[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004193352A - Layered capacitor and its mounted product - Google Patents

Layered capacitor and its mounted product Download PDF

Info

Publication number
JP2004193352A
JP2004193352A JP2002359722A JP2002359722A JP2004193352A JP 2004193352 A JP2004193352 A JP 2004193352A JP 2002359722 A JP2002359722 A JP 2002359722A JP 2002359722 A JP2002359722 A JP 2002359722A JP 2004193352 A JP2004193352 A JP 2004193352A
Authority
JP
Japan
Prior art keywords
chip
capacitor
electrodes
multilayer capacitor
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002359722A
Other languages
Japanese (ja)
Inventor
Toshio Hiraoka
敏夫 平岡
Shoichi Tosaka
正一 登坂
Satoshi Kazama
智 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2002359722A priority Critical patent/JP2004193352A/en
Publication of JP2004193352A publication Critical patent/JP2004193352A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a layered capacitor which can reduce the extension and contraction due to the piezoelectric effect as much as possible. <P>SOLUTION: A part 12a which is constituted of only dielectric material exists between a first capacitor C11 and a second capacitor C12. Parts 12b which are constituted of only dielectric material surrounding the first and the second capacitor parts C11, C12 exist at both ends in lengthwise direction and at both ends in height direction. Parts 12c which are mostly constituted of dielectric material exist at both ends of a chip 12 in the widthwise direction. A pair of external electrodes 14 cover both ends of the chip 12 in the widthwise direction. Suppression effect to the change in the length, width and height directions is obtained by the dielectric materials 12a, 12b and 12c and the external electrode 14. The extension and contraction in the layered capacitor 11 by the piezoelectric effect can be reduced as much as possible. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、誘電体部を介して重ねられた所定数の内部電極から成るコンデンサ部を直方体形状の誘電体チップ内に有する積層コンデンサと、この積層コンデンサを基板に実装して構成された積層コンデンサ実装体に関する。
【0002】
【従来の技術】
図1(A)〜図1(C)は従来の積層コンデンサの一例を示すもので、図1(A)は積層コンデンサの上面図、図1(B)は図1(A)のz1−z1線断面図、図1(C)は図1(A)のz2−z2線断面図である。尚、以下の説明では図1(A)の左右方向を長さ方向、上下方向を幅方向、図1(B)の上下方向を高さ方向と表記する。
【0003】
この積層コンデンサ1は、長さ>幅=高さの寸法関係を有する直方体形状の誘電体チップ2と、チップ2内に埋設された所定数の内部電極3と、チップ2の長さ方向両端部に設けられた1対の外部電極4とを備える。誘電体部を介して重ねられた所定数の内部電極3は所定の静電容量が確保可能なコンデンサ部C1を構成している。
【0004】
チップ2は、誘電体セラミック粉を含有したセラミックスラリーから成る未焼成誘電体層と、金属粉を含有した電極ペーストから成る未焼成内部電極層とを、交互に積層,圧着したものを焼成することにより作成されており、未焼成内部電極層は焼成によって内部電極3となる。また、外部電極4は、金属粉を含有した電極ペーストをチップ2の長さ方向の各端面にその周囲の4面に及ぶように塗布して焼き付けることにより作成されている。
【0005】
内部電極3は隣接する2つの内部電極3が誘電体部を介して高さ方向で向き合うように配されていて、各々の端縁はチップ2の長さ方向の2つの端面に交互に露出している。チップ2の長さ方向の一方の端面から露出する内部電極3の端縁は一方の外部電極4に電気的に接続され、他方の端面から露出する内部電極3の端縁は他方の外部電極4に電気的に接続されている。
【0006】
チップ2内のコンデンサ部C1はチップ2の幅方向両端面と高さ方向両端面からそれぞれ所定間隔をおいて離れているため、チップ2の幅方向両端部と高さ方向両端部にはコンデンサ部C1を囲むようにして誘電体材料のみで構成された部分2aが存在する。
【0007】
前記の積層コンデンサ1はコンデンサ部C1を構成する内部電極3の間それぞれに誘電体部が存在するため、1対の外部電極4に直流電圧を印加した状態で充放電が繰り返されると、或いは、リップル成分を含む直流電圧または直流電流が印加されると、内部電極3に挟まれる誘電体部が圧電効果によって伸縮を生じ、この伸縮の影響でチップ2、さらには積層コンデンサ1にも同様の伸縮が発生する。前記の伸縮は、チップ2を構成する誘電体材料の誘電率が高くなるほど、また、外部電極4に印加される電圧もしくは電流が高くなるほど増大する。
【0008】
圧電効果による伸縮は特定方向に現れるわけではなく、外部電極4を除外して考えればチップ2の長さ方向,幅方向及び高さ方向の全てにしかも複合的に現れるが、図1(A)〜図1(C)に示すような積層コンデンサ1の場合には長さ方向の伸縮量は他の方向の伸縮量に比べて最も大きいことが知られている。
【0009】
従って、図2に示すように、前記の積層コンデンサ1をその外部電極4を半田等の接合材CMを介してランドRDに接合して基板SBに実装した状態で前記のような伸縮が発生すると、主として最も大きな長さ方向の伸縮に伴う力が基板SBに伝わって撓みが発生し、この撓み及びその復元の繰り返しによって基板SBに上下振動が発生し、この上下振動によって耳障りな可聴音が発生する。
【0010】
【特許文献1】
特開2002−232110号公報
【0011】
【発明が解決しようとする課題】
図1(A)〜図1(C)に示した積層コンデンサ1では、チップ2の幅方向両端部と高さ方向両端部にコンデンサ部C1を囲むようにして誘電体材料のみで構成された部分2aが存在し、しかも、1対の外部電極4がチップ2の長さ方向両端部を覆う構造を有しているため、幅方向及び高さ方向の伸縮に対する抑制効果を前記の誘電体材料部分2aと外部電極4によって得ることができ、また、長さ方向の伸縮に対する抑制効果を前記の誘電体材料部分2aによって得ることができる。
【0012】
しかし、先に述べたように図1(A)〜図1(C)に示すような積層コンデンサ1の場合にはコンデンサ部C1で生じる長さ方向の伸縮量は他の方向の伸縮量に比べて最も大きいことから、この長さ方向の伸縮に対する抑制効果を前記の誘電体材料部分2aによって得ることが難しい。依って、図2に示した実装状態では、積層コンデンサ1から基板2に最も大きな長さ方向の伸縮に伴う力が伝わってしまうため、基板SBが上下に振動し易くこの振動に依る可聴音も発生し易い。
【0013】
本発明は前記事情に鑑みて創作されたもので、その目的とするところは、圧電効果による伸縮を極力減少できる積層コンデンサと、積層コンデンサの伸縮を原因とした可聴音の発生を極力低減できる積層コンデンサ実装体を提供することにある。
【0014】
【課題を解決するための手段】
前記目的を達成するため、請求項1に係る発明は、長さ,幅,高さのうち最も長さが大きい直方体形状の誘電体チップ内に、隣接する2つの内部電極が誘電体部を介して高さ方向で向き合うように配された所定数の内部電極から成るコンデンサ部を有する積層コンデンサであって、チップ内には2以上のコンデンサ部が長さ方向に間隔をおいて設けられ、各コンデンサ部を構成する内部電極はその端縁をチップの幅方向の2つの端面に交互に露出しており、また、チップの幅方向両端部にはチップの幅方向の各端面及びその周囲の4面に及ぶように1対の外部電極が形成されていて、各コンデンサ部の一方の端面から露出する内部電極の端縁は一方の外部電極に電気的に接続され、他方の端面から露出する内部電極の端縁は他方の外部電極に電気的に接続されており、チップの長さ方向両端部と高さ方向両端部に各コンデンサ部を囲むようにして誘電体材料のみで構成された部分が存在すると共に各コンデンサ部の間に誘電体材料のみで構成された部分が存在する、ことをその特徴とする。
【0015】
この積層コンデンサによれば、チップの長さ方向両端部と高さ方向両端部に各コンデンサ部を囲むようにして誘電体材料のみで構成された部分が存在すると共に各コンデンサ部の間に誘電体材料のみで構成された部分が存在し、しかも、1対の外部電極がチップの幅方向両端部を覆う構造を有しているため、長さ方向の伸縮に対する抑制効果を前記の誘電体材料部分と外部電極によって得ることができ、また、幅方向の伸縮に対する抑制効果を前記の誘電体材料部分によって得ることができ、さらに、高さ方向の伸縮に対する抑制効果を前記の誘電体材料部分と外部電極によって得ることができ、これにより圧電効果により積層コンデンサに生じる伸縮を極力減少することができる。
【0016】
他の請求項に係る発明の特徴と作用効果は、以下の説明と添付図面によって明らかとなる。
【0017】
【発明の実施の形態】
[第1実施形態]
図3(A)〜図3(C)は本発明に係る積層コンデンサの第1実施形態を示すもので、図3(A)は積層コンデンサの上面図、図3(B)は図3(A)のa1−a1線断面図、図3(C)は図3(A)のa2−a2線断面図である。尚、以下の説明では図3(A)の左右方向を長さ方向、上下方向を幅方向、図3(B)の上下方向を高さ方向と表記する。
【0018】
この積層コンデンサ11は、長さ>幅>高さの寸法関係を有する直方体形状のチップ12と、チップ12内に埋設された所定数の第1内部電極13と、チップ12内の第1内部電極13から長さ方向に所定間隔をおいて埋設された同数の第2内部電極13と、チップ12の幅方向両端部に設けられた1対の外部電極14とを備える。誘電体部を介して重ねられた図3(A)左側の所定数の第1内部電極13は所定の静電容量を確保可能な第1コンデンサ部C11を構成し、誘電体部を介して重ねられた図3(A)右側の所定数の第2内部電極13は同一の静電容量を確保可能な第2コンデンサ部C12を構成している。
【0019】
チップ12は、誘電体セラミック粉を含有したセラミックスラリーから成る未焼成誘電体層と、金属粉を含有した電極ペーストから成る未焼成内部電極層とを、交互に積層,圧着したものを焼成することにより作成されており、未焼成内部電極層は焼成によって第1,第2内部電極13となる。また、外部電極14は、金属粉を含有した電極ペーストをチップ12の幅方向の各端面にその周囲の4面に及ぶように塗布して焼き付けるか、または、電極ペースト塗布後に未焼成内部電極層と同時に焼成することにより作成されている。
【0020】
第1内部電極13は隣接する2つの第1内部電極13が誘電体部を介して高さ方向で向き合うように配されていて、各々の幅方向一端に形成された狭幅部13aの端縁はチップ12の幅方向の2つの端面に交互に露出している。第2内部電極13も隣接する2つの内部電極13が誘電体部を介して高さ方向で向き合うように配されていて、各々の幅方向一端に形成された狭幅部13aの端縁はチップ12の幅方向の2つの端面に交互に露出している。チップ12の幅方向の一方の端面から露出する第1,第2内部電極13の端縁は一方の外部電極14に電気的に接続され、他方の端面から露出する第1,第2内部電極13の端縁は他方の外部電極14に電気的に接続されている。
【0021】
第1コンデンサ部C11と第2コンデンサ部C12は1対の外部電極14に並列接続された状態となっているため、この積層コンデンサ11で得られる静電容量は第1コンデンサ部C11の静電容量と第2コンデンサ部C12の静電容量の和となる。
【0022】
チップ12内の第1コンデンサ部C11と第2コンデンサ部C12とは長さ方向に所定間隔をおいて離れているため、チップ12の第1コンデンサ部C11と第2コンデンサ部C12との間には誘電体材料のみで構成された部分12aが存在する。また、チップ12内の第1,第2コンデンサ部C11,C12はチップ12の長さ方向両端面と高さ方向両端面からそれぞれ所定間隔をおいて離れているため、チップ12の長さ方向両端部と高さ方向両端部には第1,第2コンデンサ部C11,C12を囲むようにして誘電体材料のみで構成された部分12bが存在する。さらに、第1,第2コンデンサ部C11,C12を構成する各内部電極13は狭幅部13aを介して外部電極14に接続されているため、チップ12の幅方向両端部にはその殆どが誘電体材料で構成された部分12cが存在する。
【0023】
前記の積層コンデンサ11は第1,第2コンデンサ部C11,C12を構成する内部電極13の間それぞれに誘電体部が存在するため、1対の外部電極14に直流電圧を印加した状態で充放電が繰り返されると、或いは、リップル成分を含む直流電圧または直流電流が印加されると、第1内部電極13に挟まれる誘電体部と第2内部電極13に挟まれる誘電体部のそれぞれが圧電効果によって伸縮を生じる。
【0024】
しかし、前記の積層コンデンサ11では、第1,第2コンデンサ部C11,C12の間に誘電体材料のみで構成された部分12aが存在し、チップ12の長さ方向両端部と高さ方向両端部に第1,第2コンデンサ部C11,C12を囲むようにして誘電体材料のみで構成された部分12bが存在すると共にチップ12の幅方向両端部にその殆どが誘電体材料で構成された部分12cが存在し、しかも、1対の外部電極14がチップ12の幅方向両端部を覆う構造を有しているため、長さ方向の伸縮に対する抑制効果を前記の誘電体材料部分12a,12b及び12cと外部電極14によって得ることができ、また、幅方向の伸縮に対する抑制効果を前記の誘電体材料部分12a,12b及び12cによって得ることができ、さらに、高さ方向の伸縮に対する抑制効果を前記の誘電体材料部分12a,12b及び12cと外部電極14によって得ることができ、これにより圧電効果により積層コンデンサ11に生じる伸縮を極力減少することができる。
【0025】
依って、積層コンデンサ11の1対の外部電極14が半田等の接合材CMを介して基板SBのランドRDに接合された状態でも、積層コンデンサ11の伸縮に伴って基板SBに伝わる力は小さく、結果的に基板SBの上下振動も低減されてこの振動による可聴音の発生も極めて小さなもの或いは殆ど可聴できない程度のものとなる。
【0026】
また、長さ方向よりも伸縮の度合が小さいチップ12の幅方向両端部に1対の外部電極14を設けてあるので、積層コンデンサ11を基板SBに実装した状態で積層コンデンサ11に伸縮を生じた場合でもその長さ方向の伸縮に伴う力が基板SBに伝わることを極力防止することができる。
【0027】
前記の積層コンデンサ11の伸縮に伴う力を基板SBに伝わり難くするには、図4(A)に示すようにランドRDを極力小さくすることによって外部電極14とランドRDとの接合面積を低下させるか、或いは、図4(B)に示すように接合材CMによる外部電極14とランドRDとの接合を長さ方向において部分的に行うことで外部電極14とランドRDとの接合面積を低下させるようにするとよい。また、接合材CMとして硬度の低いもの、例えば導電性樹脂等を使用すれば、この接合材CMによって力の伝搬を緩和して積層コンデンサ11の伸縮に伴う力を基板SBに伝わり難くすることができる。
【0028】
尚、前述の実施形態では直方体形状のチップ12として長さ>幅>高さの寸法関係を有するものを示したが、チップ12は長さ>幅=高さや長さ>高さ>幅の寸法関係を有するものであっても構わない。
【0029】
また、前述の実施形態では各コンデンサ部C11,C12を構成する内部電極13の幅方向一端に狭幅部13aを設けたものを示したが、内部電極13として狭幅部13を有しないものを使用しこの内部電極13の端縁をチップ12の幅方向の2つの端面に交互に露出させるようにしても構わない。
【0030】
さらに、前述の実施形態ではチップ12内に2つのコンデンサ部C11,C12を長さ方向に間隔をおいて設けたものを示したが、3以上のコンデンサ部を長さ方向に間隔をおいて設けるようにしてもよい。
【0031】
さらに、前述の実施形態ではチップ12の幅方向両端部に1対の外部電極14を設けたものを示したが、図5に示すように、チップ12の長さ方向両端部に1対もしくは2対以上のダミー電極15をさらに設けるようにしてもよい。このダミー電極15は、金属粉を含有した電極ペーストをチップ12の長さ方向の各端面にその周囲の2面(高さ方向の両端面)に及ぶように帯状に塗布して焼き付けるか、または、電極ペースト塗布後に未焼成内部電極層と同時に焼成することにより作成されている。図5に示した積層コンデンサ11によれば、前記に加えて、幅方向と高さ方向の伸縮に対する抑制効果を前記のダミー電極15によって得ることができるので、圧電効果により積層コンデンサ11に生じる伸縮をより確実に減少することができる。
【0032】
[第2実施形態]
図6(A)〜図6(C)は本発明に係る積層コンデンサの第2実施形態を示すもので、図6(A)は積層コンデンサの上面図、図6(B)は図6(A)のb1−b1線断面図、図6(C)は図6(A)のb2−b2線断面図である。尚、以下の説明では図6(A)の左右方向を長さ方向、上下方向を幅方向、図6(B)の上下方向を高さ方向と表記する。
【0033】
この積層コンデンサ21は、長さ>幅>高さの寸法関係を有する直方体形状のチップ22と、チップ22内に埋設された所定数の第1内部電極23と、チップ22内の第1内部電極23から幅方向に所定間隔をおいて埋設された同数の第2内部電極23と、チップ22の長さ方向両端部に設けられた1対の外部電極24とを備える。誘電体部を介して重ねられた図6(A)上側の所定数の第1内部電極23は所定の静電容量を確保可能な第1コンデンサ部C21を構成し、誘電体部を介して重ねられた図6(A)下側の所定数の第2内部電極23は同一の静電容量を確保可能な第2コンデンサ部C22を構成している。
【0034】
チップ22は、誘電体セラミック粉を含有したセラミックスラリーから成る未焼成誘電体層と、金属粉を含有した電極ペーストから成る未焼成内部電極層とを、交互に積層,圧着したものを焼成することにより作成されており、未焼成内部電極層は焼成によって第1,第2内部電極23となる。また、外部電極24は、金属粉を含有した電極ペーストをチップ22の長さ方向の各端面にその周囲の4面に及ぶように塗布して焼き付けるか、または、電極ペースト塗布後に未焼成内部電極層と同時に焼成することにより作成されている。
【0035】
第1内部電極23は隣接する2つの内部電極23が誘電体部を介して高さ方向で向き合うように配されていて、各々の端縁はチップ22の長さ方向の2つの端面に交互に露出している。第2内部電極23も隣接する2つの内部電極23が誘電体部を介して高さ方向で向き合うように配されていて、各々の端縁はチップ22の長さ方向の2つの端面に交互に露出している。チップ22の長さ方向の一方の端面から露出する第1,第2内部電極23の端縁は一方の外部電極24に電気的に接続され、他方の端面から露出する第1,第2内部電極23の端縁は他方の外部電極24に電気的に接続されている。
【0036】
第1コンデンサ部C21と第2コンデンサ部C22は1対の外部電極24に並列接続された状態となっているため、この積層コンデンサ21で得られる静電容量は第1コンデンサ部C21の静電容量と第2コンデンサ部C22の静電容量の和となる。
【0037】
チップ22内の第1コンデンサ部C21と第2コンデンサ部C22群とは幅方向に所定間隔をおいて離れているため、チップ22の第1コンデンサ部C21と第2コンデンサ部C22との間には誘電体材料のみで構成された部分22aが存在する。また、チップ22内の第1,第2コンデンサ部C21,C22はチップ22の幅方向両端面と高さ方向両端面からそれぞれ所定間隔をおいて離れているため、チップ22の幅方向両端部と高さ方向両端部には第1,第2コンデンサ部C21,C22を囲むようにして誘電体材料のみで構成された部分22bが存在する。
【0038】
前記の積層コンデンサ21は第1,第2コンデンサ部C21,C22を構成する内部電極23の間それぞれに誘電体部が存在するため、1対の外部電極24に直流電圧を印加した状態で充放電が繰り返されると、或いは、リップル成分を含む直流電圧または直流電流が印加されると、第1内部電極23に挟まれる誘電体部と第2内部電極23に挟まれる誘電体部のそれぞれが圧電効果によって伸縮を生じる。
【0039】
しかし、前記の積層コンデンサ21では、第1,第2コンデンサ部C21,C22の間に誘電体材料のみで構成された部分22aが存在すると共にチップ22の幅方向両端部と高さ方向両端部に第1,第2コンデンサ部C21,C22を囲むようにして誘電体材料のみで構成された部分22bが存在し、しかも、1対の外部電極24がチップ22の長さ方向両端部を覆う構造を有しているため、長さ方向の伸縮に対する抑制効果を前記の誘電体材料部分22a及び22bによって得ることができ、また、幅方向の伸縮に対する抑制効果を前記の誘電体材料部分22a及び22bと外部電極24によって得ることができ、さらに、高さ方向の伸縮に対する抑制効果を前記の誘電体材料部分22a及び22bと外部電極24によって得ることができ、これにより圧電効果により積層コンデンサ21に生じる伸縮を極力減少することができる。
【0040】
依って、積層コンデンサ21の1対の外部電極24が半田等の接合材CMを介して基板SBのランドRDに接合された状態でも、積層コンデンサ21の伸縮に伴って基板SBに伝わる力は小さく、結果的に基板SBの上下振動も低減されてこの振動による可聴音の発生も極めて小さなもの或いは殆ど可聴できない程度のものとなる。
【0041】
前記の積層コンデンサ21の伸縮に伴う力を基板SBに伝わり難くするには、図7(B)に示すようにランドRDを極力小さくすることによって外部電極24とランドRDとの接合面積を低下させるか、或いは、図7(A)に示すように接合材CMによる外部電極24とランドRDとの接合を幅方向において部分的に行うことで外部電極24とランドRDとの接合面積を低下させるようにするとよい。また、接合材CMとして硬度の低いもの、例えば導電性樹脂等を使用すれば、この接合材CMによって力の伝搬を緩和して積層コンデンサ21の伸縮に伴う力を基板SBに伝わり難くすることができる。
【0042】
尚、前述の実施形態では直方体形状のチップ22として長さ>幅>高さの寸法関係を有するものを示したが、チップ22は長さ>幅=高さや長さ>高さ>幅の寸法関係を有するものであっても構わない。
【0043】
また、前述の実施形態ではチップ22内に2つのコンデンサ部C21,C22を幅方向に間隔をおいて設けたものを示したが、3以上のコンデンサ部を幅方向に間隔をおいて設けるようにしてもよい。
【0044】
さらに、前述の実施形態ではチップ22の長さ方向両端部に1対の外部電極24を設けたものを示したが、図8に示すように、チップ22の幅方向両端部に1対もしくは2対以上のダミー電極25をさらに設けるようにしてもよい。このダミー電極25は、金属粉を含有した電極ペーストをチップ22の幅方向の各端面にその周囲の2面(高さ方向の両端面)に及ぶように帯状に塗布して焼き付けるか、または、電極ペースト塗布後に未焼成内部電極層と同時に焼成することにより作成されている。図8に示した積層コンデンサ21によれば、前記に加えて、長さ方向と高さ方向の伸縮に対する抑制効果を前記のダミー電極25によって得ることができるので、圧電効果により積層コンデンサ21に生じる伸縮をより確実に減少することができる。
【0045】
[第3実施形態]
図9(A)〜図9(C)は本発明に係る積層コンデンサの第3実施形態を示すもので、図9(A)は積層コンデンサの上面図、図9(B)は図9(A)のc1−c1線断面図、図9(C)は図9(A)のc2−c2線断面図である。尚、以下の説明では図9(A)の左右方向を長さ方向、上下方向を幅方向、図9(B)の上下方向を高さ方向と表記する。
【0046】
この積層コンデンサ31は、長さ>幅>高さの寸法関係を有する直方体形状のチップ32と、チップ32内に埋設された所定数の内部電極33と、チップ32の幅方向両端部に設けられた2対の外部電極34とを備える。誘電体部を介して重ねられた内部電極33は所定の静電容量を確保可能なコンデンサ部C31を構成している。
【0047】
チップ32は、誘電体セラミック粉を含有したセラミックスラリーから成る未焼成誘電体層と、金属粉を含有した電極ペーストから成る未焼成内部電極層とを、交互に積層,圧着したものを焼成することにより作成されており、未焼成内部電極層は焼成によって内部電極33となる。また、外部電極34は、金属粉を含有した電極ペーストをチップ32の幅方向の各端面にその周囲の2面(高さ方向の両端面)に及ぶように帯状に塗布して焼き付けるか、または、電極ペースト塗布後に未焼成内部電極層と同時に焼成することにより作成されている。外部電極34は後述する狭幅部33aよりも若干大きな幅を有していて、チップ32の幅方向両端部に長さ方向に間隔をおいて2個宛設けられている。
【0048】
内部電極33は隣接する2つの内部電極33が誘電体部を介して高さ方向で向き合うように配されていて、各々の幅方向一端に形成された2つの狭幅部33aの端縁はチップ32の幅方向の2つの端面に交互に露出している。チップ32の幅方向の一方の端面から露出する内部電極33の2つの端縁は各々に対応する一方の2つの外部電極34にそれぞれ電気的に接続され、他方の端面から露出する内部電極33の2つの端縁は各々に対応する他方の2つの外部電極34にそれぞれ電気的に接続されている。
【0049】
コンデンサ部C31を構成する各内部電極33に2つの狭幅部33aが設けられ、各狭幅部33aの露出端縁が別々の外部電極34に接続されているため、幅方向一端部の2つの外部電極34と幅方向他端部の2つの外部電極34との間で得られる静電容量と、幅方向一端部の1つの外部電極34と幅方向他端部の1つ外部電極34との間で得られる静電容量は同じである。
【0050】
チップ32内のコンデンサ部C31はチップ32の長さ方向両端面と高さ方向両端面からそれぞれ所定間隔をおいて離れているため、チップ32の長さ方向両端部と高さ方向両端部にはコンデンサ部C31を囲むようにして誘電体材料のみで構成された部分32aが存在する。また、コンデンサ部C31を構成する各内部電極33は狭幅部33aを介して外部電極34に接続されているため、チップ32の幅方向両端部にはその殆どが誘電体材料で構成された部分32bが存在する。
【0051】
前記の積層コンデンサ31はコンデンサ部C31を構成する内部電極33の間それぞれに誘電体部が存在するため、2対の外部電極32或いは片側1つ宛の外部電極32に直流電圧を印加した状態で充放電が繰り返されると、或いは、リップル成分を含む直流電圧または直流電流が印加されると、内部電極33に挟まれる誘電体部が圧電効果によって伸縮を生じる。
【0052】
しかし、前記の積層コンデンサ31では、チップ32の長さ方向両端部と高さ方向両端部にコンデンサ部C31を囲むようにして誘電体材料のみで構成された部分32aが存在すると共にチップ32の幅方向両端部にその殆どが誘電体材料で構成された部分32bが存在し、しかも、2対の外部電極34がチップ32の幅方向両端部を部分的に覆う構造を有しているため、長さ方向の伸縮に対する抑制効果を前記の誘電体材料部分32a及び32bと外部電極34によって得ることができ、また、幅方向の伸縮に対する抑制効果を前記の誘電体材料部分32a及び32bによって得ることができ、さらに、高さ方向の伸縮に対する抑制効果を前記の誘電体材料部分32a及び32bと外部電極34によって得ることができ、これにより圧電効果により積層コンデンサ31に生じる伸縮を極力減少することができる。
【0053】
依って、積層コンデンサ31の2対の外部電極34が半田等の接合材CMを介して基板SBのランドRDに接合された状態でも、積層コンデンサ31の伸縮に伴って基板SBに伝わる力は小さく、結果的に基板SBの上下振動も低減されてこの振動による可聴音の発生も極めて小さなもの或いは殆ど可聴できない程度のものとなる。
【0054】
また、長さ方向よりも伸縮の度合が小さいチップ32の幅方向両端部に2対の外部電極34を設けてあるので、積層コンデンサ31を基板SBに実装した状態で積層コンデンサ31に伸縮を生じた場合でもその長さ方向の伸縮に伴う力が基板SBに伝わることを極力防止することができる。
【0055】
前記の積層コンデンサ31の伸縮に伴う力を基板SBに伝わり難くするには、図10(A)に示すようにランドRDを極力小さくすることによって外部電極34とランドRDとの接合面積を低下させるか、或いは、図10(B)に示すように接合材CMによる外部電極34とランドRDとの接合を長さ方向において部分的に行うことで外部電極34とランドRDとの接合面積を低下させるようにするとよい。また、接合材CMとして硬度の低いもの、例えば導電性樹脂等を使用すれば、この接合材CMによって力の伝搬を緩和して積層コンデンサ31の伸縮に伴う力を基板SBに伝わり難くすることができる。
【0056】
尚、前述の実施形態では直方体形状のチップ32として長さ>幅>高さの寸法関係を有するものを示したが、チップ32は長さ>幅=高さや長さ>高さ>幅の寸法関係を有するものであっても構わない。
【0057】
また、前述の実施形態ではコンデンサ部C31を構成する各内部電極33の幅方向一端に2つの狭幅部33aを設けたものを示したが、3以上の狭幅部を各内部電極33に設けて、これに対応するように外部電極34を設けるようにしてもよい。
【0058】
さらに、前述の実施形態ではチップ32の幅方向両端部に2対の外部電極34を設けたものを示したが、図11に示すように、チップ32の長さ方向両端部に1対のダミー電極35を設けるようにしてもよい。このダミー電極35は、金属粉を含有した電極ペーストをチップ32の長さ方向の各端面にその周囲の4面に及ぶように塗布して焼き付けるか、または、電極ペースト塗布後に未焼成内部電極層と同時に焼成することにより作成されている。図11に示した積層コンデンサ31によれば、前記に加えて、幅方向及び高さ方向の伸縮に対する抑制効果を前記のダミー電極35によって得ることができるので、圧電効果により積層コンデンサ31に生じる伸縮をより確実に減少することができる。
【0059】
[第4実施形態]
図12(A)〜図12(C)は本発明に係る積層コンデンサの第4実施形態を示すもので、図12(A)は積層コンデンサの上面図、図12(B)は図12(A)のd1−d1線断面図、図12(C)は図12(A)のd2−d2線断面図である。尚、以下の説明では図12(A)の左右方向を長さ方向、上下方向を幅方向、図12(B)の上下方向を高さ方向と表記する。
【0060】
この積層コンデンサ41は、長さ>幅>高さの寸法関係を有する直方体形状のチップ42と、チップ42内に長さ方向に間隔をおいて埋設された所定数の第1内部電極43aと、チップ42内の長さ方向の一端面から他端面に及んで埋設された所定数の内部電極43bと、チップ42の幅方向両端部に設けられた2対の第1外部電極44と、チップ42の長さ方向両端部に設けられた1対の第2外部電極45とを備える。第1内部電極43aと第2内部電極とは誘電体部を介して交互に重ねられた構造となっているので、所定数の第2内部電極43bの一部とこれと向き合う図12(A)左側の所定数の第1内部電極43bは所定の静電容量を確保可能な第1コンデンサ部C41を構成し、所定数の第2内部電極43bの一部とこれと向き合う図12(A)右側の所定数の第2内部電極13は同一の静電容量を確保可能な第2コンデンサ部C42を構成している。
【0061】
チップ42は、誘電体セラミック粉を含有したセラミックスラリーから成る未焼成誘電体層と、金属粉を含有した電極ペーストから成る2種類の未焼成内部電極層(第1内部電極43a用と第2内部電極43b用の未焼成内部電極層)とをと、交互に積層,圧着したものを焼成することにより作成されており、未焼成内部電極層は焼成によって第1,第2内部電極43a,43bとなる。また、第1外部電極44は、金属粉を含有した電極ペーストをチップ42の幅方向の各端面にその周囲の2面(高さ方向の両端面)に及ぶように帯状に塗布して焼き付けるか、または、電極ペースト塗布後に未焼成内部電極層と同時に焼成することにより作成されており、一方、第2外部電極45は、金属粉を含有した電極ペーストをチップ42の長さ方向の各端面にその周囲の4面に及ぶように塗布して焼き付けるか、または、電極ペースト塗布後に未焼成内部電極層と同時に焼成することにより作成されている。
【0062】
第1内部電極43aと第2内部電極43bは誘電体部を介して高さ方向で向き合うように交互に配されていて、各第1内部電極43aの幅方向両端に形成された狭幅部43a1の端縁はチップ42の幅方向の2つの端面に露出しており、各第2内部電極43bの長さ方向の端縁はチップ42の長さ方向の2つの端面に露出している。チップ42の幅方向の一方の端面から露出する各第1内部電極43aの2つの端縁は各々に対応する一方の2つの第1外部電極44にそれぞれ電気的に接続され、他方の端面から露出する各第1内部電極43aの2つの端縁は各々に対応する他方の2つの第1外部電極44にそれぞれ電気的に接続されている。また、チップ42の長さ方向の一方の端面から露出する各第2内部電極43bの端縁は一方の第2外部電極45に電気的に接続され、長さ方向の他方の端面から露出する各第2内部電極43bの端縁は他方の第2外部電極45に電気的に接続されている。
【0063】
2対の第1外部電極44をプラスとマイナスの一方とし、1対の第2外部電極45をプラスとマイナスの他方として用いた場合には、積層コンデンサ41で得られる静電容量は第1コンデンサ部C41の静電容量と第2コンデンサ部C42の静電容量の和となる。勿論、図12(A)左側の1対の第1外部電極44をプラスとマイナスの一方とし、1対の第2外部電極45をプラスとマイナスの他方として用いれば、積層コンデンサ41で得られる静電容量は第1コンデンサ部C41の静電容量となり、また、図12(A)右側の1対の第1外部電極44をプラスとマイナスの一方とし、1対の第2外部電極45をプラスとマイナスの他方として用いれば、積層コンデンサ41で得られる静電容量は第2コンデンサ部C41の静電容量となる。
【0064】
チップ42内の第1,第2コンデンサ部C41,42はチップ42の高さ方向両端面からそれぞれ所定間隔をおいて離れているため、チップ42の高さ方向両端部には誘電体材料のみで構成された部分42aが存在する。また、各第1内部電極43aは狭幅部43a1を介して第1外部電極44に接続されているため、チップ42の幅方向両端部にはその殆どが誘電体材料で構成された部分42bが存在する。
【0065】
前記の積層コンデンサ41は第1コンデンサ部C41を構成する第1,第2内部電極43a,43bの間それぞれと第2コンデンサ部C42を構成する第1,第2内部電極43a,43bの間それぞれに誘電体部が存在するため、例えば2対の第1外部電極44をプラスとし、1対の第2外部電極45をマイナスとして用いて直流電圧を印加した状態で充放電が繰り返されると、或いは、リップル成分を含む直流電圧または直流電流が印加されると、第1コンデンサ部C41の第1,第2内部電極43a,43bに挟まれる誘電体部と第2コンデンサ部C42の第1,第2内部電極43a,43bに挟まれる誘電体部のそれぞれが圧電効果によって伸縮を生じる。
【0066】
しかし、前記の積層コンデンサ41では、チップ42の高さ方向両端部には誘電体材料のみで構成された部分42aが存在すると共にチップ42の幅方向両端部にはその殆どが誘電体材料で構成された部分42bが存在し、しかも、2対の第1外部電極44がチップ42の幅方向両端部を部分的に覆う構造を有すると共に1対の第2外部電極45がチップ42の長さ方向両端部を覆う構造を有しているため、長さ方向の伸縮に対する抑制効果を前記の誘電体材料部分42a及び42bと第1外部電極44によって得ることができ、また、幅方向の伸縮に対する抑制効果を前記の誘電体材料部分42a及び42bと第2外部電極45によって得ることができ、さらに、高さ方向の伸縮に対する抑制効果を前記の誘電体材料部分42a及び42bと第2外部電極45によって得ることができ、これにより圧電効果により積層コンデンサ41に生じる伸縮を極力減少することができる。
【0067】
依って、積層コンデンサ41の2対の第1外部電極44が半田等の接合材CMを介して基板SBのランドRDに接合され、且つ、1対の第2外部電極45が半田等の接合材CMを介して基板SBのランドRDに接合された状態でも、積層コンデンサ41の伸縮に伴って基板SBに伝わる力は小さく、結果的に基板SBの上下振動も低減されてこの振動による可聴音の発生も極めて小さなもの或いは殆ど可聴できない程度のものとなる。
【0068】
前記の積層コンデンサ41の伸縮に伴う力を基板SBに伝わり難くするには、図13(A)及び図13(B)に示すようにランドRDを極力小さくすることによって第1,第2外部電極44,45とランドRDとの接合面積を低下させるか、或いは、図13(B)に示すように接合材CMによる第1外部電極44とランドRDとの接合を長さ方向において部分的に行うことで第1外部電極44とランドRDとの接合面積を低下させるようにするとよい。また、接合材CMとして硬度の低いもの、例えば導電性樹脂等を使用すれば、この接合材CMによって力の伝搬を緩和して積層コンデンサ41の伸縮に伴う力を基板SBに伝わり難くすることができる。
【0069】
尚、前述の実施形態では直方体形状のチップ42として長さ>幅>高さの寸法関係を有するものを示したが、チップ42は長さ>幅=高さや長さ>高さ>幅の寸法関係を有するものであっても構わない。
【0070】
また、前述の実施形態では2つの第1内部電極43aをチップ42内の長さ方向に間隔をおいて設けたものを示したが、3以上の第1内部電極43aを長さ方向に間隔をおいて設け、これに合わせて3対以上の第1外部電極44を設けるようにしてもよい。
【0071】
[第5実施形態]
図14(A)〜図14(C)は本発明に係る積層コンデンサの第5実施形態を示すもので、図14(A)は積層コンデンサの上面図、図14(B)は図14(A)のe1−e1線断面図、図14(C)は図14(A)のe2−e2線断面図である。尚、以下の説明では図14(A)の左右方向を長さ方向、上下方向を幅方向、図14(B)の上下方向を高さ方向と表記する。
【0072】
この積層コンデンサ51は、長さ>幅>高さの寸法関係を有する直方体形状のチップ52と、チップ52内に埋設された所定数の第1内部電極53と、チップ52内の第1内部電極53から長さ方向に所定間隔をおいて埋設された同数の第2内部電極53と、チップ52の幅方向両端部に設けられた2対の外部電極54とを備える。誘電体部を介して重ねられた図14(A)左側の所定数の第1内部電極53は所定の静電容量を確保可能な第1コンデンサ部C51を構成し、誘電体部を介して重ねられた図14(A)右側の所定数の第2内部電極53は同一の静電容量を確保可能な第2コンデンサ部C52を構成している。
【0073】
チップ52は、誘電体セラミック粉を含有したセラミックスラリーから成る未焼成誘電体層と、金属粉を含有した電極ペーストから成る未焼成内部電極層とを、交互に積層,圧着したものを焼成することにより作成されており、未焼成内部電極層は焼成によって第1,第2内部電極53となる。また、外部電極54は、金属粉を含有した電極ペーストをチップ52の幅方向の各端面にその周囲の2面(高さ方向の両端面)に及ぶように帯状に塗布して焼き付けるか、または、電極ペースト塗布後に未焼成内部電極層と同時に焼成することにより作成されている。外部電極54は後述する狭幅部53aよりも若干大きな幅を有していて、チップ52の幅方向両端部に長さ方向に間隔をおいて2個宛設けられている。
【0074】
第1内部電極53は隣接する2つの内部電極53が誘電体部を介して高さ方向で向き合うように配されていて、各々の幅方向一端に形成された狭幅部53aの端縁はチップ52の幅方向の2つの端面に交互に露出している。第2内部電極53も隣接する2つの内部電極53が誘電体部を介して高さ方向で向き合うように配されていて、各々の幅方向一端に形成された狭幅部53aの端縁はチップ52の幅方向の2つの端面に交互に露出している。チップ52の幅方向の一方の端面から露出する第1,第2内部電極53の端縁は一方の2つの外部電極54にそれぞれ電気的に接続され、他方の端面から露出する第1,第2内部電極53の端縁は他方の2つの外部電極54にそれぞれ電気的に接続されている。
【0075】
第1コンデンサ部C51は1対の外部電極54に接続され、第2コンデンサ部C51も1対の外部電極54に接続された状態となっているため、幅方向一端部の2つの外部電極54と幅方向他端部の2つの外部電極54との間で得られる静電容量は第1コンデンサ部C51の静電容量と第2コンデンサ部C52の静電容量の和となる。
【0076】
チップ52内の第1コンデンサ部C51と第2コンデンサ部C52とは長さ方向に所定間隔をおいて離れているため、チップ52の第1コンデンサ部C51と第2コンデンサ部C52との間には誘電体材料のみで構成された部分52aが存在する。また、チップ52内の第1,第2コンデンサ部C51,C52はチップ52の長さ方向両端面と高さ方向両端面からそれぞれ所定間隔をおいて離れているため、チップ52の長さ方向両端部と高さ方向両端部には第1,第2コンデンサ部C51,C52を囲むようにして誘電体材料のみで構成された部分52bが存在する。さらに、第1,第2コンデンサ部C51,C52を構成する各内部電極53は狭幅部53aを介して外部電極54に接続されているため、チップ52の幅方向両端部にはその殆どが誘電体材料で構成された部分52cが存在する。
【0077】
前記の積層コンデンサ51は第1,第2コンデンサ部C51,C52を構成する内部電極53の間それぞれに誘電体部が存在するため、2対の外部電極54に直流電圧を印加した状態で充放電が繰り返されると、或いは、リップル成分を含む直流電圧または直流電流が印加されると、第1コンデンサ部C51の内部電極53に挟まれる誘電体部と第2コンデンサ部C52の内部電極53に挟まれる誘電体部のそれぞれが圧電効果によって伸縮を生じる。
【0078】
しかし、前記の積層コンデンサ51では、第1,第2コンデンサ部C51,C52の間に誘電体材料のみで構成された部分52aが存在し、チップ52の長さ方向両端部と高さ方向両端部に第1,第2コンデンサ部C51,C52を囲むようにして誘電体材料のみで構成された部分52bが存在すると共にチップ52の幅方向両端部にその殆どが誘電体材料で構成された部分52cが存在し、しかも、2対の外部電極54がチップ52の幅方向両端部を部分的に覆う構造を有しているため、長さ方向の伸縮に対する抑制効果を前記の誘電体材料部分52a,52b及び52cと外部電極54によって得ることができ、また、幅方向の伸縮に対する抑制効果を前記の誘電体材料部分52a,52b及び52cによって得ることができ、さらに、高さ方向の伸縮に対する抑制効果を前記の誘電体材料部分52a,52b及び52cと外部電極54によって得ることができ、これにより圧電効果により積層コンデンサ51に生じる伸縮を極力減少することができる。
【0079】
依って、積層コンデンサ51の2対の外部電極54が半田等の接合材CMを介して基板SBのランドRDに接合された状態でも、積層コンデンサ51の伸縮に伴って基板SBに伝わる力は小さく、結果的に基板SBの上下振動も低減されてこの振動による可聴音の発生も極めて小さなもの或いは殆ど可聴できない程度のものとなる。
【0080】
また、長さ方向よりも伸縮の度合が小さいチップ52の幅方向両端部に2対の外部電極54を設けてあるので、積層コンデンサ51を基板SBに実装した状態で積層コンデンサ51に伸縮を生じた場合でもその長さ方向の伸縮に伴う力が基板SBに伝わることを極力防止することができる。
【0081】
前記の積層コンデンサ51の伸縮に伴う力を基板SBに伝わり難くするには、図15(A)に示すようにランドRDを極力小さくすることによって外部電極54とランドRDとの接合面積を低下させるか、或いは、図15(B)に示すように接合材CMによる外部電極54とランドRDとの接合を長さ方向において部分的に行うことで外部電極54とランドRDとの接合面積を低下させるようにするとよい。また、接合材CMとして硬度の低いもの、例えば導電性樹脂等を使用すれば、この接合材CMによって力の伝搬を緩和して積層コンデンサ51の伸縮に伴う力を基板SBに伝わり難くすることができる。
【0082】
尚、前述の実施形態では直方体形状のチップ52として長さ>幅>高さの寸法関係を有するものを示したが、チップ52は長さ>幅=高さや長さ>高さ>幅の寸法関係を有するものであっても構わない。
【0083】
また、前述の実施形態ではチップ52内に2つのコンデンサ部C51,C52を長さ方向に間隔をおいて設けたものを示したが、3以上のコンデンサ部を長さ方向に間隔をおいて設け、これに合わせて3対以上の外部電極54を設けるようにしてもよい。
【0084】
さらに、前述の実施形態ではチップ52の幅方向両端部に2対の外部電極54を設けたものを示したが、図16に示すように、チップ52の長さ方向両端部に1対のダミー電極55を設けるようにしてもよい。このダミー電極55は、金属粉を含有した電極ペーストをチップ52の長さ方向の各端面にその周囲の4面に及ぶように塗布して焼き付けるか、または、電極ペースト塗布後に未焼成内部電極層と同時に焼成することにより作成されている。図16に示した積層コンデンサ51によれば、前記に加えて、幅方向及び高さ方向の伸縮に対する抑制効果を前記のダミー電極55によって得ることができる。
【0085】
[第6実施形態]
図17(A)〜図17(C)は本発明に係る積層コンデンサの第6実施形態を示すもので、図17(A)は積層コンデンサの上面図、図17(B)は図17(A)のf1−f1線断面図、図17(C)は図17(A)のf2−f2線断面図である。尚、以下の説明では図17(A)の左右方向を長さ方向、上下方向を幅方向、図17(B)の上下方向を高さ方向と表記する。
【0086】
この積層コンデンサ61は、長さ>幅=高さの寸法関係を有する直方体形状のチップ62と、チップ62内に埋設された所定数の内部電極63と、チップ62の幅方向両端部に設けられた1対の外部電極64とを備える。誘電体部を介して重ねられた所定数の内部電極63は所定の静電容量が確保可能なコンデンサ部C61を構成している。
【0087】
チップ62は、誘電体セラミック粉を含有したセラミックスラリーから成る未焼成誘電体層と、金属粉を含有した電極ペーストから成る未焼成内部電極層とを、交互に積層,圧着したものを焼成することにより作成されており、未焼成内部電極層は焼成によって内部電極63となる。また、外部電極64は、金属粉を含有した電極ペーストをチップ62の幅方向の各端面にその周囲の4面に及ぶように塗布して焼き付けるか、または、電極ペースト塗布後に未焼成内部電極層と同時に焼成することにより作成されている。
【0088】
内部電極63は隣接する2つの内部電極63が誘電体部を介して高さ方向で向き合うように配されていて、各々の端縁はチップ62の幅方向の2つの端面に交互に露出している。チップ62の幅方向の一方の端面から露出する内部電極63の端縁は一方の外部電極64に電気的に接続され、他方の端面から露出する内部電極63の端縁は他方の外部電極64に電気的に接続されている。
【0089】
チップ62内のコンデンサ部C61はチップ62の長さ方向両端面と高さ方向両端面からそれぞれ所定間隔をおいて離れているため、チップ62の長さ方向両端部と高さ方向両端部にはコンデンサ部C61を囲むようにして誘電体材料のみで構成された部分62aが存在する。
【0090】
前記の積層コンデンサ61はコンデンサ部C61を構成する内部電極63の間それぞれに誘電体部が存在するため、1対の外部電極64に直流電圧を印加した状態で充放電が繰り返されると、或いは、リップル成分を含む直流電圧または直流電流が印加されると、内部電極63に挟まれる誘電体部が圧電効果によって伸縮を生じる。
【0091】
しかし、前記の積層コンデンサ61では、チップ63の長さ方向両端部と高さ方向両端部にコンデンサ部C61を囲むようにして誘電体材料のみで構成された部分62aが存在し、しかも、1対の外部電極64がチップ62の幅方向両端部を覆う構造を有しているため、長さ方向の伸縮に対する抑制効果を前記の誘電体材料部分62aと外部電極64によって得ることができ、また、幅方向の伸縮に対する抑制効果を前記の誘電体材料部分62aによって得ることができ、さらに、高さ方向の伸縮に対する抑制効果を前記の誘電体材料部分62aと外部電極64によって得ることができ、これにより圧電効果により積層コンデンサ61に生じる伸縮を極力減少することができる。
【0092】
依って、積層コンデンサ61の1対の外部電極64が半田等の接合材CMを介して基板SBのランドRDに接合された状態でも、積層コンデンサ61の伸縮に伴って基板SBに伝わる力は小さく、結果的に基板SBの上下振動も低減されてこの振動による可聴音の発生も極めて小さなもの或いは殆ど可聴できない程度のものとなる。
【0093】
また、長さ方向よりも伸縮の度合が小さいチップ62の幅方向両端部に1対の外部電極64を設けてあるので、積層コンデンサ61を基板SBに実装した状態で積層コンデンサ61に伸縮を生じた場合でもその長さ方向の伸縮に伴う力が基板SBに伝わることを極力防止することができる。
【0094】
前記の積層コンデンサ61の伸縮に伴う力を基板SBに伝わり難くするには、図18(A)に示すようにランドRDを極力小さくすることによって外部電極64とランドRDとの接合面積を低下させるか、或いは、図18(B)に示すように接合材CMによる外部電極64とランドRDとの接合を長さ方向において部分的に行うことで外部電極64とランドRDとの接合面積を低下させるようにするとよい。また、接合材CMとして硬度の低いもの、例えば導電性樹脂等を使用すれば、この接合材CMによって力の伝搬を緩和して積層コンデンサ61の伸縮に伴う力を基板SBに伝わり難くすることができる。
【0095】
尚、前述の実施形態では直方体形状のチップ62として長さ>幅>高さの寸法関係を有するものを示したが、チップ62は長さ>幅=高さや長さ>高さ>幅の寸法関係を有するものであっても構わない。
【0096】
また、前述の実施形態ではチップ62の幅方向両端部に1対の外部電極64を設けたものを示したが、図19に示すように、チップ62の長さ方向両端部に1対もしくは2対以上のダミー電極65を設けるようにしてもよい。このダミー電極65は、金属粉を含有した電極ペーストをチップ62の長さ方向の各端面にその周囲の2面(高さ方向の両端面)に及ぶように帯状に塗布して焼き付けるか、または、電極ペースト塗布後に未焼成内部電極層と同時に焼成することにより作成されている。図19に示した積層コンデンサ61によれば、前記に加えて、幅方向と高さ方向の伸縮に対する抑制効果を前記のダミー電極65によって得ることができる。
【0097】
さらに、図19に示した積層コンデンサ61ではチップ62の幅方向両端部を覆うように外部電極64を設けると共にチップ62の長さ方向両端部を部分的に覆うダミー電極65を設けたものを示したが、図20に示すように、外部電極64’をチップ62の幅方向両端部を部分的に覆う形状とし、且つ、ダミー電極65’をチップ62の長さ方向両端部を覆う形状としても同様の作用効果を得ることができる。
【0098】
[第7実施形態]
図21(A)〜図21(C)は本発明に係る積層コンデンサの第7実施形態をを示すもので、図21(A)は積層コンデンサの上面図、図21(B)は図21(A)のg1−g1線断面図、図21(C)は図21(A)のg2−g2線断面図である。尚、以下の説明では図21(A)の左右方向を長さ方向、上下方向を幅方向、図21(B)の上下方向を高さ方向と表記する。
【0099】
この積層コンデンサ71は、長さ>幅=高さの寸法関係を有する直方体形状のチップ72と、チップ72内に埋設された所定数の内部電極73と、チップ72の長さ方向両端部に設けられた1対の外部電極74と、チップ72の幅方向両端部に設けられた1対のダミー電極75とを備える。誘電体部を介して重ねられた所定数の内部電極73は所定の静電容量が確保可能なコンデンサ部(符号無し)を構成している。
【0100】
チップ72は、誘電体セラミック粉を含有したセラミックスラリーから成る未焼成誘電体層と、金属粉を含有した電極ペーストから成る未焼成内部電極層とを、交互に積層,圧着したものを焼成することにより作成されており、未焼成内部電極層は焼成によって内部電極73となる。また、外部電極74は、金属粉を含有した電極ペーストをチップ72の長さ方向の各端面にその周囲の4面に及ぶように塗布して焼き付けることにより作成されている。さらに、ダミー電極75は、金属粉を含有した電極ペーストをチップ72の幅方向の各端面にその周囲の2面(高さ方向の両端面)に及ぶように塗布して焼き付けることにより作成されている。
【0101】
内部電極73は隣接する2つの内部電極73が誘電体部を介して高さ方向で向き合うように配されていて、各々の端縁はチップ72の長さ方向の2つの端面に交互に露出している。チップ72の長さ方向の一方の端面から露出する内部電極73の端縁は一方の外部電極74に電気的に接続され、他方の端面から露出する内部電極73の端縁は他方の外部電極74に電気的に接続されている。
【0102】
チップ72内のコンデンサ部はチップ72の幅方向両端面と高さ方向両端面からそれぞれ所定間隔をおいて離れているため、チップ72の幅方向両端部と高さ方向両端部にはコンデンサ部を囲むようにして誘電体材料のみで構成された部分72aが存在する。
【0103】
前記の積層コンデンサ71はコンデンサ部を構成する内部電極73の間それぞれに誘電体部が存在するため、1対の外部電極74に直流電圧を印加した状態で充放電が繰り返されると、或いは、リップル成分を含む直流電圧または直流電流が印加されると、内部電極73に挟まれる誘電体部が圧電効果によって伸縮を生じる。
【0104】
しかし、前記の積層コンデンサ71では、チップ72の幅方向両端部と高さ方向両端部にコンデンサ部を囲むようにして誘電体材料のみで構成された部分72aが存在し、しかも、1対の外部電極74がチップ72の長さ方向両端部を覆う構造を有すると共に1対のダミー電極75がチップ72の幅方向両端部を部分的に覆う構造を有しているため、長さ方向の伸縮に対する抑制効果を前記の誘電体材料部分72aとダミー電極75によって得ることができ、また、幅方向の伸縮に対する抑制効果を前記の誘電体材料部分72aと外部電極74によって得ることができ、さらに、高さ方向の伸縮に対する抑制効果を前記の誘電体材料部分72aと外部電極74とダミー電極75によって得ることができ、これにより圧電効果により積層コンデンサ71に生じる伸縮を極力減少することができる。
【0105】
依って、積層コンデンサ71の1対の外部電極74が半田等の接合材CMを介して基板SBのランドRDに接合された状態でも、積層コンデンサ71の伸縮に伴って基板SBに伝わる力は小さく、結果的に基板SBの上下振動も低減されてこの振動による可聴音の発生も極めて小さなもの或いは殆ど可聴できない程度のものとなる。
【0106】
前記の積層コンデンサ71の伸縮に伴う力を基板SBに伝わり難くするには、図22(B)に示すようにランドRDを極力小さくすることによって外部電極74とランドRDとの接合面積を低下させるか、或いは、図22(A)に示すように接合材CMによる外部電極74とランドRDとの接合を幅方向において部分的に行うことで外部電極74とランドRDとの接合面積を低下させるようにするとよい。また、接合材CMとして硬度の低いもの、例えば導電性樹脂等を使用すれば、この接合材CMによって力の伝搬を緩和して積層コンデンサ71の伸縮に伴う力を基板SBに伝わり難くすることができる。
【0107】
尚、前述の実施形態では直方体形状のチップ72として長さ>幅>高さの寸法関係を有するものを示したが、チップ72は長さ>幅=高さや長さ>高さ>幅の寸法関係を有するものであっても構わない。
【0108】
また、前述の実施形態ではチップ72の幅方向両端部に1対のダミー電極75を設けたものを示したが、図23に示すように、チップ72の幅方向両端部に2対もしくは3対以上のダミー電極75’を設けるようにしても同様の作用効果を得ることができる。
【0109】
[第8実施形態]
図24(A)〜図24(C)は本発明に係る積層コンデンサの第8実施形態をを示すもので、図24(A)は積層コンデンサの上面図、図24(B)は図24(A)のh1−h1線断面図、図24(C)は図24(A)のh2−h2線断面図である。尚、以下の説明では図24(A)の左右方向を長さ方向、上下方向を幅方向、図24(B)の上下方向を高さ方向と表記する。
【0110】
この積層コンデンサ81は、長さ>幅=高さの寸法関係を有する直方体形状のチップ82と、チップ82内に埋設された所定数の内部電極83と、チップ82の長さ方向両端部に設けられた1対の外部電極84とを備える。誘電体部を介して重ねられた所定数の内部電極83は所定の静電容量が確保可能なコンデンサ部(符号無し)を構成している。
【0111】
チップ82は、誘電体セラミック粉を含有したセラミックスラリーから成る未焼成誘電体層と、金属粉を含有した電極ペーストから成る未焼成内部電極層とを、交互に積層,圧着したものを焼成することにより作成されており、未焼成内部電極層は焼成によって内部電極83となる。また、外部電極84は、金属粉を含有した電極ペーストをチップ82の長さ方向の各端面にその周囲の4面に及ぶように塗布して焼き付けることにより作成されている。
【0112】
ここでの各外部電極84の長さ寸法は積層コンデンサ81の長さ寸法の1/4以上で且つ両者が短絡しない範囲に設定されている。因みに図面における各外部電極84は長さ寸法が互いに等しく、各々の長さ寸法は積層コンデンサ81の長さ寸法の約2/5である。
【0113】
内部電極83は隣接する2つの内部電極83が誘電体部を介して高さ方向で向き合うように配されていて、各々の端縁はチップ82の長さ方向の2つの端面に交互に露出している。チップ82の長さ方向の一方の端面から露出する内部電極83の端縁は一方の外部電極84に電気的に接続され、他方の端面から露出する内部電極83の端縁は他方の外部電極84に電気的に接続されている。
【0114】
チップ82内のコンデンサ部はチップ82の幅方向両端面と高さ方向両端面からそれぞれ所定間隔をおいて離れているため、チップ82の幅方向両端部と高さ方向両端部にはコンデンサ部を囲むようにして誘電体材料のみで構成された部分82aが存在する。
【0115】
前記の積層コンデンサ81はコンデンサ部を構成する内部電極83の間それぞれに誘電体部が存在するため、1対の外部電極84に直流電圧を印加した状態で充放電が繰り返されると、或いは、リップル成分を含む直流電圧または直流電流が印加されると、内部電極83に挟まれる誘電体部が圧電効果によって伸縮を生じる。
【0116】
しかし、前記の積層コンデンサ81では、チップ82の幅方向両端部と高さ方向両端部にコンデンサ部を囲むようにして誘電体材料のみで構成された部分82aが存在し、しかも、1対の外部電極84がチップ82の長さ方向両端部を覆う構造を有し、各外部電極84の長さ寸法が積層コンデンサ81の長さ寸法の1/4以上で且つ両者が短絡しない範囲に設定されているため、長さ方向の伸縮に対する抑制効果を前記の誘電体材料部分82aと外部電極84によって得ることができ、また、幅方向の伸縮に対する抑制効果を前記の誘電体材料部分82aと外部電極84によって得ることができ、さらに、高さ方向の伸縮に対する抑制効果を前記の誘電体材料部分82aと外部電極84によって得ることができ、これにより圧電効果により積層コンデンサ81に生じる伸縮を極力減少することができる。
【0117】
依って、積層コンデンサ81の1対の外部電極84が半田等の接合材CMを介して基板SBのランドRDに接合された状態でも、積層コンデンサ81の伸縮に伴って基板SBに伝わる力は小さく、結果的に基板SBの上下振動も低減されてこの振動による可聴音の発生も極めて小さなもの或いは殆ど可聴できない程度のものとなる。
【0118】
前記の積層コンデンサ81の伸縮に伴う力を基板SBに伝わり難くするには、図25(B)に示すようにランドRDを極力小さくすることによって外部電極84とランドRDとの接合面積を低下させるか、或いは、図25(A)に示すように接合材CMによる外部電極84とランドRDとの接合を幅方向において部分的に行うことで外部電極84とランドRDとの接合面積を低下させるようにするとよい。また、図25(B)に示すように外部電極84とランドRDとの接合箇所を各外部電極84の最も内側の位置として固定端距離を極力小さくすれば、積層コンデンサ81の長さ方向の伸縮に伴う力が基板SBに伝わっても基板SBには殆ど上下振動は発生しない。さらに、接合材CMとして硬度の低いもの、例えば導電性樹脂等を使用すれば、この接合材CMによって力の伝搬を緩和して積層コンデンサ81の伸縮に伴う力を基板SBに伝わり難くすることができる。
【0119】
尚、前述の実施形態では直方体形状のチップ82として長さ>幅>高さの寸法関係を有するものを示したが、チップ82は長さ>幅=高さや長さ>高さ>幅の寸法関係を有するものであっても構わない。
【0120】
【発明の効果】
以上詳述したように、本発明によれば、圧電効果による伸縮を極力減少できる積層コンデンサと、積層コンデンサの伸縮を原因とした可聴音の発生を極力低減できる積層コンデンサ実装体を提供することができる。
【図面の簡単な説明】
【図1】従来の積層コンデンサの一例を示す図
【図2】図1に示した積層コンデンサを基板に実装した状態を示す図
【図3】本発明に係る積層コンデンサの第1実施形態を示す図
【図4】図3に示した積層コンデンサを基板に実装した状態を示す図
【図5】図3に示した積層コンデンサの変形例を示す図
【図6】本発明に係る積層コンデンサの第2実施形態を示す図
【図7】図6に示した積層コンデンサを基板に実装した状態を示す図
【図8】図6に示した積層コンデンサの変形例を示す図
【図9】本発明に係る積層コンデンサの第3実施形態を示す図
【図10】図9に示した積層コンデンサを基板に実装した状態を示す図
【図11】図9に示した積層コンデンサの変形例を示す図
【図12】本発明に係る積層コンデンサの第4実施形態を示す図
【図13】図12に示した積層コンデンサを基板に実装した状態を示す図
【図14】本発明に係る積層コンデンサの第5実施形態を示す図
【図15】図14に示した積層コンデンサを基板に実装した状態を示す図
【図16】図14に示した積層コンデンサの変形例を示す図
【図17】本発明に係る積層コンデンサの第6実施形態を示す図
【図18】図17に示した積層コンデンサを基板に実装した状態を示す図
【図19】図17に示した積層コンデンサの変形例を示す図
【図20】図17に示した積層コンデンサの変形例を示す図
【図21】本発明に係る積層コンデンサの第7実施形態を示す図
【図22】図21に示した積層コンデンサを基板に実装した状態を示す図
【図23】図21に示した積層コンデンサの変形例を示す図
【図24】本発明に係る積層コンデンサの第8実施形態を示す図
【図25】図24に示した積層コンデンサを基板に実装した状態を示す図
【符号の説明】
SB…基板、RD…ランド、CM…接合材、11…積層コンデンサ、12…チップ、12a,12b,12c…誘電体材料部分、13…内部電極、13a…狭幅部、14…外部電極、15…ダミー電極、21…積層コンデンサ、22…チップ、22a,22b…誘電体材料部分、23…内部電極、24…外部電極、25…ダミー電極、31…積層コンデンサ、32…チップ、32a,32b…誘電体材料部分、33…内部電極、33a…狭幅部、34…外部電極、35…ダミー電極、41…積層コンデンサ、42…チップ、42a,42b…誘電体材料部分、43a…第1内部電極、43a1…狭幅部、43b…第2内部電極、44…第1外部電極、45…第2外部電極、51…積層コンデンサ、52…チップ、52a,52b,52c…誘電体材料部分、53…内部電極、53a…狭幅部、54…外部電極、55…ダミー電極、61…積層コンデンサ、62…チップ、62a…誘電体材料部分、63…内部電極、64,64’…外部電極、65,65’…ダミー電極、71…積層コンデンサ、72…チップ、72a…誘電体材料部分、73…内部電極、74…外部電極、75,75’…ダミー電極、81…積層コンデンサ、82…チップ、82a…誘電体材料部分、83…内部電極、84…外部電極。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multilayer capacitor having a capacitor portion composed of a predetermined number of internal electrodes stacked via a dielectric portion in a rectangular parallelepiped dielectric chip, and a multilayer capacitor formed by mounting the multilayer capacitor on a substrate Regarding the mounting body.
[0002]
[Prior art]
1A to 1C show an example of a conventional multilayer capacitor. FIG. 1A is a top view of the multilayer capacitor, and FIG. 1B is z1-z1 of FIG. 1A. 1C is a sectional view taken along line z2-z2 of FIG. 1A. In the following description, the horizontal direction in FIG. 1A is referred to as a length direction, the vertical direction is referred to as a width direction, and the vertical direction in FIG. 1B is referred to as a height direction.
[0003]
The multilayer capacitor 1 has a rectangular parallelepiped dielectric chip 2 having a dimension relationship of length> width = height, a predetermined number of internal electrodes 3 embedded in the chip 2, and both ends in the length direction of the chip 2. And a pair of external electrodes 4 provided on the side. A predetermined number of internal electrodes 3 stacked via the dielectric portion constitute a capacitor portion C1 capable of securing a predetermined capacitance.
[0004]
The chip 2 is formed by alternately laminating and compressing an unfired dielectric layer made of a ceramic slurry containing dielectric ceramic powder and an unfired internal electrode layer made of an electrode paste containing a metal powder, and then firing. The unfired internal electrode layer becomes the internal electrode 3 by firing. The external electrode 4 is formed by applying and baking an electrode paste containing metal powder on each end surface of the chip 2 in the longitudinal direction so as to cover four surrounding surfaces.
[0005]
The internal electrodes 3 are arranged so that two adjacent internal electrodes 3 face each other in the height direction via the dielectric portion, and each edge is alternately exposed on two end faces in the longitudinal direction of the chip 2. ing. The edge of the internal electrode 3 exposed from one end face in the longitudinal direction of the chip 2 is electrically connected to one external electrode 4, and the edge of the internal electrode 3 exposed from the other end face is connected to the other external electrode 4. Is electrically connected to
[0006]
Since the capacitor portion C1 in the chip 2 is separated from the both end surfaces in the width direction and both end surfaces in the height direction of the chip 2 by a predetermined distance, the capacitor portions C1 are provided at both end portions in the width direction and both end portions in the height direction of the chip 2. There is a portion 2a composed of only a dielectric material so as to surround C1.
[0007]
Since the multilayer capacitor 1 has a dielectric portion between each of the internal electrodes 3 constituting the capacitor portion C1, when charging and discharging are repeated with a DC voltage applied to the pair of external electrodes 4, When a DC voltage or a DC current containing a ripple component is applied, the dielectric portion sandwiched between the internal electrodes 3 expands and contracts due to the piezoelectric effect. Occurs. The expansion and contraction increase as the dielectric constant of the dielectric material forming the chip 2 increases and as the voltage or current applied to the external electrode 4 increases.
[0008]
The expansion and contraction due to the piezoelectric effect does not appear in a specific direction, and when the external electrode 4 is excluded, the chip 2 appears in all of the length direction, the width direction and the height direction in a complex manner. It is known that in the case of the multilayer capacitor 1 as shown in FIG. 1C, the amount of expansion and contraction in the length direction is the largest compared to the amount of expansion and contraction in other directions.
[0009]
Therefore, as shown in FIG. 2, if the above-described expansion and contraction occurs when the multilayer capacitor 1 is mounted on the substrate SB by bonding the external electrodes 4 thereof to the lands RD via the bonding material CM such as solder or the like. Mainly, the force caused by expansion and contraction in the largest length direction is transmitted to the substrate SB, and the substrate SB is bent, and the bending and the restoration thereof are repeated to generate vertical vibrations on the substrate SB, and this vertical vibration generates an unpleasant audible sound. I do.
[0010]
[Patent Document 1]
JP 2002-232110 A
[0011]
[Problems to be solved by the invention]
In the multilayer capacitor 1 shown in FIGS. 1 (A) to 1 (C), a portion 2a composed of only a dielectric material is formed at both ends in the width direction and both ends in the height direction of the chip 2 so as to surround the capacitor portion C1. Since it is present and has a structure in which a pair of external electrodes 4 cover both ends in the length direction of the chip 2, the effect of suppressing expansion and contraction in the width direction and the height direction is equal to that of the dielectric material portion 2a. It can be obtained by the external electrode 4, and the effect of suppressing the expansion and contraction in the length direction can be obtained by the dielectric material portion 2a.
[0012]
However, as described above, in the case of the multilayer capacitor 1 as shown in FIGS. 1A to 1C, the amount of expansion and contraction in the length direction generated in the capacitor portion C1 is smaller than the amount of expansion and contraction in other directions. Therefore, it is difficult to obtain the effect of suppressing the expansion and contraction in the length direction by the dielectric material portion 2a. Therefore, in the mounting state shown in FIG. 2, since the largest force caused by expansion and contraction in the length direction is transmitted from the multilayer capacitor 1 to the substrate 2, the substrate SB easily vibrates up and down, and the audible sound due to this vibration is also reduced. Easy to occur.
[0013]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a multilayer capacitor capable of reducing expansion and contraction due to a piezoelectric effect as much as possible, and a multilayer capacitor capable of reducing generation of audible sound caused by expansion and contraction of the multilayer capacitor as much as possible. It is to provide a capacitor mounting body.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is characterized in that, in a rectangular parallelepiped dielectric chip having the largest length among length, width and height, two adjacent internal electrodes are interposed via a dielectric portion. A multilayer capacitor having a capacitor portion composed of a predetermined number of internal electrodes arranged so as to face each other in the height direction, wherein two or more capacitor portions are provided in the chip at intervals in the length direction. The edges of the internal electrodes constituting the capacitor portion are alternately exposed at two end faces in the width direction of the chip. A pair of external electrodes are formed so as to extend over the surface, and the edges of the internal electrodes exposed from one end face of each capacitor portion are electrically connected to one external electrode and the internal electrodes exposed from the other end face. The edge of the electrode is connected to the other external electrode There is a portion made of only a dielectric material so as to surround each capacitor portion at both ends in the length direction and both ends in the height direction of the chip, and a dielectric material is provided between each capacitor portion. It is characterized by the fact that there is a portion composed of only the
[0015]
According to this multilayer capacitor, there is a portion made of only a dielectric material so as to surround each capacitor portion at both ends in the length direction and both ends in the height direction of the chip, and only the dielectric material is provided between each capacitor portion. And a structure in which a pair of external electrodes covers both ends in the width direction of the chip. It can be obtained by the electrode, and the effect of suppressing the expansion and contraction in the width direction can be obtained by the dielectric material portion, and the effect of suppressing the expansion and contraction in the height direction can be obtained by the dielectric material portion and the external electrode. Therefore, expansion and contraction caused in the multilayer capacitor due to the piezoelectric effect can be reduced as much as possible.
[0016]
The features, functions and effects of the invention according to the other claims will become apparent from the following description and the accompanying drawings.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
[First Embodiment]
3 (A) to 3 (C) show a first embodiment of the multilayer capacitor according to the present invention. FIG. 3 (A) is a top view of the multilayer capacitor, and FIG. 3 (B) is FIG. 3 (A). 3) is a sectional view taken along line a1-a1, and FIG. 3 (C) is a sectional view taken along line a2-a2 in FIG. 3 (A). In the following description, the horizontal direction in FIG. 3A is referred to as a length direction, the vertical direction is referred to as a width direction, and the vertical direction in FIG. 3B is referred to as a height direction.
[0018]
The multilayer capacitor 11 includes a rectangular chip 12 having a dimension relationship of length>width> height, a predetermined number of first internal electrodes 13 embedded in the chip 12, and a first internal electrode 13 in the chip 12. The chip 12 includes the same number of second internal electrodes 13 buried at a predetermined interval in the length direction from 13, and a pair of external electrodes 14 provided at both ends in the width direction of the chip 12. A predetermined number of first internal electrodes 13 on the left side of FIG. 3A stacked via the dielectric portion constitute a first capacitor portion C11 capable of securing a predetermined capacitance, and are stacked via the dielectric portion. A predetermined number of the second internal electrodes 13 on the right side of FIG. 3A constitute a second capacitor section C12 capable of securing the same capacitance.
[0019]
The chip 12 is formed by alternately laminating and pressing an unfired dielectric layer made of a ceramic slurry containing dielectric ceramic powder and an unfired internal electrode layer made of an electrode paste containing a metal powder, and firing the resultant. The unfired internal electrode layers become the first and second internal electrodes 13 by firing. The external electrode 14 may be formed by applying an electrode paste containing a metal powder to each end face in the width direction of the chip 12 so as to cover four surrounding surfaces, or by baking the electrode paste after applying the electrode paste. It is created by firing at the same time.
[0020]
The first internal electrodes 13 are arranged so that two adjacent first internal electrodes 13 face each other in the height direction via a dielectric portion, and the edge of a narrow portion 13a formed at one end in each width direction. Are alternately exposed at two end faces in the width direction of the chip 12. The second internal electrode 13 is also arranged such that two adjacent internal electrodes 13 face each other in the height direction via the dielectric portion. The edge of the narrow portion 13a formed at one end in the width direction is a chip. Twelve end faces in the width direction are alternately exposed. The edges of the first and second internal electrodes 13 exposed from one end face in the width direction of the chip 12 are electrically connected to one external electrode 14 and the first and second internal electrodes 13 exposed from the other end face. Is electrically connected to the other external electrode 14.
[0021]
Since the first capacitor section C11 and the second capacitor section C12 are connected in parallel to the pair of external electrodes 14, the capacitance obtained by the multilayer capacitor 11 is equal to the capacitance of the first capacitor section C11. And the capacitance of the second capacitor section C12.
[0022]
Since the first capacitor portion C11 and the second capacitor portion C12 in the chip 12 are separated from each other at a predetermined interval in the length direction, the distance between the first capacitor portion C11 and the second capacitor portion C12 of the chip 12 is large. There is a portion 12a composed of only a dielectric material. Further, since the first and second capacitor portions C11 and C12 in the chip 12 are separated from the both end surfaces in the longitudinal direction and both end surfaces in the height direction of the chip 12 by a predetermined distance, both ends in the longitudinal direction of the chip 12 are provided. There is a portion 12b made of only a dielectric material so as to surround the first and second capacitor portions C11 and C12 at both ends of the portion and the height direction. Furthermore, since the internal electrodes 13 constituting the first and second capacitor portions C11 and C12 are connected to the external electrodes 14 via the narrow portions 13a, most of the internal electrodes 13 are located at both ends in the width direction of the chip 12. There is a portion 12c made of body material.
[0023]
In the multilayer capacitor 11, since a dielectric portion exists between the internal electrodes 13 constituting the first and second capacitor portions C11 and C12, charging and discharging are performed in a state where a DC voltage is applied to the pair of external electrodes 14. Is repeated, or when a DC voltage or DC current including a ripple component is applied, the dielectric portion sandwiched between the first internal electrodes 13 and the dielectric portion sandwiched between the second internal electrodes 13 each have a piezoelectric effect. Causes expansion and contraction.
[0024]
However, in the multilayer capacitor 11, there is a portion 12a made of only a dielectric material between the first and second capacitor portions C11 and C12, and both ends in the length direction and both ends in the height direction of the chip 12 are provided. There is a portion 12b made of only a dielectric material surrounding the first and second capacitor portions C11 and C12, and portions 12c mostly made of a dielectric material at both ends in the width direction of the chip 12. In addition, since the pair of external electrodes 14 has a structure covering both end portions in the width direction of the chip 12, the effect of suppressing the expansion and contraction in the length direction is reduced by the dielectric material portions 12a, 12b and 12c and the outside. The dielectric material portions 12a, 12b, and 12c can obtain the effect of suppressing the expansion and contraction in the width direction by the electrode 14, and can further obtain the effect of suppressing the expansion and contraction in the width direction. An inhibitory effect on expansion the dielectric material portion 12a, can be obtained by 12b and 12c and the external electrodes 14, thereby can be significantly reduced stretch occurring in the multilayer capacitor 11 by the piezoelectric effect.
[0025]
Therefore, even when the pair of external electrodes 14 of the multilayer capacitor 11 are bonded to the lands RD of the substrate SB via the bonding material CM such as solder, the force transmitted to the substrate SB as the multilayer capacitor 11 expands and contracts is small. As a result, the vertical vibration of the substrate SB is also reduced, and the generation of audible sound due to this vibration is extremely small or almost inaudible.
[0026]
Further, since a pair of external electrodes 14 are provided at both ends in the width direction of the chip 12 whose degree of expansion and contraction is smaller than the length direction, expansion and contraction of the multilayer capacitor 11 occurs when the multilayer capacitor 11 is mounted on the substrate SB. In this case, it is possible to prevent the force accompanying the expansion and contraction in the length direction from being transmitted to the substrate SB as much as possible.
[0027]
In order to make it difficult for the force caused by the expansion and contraction of the multilayer capacitor 11 to be transmitted to the substrate SB, the bonding area between the external electrode 14 and the land RD is reduced by minimizing the land RD as shown in FIG. Alternatively, as shown in FIG. 4B, the bonding area between the external electrode 14 and the land RD is reduced by partially bonding the external electrode 14 and the land RD with the bonding material CM in the length direction. It is good to do. Further, if a material having low hardness, for example, a conductive resin or the like is used as the bonding material CM, the propagation of the force is reduced by the bonding material CM, so that the force accompanying expansion and contraction of the multilayer capacitor 11 is hardly transmitted to the substrate SB. it can.
[0028]
In the above-described embodiment, the chip 12 having the dimensional relationship of length>width> height is shown as the rectangular parallelepiped chip 12, but the chip 12 has the dimension of length> width = height or length>height> width. They may have a relationship.
[0029]
Further, in the above-described embodiment, the narrow portion 13a is provided at one end in the width direction of the internal electrode 13 constituting each of the capacitor portions C11 and C12, but the internal electrode 13 having no narrow portion 13 is used. Alternatively, the edges of the internal electrodes 13 may be used so as to be alternately exposed at two end faces in the width direction of the chip 12.
[0030]
Further, in the above-described embodiment, two capacitors C11 and C12 are provided in the chip 12 at intervals in the length direction. However, three or more capacitors are provided at intervals in the length direction. You may do so.
[0031]
Furthermore, in the above-described embodiment, a pair of external electrodes 14 is provided at both ends in the width direction of the chip 12, but as shown in FIG. A pair or more dummy electrodes 15 may be further provided. The dummy electrode 15 is coated with an electrode paste containing a metal powder on each end surface in the length direction of the chip 12 so as to cover two surrounding surfaces (both end surfaces in the height direction) and baked. It is prepared by firing simultaneously with the unfired internal electrode layer after application of the electrode paste. According to the multilayer capacitor 11 shown in FIG. 5, in addition to the above, an effect of suppressing the expansion and contraction in the width direction and the height direction can be obtained by the dummy electrode 15. Can be more reliably reduced.
[0032]
[Second embodiment]
6 (A) to 6 (C) show a second embodiment of the multilayer capacitor according to the present invention. FIG. 6 (A) is a top view of the multilayer capacitor, and FIG. 6 (B) is FIG. 6 (A). 6) is a sectional view taken along line b1-b1, and FIG. 6C is a sectional view taken along line b2-b2 in FIG. 6A. In the following description, the horizontal direction in FIG. 6A is referred to as a length direction, the vertical direction is referred to as a width direction, and the vertical direction in FIG. 6B is referred to as a height direction.
[0033]
The multilayer capacitor 21 has a rectangular parallelepiped chip 22 having a dimension relationship of length>width> height, a predetermined number of first internal electrodes 23 embedded in the chip 22, and a first internal electrode 23 in the chip 22. The chip 22 includes the same number of second internal electrodes 23 buried at a predetermined interval in the width direction from 23, and a pair of external electrodes 24 provided at both ends in the length direction of the chip 22. A predetermined number of first internal electrodes 23 on the upper side in FIG. 6A stacked via the dielectric portion constitute a first capacitor portion C21 capable of securing a predetermined capacitance, and are stacked via the dielectric portion. A predetermined number of the second internal electrodes 23 on the lower side of FIG. 6A constitute a second capacitor portion C22 capable of securing the same capacitance.
[0034]
The chip 22 is formed by alternately laminating and compressing an unfired dielectric layer made of a ceramic slurry containing dielectric ceramic powder and an unfired internal electrode layer made of an electrode paste containing metal powder, and then firing the chip. The unfired internal electrode layers become the first and second internal electrodes 23 by firing. The external electrode 24 may be coated with an electrode paste containing metal powder on each end surface of the chip 22 in the longitudinal direction so as to cover four surrounding surfaces, or may be a non-fired internal electrode after application of the electrode paste. It is created by firing simultaneously with the layers.
[0035]
The first internal electrode 23 is disposed such that two adjacent internal electrodes 23 face each other in the height direction via the dielectric portion, and each edge is alternately provided on two end surfaces in the length direction of the chip 22. It is exposed. The second internal electrode 23 is also arranged so that two adjacent internal electrodes 23 face each other in the height direction via the dielectric portion, and each edge is alternately formed on two end surfaces in the longitudinal direction of the chip 22. It is exposed. The edges of the first and second internal electrodes 23 exposed from one end surface in the length direction of the chip 22 are electrically connected to one external electrode 24 and the first and second internal electrodes exposed from the other end surface. The edge of 23 is electrically connected to the other external electrode 24.
[0036]
Since the first capacitor portion C21 and the second capacitor portion C22 are connected in parallel to the pair of external electrodes 24, the capacitance obtained by the multilayer capacitor 21 is equal to the capacitance of the first capacitor portion C21. And the capacitance of the second capacitor section C22.
[0037]
Since the first capacitor portion C21 and the second capacitor portion C22 group in the chip 22 are separated from each other at a predetermined interval in the width direction, there is a gap between the first capacitor portion C21 and the second capacitor portion C22 of the chip 22. There is a portion 22a composed of only a dielectric material. Further, since the first and second capacitor portions C21 and C22 in the chip 22 are separated from the both end surfaces in the width direction and both end surfaces in the height direction of the chip 22 by a predetermined distance, respectively, the two end portions in the width direction of the chip 22 are separated from each other. At both ends in the height direction, there are portions 22b made of only a dielectric material so as to surround the first and second capacitor portions C21 and C22.
[0038]
The multilayer capacitor 21 has a dielectric portion between the internal electrodes 23 constituting the first and second capacitor portions C21 and C22. Therefore, the multilayer capacitor 21 is charged and discharged while a DC voltage is applied to the pair of external electrodes 24. Is repeated, or when a DC voltage or DC current including a ripple component is applied, the dielectric portion sandwiched between the first internal electrodes 23 and the dielectric portion sandwiched between the second internal electrodes 23 each have a piezoelectric effect. Causes expansion and contraction.
