製造方法。A sodium compound is supported on a carrier composed of a manganese oxide having an average charge number of aluminum oxide and manganese exceeding manganese 2+ of 0.1 to 1.3% by mass in terms of Na 2 O on a catalyst basis. A catalyst obtained by treating a catalyst precursor supported at 0.8 to 4.5% by mass based on the catalyst with an aqueous alkaline solution, having a specific surface area of 90 to 180 m 2 / g and a bulk density of 0.80 to 0.80. A catalyst having a concentration of 1.70 g / ml is subjected to a reduction treatment in advance, then dispersed in a liquid hydrocarbon at a concentration of 1 to 40% by mass, and a mixed gas containing hydrogen and carbon monoxide as main components in the catalyst. At a pressure of 1 to 10 MPa and a reaction temperature of 200 to 300 ° C. 担体におけるアルミニウム酸化物とマンガン酸化物の割合が、アルミニウム酸化物100質量部に対してマンガン酸化物18〜160質量部である請求項1に記載の炭化水素類の製造方法。The method for producing hydrocarbons according to claim 1, wherein the ratio of the aluminum oxide and the manganese oxide in the carrier is 18 to 160 parts by mass of the manganese oxide based on 100 parts by mass of the aluminum oxide. 触媒の粒子径分布が10〜220μm、触媒の平均粒子径が40〜150μmである請求項1または2記載の炭化水素類の製造方法The method for producing hydrocarbons according to claim 1 or 2, wherein the particle size distribution of the catalyst is 10 to 220 µm, and the average particle size of the catalyst is 40 to 150 µm.
JP2002364200A 2002-12-16 2002-12-16 Production method of hydrocarbons by Fischer-Tropsch process Expired - Fee Related JP4006328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002364200A JP4006328B2 (en) 2002-12-16 2002-12-16 Production method of hydrocarbons by Fischer-Tropsch process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002364200A JP4006328B2 (en) 2002-12-16 2002-12-16 Production method of hydrocarbons by Fischer-Tropsch process

Publications (2)

Publication Number Publication Date
JP2004196874A true JP2004196874A (en) 2004-07-15
JP4006328B2 JP4006328B2 (en) 2007-11-14

Family

ID=32762137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364200A Expired - Fee Related JP4006328B2 (en) 2002-12-16 2002-12-16 Production method of hydrocarbons by Fischer-Tropsch process

Country Status (1)

Country Link
JP (1) JP4006328B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005079979A1 (en) * 2004-02-24 2005-09-01 Japan Oil, Gas And Metals National Corporation Catalyst for producing hydrocarbons, method for preparing the same, and method for producing hydrocarbons using the same
JP2009519123A (en) * 2005-12-16 2009-05-14 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing hydrocarbon synthesis catalyst
WO2009157260A1 (en) * 2008-06-24 2009-12-30 コスモ石油株式会社 Catalyst for fischer-tropsch synthesis, and process for production of hydrocarbon
JP2010005496A (en) * 2008-06-24 2010-01-14 Cosmo Oil Co Ltd Catalyst for fischer-tropsch synthesis and method of manufacturing hydrocarbons
JP2010221108A (en) * 2009-03-23 2010-10-07 Cosmo Oil Co Ltd Catalyst for fischer-tropsch synthesis and method for manufacturing hydrocarbon
JP2013031850A (en) * 2012-11-01 2013-02-14 Cosmo Oil Co Ltd Method of manufacturing catalyst for fischer-tropsch synthesis

