[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004190922A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2004190922A
JP2004190922A JP2002358031A JP2002358031A JP2004190922A JP 2004190922 A JP2004190922 A JP 2004190922A JP 2002358031 A JP2002358031 A JP 2002358031A JP 2002358031 A JP2002358031 A JP 2002358031A JP 2004190922 A JP2004190922 A JP 2004190922A
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
circular
pipe
finned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002358031A
Other languages
Japanese (ja)
Other versions
JP4084174B2 (en
Inventor
Noriho Okaza
典穂 岡座
Yuji Inoue
雄二 井上
Yoshikazu Kawabe
義和 川邉
Kazuo Nakatani
和生 中谷
Tatsuzo Ibara
辰三 菴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002358031A priority Critical patent/JP4084174B2/en
Priority to KR1020030089044A priority patent/KR20040050875A/en
Priority to CNB2003101202661A priority patent/CN1322300C/en
Publication of JP2004190922A publication Critical patent/JP2004190922A/en
Application granted granted Critical
Publication of JP4084174B2 publication Critical patent/JP4084174B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger compatibly having high performance and lower cost by achieving positive thermal contact in the heat exchanger configured by arranging another circular tube on the outer periphery of a circular tube. <P>SOLUTION: The heat exchanger comprises a tube with a fin having the fin on the outer periphery and the circular tube, wherein heat exchange is made between first fluid flowing in the tube with the fin and second fluid flowing in the circular tube. The circular tube is spirally wound on the outer periphery of the tube with the fin, and the fin is bent to fix the circular tube. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍サイクル装置に用いられる熱交換器に関し、特に、給湯装置における給湯用熱交換器として用いられる熱交換器に関する。
【0002】
【従来の技術】
例えば、冷凍サイクル装置に用いられる利用側熱交換器2として、図12に示すように、円管11、および円管11の外周に螺旋状に巻かれた円管12からなり、円管11の内部を第一流体(例えば、水)の流路とする一方、円管12の内部を第二流体(例えば、冷媒)の流路とした熱交換器が採用されていた(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2001−280862号公報(第6−7頁、第5図)
【0004】
【発明が解決しようとする課題】
ところで、図12に示したような円管11の外周に円管12を螺旋状に巻いて構成した熱交換器では、円管11と円管12との熱接触を確実なものとするために、炉中ろう付けにより円管11と円管12を接合する必要がある。このために、高価なろう付け用の炉が必要となり、その設備投資を回収するために、熱交換器が高コスト化するといった課題が生じていた。
【0005】
そこで、本発明は、炉中ろう付けを行わずに円管11と円管12との熱接触を確実なものとすることで、熱交換器の高性能化と低コスト化の両立を図ることを目的とする。
【0006】
【課題を解決するための手段】
請求項1記載の本発明の熱交換器は、管の外周にフィンを有するフィン付き管と、前記フィン付き管の外周に配置される円管とからなり、前記フィン付き管の内部を流れる第一流体と前記円管の内部を流れる第二流体との間で熱交換を行わせる熱交換器において、前記円管を、前記フィンを折り曲げて前記フィン付き管の外周に固定したことを特徴とする。
請求項2記載の本発明の熱交換器は、管の外周にフィンを有するフィン付き管と、前記フィン付き管の外周に配置される円管とからなり、前記フィン付き管の内部を流れる第一流体と前記円管の内部を流れる第二流体との間で熱交換を行わせる熱交換器において、前記円管を前記フィン間の空間に配置し、前記円管を少なくとも両側に位置する前記フィン面と前記管とに接触させたことを特徴とする。
請求項3記載の本発明は、請求項1又は請求項2に記載の熱交換器において、前記円管を、前記フィン付き管に螺旋状に巻き付けたことを特徴とする。
請求項4記載の本発明は、請求項1又は請求項2に記載の熱交換器において、前記円管を、前記フィン付き管の管軸と並行に配置したことを特徴とする。
請求項5記載の本発明は、請求項1又は請求項2に記載の熱交換器において、前記円管の内径を、前記フィン付き管の内径よりも小さくしたことを特徴とする。
請求項6記載の本発明は、請求項1又は請求項2に記載の熱交換器において、前記第二流体を、前記第一流体よりも動作圧力の高い流体としたことを特徴とする。
請求項7記載の本発明は、請求項1又は請求項2に記載の熱交換器において、前記第二流体を炭酸ガスとし、前記第一流体を水としたことを特徴とする。
請求項8記載の本発明は、請求項1又は請求項2に記載の熱交換器において、前記管と前記フィンと前記円管との間に形成される空間に、熱伝達物質を充填したことを特徴とする。
請求項9記載の本発明は、請求項1又は請求項2に記載の熱交換器において、前記フィン付き管の外周に配置した円管を複数本とし、前記第二流体の流路を多パス化したことを特徴とする。
【0007】
【発明の実施の形態】
本発明による第1の実施の形態は、円管を、フィンを折り曲げてフィン付き管の外周に固定したものである。本実施の形態によれば、ろう付けが不要で、フィン付き管と円管の熱接触を確保できるために熱交換器の製造上のコストが低減でき、かつ、フィン付き管と円管の接触面積増大により熱交換性能が向上する。
また、本発明による第2の実施の形態は、円管をフィン間の空間に配置し、円管を少なくとも両側に位置するフィン面と管とに接触させたものである。本実施の形態によれば、フィン付き管と円管の接触面積増大により熱交換性能が向上する。
また、本発明による第3の実施の形態は、第1または第2の実施の形態において、円管をフィン付き管に螺旋状に巻き付けて構成したものである。本実施の形態によれば、フィン付き管と円管の接触面積増大により熱交換性能が向上する。
また、本発明による第4の実施の形態は、第1または第2の実施の形態において、円管をフィン付き管に対し並行に配置して構成したものである。本実施の形態によれば、フィン付き管と円管の接触面積増大により熱交換性能が向上するとともに、流路を多パス化しやすい。
また、本発明による第5の実施の形態は、第1または第2の実施の形態において、円管の内径を、フィン付き管の内径よりも小さくしたものである。本実施の形態によれば、径の小さな管の方が加工を行いやすいため、円管をフィン付き管の外周に配置しやすい。
また、本発明による第6の実施の形態は、第1または第2の実施の形態において、円管の内部を流れる第二流体の動作圧力が、フィン付き管の内部を流れる第一流体の動作圧力より高くなるように構成したものである。本実施の形態によれば、耐圧を確保しやすい小径の円管の内部に圧力の高い第二流体を流すことで、熱交換器の耐圧向上にかかるコスト低減が可能である。
また、本発明による第7の実施の形態は、第1または第2の実施の形態において、円管の内部を流れる第二流体は炭酸ガスで、フィン付き管の内部を流れる第一流体は水として用いる熱交換器である。本実施の形態によれば、耐圧を確保しやすい小径の円管の内部に伝熱特性が良好で、圧力の高い炭酸ガスを流すことで、熱交換器の耐圧向上にかかるコストを低減でき、熱交換性能が向上する。
また、本発明による第8の実施の形態による熱交換器は、第1または第2の実施の形態において、フィン付き管の外周面およびフィンと円管との間の形成される空間に、熱伝達物質を充填したものである。本実施の形態によれば、より確実な熱接触が得られ、熱交換性能が向上する。
また、本発明による第9の実施の形態による熱交換器は、第1または第2の実施の形態において、フィン付き管の外周に配置した円管を複数本とし、円管の内部を流れる第二流体の流路を多パス化した熱交換器である。本実施の形態によれば、第二流体の圧力損失を低減でき、熱交換性能が向上する。
【0008】
【実施例】
まず、本発明の熱交換器を用いる冷凍サイクル装置について説明する。
図1は、本発明の熱交換器を利用した給湯装置を示す構成図である。
図1に示すように、本実施例による給湯装置は、圧縮機1、給湯用熱交換器としての利用側熱交換器2、減圧器3、および外気を熱源とする熱源側熱交換器4からなる冷媒サイクルAと、給水ポンプ5、利用側熱交換器2、および給湯タンク6からなる給湯サイクルBとを備えている。冷媒サイクルAは、冷媒として例えば炭酸ガス(二酸化炭素)を用い、圧縮機1では臨界圧力を越える圧力まで冷媒を圧縮して運転する。
圧縮機1から吐出された冷媒は、利用側熱交換器2において給水ポンプ5から供給される水を加熱し、加熱されたお湯は、給湯タンク6に貯められる。
【0009】
次に、このような給湯装置に用いられる本発明の一実施例による熱交換器の構成について、図2から図5を用いて説明する。
図2から図5は本実施例による熱交換器の製造工程を示し、図2は第一流体が流れるフィン付き管の要部外観斜視図、図3はフィン付き管の外周に第二流体が流れる円管の一部を配置した状態を示す要部外観斜視図、図4はフィン付き管の外周に円管を配置させた状態を示す要部断面図、図5は完成状態を示す要部断面図である。
図2に示すように、一般的にはローフィンチューブやハイフィンチューブと呼ばれるフィン付き管20は、筒状の管21の外周に、所定高さのフィン22が螺旋状に形成され、ほぼ等間隔に形成されたフィン22の間には、螺旋状の空間23が形成されている。
図3に示すように、円管24は、フィン付き管20のフィン22間の空間23に、螺旋状に巻き付けられる。そして図4に示すように、円管24は、フィン付き管20に巻き付けられた状態で、円管24の外周面が管21の外周面と両側に位置するフィン22面とに当接するような外径で構成されている。
円管24をフィン付き管20に巻き付けた後に、図5に示すように、フィン付き管20のフィン22の一部を折り曲げることで熱交換器2aが製作される。フィン22の折り曲げは、中空の治具に挿入、又は押し出しや引き抜き加工により行う。フィン22を、円管24を包み込むように折り曲げ、フィン22の折曲片によって円管24をフィン付き管20の外周に固定することで、円管24とフィン付き管20の熱接触を確保する。
本実施例による熱交換器2aは、フィン付き管20の内部を、例えば水等の第一流体の流路とし、円管24の内部を、例えば炭酸ガスのような冷媒である第二流体の流路とする。なお、第一流体と第二流体とは対向流とする方が望ましい。
【0010】
上記のように構成された熱交換器2aにおいては、次のような効果が得られる。
まず、従来の熱交換器のような炉中ろう付けを行うことなく、フィン付き管20と円管24の熱接触を確保できるために、熱交換器2aの製造上のコストを低減できる。また、従来の熱交換器では、円管11の外周のみで円管12と金属接触していたのに対し、本実施例の熱交換器2aでは、フィン22により円管24を包み込むように固定しているため、金属接触面が増大し、より確実にフィン付き管20と円管24との熱接触が得られ、熱交換性能が向上する。
さらに、円管24の内部を第一流体より動作圧力の高い第二流体の流路とし、フィン付き管20の内部は、第二流体より動作圧力の低い第一流体の流路とすることにより、動作圧力の高い第二流体が流れる円管24は耐圧を確保しやすい小径の管であることから、円管24の耐圧を確保するために必要な肉厚の増加による原材料コストの上昇を、極力おさえることができ、熱交換器2aの耐圧向上にかかるコストを低減できる。
【0011】
次に、上述のように構成された熱交換器2aを給湯装置に用いた場合の動作について説明する。
円管24の内部は冷媒である炭酸ガスの流路とし、フィン付き管20の内部は水の流路とする。この給湯装置においては、圧縮機1で圧縮された冷媒は、高温高圧状態となり、本実施例の熱交換器である利用側熱交換器2aの円管24を通過する際に、フィン付き管20の内部を流れる水に放熱し冷却される。すなわち、給湯タンク6の底部から給水ポンプ5によりフィン付き管20の内部へ送り込まれた水は、円管24の内部を流れる冷媒により加熱される。冷媒は、その後減圧器3により減圧されて、低温低圧の気液二相状態となる。そして、熱源側熱交換器4では、冷媒は空気によって冷却されて、気液二相またはガス状態となり、気液二相またはガス状態となった冷媒は、再び圧縮機1に吸入される。このようなサイクルを繰り返すことにより、利用側熱交換器2aのフィン付き管20の内部を流れる水はお湯となり、そのお湯を給湯タンク6の頂部から貯めることで給湯器として利用できる。このように、炭酸ガスを冷媒として使用した給湯装置の利用側熱交換器として、本実施例の熱交換器2aを用いると、他の冷媒より動作圧力の高い炭酸ガスを、耐圧を確保しやすい小径の円管24の内部に流すことができ、熱交換器2aの耐圧向上にかかるコストを低減でき、かつ、伝熱特性が良好な炭酸ガスを流すことで熱交換性能が向上する。
【0012】
次に、別の実施例による熱交換器の構成について、図6を用いて説明する。
本実施例による熱交換器2bは、図5に示した熱交換器の構成に加えて、折り曲げられたフィン22と円管24の外周面とによって形成される隙間25に、伝熱性の高い物質からなる部材、例えば、アルミ合金の粉末を含むペーストなどを充填したものである。このような熱交換器2bにおいては、隙間25の熱抵抗が、伝熱性の高い物質により低減され、より確実な熱接触が得られるために熱交換性能が向上する。
【0013】
さらに、別の実施例による熱交換器の構成について、図7を用いて説明する。
本実施例による熱交換器2cは、フィン付き管31の複数のフィン32間に、2本の円管34、35を螺旋状に巻き付けたものであり、フィン32の一部を折り曲げることで、円管34、35とフィン付き管31を固定したものである。さらに、円管34と円管35は分岐管(図示せず)により第二流体の流路を分岐し、第二流体が円管34と円管35のそれぞれの内部を並列に流れるように、すなわち第二流体の流路を2パスとするように構成されている。このような熱交換器2cにおいては、第二流体の圧力損失を低減でき、より熱交換性能が向上する。なお、本実施例では巻き付ける円管を2本とし、第二流体の流路を2パスとする構成として説明したが、さらに複数の円管を巻き付ける構成とし、第二流体の流路をさらに多パス化してもよい。
【0014】
さらに、別の実施例による熱交換器の構成について、図8を用いて説明する。本実施例による熱交換器2dは、フィン付き管41のフィン42が、円管44を折り曲げて固定する程、高くないものである。このような熱交換器2dにおいては、フィン42により円管44を固定することはできないものの、フィン42の高さが低いためにフィン付き管41の製造が比較的容易になり、製造コストが低減できる。さらに、フィン42を、隣接する円管44の隙間を埋めるような山形形状とすることにより、フィン付き管41と円管44との金属接触している面積が増大し、熱交換性能が向上する。
【0015】
なお、以上説明した熱交換器において、フィン付き管20、31、41のフィン22、32、42は転造などの加工方法により、フィン付き管と同一素材、例えば、高い伝熱性を有するアルミ合金や銅で一体形成されていることが望ましい。また、フィン付き管20、31、41の内部に、螺旋溝やコルゲートなどを形成し、伝熱面積の拡大や乱流の促進を図り、さらに熱交換器の性能を向上させてもよい。
【0016】
さらに、別の実施例による熱交換器の構成について、図9から図11を用いて説明する。
図9は、本実施例による熱交換器の、第一流体が流れるフィン付き管の要部外観斜視図、図10は、同熱交換器のフィン付き管の外周に第二流体が流れる円管を配置させた状態を示す要部外観斜視図、図11は、フィン付き管の外周に円管を配置させた状態を示す断面図である。
図9に示すように、フィン付き管50は、筒状の管51の外周に、所定高さのフィン52が管軸方向に複数本並行に形成されている。本実施例の熱交換器2eにおいては、図10、図11に示すように、複数のフィン52の間の空間53に、円管54をフィン付き管50の管軸と並行に配置する。その後、図11に示すように、押し出しや引き抜き加工を行うことなどにより、フィン付き管50のフィン52で円管54を包み込むか、又は挟み込むように先端部を折り曲げることで、円管54をフィン付き管50の外周に固定し、円管54とフィン付き管50の熱接触を確保する。このような熱交換器2eにおいては、図4に示す構成の熱交換器2aと同様の効果を有することに加え、フィン52の高さが比較的低くても円管54を固定できることやフィン52を折り曲げるための押し出しや引き抜き加工が比較的容易なことから、製造コストを低減できる。さらに、図7に示す構成の熱交換器2cで説明したような第二流体流路の多パス化が容易にできるといったメリットも有する。
なお、フィン付き管50のフィン52は押し出しなどの加工方法によりフィン付き管と同一素材、例えば、高い伝熱性を有するアルミ合金や銅で一体形成されていることが望ましい。
【0017】
【発明の効果】
本発明によれば、円管をフィンを折り曲げたフィン付き管の外周に固定することにより、ろう付けが不要で、フィン付き管と円管の熱接触が確保できるために熱交換器の製造上のコストが低減でき、かつ、フィン付き管と円管の接触面積増大により熱交換性能が向上する。
また、本発明によれば、円管を少なくとも両側に位置するフィン面と管とに接触させることにより、フィン付き管と円管の接触面積増大により熱交換性能が向上する。
また、本発明によれば、円管をフィン付き管に螺旋状に巻き付けて構成したことにより、フィン付き管と円管の接触面積増大により熱交換性能が向上する。
また、本発明によれば、円管をフィン付き管に対し並行に配置して構成したことにより、フィン付き管と円管の接触面積増大により熱交換性能が向上するとともに、流路を多パス化しやすい。
また、本発明によれば、円管の内径をフィン付き管の内径よりも小さくしたことで、径の小さな管の方が加工を行いやすいため、円管をフィン付き管の外周に配置しやすい。
また、本発明によれば、耐圧を確保しやすい小径の円管の内部に圧力の高い第二流体を流すことで、熱交換器の耐圧向上にかかるコスト低減が可能である。
また、本発明によれば、耐圧を確保しやすい小径の円管の内部に伝熱特性が良好で、圧力の高い炭酸ガスを流すことで、熱交換器の耐圧向上にかかるコストを低減でき、熱交換性能が向上する。
また、本発明によれば、フィン付き管の外周面およびフィンと円管との間に形成される空間に熱伝達物質を充填することで、より確実な熱接触が得られ、熱交換性能が向上する。
また、本発明によれば、フィン付き管の外周に配置した円管を複数本とし、円管の内部を流れる第二流体の流路を多パス化することで、第二流体の圧力損失を低減でき、熱交換性能が向上する。
【図面の簡単な説明】
【図1】本発明の熱交換器を利用した給湯装置を示す構成図
【図2】本発明の一実施例による熱交換器の第一流体が流れるフィン付き管の要部外観斜視図
【図3】同実施例によるフィン付き管の外周に第二流体が流れる円管の一部を配置した状態を示す要部外観斜視図
【図4】同実施例によるフィン付き管の外周に円管を配置させた状態を示す要部断面図
【図5】同実施例による完成状態を示す要部断面図
【図6】他の実施例による熱交換器の要部断面図
【図7】他の実施例による熱交換器の要部断面図
【図8】他の実施例による熱交換器の要部断面図
【図9】他の実施例による熱交換器の、第一流体が流れるフィン付き管の要部外観斜視図
【図10】同熱交換器のフィン付き管の外周に第二流体が流れる円管を配置させた状態を示す要部外観斜視図
【図11】同熱交換器のフィン付き管の外周に円管を配置させた状態を示す断面図
【図12】従来の熱交換器を示す要部外観斜視図
【符号の説明】
1 圧縮機
2 利用側熱交換器(給湯用熱交換器)
3 減圧器
4 熱源側熱交換器(室外熱交換器)
5 給水ポンプ
6 給湯タンク
11、12、24、34、35、44、54 円管
20、31、41,50 フィン付き管
22、32、42、52 フィン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger used for a refrigeration cycle device, and more particularly to a heat exchanger used as a hot water supply heat exchanger in a hot water supply device.
[0002]
[Prior art]
For example, as shown in FIG. 12, the use side heat exchanger 2 used in the refrigeration cycle apparatus includes a circular pipe 11 and a circular pipe 12 spirally wound around the outer circumference of the circular pipe 11. A heat exchanger has been adopted in which the inside is a flow path for a first fluid (for example, water), while the inside of the circular tube 12 is a flow path for a second fluid (for example, a refrigerant) (for example, Patent Document 1). reference).
[0003]
[Patent Document 1]
JP-A-2001-280862 (pages 6 to 7, FIG. 5)
[0004]
[Problems to be solved by the invention]
By the way, in the heat exchanger in which the circular pipe 12 is spirally wound around the outer circumference of the circular pipe 11 as shown in FIG. 12, in order to ensure the thermal contact between the circular pipe 11 and the circular pipe 12. It is necessary to join the circular tube 11 and the circular tube 12 by brazing in a furnace. For this reason, an expensive brazing furnace is required, and there has been a problem that the cost of the heat exchanger is increased in order to recover the capital investment.
[0005]
Therefore, the present invention aims to achieve both high performance and low cost of the heat exchanger by ensuring the thermal contact between the circular tube 11 and the circular tube 12 without performing brazing in the furnace. With the goal.
[0006]
[Means for Solving the Problems]
The heat exchanger according to the first aspect of the present invention includes a finned tube having fins on the outer periphery of the tube, and a circular tube arranged on the outer periphery of the finned tube. In a heat exchanger that performs heat exchange between one fluid and a second fluid flowing inside the circular tube, the circular tube is fixed to an outer periphery of the finned tube by bending the fin. I do.
The heat exchanger according to the second aspect of the present invention includes a finned tube having fins on the outer periphery of the tube, and a circular tube arranged on the outer periphery of the finned tube. In a heat exchanger for performing heat exchange between one fluid and a second fluid flowing inside the circular tube, the circular tube is disposed in a space between the fins, and the circular tube is positioned at least on both sides. The fin surface is brought into contact with the tube.
According to a third aspect of the present invention, in the heat exchanger according to the first or second aspect, the circular tube is spirally wound around the finned tube.
According to a fourth aspect of the present invention, in the heat exchanger according to the first or second aspect, the circular pipe is arranged in parallel with a pipe axis of the finned pipe.
According to a fifth aspect of the present invention, in the heat exchanger according to the first or second aspect, the inner diameter of the circular tube is smaller than the inner diameter of the finned tube.
According to a sixth aspect of the present invention, in the heat exchanger according to the first or second aspect, the second fluid is a fluid having a higher operating pressure than the first fluid.
According to a seventh aspect of the present invention, in the heat exchanger according to the first or second aspect, the second fluid is carbon dioxide, and the first fluid is water.
According to an eighth aspect of the present invention, in the heat exchanger according to the first or second aspect, a space formed between the tube, the fin, and the circular tube is filled with a heat transfer material. It is characterized by.
According to a ninth aspect of the present invention, in the heat exchanger according to the first or second aspect, a plurality of circular pipes are arranged on an outer periphery of the finned pipe, and a flow path of the second fluid is multi-passed. It is characterized by having
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the first embodiment according to the present invention, a circular tube is fixed to the outer periphery of a finned tube by bending fins. According to the present embodiment, since brazing is unnecessary, thermal contact between the finned tube and the circular tube can be ensured, the manufacturing cost of the heat exchanger can be reduced, and the contact between the finned tube and the circular tube can be reduced. The heat exchange performance is improved by increasing the area.
In the second embodiment according to the present invention, a circular pipe is arranged in a space between fins, and the circular pipe is brought into contact with the fin surfaces and the pipe located at least on both sides. According to the present embodiment, the heat exchange performance is improved by increasing the contact area between the finned tube and the circular tube.
Further, the third embodiment according to the present invention is configured such that a circular tube is spirally wound around a finned tube in the first or second embodiment. According to the present embodiment, the heat exchange performance is improved by increasing the contact area between the finned tube and the circular tube.
In the fourth embodiment according to the present invention, a circular tube is arranged in parallel with the finned tube in the first or second embodiment. According to the present embodiment, the heat exchange performance is improved by increasing the contact area between the finned tube and the circular tube, and the flow path is easily multi-passed.
In the fifth embodiment according to the present invention, the inner diameter of the circular tube is smaller than the inner diameter of the finned tube in the first or second embodiment. According to the present embodiment, since a pipe having a small diameter is easier to process, it is easy to arrange the circular pipe on the outer periphery of the finned pipe.
According to a sixth embodiment of the present invention, in the first or second embodiment, the operating pressure of the second fluid flowing inside the circular tube is equal to the operating pressure of the first fluid flowing inside the finned tube. It is configured to be higher than the pressure. According to the present embodiment, it is possible to reduce the cost for improving the pressure resistance of the heat exchanger by flowing the high-pressure second fluid inside the small-diameter circular pipe that easily ensures the pressure resistance.
According to a seventh embodiment of the present invention, in the first or second embodiment, the second fluid flowing inside the circular tube is carbon dioxide, and the first fluid flowing inside the finned tube is water. Is a heat exchanger used as a heat exchanger. According to the present embodiment, the heat transfer characteristic is good inside a small-diameter circular tube that easily ensures the pressure resistance, and the high pressure carbon dioxide gas is allowed to flow, thereby reducing the cost for improving the pressure resistance of the heat exchanger, Heat exchange performance is improved.
Further, in the heat exchanger according to the eighth embodiment of the present invention, the heat exchanger according to the first or second embodiment has a structure in which heat is applied to the outer peripheral surface of the finned tube and the space formed between the fin and the circular tube. It is filled with a transmitter. According to the present embodiment, more reliable thermal contact is obtained, and the heat exchange performance is improved.
In the heat exchanger according to the ninth embodiment of the present invention, the heat exchanger according to the first or second embodiment includes a plurality of circular pipes arranged on the outer periphery of the finned pipe, and the heat exchanger flows inside the circular pipe. This is a heat exchanger in which the two fluid flow paths are multi-passed. According to the present embodiment, the pressure loss of the second fluid can be reduced, and the heat exchange performance is improved.
[0008]
【Example】
First, a refrigeration cycle apparatus using the heat exchanger of the present invention will be described.
FIG. 1 is a configuration diagram showing a hot water supply apparatus using the heat exchanger of the present invention.
As shown in FIG. 1, the hot water supply apparatus according to the present embodiment includes a compressor 1, a use side heat exchanger 2 as a hot water supply heat exchanger, a pressure reducer 3, and a heat source side heat exchanger 4 using outside air as a heat source. And a hot water supply cycle B including a water supply pump 5, the use side heat exchanger 2, and a hot water supply tank 6. The refrigerant cycle A uses, for example, carbon dioxide (carbon dioxide) as the refrigerant, and the compressor 1 operates by compressing the refrigerant to a pressure exceeding the critical pressure.
The refrigerant discharged from the compressor 1 heats the water supplied from the water supply pump 5 in the use side heat exchanger 2, and the heated hot water is stored in the hot water supply tank 6.
[0009]
Next, a configuration of a heat exchanger according to an embodiment of the present invention used in such a hot water supply device will be described with reference to FIGS.
2 to 5 show a manufacturing process of the heat exchanger according to the present embodiment, FIG. 2 is an external perspective view of a main part of a finned tube through which a first fluid flows, and FIG. FIG. 4 is a perspective view of an essential part showing a state in which a part of a flowing circular pipe is arranged, FIG. 4 is a sectional view of an essential part showing a state in which a circular pipe is arranged on the outer periphery of a finned pipe, and FIG. 5 is an essential part showing a completed state. It is sectional drawing.
As shown in FIG. 2, a finned tube 20 generally called a low fin tube or a high fin tube has a fin 22 having a predetermined height formed in a spiral shape on the outer periphery of a cylindrical tube 21, and has substantially equal intervals. A helical space 23 is formed between the fins 22 formed at the center.
As shown in FIG. 3, the circular tube 24 is spirally wound around the space 23 between the fins 22 of the finned tube 20. As shown in FIG. 4, the circular tube 24 is wound around the finned tube 20 such that the outer peripheral surface of the circular tube 24 contacts the outer peripheral surface of the tube 21 and the fins 22 located on both sides. It has an outer diameter.
After winding the circular tube 24 around the finned tube 20, as shown in FIG. 5, a part of the fin 22 of the finned tube 20 is bent to manufacture the heat exchanger 2a. The bending of the fins 22 is performed by inserting into a hollow jig, or extruding or drawing. The fin 22 is bent so as to enclose the circular tube 24, and the circular tube 24 is fixed to the outer periphery of the finned tube 20 by a bent piece of the fin 22, thereby ensuring thermal contact between the circular tube 24 and the finned tube 20. .
In the heat exchanger 2a according to the present embodiment, the inside of the finned tube 20 is used as a flow path for a first fluid such as water, and the inside of the circular tube 24 is used for a second fluid such as a refrigerant such as carbon dioxide. Channel. In addition, it is preferable that the first fluid and the second fluid be counter-current.
[0010]
The following effects are obtained in the heat exchanger 2a configured as described above.
First, since the heat contact between the finned tube 20 and the circular tube 24 can be secured without performing furnace brazing as in a conventional heat exchanger, the manufacturing cost of the heat exchanger 2a can be reduced. Further, in the conventional heat exchanger, only the outer periphery of the circular tube 11 is in metal contact with the circular tube 12, whereas in the heat exchanger 2a of the present embodiment, the circular tube 24 is fixed so as to wrap the circular tube 24 by the fins 22. As a result, the metal contact surface is increased, and more reliable thermal contact between the finned tube 20 and the circular tube 24 is obtained, and the heat exchange performance is improved.
Further, the inside of the circular pipe 24 is used as a flow path of a second fluid having a higher operating pressure than the first fluid, and the inside of the finned tube 20 is used as a flow path of a first fluid having a lower operating pressure than the second fluid. Since the circular pipe 24 through which the second fluid having a high operating pressure flows is a small-diameter pipe that is easy to secure pressure resistance, an increase in raw material costs due to an increase in wall thickness necessary to secure the pressure resistance of the circular pipe 24, As much as possible, the cost for improving the pressure resistance of the heat exchanger 2a can be reduced.
[0011]
Next, an operation when the heat exchanger 2a configured as described above is used for a hot water supply device will be described.
The inside of the circular pipe 24 is a flow path for carbon dioxide gas as a refrigerant, and the inside of the finned pipe 20 is a flow path for water. In this hot water supply apparatus, the refrigerant compressed by the compressor 1 is in a high temperature and high pressure state, and when passing through the circular pipe 24 of the use side heat exchanger 2a which is the heat exchanger of the present embodiment, the finned pipe 20 Heat is dissipated by the water flowing through the inside and is cooled. That is, water sent from the bottom of the hot water supply tank 6 to the inside of the finned pipe 20 by the water supply pump 5 is heated by the refrigerant flowing inside the circular pipe 24. The refrigerant is then decompressed by the decompressor 3 to be in a low-temperature low-pressure gas-liquid two-phase state. Then, in the heat source side heat exchanger 4, the refrigerant is cooled by air to be in a gas-liquid two-phase or gas state, and the refrigerant in the gas-liquid two-phase or gas state is sucked into the compressor 1 again. By repeating such a cycle, the water flowing inside the finned tube 20 of the use side heat exchanger 2a becomes hot water, and the hot water is stored from the top of the hot water supply tank 6 and can be used as a water heater. As described above, when the heat exchanger 2a of this embodiment is used as the use side heat exchanger of the water heater using carbon dioxide as the refrigerant, it is easy to secure the pressure resistance of carbon dioxide having a higher operating pressure than other refrigerants. The heat exchange performance can be improved by flowing the gas into the small-diameter circular tube 24, reducing the cost for improving the pressure resistance of the heat exchanger 2a, and flowing carbon dioxide gas having good heat transfer characteristics.
[0012]
Next, the configuration of a heat exchanger according to another embodiment will be described with reference to FIG.
The heat exchanger 2b according to the present embodiment includes, in addition to the configuration of the heat exchanger shown in FIG. 5, a material having high heat conductivity in a gap 25 formed by the bent fins 22 and the outer peripheral surface of the circular tube 24. , For example, filled with a paste containing aluminum alloy powder. In such a heat exchanger 2b, the heat resistance of the gap 25 is reduced by the substance having high heat conductivity, and more reliable heat contact is obtained, so that the heat exchange performance is improved.
[0013]
Further, a configuration of a heat exchanger according to another embodiment will be described with reference to FIG.
The heat exchanger 2c according to the present embodiment is obtained by spirally winding two circular tubes 34 and 35 between a plurality of fins 32 of a finned tube 31, and by bending a part of the fins 32, The tubes 34 and 35 and the tube 31 with fins are fixed. Further, the circular pipe 34 and the circular pipe 35 branch the flow path of the second fluid by a branch pipe (not shown), and the second fluid flows in the circular pipe 34 and the circular pipe 35 in parallel. That is, the flow path of the second fluid is configured to be two passes. In such a heat exchanger 2c, the pressure loss of the second fluid can be reduced, and the heat exchange performance is further improved. In the present embodiment, the configuration has been described in which the number of circular pipes to be wound is two and the flow path of the second fluid is two, but the configuration is such that a plurality of circular pipes are wound and the flow path of the second fluid is further increased. It may be passed.
[0014]
Further, a configuration of a heat exchanger according to another embodiment will be described with reference to FIG. The heat exchanger 2d according to the present embodiment is not so high that the fins 42 of the finned tube 41 bend and fix the circular tube 44. In such a heat exchanger 2d, although the circular tube 44 cannot be fixed by the fins 42, the production of the finned tubes 41 becomes relatively easy due to the low height of the fins 42, and the production cost is reduced. it can. Furthermore, by making the fins 42 into a mountain shape so as to fill the gap between the adjacent circular tubes 44, the area of metal contact between the finned tubes 41 and the circular tubes 44 increases, and the heat exchange performance improves. .
[0015]
In the heat exchanger described above, the fins 22, 32, and 42 of the finned tubes 20, 31, and 41 are made of the same material as the finned tube by a processing method such as rolling, for example, an aluminum alloy having high heat conductivity. It is desirable to be formed integrally with copper or copper. Further, a spiral groove, a corrugate, or the like may be formed inside the finned tubes 20, 31, 41 to increase the heat transfer area and promote turbulence, and further improve the performance of the heat exchanger.
[0016]
Further, a configuration of a heat exchanger according to another embodiment will be described with reference to FIGS. 9 to 11.
FIG. 9 is an external perspective view of a main part of a finned tube through which a first fluid flows in the heat exchanger according to the present embodiment. FIG. 10 is a circular tube through which a second fluid flows around the outer periphery of the finned tube of the heat exchanger. FIG. 11 is a cross-sectional view showing a state in which a circular tube is arranged on the outer periphery of a tube with fins.
As shown in FIG. 9, the finned tube 50 has a plurality of fins 52 having a predetermined height formed in parallel on the outer periphery of a cylindrical tube 51 in the tube axis direction. In the heat exchanger 2e of the present embodiment, as shown in FIGS. 10 and 11, a circular pipe 54 is arranged in a space 53 between a plurality of fins 52 in parallel with the pipe axis of the finned pipe 50. Then, as shown in FIG. 11, the circular tube 54 is wrapped with the fins 52 of the finned tube 50 by extruding or drawing, or the distal end is bent so as to sandwich the circular tube 54 so that the circular tube 54 is finned. The circular tube 54 is fixed to the outer periphery of the tube with fins 50 to ensure thermal contact between the circular tube 54 and the tube with fins 50. In such a heat exchanger 2e, in addition to having the same effect as the heat exchanger 2a having the configuration shown in FIG. 4, the circular pipe 54 can be fixed even when the height of the fin 52 is relatively low, and the fin 52 Since the extrusion and the drawing for bending are relatively easy, the manufacturing cost can be reduced. Further, there is an advantage that the number of passes of the second fluid flow path can be easily increased as described in the heat exchanger 2c having the configuration shown in FIG.
The fins 52 of the finned tube 50 are desirably integrally formed of the same material as the finned tube, for example, an aluminum alloy or copper having high heat conductivity by a processing method such as extrusion.
[0017]
【The invention's effect】
According to the present invention, since the circular tube is fixed to the outer periphery of the finned tube in which the fins are bent, brazing is unnecessary, and thermal contact between the finned tube and the circular tube can be ensured. And the heat exchange performance is improved by increasing the contact area between the finned tube and the circular tube.
Further, according to the present invention, the heat exchange performance is improved by increasing the contact area between the finned tube and the circular tube by bringing the circular tube into contact with the fin surfaces located at least on both sides and the tube.
Further, according to the present invention, since the circular tube is spirally wound around the finned tube, the contact area between the finned tube and the circular tube is increased, thereby improving the heat exchange performance.
According to the present invention, since the circular pipe is arranged in parallel with the finned pipe, the heat exchange performance is improved by increasing the contact area between the finned pipe and the circular pipe, and the flow path is multi-passed. Easy to convert.
Further, according to the present invention, since the inner diameter of the circular pipe is smaller than the inner diameter of the finned pipe, the smaller diameter pipe is easier to process, so that the circular pipe is easily arranged on the outer circumference of the finned pipe. .
Further, according to the present invention, by flowing a high-pressure second fluid into a small-diameter circular pipe that easily ensures a pressure resistance, it is possible to reduce the cost for improving the pressure resistance of the heat exchanger.
Further, according to the present invention, the heat transfer characteristic is good inside a small-diameter circular tube that is easy to secure the pressure resistance, and by flowing high-pressure carbon dioxide gas, the cost for improving the pressure resistance of the heat exchanger can be reduced. Heat exchange performance is improved.
Further, according to the present invention, by filling the heat transfer substance into the outer peripheral surface of the finned tube and the space formed between the fin and the circular tube, more reliable thermal contact is obtained, and the heat exchange performance is improved. improves.
Further, according to the present invention, the pressure loss of the second fluid is reduced by using a plurality of circular tubes arranged on the outer periphery of the finned tube and making the flow path of the second fluid flowing inside the circular tube multi-pass. Can be reduced and heat exchange performance is improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a hot water supply device using a heat exchanger of the present invention. FIG. 2 is an external perspective view of a main part of a finned tube through which a first fluid flows in a heat exchanger according to an embodiment of the present invention. 3 is an external perspective view of a main part showing a state in which a part of a circular pipe through which a second fluid flows is arranged on the outer circumference of the finned pipe according to the embodiment. FIG. FIG. 5 is a cross-sectional view of a main part showing a completed state according to the embodiment. FIG. 6 is a cross-sectional view of a main part of a heat exchanger according to another embodiment. FIG. 8 is a cross-sectional view of a main part of a heat exchanger according to another embodiment. FIG. 9 is a cross-sectional view of a main part of a heat exchanger according to another embodiment. FIG. 10 is an external perspective view of a main part. FIG. 10 is a view showing a state where a circular pipe through which a second fluid flows is arranged around the outer periphery of the finned pipe of the heat exchanger. Perspective view FIG. 11 is a cross-sectional view [FIG. 12] main part perspective view showing a conventional heat exchanger shown a state of being arranged circular tube on the outer circumference of the finned tube of the heat exchanger [Description of symbols]
1 compressor 2 use side heat exchanger (heat exchanger for hot water supply)
3 decompressor 4 heat source side heat exchanger (outdoor heat exchanger)
5 Water supply pump 6 Hot water supply tanks 11, 12, 24, 34, 35, 44, 54 Circular tubes 20, 31, 41, 50 Finned tubes 22, 32, 42, 52 Fins

Claims (9)

管の外周にフィンを有するフィン付き管と、前記フィン付き管の外周に配置される円管とからなり、前記フィン付き管の内部を流れる第一流体と前記円管の内部を流れる第二流体との間で熱交換を行わせる熱交換器において、前記円管を、前記フィンを折り曲げて前記フィン付き管の外周に固定したことを特徴とする熱交換器。A finned pipe having fins on the outer circumference of the pipe, and a circular pipe arranged on the outer circumference of the finned pipe, a first fluid flowing inside the finned pipe and a second fluid flowing inside the circular pipe Wherein the circular tube is fixed to an outer periphery of the finned tube by bending the fin. 管の外周にフィンを有するフィン付き管と、前記フィン付き管の外周に配置される円管とからなり、前記フィン付き管の内部を流れる第一流体と前記円管の内部を流れる第二流体との間で熱交換を行わせる熱交換器において、前記円管を前記フィン間の空間に配置し、前記円管を少なくとも両側に位置する前記フィン面と前記管とに接触させたことを特徴とする熱交換器。A finned pipe having fins on the outer circumference of the pipe, and a circular pipe arranged on the outer circumference of the finned pipe, a first fluid flowing inside the finned pipe and a second fluid flowing inside the circular pipe Wherein the circular tube is arranged in a space between the fins, and the circular tube is brought into contact with the fin surfaces located at least on both sides and the tube. And heat exchanger. 前記円管を、前記フィン付き管に螺旋状に巻き付けたことを特徴とする請求項1又は請求項2に記載の熱交換器。The heat exchanger according to claim 1 or 2, wherein the circular tube is spirally wound around the finned tube. 前記円管を、前記フィン付き管の管軸と並行に配置したことを特徴とする請求項1又は請求項2に記載の熱交換器。The heat exchanger according to claim 1 or 2, wherein the circular pipe is arranged in parallel with a pipe axis of the finned pipe. 前記円管の内径を、前記フィン付き管の内径よりも小さくしたことを特徴とする請求項1又は請求項2に記載の熱交換器。The heat exchanger according to claim 1, wherein an inner diameter of the circular tube is smaller than an inner diameter of the finned tube. 前記第二流体を、前記第一流体よりも動作圧力の高い流体としたことを特徴とする請求項1又は請求項2に記載の熱交換器。The heat exchanger according to claim 1, wherein the second fluid is a fluid having a higher operating pressure than the first fluid. 前記第二流体を炭酸ガスとし、前記第一流体を水としたことを特徴とする請求項1又は請求項2に記載の熱交換器。The heat exchanger according to claim 1, wherein the second fluid is carbon dioxide, and the first fluid is water. 前記管と前記フィンと前記円管との間に形成される空間に、熱伝達物質を充填したことを特徴とする請求項1又は請求項2に記載の熱交換器。The heat exchanger according to claim 1 or 2, wherein a space formed between the tube, the fins, and the circular tube is filled with a heat transfer material. 前記フィン付き管の外周に配置した円管を複数本とし、前記第二流体の流路を多パス化したことを特徴とする請求項1又は請求項2に記載の熱交換器。The heat exchanger according to claim 1 or 2, wherein a plurality of circular pipes are arranged on an outer periphery of the finned pipe, and a flow path of the second fluid is multi-passed.
JP2002358031A 2002-12-10 2002-12-10 Heat exchanger Expired - Lifetime JP4084174B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002358031A JP4084174B2 (en) 2002-12-10 2002-12-10 Heat exchanger
KR1020030089044A KR20040050875A (en) 2002-12-10 2003-12-09 Heat exchanger
CNB2003101202661A CN1322300C (en) 2002-12-10 2003-12-10 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002358031A JP4084174B2 (en) 2002-12-10 2002-12-10 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2004190922A true JP2004190922A (en) 2004-07-08
JP4084174B2 JP4084174B2 (en) 2008-04-30

Family

ID=32757863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002358031A Expired - Lifetime JP4084174B2 (en) 2002-12-10 2002-12-10 Heat exchanger

Country Status (3)

Country Link
JP (1) JP4084174B2 (en)
KR (1) KR20040050875A (en)
CN (1) CN1322300C (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192429A (en) * 2006-01-17 2007-08-02 Sanden Corp Gas-liquid separator module
JP2008045868A (en) * 2006-07-21 2008-02-28 Sumitomo Light Metal Ind Ltd Heat exchanger for water heater, and its manufacturing method
JP2009002631A (en) * 2007-06-25 2009-01-08 Furukawa Electric Co Ltd:The Heat exchanger and heat exchanging system
JP2009024969A (en) * 2007-07-23 2009-02-05 Sumitomo Light Metal Ind Ltd Heat exchanger
JP2013257078A (en) * 2012-06-13 2013-12-26 Mitsubishi Electric Corp Twisted tube type heat exchanger
JP2015135216A (en) * 2014-01-17 2015-07-27 株式会社東芝 Exhaust heat recovery apparatus and exhaust heat recovery system
WO2015133622A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Refrigeration cycle apparatus
WO2018042482A1 (en) * 2016-08-29 2018-03-08 三菱電機株式会社 Heat pump system
KR102046800B1 (en) * 2019-08-06 2019-11-21 주식회사 카이저제빙기 Ice-maker unit for auger type ice maker
CN111397401A (en) * 2020-04-26 2020-07-10 周建 Spiral annular pipe-in-pipe heat energy exchanger
JP2021058915A (en) * 2019-10-08 2021-04-15 株式会社ユタカ技研 Double pipe and method of manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104684344A (en) * 2013-11-29 2015-06-03 国际商业机器公司 PCM (phase change material) cooling equipment, cooling system as well as method and unit for cooling system
RU2598542C1 (en) * 2015-09-30 2016-09-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" Fast neutron reactor fuel element, element for spacing fuel element and method (versions) of making element
CN105277022A (en) * 2015-11-30 2016-01-27 李家海 Tube-tube interlaced type heat exchanger
KR101725852B1 (en) * 2016-09-20 2017-04-11 신동훈 Manufacturing Method of Fin Tube Assembly, and Fin Tube Assembly Manufactured Thereby

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875759A (en) * 1973-04-13 1975-04-08 Columbia Gas System Corp Heat exchange evaporator
JPH02176361A (en) * 1988-12-27 1990-07-09 Matsushita Electric Ind Co Ltd Heat exchanger
GB9617043D0 (en) * 1996-08-14 1996-09-25 Courtaulds Plc Manufacture ofd extruded articles
JP3397055B2 (en) * 1996-10-22 2003-04-14 松下電器産業株式会社 Heat exchanger
JP2000111275A (en) * 1998-10-02 2000-04-18 Mitsubishi Electric Corp Refrigerant-heating device
JP2001248979A (en) * 2000-03-03 2001-09-14 Koa Seisakusho:Kk Heat exchange pipe and manufacturing method for the same as well as heat exchange structure of refrigerating circuit
JP2001280862A (en) * 2000-03-31 2001-10-10 Sanyo Electric Co Ltd Brine heat exchanger

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192429A (en) * 2006-01-17 2007-08-02 Sanden Corp Gas-liquid separator module
JP2008045868A (en) * 2006-07-21 2008-02-28 Sumitomo Light Metal Ind Ltd Heat exchanger for water heater, and its manufacturing method
JP2009002631A (en) * 2007-06-25 2009-01-08 Furukawa Electric Co Ltd:The Heat exchanger and heat exchanging system
JP2009024969A (en) * 2007-07-23 2009-02-05 Sumitomo Light Metal Ind Ltd Heat exchanger
JP2013257078A (en) * 2012-06-13 2013-12-26 Mitsubishi Electric Corp Twisted tube type heat exchanger
JP2015135216A (en) * 2014-01-17 2015-07-27 株式会社東芝 Exhaust heat recovery apparatus and exhaust heat recovery system
JP6042026B2 (en) * 2014-03-07 2016-12-14 三菱電機株式会社 Refrigeration cycle equipment
WO2015132966A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Refrigeration cycle device
WO2015133622A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Refrigeration cycle apparatus
JPWO2015133622A1 (en) * 2014-03-07 2017-04-06 三菱電機株式会社 Refrigeration cycle equipment
US9970693B2 (en) 2014-03-07 2018-05-15 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2018042482A1 (en) * 2016-08-29 2018-03-08 三菱電機株式会社 Heat pump system
JPWO2018042482A1 (en) * 2016-08-29 2018-11-15 三菱電機株式会社 Heat pump system
KR102046800B1 (en) * 2019-08-06 2019-11-21 주식회사 카이저제빙기 Ice-maker unit for auger type ice maker
JP2021058915A (en) * 2019-10-08 2021-04-15 株式会社ユタカ技研 Double pipe and method of manufacturing the same
JP7141379B2 (en) 2019-10-08 2022-09-22 株式会社ユタカ技研 Double pipe and its manufacturing method
CN111397401A (en) * 2020-04-26 2020-07-10 周建 Spiral annular pipe-in-pipe heat energy exchanger

Also Published As

Publication number Publication date
KR20040050875A (en) 2004-06-17
JP4084174B2 (en) 2008-04-30
CN1322300C (en) 2007-06-20
CN1506646A (en) 2004-06-23

Similar Documents

Publication Publication Date Title
JP2004190922A (en) Heat exchanger
AU2006249165B2 (en) Heat exchanger
JP5202030B2 (en) Double tube heat exchanger
JP2008164245A (en) Heat exchanger
AU2006249166A1 (en) Heat exchanger
JP2002098486A (en) Heat exchanger and manufacturing method therefor
JP2003329376A (en) Double tube type heat exchanger
JP2005164210A (en) Heat exchanger, multiple pipe for use in the device, and manufacturing method of the same
JP2005133999A (en) Heat pump type hot-water supplier
JP4211041B2 (en) Heat pump water heater
JP5785883B2 (en) Heat exchanger and heat pump type water heater using the same
JP4224793B2 (en) Heat exchanger and manufacturing method thereof
JP2004085166A (en) Heat exchanger, its manufacturing method, and bath water heating system and floor heating system using the heat exchanger
JP2010091266A (en) Twisted tube type heat exchanger
JP2003240485A (en) Heat transfer tube with internal groove
JP2004218945A (en) Heat exchanger and method of manufacturing the same
JP3871581B2 (en) Heat exchanger for heat pump type water heater and heat pump type water heater using the same
JP5334898B2 (en) Twisted tube heat exchanger and equipment equipped with the same
JPS603932A (en) Production of heat exchanger
KR20030088169A (en) Heat exchanger
KR20120001268U (en) Condenser For Refrigerator
JP2004093057A (en) Heat exchanger and its manufacturing method
KR20100009091A (en) Turn fin type heat exchanger and manufacturing method for turn fin type heat exchanger
JPS5864496A (en) Double tube type heat exchanger
JPH109712A (en) Flat tube for condenser and manufacture of same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4084174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

EXPY Cancellation because of completion of term