[0039]
However, in the multilayer capacitor 21, there is a portion 22a made of only a dielectric material between the first and second capacitor portions C21 and C22, and at both ends in the width direction and both ends in the height direction of the chip 22. There is a portion 22b made of only a dielectric material so as to surround the first and second capacitor portions C21 and C22, and has a structure in which a pair of external electrodes 24 cover both ends in the longitudinal direction of the chip 22. Therefore, the effect of suppressing the expansion and contraction in the length direction can be obtained by the dielectric material portions 22a and 22b, and the effect of suppressing the expansion and contraction in the width direction can be obtained by the dielectric material portions 22a and 22b and the external electrode. 24, and the effect of suppressing expansion and contraction in the height direction can be obtained by the dielectric material portions 22a and 22b and the external electrode 24. , Thereby it can be significantly reduced stretch occurring in the multilayer capacitor 21 by the piezoelectric effect.
[0040]
Accordingly, even when the pair of external electrodes 24 of the multilayer capacitor 21 are joined to the lands RD of the substrate SB via the joining material CM such as solder, the force transmitted to the substrate SB as the multilayer capacitor 21 expands and contracts is small. As a result, the vertical vibration of the substrate SB is also reduced, and the generation of audible sound due to this vibration is extremely small or almost inaudible.
[0041]
In order to make it difficult for the force accompanying the expansion and contraction of the multilayer capacitor 21 to be transmitted to the substrate SB, the bonding area between the external electrode 24 and the land RD is reduced by minimizing the land RD as shown in FIG. Alternatively, as shown in FIG. 7A, the bonding area between the external electrode 24 and the land RD is reduced by partially bonding the external electrode 24 and the land RD by the bonding material CM in the width direction. It is good to Further, if a material having a low hardness, for example, a conductive resin or the like is used as the bonding material CM, the propagation of the force can be reduced by the bonding material CM, and the force accompanying expansion and contraction of the multilayer capacitor 21 can be hardly transmitted to the substrate SB. it can.
[0042]
In the above-described embodiment, the chip 22 having a length>width> height dimension is shown as the rectangular parallelepiped chip 22. However, the chip 22 has a length> width = height or length>height> width dimension. They may have a relationship.
[0043]
In the above embodiment, the two capacitor portions C21 and C22 are provided in the chip 22 at intervals in the width direction. However, three or more capacitor portions are provided at intervals in the width direction. You may.
[0044]
Further, in the above-described embodiment, a pair of external electrodes 24 is provided at both ends in the length direction of the chip 22. However, as shown in FIG. A pair or more dummy electrodes 25 may be further provided. The dummy electrode 25 is coated with an electrode paste containing a metal powder on each end surface in the width direction of the chip 22 in a band shape so as to cover two surrounding surfaces (both end surfaces in the height direction), or baked. It is created by firing simultaneously with the unfired internal electrode layer after application of the electrode paste. According to the multilayer capacitor 21 shown in FIG. 8, in addition to the above, an effect of suppressing the expansion and contraction in the length direction and the height direction can be obtained by the dummy electrode 25. Expansion and contraction can be reduced more reliably.
[0045]
[Third embodiment]
9 (A) to 9 (C) show a third embodiment of the multilayer capacitor according to the present invention. FIG. 9 (A) is a top view of the multilayer capacitor, and FIG. 9 (B) is FIG. 9 (A). 9) is a sectional view taken along line c1-c1, and FIG. 9 (C) is a sectional view taken along line c2-c2 in FIG. 9 (A). In the following description, the horizontal direction in FIG. 9A is referred to as a length direction, the vertical direction is referred to as a width direction, and the vertical direction in FIG. 9B is referred to as a height direction.
[0046]
The multilayer capacitor 31 has a rectangular parallelepiped chip 32 having a dimension relationship of length>width> height, a predetermined number of internal electrodes 33 embedded in the chip 32, and both ends in the width direction of the chip 32. And two pairs of external electrodes 34. The internal electrodes 33 stacked via the dielectric portion constitute a capacitor portion C31 capable of securing a predetermined capacitance.
[0047]
The chip 32 is formed by alternately laminating and compressing an unfired dielectric layer made of a ceramic slurry containing dielectric ceramic powder and an unfired internal electrode layer made of an electrode paste containing a metal powder. The unfired internal electrode layer becomes the internal electrode 33 by firing. In addition, the external electrode 34 is coated with an electrode paste containing metal powder in a band shape so as to cover two end surfaces in the width direction of the chip 32 (both end surfaces in the height direction), and is baked. It is prepared by firing simultaneously with the unfired internal electrode layer after application of the electrode paste. The external electrodes 34 have a width slightly larger than a narrow portion 33a to be described later, and two external electrodes are provided at both ends in the width direction of the chip 32 at intervals in the length direction.
[0048]
The internal electrodes 33 are arranged such that two adjacent internal electrodes 33 face each other in the height direction via a dielectric portion, and the edges of two narrow portions 33a formed at one end in the width direction are formed by a chip. 32 are alternately exposed at two end faces in the width direction. The two edges of the internal electrode 33 exposed from one end surface in the width direction of the chip 32 are electrically connected to the corresponding two external electrodes 34, respectively, and the internal electrode 33 exposed from the other end surface. The two edges are electrically connected to the other two corresponding external electrodes 34, respectively.
[0049]
Two narrow portions 33a are provided on each of the internal electrodes 33 constituting the capacitor portion C31, and the exposed edges of each of the narrow portions 33a are connected to separate external electrodes 34. The capacitance obtained between the external electrode 34 and the two external electrodes 34 at the other end in the width direction, and the capacitance between one external electrode 34 at one end in the width direction and one external electrode 34 at the other end in the width direction The capacitance obtained between them is the same.
[0050]
Since the capacitor portion C31 in the chip 32 is separated from the both ends in the length direction and both ends in the height direction of the chip 32 by a predetermined distance, respectively, both ends in the length direction and both ends in the height direction of the chip 32 There is a portion 32a made of only a dielectric material so as to surround the capacitor portion C31. Further, since each of the internal electrodes 33 constituting the capacitor portion C31 is connected to the external electrode 34 via the narrow portion 33a, the both ends of the chip 32 in the width direction are almost entirely made of a dielectric material. 32b exists.
[0051]
Since the multilayer capacitor 31 has a dielectric portion between the internal electrodes 33 forming the capacitor portion C31, a DC voltage is applied to the two pairs of external electrodes 32 or the external electrodes 32 addressed to one side. When charging / discharging is repeated, or when a DC voltage or DC current including a ripple component is applied, the dielectric portion sandwiched between the internal electrodes 33 expands and contracts due to a piezoelectric effect.
[0052]
However, in the above-mentioned multilayer capacitor 31, portions 32 a made of only a dielectric material are present at both ends in the length direction and both ends in the height direction of the chip 32 so as to surround the capacitor portion C 31, and both ends in the width direction of the chip 32 are provided. A portion 32b, which is mostly made of a dielectric material, exists in the portion, and two pairs of external electrodes 34 have a structure that partially covers both ends in the width direction of the chip 32. Can be obtained by the dielectric material portions 32a and 32b and the external electrode 34, and the effect of suppressing expansion and contraction in the width direction can be obtained by the dielectric material portions 32a and 32b. Further, the effect of suppressing expansion and contraction in the height direction can be obtained by the above-mentioned dielectric material portions 32a and 32b and the external electrode 34. It can be significantly reduced stretch occurring in the multilayer capacitor 31 by.
[0053]
Therefore, even when the two pairs of external electrodes 34 of the multilayer capacitor 31 are joined to the lands RD of the substrate SB via the joining material CM such as solder, the force transmitted to the substrate SB as the multilayer capacitor 31 expands and contracts is small. As a result, the vertical vibration of the substrate SB is also reduced, and the generation of audible sound due to this vibration is extremely small or almost inaudible.
[0054]
Further, since two pairs of external electrodes 34 are provided at both ends in the width direction of the chip 32 whose degree of expansion and contraction is smaller than that in the length direction, expansion and contraction of the multilayer capacitor 31 occurs when the multilayer capacitor 31 is mounted on the substrate SB. In this case, it is possible to prevent the force accompanying the expansion and contraction in the length direction from being transmitted to the substrate SB as much as possible.
[0055]
In order to make it difficult for the force caused by the expansion and contraction of the multilayer capacitor 31 to be transmitted to the substrate SB, the bonding area between the external electrode 34 and the land RD is reduced by minimizing the land RD as shown in FIG. Alternatively, as shown in FIG. 10B, the bonding area between the external electrode 34 and the land RD is reduced by partially bonding the external electrode 34 and the land RD by the bonding material CM in the length direction. It is good to do. When a material having low hardness, for example, a conductive resin or the like is used as the bonding material CM, the propagation of the force is reduced by the bonding material CM, so that the force accompanying expansion and contraction of the multilayer capacitor 31 is hardly transmitted to the substrate SB. it can.
[0056]
In the above-described embodiment, the chip 32 having a length>width> height dimension is shown as the rectangular parallelepiped chip 32. However, the chip 32 has a length> width = height or length>height> width dimension. They may have a relationship.
[0057]
In the above-described embodiment, two narrow portions 33a are provided at one end in the width direction of each internal electrode 33 constituting the capacitor portion C31. However, three or more narrow portions are provided in each internal electrode 33. Thus, the external electrode 34 may be provided to correspond to this.
[0058]
Furthermore, in the above-described embodiment, two pairs of external electrodes 34 are provided at both ends in the width direction of the chip 32. However, as shown in FIG. The electrode 35 may be provided. The dummy electrode 35 is formed by applying an electrode paste containing metal powder to each end surface of the chip 32 in the longitudinal direction so as to cover four peripheral surfaces thereof, or by sintering the electrode paste, or by applying an unfired internal electrode layer after applying the electrode paste. It is created by firing at the same time. According to the multilayer capacitor 31 shown in FIG. 11, in addition to the above, an effect of suppressing expansion and contraction in the width direction and the height direction can be obtained by the dummy electrode 35. Can be more reliably reduced.
[0059]
[Fourth embodiment]
FIGS. 12A to 12C show a multilayer capacitor according to a fourth embodiment of the present invention. FIG. 12A is a top view of the multilayer capacitor, and FIG. 12) is a sectional view taken along line d1-d1, and FIG. 12 (C) is a sectional view taken along line d2-d2 in FIG. 12 (A). In the following description, the horizontal direction in FIG. 12A is referred to as a length direction, the vertical direction is referred to as a width direction, and the vertical direction in FIG. 12B is referred to as a height direction.
[0060]
The multilayer capacitor 41 includes a rectangular chip 42 having a dimension relationship of length>width> height, a predetermined number of first internal electrodes 43a embedded in the chip 42 at intervals in the length direction, and A predetermined number of internal electrodes 43 b buried from one end face to the other end face in the longitudinal direction inside the chip 42, two pairs of first external electrodes 44 provided at both ends in the width direction of the chip 42, And a pair of second external electrodes 45 provided at both ends in the length direction. Since the first internal electrodes 43a and the second internal electrodes have a structure in which the first internal electrodes 43a and the second internal electrodes are alternately overlapped with a dielectric portion interposed therebetween, a part of a predetermined number of the second internal electrodes 43b and a part thereof facing FIG. A predetermined number of first internal electrodes 43b on the left side constitute a first capacitor portion C41 capable of securing a predetermined capacitance, and a part of the predetermined number of second internal electrodes 43b and a part thereof facing the right side of FIG. A predetermined number of second internal electrodes 13 constitute a second capacitor section C42 capable of ensuring the same capacitance.
[0061]
The chip 42 includes two types of unfired dielectric layers made of ceramic slurry containing dielectric ceramic powder and two types of unfired internal electrode layers made of an electrode paste containing metal powder (for the first internal electrode 43a and the second internal electrode layer). And an unfired internal electrode layer for the electrode 43b) are alternately laminated and pressed, and then fired. The unfired internal electrode layer is formed by firing the first and second internal electrodes 43a and 43b. Become. The first external electrode 44 may be formed by applying an electrode paste containing metal powder in a band shape to each end face in the width direction of the chip 42 so as to cover two surrounding surfaces (both end faces in the height direction) and baking. Alternatively, the electrode paste is formed by firing simultaneously with the unfired internal electrode layer after the application of the electrode paste, while the second external electrode 45 is formed by applying an electrode paste containing metal powder to each end surface of the chip 42 in the length direction. It is formed by applying and baking so as to cover the four surrounding surfaces, or by baking simultaneously with the unfired internal electrode layer after applying the electrode paste.
[0062]
The first internal electrodes 43a and the second internal electrodes 43b are alternately arranged so as to face each other in the height direction via a dielectric portion, and the narrow portions 43a1 formed at both ends in the width direction of each first internal electrode 43a. Are exposed at two end surfaces in the width direction of the chip 42, and the longitudinal edges of each second internal electrode 43b are exposed at two end surfaces in the longitudinal direction of the chip 42. Two edges of each first internal electrode 43a exposed from one end face in the width direction of the chip 42 are electrically connected to one corresponding two first external electrodes 44, respectively, and are exposed from the other end face. The two edges of each of the first internal electrodes 43a are electrically connected to the corresponding two other first external electrodes 44, respectively. The edge of each second internal electrode 43b exposed from one end face in the length direction of the chip 42 is electrically connected to one second external electrode 45, and each edge exposed from the other end face in the length direction. The edge of the second internal electrode 43b is electrically connected to the other second external electrode 45.
[0063]
When two pairs of first external electrodes 44 are used as one of plus and minus and one pair of second external electrodes 45 are used as the other of plus and minus, the capacitance obtained by the multilayer capacitor 41 is the first capacitor. It is the sum of the capacitance of the portion C41 and the capacitance of the second capacitor portion C42. Of course, if the pair of first external electrodes 44 on the left side of FIG. 12A is used as one of positive and negative and the pair of second external electrodes 45 is used as the other of positive and negative, the static electricity obtained by the multilayer capacitor 41 can be obtained. The capacitance is the capacitance of the first capacitor portion C41, and the pair of first external electrodes 44 on the right side of FIG. 12A is one of plus and minus, and the pair of second external electrodes 45 is plus. If used as the other, the capacitance obtained by the multilayer capacitor 41 becomes the capacitance of the second capacitor unit C41.
[0064]
Since the first and second capacitor portions C41 and C42 in the chip 42 are separated from the both end surfaces in the height direction of the chip 42 by a predetermined interval, both ends of the chip 42 in the height direction are made of only a dielectric material. There is a configured portion 42a. Further, since each first internal electrode 43a is connected to the first external electrode 44 via the narrow portion 43a1, a portion 42b, which is mostly made of a dielectric material, is provided at both ends in the width direction of the chip 42. Exists.
[0065]
The multilayer capacitor 41 is provided between the first and second internal electrodes 43a and 43b forming the first capacitor portion C41 and between the first and second internal electrodes 43a and 43b forming the second capacitor portion C42. Due to the presence of the dielectric portion, for example, when charge / discharge is repeated in a state where a DC voltage is applied using two pairs of first external electrodes 44 as plus and one pair of second external electrodes 45 as minus, or When a DC voltage or a DC current containing a ripple component is applied, the dielectric portion sandwiched between the first and second internal electrodes 43a and 43b of the first capacitor portion C41 and the first and second internal portions of the second capacitor portion C42 Each of the dielectric portions sandwiched between the electrodes 43a and 43b expands and contracts due to the piezoelectric effect.
[0066]
However, in the above-described multilayer capacitor 41, portions 42a made of only a dielectric material are present at both ends in the height direction of the chip 42, and almost all of them are made of the dielectric material at both end portions in the width direction of the chip 42. And a pair of first external electrodes 44 has a structure that partially covers both ends in the width direction of the chip 42 and a pair of second external electrodes 45 Since it has a structure that covers both ends, the effect of suppressing the expansion and contraction in the length direction can be obtained by the dielectric material portions 42a and 42b and the first external electrode 44, and the effect of suppressing the expansion and contraction in the width direction can be obtained. The effect can be obtained by the dielectric material portions 42a and 42b and the second external electrode 45. Further, the effect of suppressing the expansion and contraction in the height direction can be obtained by the dielectric material portions 42a and 42b. It can be obtained by the second external electrode 45, thereby can be significantly reduced stretch occurring in the multilayer capacitor 41 by the piezoelectric effect.
[0067]
Therefore, the two pairs of first external electrodes 44 of the multilayer capacitor 41 are joined to the lands RD of the substrate SB via the joining material CM such as solder, and the pair of second external electrodes 45 are joined to the joining material CM such as solder. Even in the state of being bonded to the land RD of the substrate SB via the CM, the force transmitted to the substrate SB with the expansion and contraction of the multilayer capacitor 41 is small, and as a result, the vertical vibration of the substrate SB is also reduced, and the audible sound due to this vibration is reduced. The occurrence is extremely small or almost inaudible.
[0068]
In order to make it difficult for the force accompanying expansion and contraction of the multilayer capacitor 41 to be transmitted to the substrate SB, the first and second external electrodes are reduced by minimizing the land RD as shown in FIGS. 13 (A) and 13 (B). The bonding area between the lands RD and the lands RD is reduced, or the bonding between the first external electrodes 44 and the lands RD by the bonding material CM is partially performed in the length direction as shown in FIG. This may reduce the bonding area between the first external electrode 44 and the land RD. When a material having low hardness, for example, a conductive resin or the like is used as the bonding material CM, the propagation of the force is reduced by the bonding material CM, so that the force accompanying expansion and contraction of the multilayer capacitor 41 is hardly transmitted to the substrate SB. it can.
[0069]
In the above-described embodiment, the cuboid-shaped chip 42 having the dimension relationship of length>width> height is shown. However, the chip 42 has the dimension of length> width = height or length>height> width. They may have a relationship.
[0070]
In the above-described embodiment, two first internal electrodes 43a are provided at intervals in the length direction in the chip 42. However, three or more first internal electrodes 43a are provided at intervals in the length direction. And three or more pairs of the first external electrodes 44 may be provided accordingly.
[0071]
[Fifth Embodiment]
14 (A) to 14 (C) show a fifth embodiment of the multilayer capacitor according to the present invention. FIG. 14 (A) is a top view of the multilayer capacitor, and FIG. 14 (B) is FIG. 14 (A). 14) is a sectional view taken along line e1-e1, and FIG. 14 (C) is a sectional view taken along line e2-e2 in FIG. 14 (A). In the following description, the horizontal direction in FIG. 14A is referred to as a length direction, the vertical direction is referred to as a width direction, and the vertical direction in FIG. 14B is referred to as a height direction.
[0072]
The multilayer capacitor 51 includes a rectangular chip 52 having a dimension relationship of length>width> height, a predetermined number of first internal electrodes 53 embedded in the chip 52, and a first internal electrode 53 in the chip 52. The chip includes the same number of second internal electrodes 53 buried at a predetermined interval in the length direction from 53, and two pairs of external electrodes 54 provided at both ends in the width direction of the chip 52. A predetermined number of first internal electrodes 53 on the left side of FIG. 14A stacked via the dielectric portion constitute a first capacitor portion C51 capable of securing a predetermined capacitance, and are stacked via the dielectric portion. A predetermined number of the second internal electrodes 53 on the right side of FIG. 14A constitute a second capacitor section C52 capable of securing the same capacitance.
[0073]
The chip 52 is formed by alternately laminating and firing an unfired dielectric layer made of a ceramic slurry containing dielectric ceramic powder and an unfired internal electrode layer made of an electrode paste containing a metal powder, and firing the resultant. The unfired internal electrode layers become the first and second internal electrodes 53 by firing. The external electrode 54 is coated with an electrode paste containing a metal powder on each end face in the width direction of the chip 52 so as to cover two surrounding surfaces (both end faces in the height direction), and is baked, or It is prepared by firing simultaneously with the unfired internal electrode layer after application of the electrode paste. The external electrodes 54 have a width slightly larger than the narrow width portion 53a described later, and are provided at two ends in the width direction of the chip 52 at intervals in the length direction.
[0074]
The first internal electrode 53 is disposed such that two adjacent internal electrodes 53 face each other in the height direction via the dielectric portion. The edge of the narrow portion 53a formed at one end in the width direction is a chip. 52 are alternately exposed at two end faces in the width direction. The second internal electrode 53 is also arranged such that two adjacent internal electrodes 53 face each other in the height direction via the dielectric portion. The edge of the narrow portion 53a formed at one end in the width direction is a chip. 52 are alternately exposed at two end faces in the width direction. The edges of the first and second internal electrodes 53 exposed from one end face in the width direction of the chip 52 are electrically connected to the two external electrodes 54 respectively, and the first and second edges exposed from the other end face. The edge of the internal electrode 53 is electrically connected to the other two external electrodes 54, respectively.
[0075]
Since the first capacitor portion C51 is connected to the pair of external electrodes 54 and the second capacitor portion C51 is also connected to the pair of external electrodes 54, the first capacitor portion C51 is connected to the two external electrodes 54 at one end in the width direction. The capacitance obtained between the two external electrodes 54 at the other end in the width direction is the sum of the capacitance of the first capacitor C51 and the capacitance of the second capacitor C52.
[0076]
Since the first capacitor portion C51 and the second capacitor portion C52 in the chip 52 are separated from each other at a predetermined interval in the length direction, there is a gap between the first capacitor portion C51 and the second capacitor portion C52 of the chip 52. There is a portion 52a composed of only a dielectric material. Further, since the first and second capacitor portions C51 and C52 in the chip 52 are separated from the both end surfaces in the longitudinal direction and both end surfaces in the height direction of the chip 52 by a predetermined interval, both ends in the longitudinal direction of the chip 52. There is a portion 52b made of only a dielectric material so as to surround the first and second capacitor portions C51, C52 at both ends of the portion and the height direction. Further, since each of the internal electrodes 53 constituting the first and second capacitor portions C51 and C52 is connected to the external electrode 54 via the narrow portion 53a, most of the both ends of the chip 52 in the width direction are dielectric. There is a portion 52c made of body material.
[0077]
In the multilayer capacitor 51, since a dielectric portion exists between the internal electrodes 53 constituting the first and second capacitor portions C51 and C52, charging and discharging are performed with a DC voltage applied to the two pairs of external electrodes 54. Is repeated, or when a DC voltage or DC current containing a ripple component is applied, the dielectric portion sandwiched between the internal electrodes 53 of the first capacitor portion C51 and the internal electrode 53 of the second capacitor portion C52 sandwich the same. Each of the dielectric portions expands and contracts due to the piezoelectric effect.
[0078]
However, in the multilayer capacitor 51, there is a portion 52a made of only a dielectric material between the first and second capacitor portions C51 and C52, and both ends in the length direction and both ends in the height direction of the chip 52 are provided. There is a portion 52b made of only a dielectric material surrounding the first and second capacitor portions C51 and C52, and portions 52c mostly made of a dielectric material are present at both ends in the width direction of the chip 52. In addition, since the two pairs of external electrodes 54 have a structure that partially covers both ends in the width direction of the chip 52, the effect of suppressing the expansion and contraction in the length direction is reduced by the dielectric material portions 52a and 52b and 52c and the external electrode 54, and the effect of suppressing expansion and contraction in the width direction can be obtained by the dielectric material portions 52a, 52b and 52c. Is an inhibitory effect on the direction of expansion and contraction of the dielectric material portion 52a, it can be obtained by 52b and 52c and the external electrodes 54, thereby can be significantly reduced stretch occurring in the multilayer capacitor 51 by the piezoelectric effect.
[0079]
Therefore, even when the two pairs of external electrodes 54 of the multilayer capacitor 51 are joined to the lands RD of the substrate SB via the joining material CM such as solder, the force transmitted to the substrate SB as the multilayer capacitor 51 expands and contracts is small. As a result, the vertical vibration of the substrate SB is also reduced, and the generation of audible sound due to this vibration is extremely small or almost inaudible.
[0080]
Further, since two pairs of external electrodes 54 are provided at both ends in the width direction of the chip 52 whose degree of expansion and contraction is smaller than that in the length direction, expansion and contraction of the multilayer capacitor 51 occurs when the multilayer capacitor 51 is mounted on the substrate SB. In this case, it is possible to prevent the force accompanying the expansion and contraction in the length direction from being transmitted to the substrate SB as much as possible.
[0081]
In order to make it difficult for the force caused by the expansion and contraction of the multilayer capacitor 51 to be transmitted to the substrate SB, the bonding area between the external electrode 54 and the land RD is reduced by minimizing the land RD as shown in FIG. Alternatively, as shown in FIG. 15B, the bonding area between the external electrode 54 and the land RD is reduced by partially bonding the external electrode 54 and the land RD with the bonding material CM in the length direction. It is good to do. Further, if a material having low hardness, for example, a conductive resin or the like is used as the bonding material CM, the propagation of the force is alleviated by the bonding material CM, so that the force accompanying expansion and contraction of the multilayer capacitor 51 is hardly transmitted to the substrate SB. it can.
[0082]
In the above-described embodiment, the cuboid-shaped chip 52 having the dimension relation of length>width> height is shown. However, the chip 52 has the dimension of length> width = height or length>height> width. They may have a relationship.
[0083]
In the above-described embodiment, the two capacitor portions C51 and C52 are provided in the chip 52 at intervals in the length direction. However, three or more capacitor portions are provided at intervals in the length direction. According to this, three or more pairs of external electrodes 54 may be provided.
[0084]
Further, in the above-described embodiment, two pairs of external electrodes 54 are provided at both ends in the width direction of the chip 52. However, as shown in FIG. The electrode 55 may be provided. The dummy electrode 55 is coated with an electrode paste containing metal powder on each end surface in the length direction of the chip 52 so as to cover four peripheral surfaces thereof, or is baked, or the unfired internal electrode layer is formed after the electrode paste is applied. It is created by firing at the same time. According to the multilayer capacitor 51 shown in FIG. 16, in addition to the above, an effect of suppressing expansion and contraction in the width direction and the height direction can be obtained by the dummy electrode 55.
[0085]
[Sixth embodiment]
FIGS. 17 (A) to 17 (C) show a sixth embodiment of the multilayer capacitor according to the present invention. FIG. 17 (A) is a top view of the multilayer capacitor, and FIG. 17 (B) is FIG. 17) is a sectional view taken along line f1-f1, and FIG. 17C is a sectional view taken along line f2-f2 in FIG. In the following description, the horizontal direction in FIG. 17A is referred to as a length direction, the vertical direction is referred to as a width direction, and the vertical direction in FIG. 17B is referred to as a height direction.
[0086]
The multilayer capacitor 61 is provided with a rectangular parallelepiped chip 62 having a dimension relationship of length> width = height, a predetermined number of internal electrodes 63 embedded in the chip 62, and both ends in the width direction of the chip 62. And a pair of external electrodes 64. A predetermined number of internal electrodes 63 stacked via the dielectric portion constitute a capacitor portion C61 capable of ensuring a predetermined capacitance.
[0087]
The chip 62 is formed by alternately laminating and compressing an unfired dielectric layer made of a ceramic slurry containing dielectric ceramic powder and an unfired internal electrode layer made of an electrode paste containing a metal powder, and firing the resultant. The unfired internal electrode layer becomes the internal electrode 63 by firing. The external electrode 64 may be formed by applying an electrode paste containing a metal powder to each end surface in the width direction of the chip 62 so as to cover four surrounding surfaces, or by baking the electrode paste after applying the electrode paste. It is created by firing at the same time.
[0088]
The internal electrodes 63 are arranged such that two adjacent internal electrodes 63 face each other in the height direction via the dielectric portion, and each edge is alternately exposed to two end surfaces in the width direction of the chip 62. I have. The edge of the internal electrode 63 exposed from one end face in the width direction of the chip 62 is electrically connected to one external electrode 64, and the edge of the internal electrode 63 exposed from the other end face is connected to the other external electrode 64. It is electrically connected.
[0089]
Since the capacitor portion C61 in the chip 62 is separated from the both end surfaces of the chip 62 in the longitudinal direction and both end surfaces in the height direction by a predetermined distance, both ends in the longitudinal direction and both end portions in the height direction of the chip 62 are provided. There is a portion 62a made of only a dielectric material so as to surround the capacitor portion C61.
[0090]
Since the multilayer capacitor 61 has a dielectric portion between the internal electrodes 63 constituting the capacitor portion C61, when charging and discharging are repeated with a DC voltage applied to the pair of external electrodes 64, or When a DC voltage or a DC current containing a ripple component is applied, the dielectric portion sandwiched between the internal electrodes 63 expands and contracts due to a piezoelectric effect.
[0091]
However, in the multilayer capacitor 61, there are portions 62a made of only a dielectric material so as to surround the capacitor portion C61 at both ends in the length direction and both ends in the height direction of the chip 63. Since the electrode 64 has a structure that covers both ends in the width direction of the chip 62, the effect of suppressing the expansion and contraction in the length direction can be obtained by the dielectric material portion 62 a and the external electrode 64. The effect of suppressing the expansion and contraction of the piezoelectric material can be obtained by the dielectric material portion 62a, and the effect of suppressing the expansion and contraction in the height direction can be obtained by the dielectric material portion 62a and the external electrode 64. Due to the effect, expansion and contraction occurring in the multilayer capacitor 61 can be reduced as much as possible.
[0092]
Therefore, even when the pair of external electrodes 64 of the multilayer capacitor 61 are bonded to the land RD of the substrate SB via the bonding material CM such as solder, the force transmitted to the substrate SB as the multilayer capacitor 61 expands and contracts is small. As a result, the vertical vibration of the substrate SB is also reduced, and the generation of audible sound due to this vibration is extremely small or almost inaudible.
[0093]
Further, since a pair of external electrodes 64 is provided at both ends in the width direction of the chip 62 whose degree of expansion and contraction is smaller than the length direction, expansion and contraction of the multilayer capacitor 61 occurs when the multilayer capacitor 61 is mounted on the substrate SB. In this case, it is possible to prevent the force accompanying the expansion and contraction in the length direction from being transmitted to the substrate SB as much as possible.
[0094]
In order to make it difficult for the force caused by the expansion and contraction of the multilayer capacitor 61 to be transmitted to the substrate SB, the bonding area between the external electrode 64 and the land RD is reduced by minimizing the land RD as shown in FIG. Alternatively, as shown in FIG. 18B, the bonding area between the external electrode 64 and the land RD is reduced by partially bonding the external electrode 64 and the land RD with the bonding material CM in the length direction. It is good to do. Further, if a material having low hardness, for example, a conductive resin or the like is used as the bonding material CM, the propagation of force can be reduced by the bonding material CM so that the force accompanying expansion and contraction of the multilayer capacitor 61 is hardly transmitted to the substrate SB. it can.
[0095]
In the above-described embodiment, the rectangular parallelepiped chip 62 having the dimension relationship of length>width> height is shown. However, the chip 62 has the dimension of length> width = height or length>height> width. They may have a relationship.
[0096]
In the above embodiment, a pair of external electrodes 64 is provided at both ends in the width direction of the chip 62. However, as shown in FIG. A pair or more dummy electrodes 65 may be provided. The dummy electrode 65 is coated with an electrode paste containing a metal powder on each end surface in the length direction of the chip 62 in a band shape so as to cover two surrounding surfaces (both end surfaces in the height direction), or is baked. It is prepared by firing simultaneously with the unfired internal electrode layer after application of the electrode paste. According to the multilayer capacitor 61 shown in FIG. 19, in addition to the above, an effect of suppressing expansion and contraction in the width direction and the height direction can be obtained by the dummy electrode 65.
[0097]
Further, in the multilayer capacitor 61 shown in FIG. 19, external electrodes 64 are provided so as to cover both ends in the width direction of the chip 62, and dummy electrodes 65 are provided to partially cover both ends in the length direction of the chip 62. However, as shown in FIG. 20, the external electrode 64 ′ may be formed to partially cover both ends in the width direction of the chip 62, and the dummy electrode 65 ′ may be formed to cover both ends in the length direction of the chip 62. Similar functions and effects can be obtained.
[0098]
[Seventh embodiment]
FIGS. 21A to 21C show a seventh embodiment of the multilayer capacitor according to the present invention. FIG. 21A is a top view of the multilayer capacitor, and FIG. FIG. 21A is a sectional view taken along line g1-g1, and FIG. 21C is a sectional view taken along line g2-g2 in FIG. In the following description, the horizontal direction in FIG. 21A is described as a length direction, the vertical direction is described as a width direction, and the vertical direction in FIG. 21B is described as a height direction.
[0099]
The multilayer capacitor 71 is provided with a rectangular parallelepiped chip 72 having a dimension relationship of length> width = height, a predetermined number of internal electrodes 73 embedded in the chip 72, and provided at both ends in the length direction of the chip 72. And a pair of dummy electrodes 75 provided on both ends of the chip 72 in the width direction. A predetermined number of internal electrodes 73 stacked via the dielectric portion constitute a capacitor portion (without reference numeral) capable of securing a predetermined capacitance.
[0100]
The chip 72 is formed by alternately laminating and compressing an unfired dielectric layer made of a ceramic slurry containing dielectric ceramic powder and an unfired internal electrode layer made of an electrode paste containing metal powder, and then firing the chip. The unfired internal electrode layer becomes the internal electrode 73 by firing. Further, the external electrode 74 is formed by applying and baking an electrode paste containing metal powder to each end surface in the length direction of the chip 72 so as to cover four surrounding surfaces. Further, the dummy electrode 75 is formed by applying and baking an electrode paste containing metal powder on each end surface in the width direction of the chip 72 so as to cover two surrounding surfaces (both end surfaces in the height direction). I have.
[0101]
The internal electrodes 73 are arranged such that two adjacent internal electrodes 73 face each other in the height direction via the dielectric portion, and each edge is alternately exposed to two end surfaces in the longitudinal direction of the chip 72. ing. The edge of the internal electrode 73 exposed from one end face in the longitudinal direction of the chip 72 is electrically connected to one external electrode 74, and the edge of the internal electrode 73 exposed from the other end face is connected to the other external electrode 74. Is electrically connected to
[0102]
Since the capacitor portions in the chip 72 are separated from the both end surfaces in the width direction and the both end surfaces in the height direction of the chip 72 by a predetermined distance, capacitor portions are provided at both end portions in the width direction and both end portions in the height direction of the chip 72. There is a portion 72a made of only a dielectric material so as to surround it.
[0103]
Since the multilayer capacitor 71 has a dielectric portion between the internal electrodes 73 constituting the capacitor portion, if charging and discharging are repeated while a DC voltage is applied to the pair of external electrodes 74, or a ripple occurs. When a DC voltage or DC current containing components is applied, the dielectric portion sandwiched between the internal electrodes 73 expands and contracts due to the piezoelectric effect.
[0104]
However, in the above-described multilayer capacitor 71, there are portions 72 a made of only a dielectric material so as to surround the capacitor portion at both ends in the width direction and both ends in the height direction of the chip 72. Has a structure that covers both ends in the longitudinal direction of the chip 72 and has a structure in which the pair of dummy electrodes 75 partially covers both ends in the width direction of the chip 72. Can be obtained by the above-mentioned dielectric material portion 72a and the dummy electrode 75, and the effect of suppressing expansion and contraction in the width direction can be obtained by the above-mentioned dielectric material portion 72a and the external electrode 74. Can be obtained by the dielectric material portion 72a, the external electrode 74, and the dummy electrode 75, whereby the multilayer capacitor is formed by the piezoelectric effect. Stretch occurring in sub 71 can be significantly reduced.
[0105]
Therefore, even when the pair of external electrodes 74 of the multilayer capacitor 71 are joined to the land RD of the substrate SB via the joining material CM such as solder, the force transmitted to the substrate SB as the multilayer capacitor 71 expands and contracts is small. As a result, the vertical vibration of the substrate SB is also reduced, and the generation of audible sound due to this vibration is extremely small or almost inaudible.
[0106]
In order to make it difficult for the force caused by the expansion and contraction of the multilayer capacitor 71 to be transmitted to the substrate SB, the bonding area between the external electrode 74 and the land RD is reduced by minimizing the land RD as shown in FIG. Alternatively, as shown in FIG. 22A, the bonding area between the external electrode 74 and the land RD is reduced by partially bonding the external electrode 74 and the land RD by the bonding material CM in the width direction. It is good to Further, if a material having low hardness, for example, a conductive resin or the like is used as the bonding material CM, the transmission of the force can be reduced by the bonding material CM so that the force accompanying expansion and contraction of the multilayer capacitor 71 is hardly transmitted to the substrate SB. it can.
[0107]
In the above-described embodiment, a rectangular parallelepiped chip 72 having a length>width> height dimension relationship has been described. However, the chip 72 has a length> width = height or length>height> width dimension. They may have a relationship.
[0108]
In the above-described embodiment, a pair of dummy electrodes 75 is provided at both ends in the width direction of the chip 72. However, as shown in FIG. 23, two pairs or three pairs are provided at both ends in the width direction of the chip 72. Even when the dummy electrode 75 'described above is provided, the same operation and effect can be obtained.
[0109]
[Eighth Embodiment]
FIGS. 24A to 24C show an eighth embodiment of the multilayer capacitor according to the present invention. FIG. 24A is a top view of the multilayer capacitor, and FIG. 24A is a cross-sectional view taken along the line h1-h1, and FIG. 24C is a cross-sectional view taken along the line h2-h2 in FIG. In the following description, the horizontal direction in FIG. 24A is referred to as a length direction, the vertical direction is referred to as a width direction, and the vertical direction in FIG. 24B is referred to as a height direction.
[0110]
The multilayer capacitor 81 is provided with a rectangular parallelepiped chip 82 having a dimensional relationship of length> width = height, a predetermined number of internal electrodes 83 embedded in the chip 82, and both ends of the chip 82 in the length direction. And a pair of external electrodes 84 provided. A predetermined number of the internal electrodes 83 stacked via the dielectric portion constitute a capacitor portion (no symbol) capable of securing a predetermined capacitance.
[0111]
The chip 82 is formed by alternately laminating and compressing an unfired dielectric layer made of a ceramic slurry containing dielectric ceramic powder and an unfired internal electrode layer made of an electrode paste containing a metal powder, and then firing. The unfired internal electrode layer becomes the internal electrode 83 by firing. Further, the external electrode 84 is formed by applying and baking an electrode paste containing metal powder on each end surface in the length direction of the chip 82 so as to cover four surrounding surfaces.
[0112]
Here, the length of each external electrode 84 is set to be at least 1 / of the length of the multilayer capacitor 81 and within a range in which both are not short-circuited. Incidentally, the lengths of the external electrodes 84 in the drawing are equal to each other, and each length is about / of the length of the multilayer capacitor 81.
[0113]
The internal electrodes 83 are arranged such that two adjacent internal electrodes 83 face each other in the height direction via the dielectric portion, and each edge is alternately exposed on two end surfaces in the longitudinal direction of the chip 82. ing. The edge of the internal electrode 83 exposed from one end face in the length direction of the chip 82 is electrically connected to one external electrode 84, and the edge of the internal electrode 83 exposed from the other end face is connected to the other external electrode 84. Is electrically connected to
[0114]
Since the capacitor portion in the chip 82 is separated from the both ends in the width direction and both ends in the height direction of the chip 82 by a predetermined distance, capacitor portions are provided at both ends in the width direction and both ends in the height direction of the chip 82. There is a portion 82a made of only a dielectric material so as to surround it.
[0115]
In the multilayer capacitor 81, since a dielectric portion exists between the internal electrodes 83 constituting the capacitor portion, when charging and discharging are repeated with a DC voltage applied to the pair of external electrodes 84, ripples occur. When a DC voltage or DC current containing components is applied, the dielectric portion sandwiched between the internal electrodes 83 expands and contracts due to the piezoelectric effect.
[0116]
However, in the above-mentioned multilayer capacitor 81, there are portions 82a made of only a dielectric material so as to surround the capacitor portion at both ends in the width direction and both ends in the height direction of the chip 82. Has a structure that covers both ends of the chip 82 in the length direction, and the length dimension of each external electrode 84 is set to be at least の of the length dimension of the multilayer capacitor 81 and not to short-circuit the two. The effect of suppressing expansion and contraction in the length direction can be obtained by the dielectric material portion 82a and the external electrode 84, and the effect of suppressing expansion and contraction in the width direction can be obtained by the dielectric material portion 82a and the external electrode 84. Further, the effect of suppressing the expansion and contraction in the height direction can be obtained by the above-described dielectric material portion 82a and the external electrode 84. Stretch occurring in the capacitor 81 can be significantly reduced.
[0117]
Therefore, even when the pair of external electrodes 84 of the multilayer capacitor 81 are bonded to the land RD of the substrate SB via the bonding material CM such as solder, the force transmitted to the substrate SB as the multilayer capacitor 81 expands and contracts is small. As a result, the vertical vibration of the substrate SB is also reduced, and the generation of audible sound due to this vibration is extremely small or almost inaudible.
[0118]
In order to make it difficult for the force caused by the expansion and contraction of the multilayer capacitor 81 to be transmitted to the substrate SB, the bonding area between the external electrode 84 and the land RD is reduced by minimizing the land RD as shown in FIG. Alternatively, as shown in FIG. 25A, the bonding area between the external electrode 84 and the land RD is reduced by partially bonding the external electrode 84 and the land RD with the bonding material CM in the width direction. It is good to Also, as shown in FIG. 25 (B), when the joint between the external electrode 84 and the land RD is set at the innermost position of each external electrode 84 and the fixed end distance is made as small as possible, the length of the multilayer capacitor 81 in the length direction can be expanded and contracted. , The vertical vibration hardly occurs on the substrate SB. Furthermore, if a material having low hardness, for example, a conductive resin or the like is used as the bonding material CM, the propagation of force can be reduced by the bonding material CM, and the force accompanying expansion and contraction of the multilayer capacitor 81 can be hardly transmitted to the substrate SB. it can.
[0119]
In the above-described embodiment, the chip 82 having the dimension relationship of length>width> height is shown as the rectangular parallelepiped chip 82, but the chip 82 has the dimension of length> width = height or length>height> width. They may have a relationship.
[0120]
【The invention's effect】
As described in detail above, according to the present invention, it is possible to provide a multilayer capacitor capable of reducing expansion and contraction due to a piezoelectric effect as much as possible, and a multilayer capacitor mounting body capable of minimizing generation of audible sound caused by expansion and contraction of the multilayer capacitor. it can.
[Brief description of the drawings]
FIG. 1 shows an example of a conventional multilayer capacitor.
FIG. 2 is a view showing a state in which the multilayer capacitor shown in FIG. 1 is mounted on a substrate;
FIG. 3 is a view showing a first embodiment of the multilayer capacitor according to the present invention;
FIG. 4 is a diagram showing a state in which the multilayer capacitor shown in FIG. 3 is mounted on a substrate;
FIG. 5 is a diagram showing a modification of the multilayer capacitor shown in FIG. 3;
FIG. 6 is a view showing a second embodiment of the multilayer capacitor according to the present invention;
FIG. 7 is a view showing a state in which the multilayer capacitor shown in FIG. 6 is mounted on a substrate;
FIG. 8 is a view showing a modification of the multilayer capacitor shown in FIG. 6;
FIG. 9 is a diagram showing a third embodiment of the multilayer capacitor according to the present invention.
FIG. 10 is a diagram showing a state in which the multilayer capacitor shown in FIG. 9 is mounted on a substrate.
FIG. 11 is a view showing a modification of the multilayer capacitor shown in FIG. 9;
FIG. 12 is a view showing a multilayer capacitor according to a fourth embodiment of the present invention;
FIG. 13 is a view showing a state where the multilayer capacitor shown in FIG. 12 is mounted on a substrate.
FIG. 14 is a diagram showing a fifth embodiment of the multilayer capacitor according to the present invention;
FIG. 15 is a diagram showing a state in which the multilayer capacitor shown in FIG. 14 is mounted on a substrate.
FIG. 16 is a view showing a modification of the multilayer capacitor shown in FIG. 14;
FIG. 17 is a view showing a sixth embodiment of the multilayer capacitor according to the present invention;
18 is a view showing a state in which the multilayer capacitor shown in FIG. 17 is mounted on a substrate.
FIG. 19 is a view showing a modification of the multilayer capacitor shown in FIG. 17;
FIG. 20 is a view showing a modification of the multilayer capacitor shown in FIG. 17;
FIG. 21 is a view showing a seventh embodiment of the multilayer capacitor according to the present invention;
FIG. 22 is a view showing a state in which the multilayer capacitor shown in FIG. 21 is mounted on a substrate.
FIG. 23 is a view showing a modification of the multilayer capacitor shown in FIG. 21;
FIG. 24 is a diagram showing an eighth embodiment of the multilayer capacitor according to the present invention.
FIG. 25 is a diagram showing a state in which the multilayer capacitor shown in FIG. 24 is mounted on a substrate.
[Explanation of symbols]
SB: substrate, RD: land, CM: bonding material, 11: multilayer capacitor, 12: chip, 12a, 12b, 12c: dielectric material portion, 13: internal electrode, 13a: narrow portion, 14: external electrode, 15 ... Dummy electrode, 21 ... Multilayer capacitor, 22 ... Chip, 22a, 22b ... Dielectric material part, 23 ... Internal electrode, 24 ... External electrode, 25 ... Dummy electrode, 31 ... Multilayer capacitor, 32 ... Chip, 32a, 32b ... Dielectric material portion, 33 internal electrode, 33a narrow portion, 34 external electrode, 35 dummy electrode, 41 multilayer capacitor, 42 chip, 42a, 42b dielectric material portion, 43a first internal electrode 43a1 narrow width portion, 43b second internal electrode, 44 first external electrode, 45 second external electrode, 51 multilayer capacitor, 52 chip, 52a, 52b, 52c. Body material part, 53 ... Internal electrode, 53a ... Narrow width part, 54 ... External electrode, 55 ... Dummy electrode, 61 ... Multilayer capacitor, 62 ... Chip, 62a ... Dielectric material part, 63 ... Internal electrode, 64, 64 ' ... external electrodes, 65, 65 'dummy electrodes, 71 multilayer capacitors, 72 chips, 72a dielectric material portion, 73 internal electrodes, 74 external electrodes, 75, 75' dummy electrodes, 81 multilayer capacitors 82, a chip, 82a, a dielectric material portion, 83, an internal electrode, 84, an external electrode.

Claims (23)

長さ,幅,高さのうち最も長さが大きい直方体形状の誘電体チップ内に、隣接する2つの内部電極が誘電体部を介して高さ方向で向き合うように配された所定数の内部電極から成るコンデンサ部を有する積層コンデンサであって、
チップ内には2以上のコンデンサ部が長さ方向に間隔をおいて設けられ、各コンデンサ部を構成する内部電極はその端縁をチップの幅方向の2つの端面に交互に露出しており、
また、チップの幅方向両端部にはチップの幅方向の各端面及びその周囲の4面に及ぶように1対の外部電極が形成されていて、各コンデンサ部の一方の端面から露出する内部電極の端縁は一方の外部電極に電気的に接続され、他方の端面から露出する内部電極の端縁は他方の外部電極に電気的に接続されており、
チップの長さ方向両端部と高さ方向両端部に各コンデンサ部を囲むようにして誘電体材料のみで構成された部分が存在すると共に各コンデンサ部の間に誘電体材料のみで構成された部分が存在する、
ことを特徴とする積層コンデンサ。
Within a rectangular parallelepiped dielectric chip having the largest length among length, width and height, a predetermined number of internal electrodes are arranged such that two adjacent internal electrodes face each other in the height direction via the dielectric portion. A multilayer capacitor having a capacitor portion composed of electrodes,
Two or more capacitor portions are provided in the chip at intervals in the length direction, and the internal electrodes constituting each capacitor portion have their edges exposed alternately on two end surfaces in the width direction of the chip,
Further, a pair of external electrodes is formed at both ends in the width direction of the chip so as to extend over each end surface in the width direction of the chip and four surrounding surfaces thereof, and internal electrodes exposed from one end surface of each capacitor portion. Edge is electrically connected to one external electrode, the edge of the internal electrode exposed from the other end surface is electrically connected to the other external electrode,
At both ends of the chip in the length direction and at both ends in the height direction, there is a part made of only dielectric material surrounding each capacitor part, and a part made of only dielectric material exists between each capacitor part Do
A multilayer capacitor characterized by the above-mentioned.
各コンデンサ部を構成する内部電極はその幅方向一端に狭幅部を有していて狭幅部の端縁をチップの幅方向の2つの端面に交互に露出しており、チップの幅方向両端部にその殆どが誘電体材料で構成された部分が存在する、
ことを特徴とする請求項1に記載の積層コンデンサ。
The internal electrode constituting each capacitor portion has a narrow portion at one end in the width direction, and the edges of the narrow portion are alternately exposed at two end surfaces in the width direction of the chip. There is a part that is mostly composed of a dielectric material in the part,
The multilayer capacitor according to claim 1, wherein:
チップの長さ方向両端部にはチップの長さ方向の各端面及びその周囲の2面に及ぶように少なくとも1対のダミー電極が設けられている、
ことを特徴とする請求項1または2に記載の積層コンデンサ。
At least one pair of dummy electrodes is provided at both ends in the longitudinal direction of the chip so as to cover each end surface in the longitudinal direction of the chip and two peripheral surfaces thereof.
The multilayer capacitor according to claim 1, wherein:
請求項1〜3の何れか1項に記載の積層コンデンサの1対の外部電極を接合材を介して基板のランドに接合して成る、
ことを特徴とする積層コンデンサ実装体。
The multilayer capacitor according to any one of claims 1 to 3, wherein a pair of external electrodes is bonded to a land of a substrate via a bonding material.
A multilayer capacitor mounted body characterized in that:
長さ,幅,高さのうち最も長さが大きい直方体形状の誘電体チップ内に、隣接する2つの内部電極が誘電体部を介して高さ方向で向き合うように配された所定数の内部電極から成るコンデンサ部を有する積層コンデンサであって、
チップ内には2以上のコンデンサ部が幅方向に間隔をおいて設けられ、各コンデンサ部を構成する内部電極はその端縁をチップの長さ方向の2つの端面に交互に露出しており、
また、チップの長さ方向両端部にはチップの長さ方向の各端面及びその周囲の4面に及ぶように1対の外部電極が形成されていて、各コンデンサ部の一方の端面から露出する内部電極の端縁は一方の外部電極に電気的に接続され、他方の端面から露出する内部電極の端縁は他方の外部電極に電気的に接続されており、
チップの幅方向両端部と高さ方向両端部に各コンデンサ部を囲むようにして誘電体材料のみで構成された部分が存在すると共に各コンデンサ部の間に誘電体材料のみで構成された部分が存在する、
ことを特徴とする積層コンデンサ。
Within a rectangular parallelepiped dielectric chip having the largest length among length, width and height, a predetermined number of internal electrodes are arranged such that two adjacent internal electrodes face each other in the height direction via the dielectric portion. A multilayer capacitor having a capacitor portion composed of electrodes,
Two or more capacitor portions are provided in the chip at intervals in the width direction, and the internal electrodes constituting each capacitor portion have their edges exposed alternately on two end surfaces in the length direction of the chip.
Further, a pair of external electrodes is formed at both ends in the length direction of the chip so as to extend to each end surface in the length direction of the chip and four surrounding surfaces thereof, and is exposed from one end surface of each capacitor portion. The edge of the internal electrode is electrically connected to one external electrode, the edge of the internal electrode exposed from the other end surface is electrically connected to the other external electrode,
At both ends in the width direction and both ends in the height direction of the chip, there is a portion made of only the dielectric material so as to surround each capacitor portion, and there is a portion made of only the dielectric material between each capacitor portion. ,
A multilayer capacitor characterized by the above-mentioned.
チップの幅方向両端部にはチップの幅方向の各端面及びその周囲の2面に及ぶように少なくとも1対のダミー電極が設けられている、
ことを特徴とする請求項5に記載の積層コンデンサ。
At least one pair of dummy electrodes is provided at both ends in the width direction of the chip so as to cover each end surface in the width direction of the chip and two surrounding surfaces thereof.
The multilayer capacitor according to claim 5, wherein:
請求項5または6に記載の積層コンデンサの1対の外部電極を接合材を介して基板のランドに接合して成る、
ことを特徴とする積層コンデンサ実装体。
The multilayer capacitor according to claim 5 or 6, wherein a pair of external electrodes is bonded to a land of the substrate via a bonding material.
A multilayer capacitor mounted body characterized in that:
長さ,幅,高さのうち最も長さが大きい直方体形状の誘電体チップ内に、隣接する2つの内部電極が誘電体部を介して高さ方向で向き合うように配された所定数の内部電極から成るコンデンサ部を有する積層コンデンサであって、
チップ内には1つのコンデンサ部が設けられ、コンデンサ部を構成する内部電極はその幅方向一端に2以上の狭幅部を有していて狭幅部の端縁をチップの幅方向の2つの端面に交互に露出しており、
また、チップの幅方向両端部にはチップの幅方向の各端面及びその周囲の2面に及ぶように狭幅部の数と一致した2対以上の外部電極が形成されていて、コンデンサ部の一方の端面から露出する内部電極の2以上の端縁は各々に対応する一方の外部電極にそれぞれ電気的に接続され、他方の端面から露出する内部電極の2以上の端縁は各々に対応する他方の外部電極にそれぞれ電気的に接続されており、
チップの長さ方向両端部と高さ方向両端部にコンデンサ部を囲むようにして誘電体材料のみで構成された部分が存在すると共にチップの幅方向両端部にその殆どが誘電体材料で構成された部分が存在する、
ことを特徴とする積層コンデンサ。
Within a rectangular parallelepiped dielectric chip having the largest length among length, width and height, a predetermined number of internal electrodes are arranged such that two adjacent internal electrodes face each other in the height direction via the dielectric portion. A multilayer capacitor having a capacitor portion composed of electrodes,
One capacitor portion is provided in the chip, and the internal electrode constituting the capacitor portion has two or more narrow portions at one end in the width direction, and the edge of the narrow portion is divided into two in the width direction of the chip. It is exposed alternately on the end face,
Further, at both ends in the width direction of the chip, two or more pairs of external electrodes corresponding to the number of the narrow portions are formed so as to cover each end face in the width direction of the chip and the two surrounding surfaces thereof. Two or more edges of the internal electrode exposed from one end face are electrically connected to one corresponding external electrode, respectively, and two or more edges of the internal electrode exposed from the other end face correspond to each. Each is electrically connected to the other external electrode,
There is a portion composed of only dielectric material surrounding both ends of the chip in the length direction and both ends in the height direction so as to surround the capacitor portion, and a portion composed mostly of dielectric material at both ends in the width direction of the chip. Exists,
A multilayer capacitor characterized by the above-mentioned.
チップの長さ方向両端部にチップの長さ方向の各端面及びその周囲の4面に及ぶように1対のダミー電極が形成されている、
ことを特徴とする請求項8に記載の積層コンデンサ。
A pair of dummy electrodes is formed at both ends in the longitudinal direction of the chip so as to extend over each end surface in the longitudinal direction of the chip and four peripheral surfaces thereof.
The multilayer capacitor according to claim 8, wherein:
請求項8または9に記載の積層コンデンサの2対以上の外部電極を接合材を介して基板のランドに接合して成る、
ことを特徴とする積層コンデンサ実装体。
10. The multilayer capacitor according to claim 8, wherein two or more pairs of external electrodes are bonded to a land of the substrate via a bonding material.
A multilayer capacitor mounted body characterized in that:
長さ,幅,高さのうち最も長さが大きい直方体形状の誘電体チップ内に、隣接する2つの内部電極が誘電体部を介して高さ方向で向き合うように配された所定数の内部電極から成るコンデンサ部を有する積層コンデンサであって、
チップ内には長さ方向に間隔をおいて設けられた2以上の第1内部電極と長さ方向に及んで設けられた第2内部電極とが誘電体部を介して向き合うように交互に配され、第1内部電極はその幅方向両端に狭幅部を有していて狭幅部の端縁をチップの幅方向の2つの端面に露出し、第2内部電極はその長さ方向の端縁をチップの長さ方向の2つの端面に露出しており、
また、チップの幅方向両端部にはチップの幅方向の各端面及びその周囲の2面に及ぶように狭幅部の数と一致した2対以上の第1外部電極が形成され、且つ、チップの長さ方向両端部にはチップの長さ方向の各端面及びその周囲の4面に及ぶように1対の第2外部電極が形成されていて、第1内部電極の一方の露出端縁は各々に対応する一方の第1外部電極に電気的に接続されると共に他方の露出端縁は各々に対応する他方の第1外部電極に電気的に接続されており、また、第2内部電極の一方の露出端縁は一方の第2外部電極に電気的に接続されると共に他方の露出端縁は他方の第2外部電極に電気的に接続されており、
チップの高さ方向両端部には誘電体材料のみで構成された部分が存在すると共にチップの幅方向両端部にはその殆どが誘電体材料で構成された部分が存在する、
ことを特徴とする積層コンデンサ。
Within a rectangular parallelepiped dielectric chip having the largest length among length, width and height, a predetermined number of internal electrodes are arranged such that two adjacent internal electrodes face each other in the height direction via the dielectric portion. A multilayer capacitor having a capacitor portion composed of electrodes,
In the chip, two or more first internal electrodes provided at intervals in the length direction and second internal electrodes provided over the length direction are alternately arranged so as to face each other via a dielectric portion. The first internal electrode has narrow portions at both ends in the width direction, and the edges of the narrow portion are exposed at two end faces in the width direction of the chip, and the second internal electrode has ends in the length direction. The edges are exposed at the two end faces in the longitudinal direction of the chip,
Further, at least two pairs of first external electrodes corresponding to the number of narrow portions are formed at both ends in the width direction of the chip so as to cover each end surface in the width direction of the chip and two surrounding surfaces thereof, and A pair of second external electrodes is formed at both ends in the length direction of the chip so as to extend over each end surface in the length direction of the chip and four surrounding surfaces thereof, and one exposed edge of the first internal electrode is The other exposed edge is electrically connected to one corresponding first external electrode, and the other exposed edge is electrically connected to the corresponding other first external electrode. One exposed edge is electrically connected to one second external electrode, and the other exposed edge is electrically connected to the other second external electrode.
At both ends in the height direction of the chip, there is a portion made of only a dielectric material, and at both ends in the width direction of the chip, there are portions mostly made of a dielectric material.
A multilayer capacitor characterized by the above-mentioned.
請求項11に記載の積層コンデンサの第1外部電極と第2外部電極を接合材を介して基板のランドに接合して成る、
ことを特徴とする積層コンデンサ実装体。
The multilayer capacitor according to claim 11, wherein the first external electrode and the second external electrode are bonded to a land of a substrate via a bonding material.
A multilayer capacitor mounted body characterized in that:
長さ,幅,高さのうち最も長さが大きい直方体形状の誘電体チップ内に、隣接する2つの内部電極が誘電体部を介して高さ方向で向き合うように配された所定数の内部電極から成るコンデンサ部を有する積層コンデンサであって、
チップ内には2以上のコンデンサ部が長さ方向に間隔をおいて設けられ、各コンデンサ部を構成する内部電極はその幅方向一端に狭幅部を有していて狭幅部の端縁をチップの幅方向の2つの端面に交互に露出しており、
また、チップの幅方向両端部にはチップの幅方向の各端面及びその周囲の2面に及ぶように狭幅部の数と一致した2対以上の外部電極が形成されていて、各コンデンサ部の一方の端面から露出する内部電極の端縁は各々に対応した一方の外部電極にそれぞれ電気的に接続され、他方の端面から露出する内部電極の端縁は各々に対応した他方の外部電極にそれぞれ電気的に接続されており、
チップの長さ方向両端部と高さ方向両端部に各コンデンサ部を囲むようにして誘電体材料のみで構成された部分が存在し、各コンデンサ部の間に誘電体材料のみで構成された部分が存在すると共にチップの幅方向両端部にその殆どが誘電体材料で構成された部分が存在する、
ことを特徴とする積層コンデンサ。
Within a rectangular parallelepiped dielectric chip having the largest length among length, width and height, a predetermined number of internal electrodes are arranged such that two adjacent internal electrodes face each other in the height direction via the dielectric portion. A multilayer capacitor having a capacitor portion composed of electrodes,
Two or more capacitor portions are provided in the chip at intervals in the length direction, and the internal electrodes constituting each capacitor portion have a narrow portion at one end in the width direction, and the edge of the narrow portion is formed. It is exposed alternately on the two end faces in the width direction of the chip,
Further, two or more pairs of external electrodes corresponding to the number of narrow portions are formed at both ends in the width direction of the chip so as to cover each end surface in the width direction of the chip and two surrounding surfaces thereof. The edge of the internal electrode exposed from one end surface of the internal electrode is electrically connected to one corresponding external electrode, and the edge of the internal electrode exposed from the other end surface is connected to the corresponding external electrode. Each is electrically connected,
At both ends of the chip in the length direction and at both ends in the height direction, there is a part made of only dielectric material surrounding each capacitor part, and a part made of only dielectric material exists between each capacitor part At the same time, there are portions made of a dielectric material at both ends in the width direction of the chip,
A multilayer capacitor characterized by the above-mentioned.
チップの長さ方向両端部にチップの長さ方向の各端面及びその周囲の4面に及ぶように1対のダミー電極が形成されている、
ことを特徴とする請求項13に記載の積層コンデンサ。
A pair of dummy electrodes is formed at both ends in the longitudinal direction of the chip so as to extend over each end surface in the longitudinal direction of the chip and four peripheral surfaces thereof.
14. The multilayer capacitor according to claim 13, wherein:
請求項13または14に記載の積層コンデンサの2対以上のの外部電極を接合材を介して基板のランドに接合して成る、
ことを特徴とする積層コンデンサ実装体。
The multilayer capacitor according to claim 13 or 14, wherein at least two pairs of external electrodes are bonded to a land of the substrate via a bonding material.
A multilayer capacitor mounted body characterized in that:
長さ,幅,高さのうち最も長さが大きい直方体形状の誘電体チップ内に、隣接する2つの内部電極が誘電体部を介して高さ方向で向き合うように配された所定数の内部電極から成るコンデンサ部を有する積層コンデンサであって、
チップ内には1つのコンデンサ部が設けられ、コンデンサ部を構成する内部電極はその端縁をチップの幅方向の2つの端面に交互に露出しており、
また、チップの幅方向両端部にはチップの幅方向の各端面及びその周囲の4面に及ぶように1対の外部電極が形成されていて、コンデンサ部の一方の端面から露出する内部電極の端縁は一方の外部電極に電気的に接続され、他方の端面から露出する内部電極の端縁は他方の外部電極に電気的に接続されており、
チップの長さ方向両端部と高さ方向両端部にコンデンサ部を囲むようにして誘電体材料のみで構成された部分が存在する、
ことを特徴とする積層コンデンサ。
Within a rectangular parallelepiped dielectric chip having the largest length among length, width and height, a predetermined number of internal electrodes are arranged such that two adjacent internal electrodes face each other in the height direction via the dielectric portion. A multilayer capacitor having a capacitor portion composed of electrodes,
One capacitor portion is provided in the chip, and the inner electrodes constituting the capacitor portion have their edges alternately exposed on two end surfaces in the width direction of the chip,
Further, a pair of external electrodes is formed at both ends in the width direction of the chip so as to extend to each end surface in the width direction of the chip and four surrounding surfaces thereof, and a pair of internal electrodes exposed from one end surface of the capacitor portion. The edge is electrically connected to one external electrode, the edge of the internal electrode exposed from the other end is electrically connected to the other external electrode,
At both ends in the length direction and both ends in the height direction of the chip, there is a portion composed of only a dielectric material so as to surround the capacitor portion,
A multilayer capacitor characterized by the above-mentioned.
チップの長さ方向両端部にチップの長さ方向の各端面及びその周囲の2面に及ぶように少なくとも1対のダミー電極が形成されている、
ことを特徴とする請求項16に記載の積層コンデンサ。
At least one pair of dummy electrodes is formed at both ends in the longitudinal direction of the chip so as to cover each end surface in the longitudinal direction of the chip and two peripheral surfaces thereof.
The multilayer capacitor according to claim 16, wherein:
1対の外部電極はチップの幅方向両端部にチップの幅方向の各端面及びその周囲の2面に及ぶように形成されていて、チップの長さ方向両端部にチップの長さ方向の各端面及びその周囲の4面に及ぶように1対のダミー電極が形成されている、
ことを特徴とする請求項16に記載の積層コンデンサ。
A pair of external electrodes are formed at both ends in the width direction of the chip so as to extend over each end surface in the width direction of the chip and two surrounding surfaces thereof. A pair of dummy electrodes is formed so as to cover the end face and four surrounding faces;
The multilayer capacitor according to claim 16, wherein:
請求項16〜18の何れか1項に記載の積層コンデンサの1対の外部電極を接合材を介して基板のランドに接合して成る、
ことを特徴とする積層コンデンサ実装体。
A pair of external electrodes of the multilayer capacitor according to any one of claims 16 to 18, which is bonded to a land of a substrate via a bonding material.
A multilayer capacitor mounted body characterized in that:
長さ,幅,高さのうち最も長さが大きい直方体形状の誘電体チップ内に、隣接する2つの内部電極が誘電体部を介して高さ方向で向き合うように配された所定数の内部電極から成るコンデンサ部を有する積層コンデンサであって、
チップ内には1つのコンデンサ部が設けられ、コンデンサ部を構成する内部電極はその端縁をチップの長さ方向の2つの端面に交互に露出しており、
また、チップの長さ方向両端部にはチップの長さ方向の各端面及びその周囲の4面に及ぶように1対の外部電極が形成されていて、コンデンサ部の一方の端面から露出する内部電極の端縁は一方の外部電極に電気的に接続され、他方の端面から露出する内部電極の端縁は他方の外部電極に電気的に接続されており、
チップの幅方向両端部と高さ方向両端部にコンデンサ部を囲むようにして誘電体材料のみで構成された部分が存在し、
チップの幅方向両端部にはチップの幅さ方向の各端面及びその周囲の2面に及ぶように少なくとも1対のダミー電極が設けられている、
ことを特徴とする積層コンデンサ。
Within a rectangular parallelepiped dielectric chip having the largest length among length, width and height, a predetermined number of internal electrodes are arranged such that two adjacent internal electrodes face each other in the height direction via the dielectric portion. A multilayer capacitor having a capacitor portion composed of electrodes,
One capacitor portion is provided in the chip, and the internal electrodes constituting the capacitor portion have their edges exposed alternately on two end surfaces in the length direction of the chip.
Further, a pair of external electrodes is formed at both ends in the length direction of the chip so as to extend to each end face in the length direction of the chip and four surrounding surfaces thereof, and an inner electrode exposed from one end face of the capacitor portion. The edge of the electrode is electrically connected to one external electrode, the edge of the internal electrode exposed from the other end surface is electrically connected to the other external electrode,
At both ends in the width direction and both ends in the height direction of the chip, there is a portion made of only a dielectric material so as to surround the capacitor portion,
At least one pair of dummy electrodes is provided at both ends in the width direction of the chip so as to cover each end surface in the width direction of the chip and two peripheral surfaces thereof.
A multilayer capacitor characterized by the above-mentioned.
請求項20に記載の積層コンデンサの1対の外部電極を接合材を介して基板のランドに接合して成る、
ことを特徴とする積層コンデンサ実装体。
21. A pair of external electrodes of the multilayer capacitor according to claim 20 joined to a land of a substrate via a joining material.
A multilayer capacitor mounted body characterized in that:
長さ,幅,高さのうち最も長さが大きい直方体形状の誘電体チップ内に、隣接する2つの内部電極が誘電体部を介して高さ方向で向き合うように配された所定数の内部電極から成るコンデンサ部を有する積層コンデンサであって、
チップ内には1つのコンデンサ部が設けられ、コンデンサ部を構成する内部電極はその端縁をチップの長さ方向の2つの端面に交互に露出しており、
また、チップの長さ方向両端部にはチップの長さ方向の各端面及びその周囲の4面に及ぶように1対の外部電極が形成されていて、コンデンサ部の一方の端面から露出する内部電極の端縁は一方の外部電極に電気的に接続され、他方の端面から露出する内部電極の端縁は他方の外部電極に電気的に接続されており、
チップの幅方向両端部と高さ方向両端部にコンデンサ部を囲むようにして誘電体材料のみで構成された部分が存在し、
各外部電極の長さ寸法は積層コンデンサの長さ寸法の1/4以上で且つ両者が短絡しない範囲に設定されている、
ことを特徴とする積層コンデンサ。
Within a rectangular parallelepiped dielectric chip having the largest length among length, width and height, a predetermined number of internal electrodes are arranged such that two adjacent internal electrodes face each other in the height direction via the dielectric portion. A multilayer capacitor having a capacitor portion composed of electrodes,
One capacitor portion is provided in the chip, and the internal electrodes constituting the capacitor portion have their edges exposed alternately on two end surfaces in the length direction of the chip.
Further, a pair of external electrodes is formed at both ends in the length direction of the chip so as to extend to each end face in the length direction of the chip and four surrounding surfaces thereof, and an inner electrode exposed from one end face of the capacitor portion. The edge of the electrode is electrically connected to one external electrode, the edge of the internal electrode exposed from the other end surface is electrically connected to the other external electrode,
At both ends in the width direction and both ends in the height direction of the chip, there is a portion made of only a dielectric material so as to surround the capacitor portion,
The length dimension of each external electrode is set to be at least 1/4 of the length dimension of the multilayer capacitor and in a range in which both are not short-circuited,
A multilayer capacitor characterized by the above-mentioned.
請求項22に記載の積層コンデンサの1対の外部電極を接合材を介して基板のランドに接合して成る、
ことを特徴とする積層コンデンサ実装体。
A pair of external electrodes of the multilayer capacitor according to claim 22, which is bonded to a land of a substrate via a bonding material.
A multilayer capacitor mounted body characterized in that:
JP2002359722A 2002-12-11 2002-12-11 Layered capacitor and its mounted product Pending JP2004193352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002359722A JP2004193352A (en) 2002-12-11 2002-12-11 Layered capacitor and its mounted product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002359722A JP2004193352A (en) 2002-12-11 2002-12-11 Layered capacitor and its mounted product

Publications (1)

Publication Number Publication Date
JP2004193352A true JP2004193352A (en) 2004-07-08

Family

ID=32759036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002359722A Pending JP2004193352A (en) 2002-12-11 2002-12-11 Layered capacitor and its mounted product

Country Status (1)

Country Link
JP (1) JP2004193352A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006110287A1 (en) * 2005-04-07 2006-10-19 Honeywell International Inc. Low esl and esr chip capacitor
JP2008192757A (en) * 2007-02-02 2008-08-21 Tdk Corp Multilayer capacitor
JP2009027101A (en) * 2007-07-24 2009-02-05 Taiyo Yuden Co Ltd Multilayer ceramic capacitor
US7701696B2 (en) 2007-05-30 2010-04-20 Tdk Corporation Multilayer capacitor
US7710711B2 (en) 2007-05-30 2010-05-04 Tdk Corporation Multilayer capacitor
JP2012134498A (en) * 2010-12-21 2012-07-12 Samsung Electro-Mechanics Co Ltd Circuit board mount structure and method for multilayer ceramic capacitor, land pattern of circuit board, and package and alignment method for multilayer ceramic capacitor
CN102970825A (en) * 2011-09-01 2013-03-13 株式会社村田制作所 Mounting structure
KR20130091047A (en) * 2012-02-07 2013-08-16 삼성전기주식회사 Array-type multilayered ceramic electronic component
CN103390495A (en) * 2012-05-08 2013-11-13 株式会社村田制作所 Ceramic electronic component and electronic device
JP2013251551A (en) * 2012-05-30 2013-12-12 Samsung Electro-Mechanics Co Ltd Laminated chip electronic component, board for mounting the same, and packing unit
KR101386949B1 (en) * 2006-09-28 2014-04-21 티디케이가부시기가이샤 Multilayer capacitor
JP2014086606A (en) * 2012-10-25 2014-05-12 Taiyo Yuden Co Ltd Mounting structure of multilayer ceramic capacitor
US8804367B2 (en) 2012-12-20 2014-08-12 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and board for mounting the same
WO2014126084A1 (en) * 2013-02-18 2014-08-21 太陽誘電株式会社 Multilayer ceramic capacitor with interposer, and interposer for multilayer ceramic capacitor
JP2014187058A (en) * 2013-01-14 2014-10-02 Samsung Electro-Mechanics Co Ltd Multilayer ceramic capacitor, mounting board for multilayer ceramic capacitor, and manufacturing method of multilayer ceramic capacitor
JP2014199895A (en) * 2013-03-29 2014-10-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic capacitor and mounting board for multilayer ceramic capacitor
JP2014203862A (en) * 2013-04-02 2014-10-27 パナソニック株式会社 Ceramic electronic component and method for manufacturing the same
JP2014220476A (en) * 2013-04-30 2014-11-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic electronic component and board for mounting the same
WO2014203948A1 (en) * 2013-06-19 2014-12-24 太陽誘電株式会社 Multilayer ceramic capacitor
CN104240945A (en) * 2013-06-14 2014-12-24 三星电机株式会社 Multilayer ceramic capacitor and board having the same mounted thereon
WO2015105719A1 (en) * 2014-01-13 2015-07-16 Apple Inc. Acoustic noise cancellation in multi-layer capacitors
JP2015220451A (en) * 2014-05-19 2015-12-07 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic capacitor, multilayer ceramic capacitor assembly, and board for mounting the same
JP2016034047A (en) * 2011-09-01 2016-03-10 株式会社村田製作所 Mounting structure
JP2016072603A (en) * 2014-09-26 2016-05-09 株式会社村田製作所 Electronic component
US9374908B2 (en) 2011-09-01 2016-06-21 Murata Manufacturing Co., Ltd. Electronic component and selection method
US10204737B2 (en) 2014-06-11 2019-02-12 Avx Corporation Low noise capacitors
US11315737B2 (en) 2020-02-07 2022-04-26 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006110287A1 (en) * 2005-04-07 2006-10-19 Honeywell International Inc. Low esl and esr chip capacitor
KR101386949B1 (en) * 2006-09-28 2014-04-21 티디케이가부시기가이샤 Multilayer capacitor
JP2008192757A (en) * 2007-02-02 2008-08-21 Tdk Corp Multilayer capacitor
US7706123B2 (en) 2007-02-02 2010-04-27 Tdk Corporation Multilayer capacitor
JP4656064B2 (en) * 2007-02-02 2011-03-23 Tdk株式会社 Multilayer capacitor
US7701696B2 (en) 2007-05-30 2010-04-20 Tdk Corporation Multilayer capacitor
US7710711B2 (en) 2007-05-30 2010-05-04 Tdk Corporation Multilayer capacitor
CN101315833B (en) * 2007-05-30 2011-08-10 Tdk株式会社 Multilayer capacitor
JP2009027101A (en) * 2007-07-24 2009-02-05 Taiyo Yuden Co Ltd Multilayer ceramic capacitor
JP2013153231A (en) * 2010-12-21 2013-08-08 Samsung Electro-Mechanics Co Ltd Circuit board mounting structure of multi-layered ceramic capacitor, method thereof, land pattern of circuit board, packing unit for multi-layered ceramic capacitor and aligning method
JP2012134498A (en) * 2010-12-21 2012-07-12 Samsung Electro-Mechanics Co Ltd Circuit board mount structure and method for multilayer ceramic capacitor, land pattern of circuit board, and package and alignment method for multilayer ceramic capacitor
JP2012216864A (en) * 2010-12-21 2012-11-08 Samsung Electro-Mechanics Co Ltd Mounting structure and method of circuit board for multi-layered ceramic capacitor, land pattern of circuit board, packing unit for multi-layered ceramic capacitor, and aligning method
US9491849B2 (en) 2011-09-01 2016-11-08 Murata Manufacturing Co., Ltd. Electronic component
JP2013065820A (en) * 2011-09-01 2013-04-11 Murata Mfg Co Ltd Packaging structure
JP2016034047A (en) * 2011-09-01 2016-03-10 株式会社村田製作所 Mounting structure
US9374908B2 (en) 2011-09-01 2016-06-21 Murata Manufacturing Co., Ltd. Electronic component and selection method
CN102970825A (en) * 2011-09-01 2013-03-13 株式会社村田制作所 Mounting structure
KR20130091047A (en) * 2012-02-07 2013-08-16 삼성전기주식회사 Array-type multilayered ceramic electronic component
KR101963258B1 (en) 2012-02-07 2019-03-28 삼성전기주식회사 array-type multilayered ceramic electronic component
JP2013254933A (en) * 2012-05-08 2013-12-19 Murata Mfg Co Ltd Ceramic electronic component and electronic device
US9355779B2 (en) 2012-05-08 2016-05-31 Murata Manufacturing Co., Ltd. Ceramic electronic component and electronic device
CN103390495A (en) * 2012-05-08 2013-11-13 株式会社村田制作所 Ceramic electronic component and electronic device
US9576728B2 (en) 2012-05-30 2017-02-21 Samsung Electro-Mechanics Co., Ltd. Laminated chip electronic component, board for mounting the same, and packing unit thereof
US9099242B2 (en) 2012-05-30 2015-08-04 Samsung Electro-Mechanics Co., Ltd. Laminated chip electronic component, board for mounting the same, and packing unit thereof
JP2013251551A (en) * 2012-05-30 2013-12-12 Samsung Electro-Mechanics Co Ltd Laminated chip electronic component, board for mounting the same, and packing unit
JP2014086606A (en) * 2012-10-25 2014-05-12 Taiyo Yuden Co Ltd Mounting structure of multilayer ceramic capacitor
JP2014197572A (en) * 2012-12-20 2014-10-16 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic capacitor and board for mounting multilayer ceramic capacitor
US8804367B2 (en) 2012-12-20 2014-08-12 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and board for mounting the same
JP2014187058A (en) * 2013-01-14 2014-10-02 Samsung Electro-Mechanics Co Ltd Multilayer ceramic capacitor, mounting board for multilayer ceramic capacitor, and manufacturing method of multilayer ceramic capacitor
WO2014126084A1 (en) * 2013-02-18 2014-08-21 太陽誘電株式会社 Multilayer ceramic capacitor with interposer, and interposer for multilayer ceramic capacitor
US9686855B2 (en) 2013-02-18 2017-06-20 Taiyo Yuden Co., Ltd Multilayer ceramic capacitor with interposer, and interposer for multilayer ceramic capacitor
US9646770B2 (en) 2013-03-29 2017-05-09 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and mounting board for multilayer ceramic capacitor
JP2014199895A (en) * 2013-03-29 2014-10-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic capacitor and mounting board for multilayer ceramic capacitor
US9570237B2 (en) 2013-03-29 2017-02-14 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and mounting board for multilayer ceramic capacitor
JP2014203862A (en) * 2013-04-02 2014-10-27 パナソニック株式会社 Ceramic electronic component and method for manufacturing the same
JP2014220476A (en) * 2013-04-30 2014-11-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic electronic component and board for mounting the same
US9336944B2 (en) 2013-04-30 2016-05-10 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and board for mounting the same
CN104240945A (en) * 2013-06-14 2014-12-24 三星电机株式会社 Multilayer ceramic capacitor and board having the same mounted thereon
US9941050B2 (en) 2013-06-19 2018-04-10 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor
WO2014203948A1 (en) * 2013-06-19 2014-12-24 太陽誘電株式会社 Multilayer ceramic capacitor
US9672986B2 (en) 2014-01-13 2017-06-06 Apple Inc. Acoustic noise cancellation in multi-layer capacitors
WO2015105719A1 (en) * 2014-01-13 2015-07-16 Apple Inc. Acoustic noise cancellation in multi-layer capacitors
EP3754678B1 (en) * 2014-01-13 2024-01-10 Apple Inc. Acoustic noise cancellation in multi-layer capacitors
JP2015220451A (en) * 2014-05-19 2015-12-07 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic capacitor, multilayer ceramic capacitor assembly, and board for mounting the same
US10204737B2 (en) 2014-06-11 2019-02-12 Avx Corporation Low noise capacitors
US10923277B2 (en) 2014-06-11 2021-02-16 Avx Corporation Low noise capacitors
US11817262B2 (en) 2014-06-11 2023-11-14 KYOCERA AVX Components Corporation Low noise capacitors
JP2016072603A (en) * 2014-09-26 2016-05-09 株式会社村田製作所 Electronic component
US11315737B2 (en) 2020-02-07 2022-04-26 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
JP2004193352A (en) Layered capacitor and its mounted product
JP6721150B2 (en) Multilayer capacitor, substrate on which multilayer capacitor is mounted
KR102426211B1 (en) Electronic component and board having the same mounted thereon
US9633786B2 (en) Multilayer capacitor and usage method therefor
KR101630065B1 (en) Multi-layered ceramic electronic components and board having the same mounted thereon
KR101973418B1 (en) Multi-layered ceramic capacitor and board having the same mounted thereon
KR102473422B1 (en) Electronic component and board having the same mounted thereon
JP7286952B2 (en) electronic components
KR20190032850A (en) Electronic component and board having the same mounted thereon
KR102089703B1 (en) Multilayered electronic component
KR20160051309A (en) Multi-layered ceramic electronic components and board having the same mounted thereon
CN109427477B (en) Multilayer electronic component and board having the same
KR20160047876A (en) Multi-layered ceramic electronic components and board having the same mounted thereon
KR20160091651A (en) Multi-layered ceramic electronic components and board having the same mounted thereon
KR20190036346A (en) Electronic component and board having the same mounted thereon
KR20190002980A (en) Electronic component and board having the same mounted thereon
JP2002237429A (en) Laminated lead-through capacitor and array thereof
JPH08162368A (en) Composite-type multilayer capacitor
JP6927532B2 (en) Laminated electronic components and their mounting boards
JP2007103496A (en) Capacitor and substrate assembly
JP2003257781A (en) Multilayer ceramic capacitor with discharge function
JP2008181961A (en) Multilayer capacitor
JP2006147792A (en) Multilayer capacitor
JP2001119262A (en) Piezoelectric resonator
JP2006147793A (en) Multilayer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310