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005079979A1 (en) * 2004-02-24 2005-09-01 Japan Oil, Gas And Metals National Corporation Catalyst for producing hydrocarbons, method for preparing the same, and method for producing hydrocarbons using the same
US7612013B2 (en) 2004-02-24 2009-11-03 Japan Oil, Gas And Metals National Corporation Hydrocarbon-producing catalyst, process for producing the same, and process for producing hydrocarbons using the catalyst
JP2009519123A (en) * 2005-12-16 2009-05-14 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing hydrocarbon synthesis catalyst
WO2009157260A1 (en) * 2008-06-24 2009-12-30 コスモ石油株式会社 Catalyst for fischer-tropsch synthesis, and process for production of hydrocarbon
JP2010005496A (en) * 2008-06-24 2010-01-14 Cosmo Oil Co Ltd Catalyst for fischer-tropsch synthesis and method of manufacturing hydrocarbons
CN102076413A (en) * 2008-06-24 2011-05-25 克斯莫石油株式会社 Catalyst for fischer-tropsch synthesis, and process for production of hydrocarbon
AU2009263607B2 (en) * 2008-06-24 2013-08-29 Cosmo Oil Co., Ltd. Catalyst for Fischer-Tropsch synthesis and method for producing hydrocarbons
US8598063B2 (en) 2008-06-24 2013-12-03 Cosmo Oil Co., Ltd. Catalyst for Fischer-Tropsch synthesis and method for producing hydrocarbons
AU2009263607B8 (en) * 2008-06-24 2014-01-23 Cosmo Oil Co., Ltd. Catalyst for Fischer-Tropsch synthesis and method for producing hydrocarbons
AU2009263607A8 (en) * 2008-06-24 2014-01-23 Cosmo Oil Co., Ltd. Catalyst for Fischer-Tropsch synthesis and method for producing hydrocarbons
JP2010221108A (en) * 2009-03-23 2010-10-07 Cosmo Oil Co Ltd Catalyst for fischer-tropsch synthesis and method for manufacturing hydrocarbon
JP2013031850A (en) * 2012-11-01 2013-02-14 Cosmo Oil Co Ltd Method of manufacturing catalyst for fischer-tropsch synthesis

Also Published As

Publication number Publication date
JP4006328B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
AU2005215337B2 (en) Catalyst for producing hydrocarbons, method for preparing the same, and method for producing hydrocarbons using the same
ZA200504460B (en) Iron-based Fischer-Tropsch catalysts and methods of making and using
AU2015203898B2 (en) A catalyst and a process for catalytic conversion of carbon dioxide-containing gas and hydrogen streams to hydrocarbons
US9522386B2 (en) Catalyst and a process for catalytic conversion of carbon dioxide-containing gas and hydrogen streams to hydrocarbons
JP5129037B2 (en) Fischer-Tropsch synthesis catalyst and method for producing hydrocarbons
EP2301663B1 (en) Catalyst for fischer-tropsch synthesis and method for producing hydrocarbons
EP2945920B1 (en) A catalyst and a process for catalytic conversion of carbon dioxide-containing gas and hydrogen streams to hydrocarbons
AU2002313208B2 (en) Method for producing hydrocarbons by fischer-tropsch process
JP4006328B2 (en) Production method of hydrocarbons by Fischer-Tropsch process
JP4205301B2 (en) Process for producing hydrocarbons by Fischer-Tropsch process
JP4660039B2 (en) Process for producing hydrocarbons by Fischer-Tropsch process in the presence of carbon dioxide
JP4118503B2 (en) Process for producing hydrocarbons in the presence of carbon dioxide
JP4660021B2 (en) Process for producing hydrocarbons by the Fischer-Tropsch process
AU2004224536B2 (en) Catalyst for Fischer-Tropsch synthesis and process for producing hydrocarbon
US20130289145A1 (en) Catalyst for fischer-tropsch synthesis, production method therefor, and production method using fischer-tropsch synthesis catalyst
JP4421913B2 (en) Method for producing catalyst for producing hydrocarbons and method for producing hydrocarbons using the catalyst
JP4267482B2 (en) Hydrocarbon production catalyst and method for producing hydrocarbons using the catalyst
AU2019350393A1 (en) Fischer-tropsch process
JP4118494B2 (en) Process for producing hydrocarbons
JP5553880B2 (en) Method for producing catalyst for Fischer-Tropsch synthesis
EA042792B1 (en) FISHER-TROPSCH METHOD
EA043038B1 (en) FISCHER-TROPSCH METHOD, SUPPORTED CATALYST FOR FISCHER-TROPSCH SYNTHESIS AND ITS APPLICATION
BR112021005608B1 (en) PROCESS FOR PREPARING A COMPOSITION COMPRISING OXYGENATES AND HYDROCARBONS BY MEANS OF A FISCHERTROPSCH SYNTHESIS REACTION

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040331

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees