[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004186437A - Generator - Google Patents

Generator Download PDF

Info

Publication number
JP2004186437A
JP2004186437A JP2002351729A JP2002351729A JP2004186437A JP 2004186437 A JP2004186437 A JP 2004186437A JP 2002351729 A JP2002351729 A JP 2002351729A JP 2002351729 A JP2002351729 A JP 2002351729A JP 2004186437 A JP2004186437 A JP 2004186437A
Authority
JP
Japan
Prior art keywords
power generation
solar cell
power
reflecting
generation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002351729A
Other languages
Japanese (ja)
Inventor
Katsumi Kimura
克己 木村
Kenji Ichihara
堅治 市原
Kazuhiko Sugiyama
和彦 杉山
Yoshihiko Ando
嘉彦 安藤
Naoki Ishikawa
直揮 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002351729A priority Critical patent/JP2004186437A/en
Publication of JP2004186437A publication Critical patent/JP2004186437A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a generator capable of reducing the usage of a solar cell by using a double-sided generation type solar cell, and improving generating efficiency by effectively irradiating even the back side of the solar cell with lights. <P>SOLUTION: This generator is provided with a generating part 20 where a light transmitting part 25 is arranged between face-shaped double-sided generation type solar cells 21 and a reflecting part 40 arranged on the back side of the generating part 20 with the surface as a reflecting face 41. The reflecting face 41 of the reflecting part 40 is faced to the back face so as to be shaped like a projecting curved surface. Then, reflecting lights made incident from the light transmitting part 25 of the generating part 20, and reflected on the reflecting surface 41 are converged, and emitted to the solar cell 21 at the back side of the generating part 20. The reflected lights are converged so that the quantity of the reflected lights to be emitted to the back face of the solar cell 20 can be increased, that the generation quantity can be increased, and that the efficient use of the solar cell can be attained. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、両面発電型の太陽電池を利用した発電装置に関するものである。
【0002】
【従来の技術】
従来、太陽電池を利用した発電装置は、自然のクリーンな光エネルギーによる発電装置として、或いは僻地や電源設備がない場所の給電装置として利用されている。
【0003】
一方太陽電池として、表面側に入射する光による発電の他に、裏面側に入射する光によっても発電する両面発電型の太陽電池が実用化されるに至っている。この種の両面発電型の太陽電池を用いた発電装置は、例えば平面状の太陽電池の裏面側に平板状の反射板を設置し、太陽電池の表面側に照射される光と、反射板で反射されて太陽電池の裏面側に照射される反射光とによって発電するように構成されていた。両面発電型の太陽電池を用いると、太陽電池の使用量を削減できて製造コスト削減、設置面積の小型化が図れ、好適である。
【0004】
しかしながら上記従来の発電装置においては、反射板による太陽電池裏面への光の照射量が必ずしも十分とは言えず、さらなる発電効率の向上が望まれていた。
【0005】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたものでありその目的は、両面発電型の太陽電池を用いることで太陽電池の使用量を削減すると同時に、太陽電池の裏面側にも効果的に光を照射して発電効率を向上できる発電装置を提供することにある。
【0006】
【課題を解決するための手段】
上記問題点を解決するため本願の請求項1に記載の発明は、面状の両面発電型の太陽電池の間に光通過部を設けてなる発電部と、前記発電部の裏面側に配置され、その表面を反射面とした反射部とを具備し、前記反射部の反射面を裏面に向けて凸となる湾曲面形状又は裏面に向けて凸となる多面体形状に形成することで、前記発電部の光通過部から入射して反射面で反射した反射光を集光した上で発電部裏面側の太陽電池に照射することを特徴とする発電装置にある。この発電装置によれば、発電部の光通過部から入射して反射面で反射した反射光は集光されるので、太陽電池の裏面に照射される反射光の量を多くでき発電量が増え、太陽電池の効率的利用が図れる。言い換えれば両面発電型の太陽電池の有効活用ができ、太陽電池使用量の削減が図れ、また発電装置の小型化が図れる。
【0007】
本願の請求項2に記載の発明は、前記発電部の太陽電池は、表面に向けて凸となる湾曲面形状又は表面に向けて凸となる多面体形状に形成されていることを特徴とする請求項1に記載の発電装置にある。この発明によれば、太陽電池の表面に照射される光の量が増え、太陽電池による発電量が増える。
【0008】
本願の請求項3に記載の発明は、前記発電装置の外周につば状の反射板を設置することで、この反射板で反射した反射光の一部を発電部の表面側の太陽電池に照射させることを特徴とする請求項1又は2に記載の発電装置にある。この発明によれば、発電装置の外周に設けた反射板によってさらに効果的に太陽電池の発電が行なえる。
【0009】
本願の請求項4に記載の発明は、前記発電装置は、この発電装置を支持する支柱の外周を囲むように取り付けられていることを特徴とする請求項1又は2又は3に記載の発電装置にある。この発明によれば、発電装置がこれを支持する支柱から外方に突出する寸法を小さくでき、例え支柱の近くに建物などの障害物が接近して設置されていても、その取り付けを行うことができる。
【0010】
本願の請求項5に記載の発明は、前記支柱に風力発電装置を設置したことを特徴とする請求項4に記載の発電装置にある。この発明によれば、風力発電装置用の支柱に本発明にかかる発電装置を小さい設置面積で設置でき、ハイブリッド発電装置全体のコンパクト化が図れる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。
図1は本発明の一実施の形態にかかる発電装置10に風力発電装置80を組み合わせたハイブリッド発電装置1を示す概略斜視図である。同図に示すハイブリッド発電装置1は、支柱70の上部に風力発電装置80を設置し、支柱70の中間に太陽電池による発電装置10を設置し、発電装置10と風力発電装置80で発電された電気を、蓄電装置90とインバータ95に供給するように構成されている。以下各構成部分について説明する。
【0012】
風力発電装置80は垂直軸風力発電装置であり、複数枚の垂直方向を向く翼81を腕83によって支柱70内部に設置した垂直軸に取り付け、この垂直軸によって支柱70内部に設置した発電機を駆動する構造に構成されている。この垂直軸タイプの風力発電装置80は、風向に依存せずに発電可能な風力発電装置である。
【0013】
次に図2は発電装置10を示す図であり、図2(a)は概略平面図、図2(b)は図2(a)のA−A概略断面図である。同図に示すように発電装置10は、支柱70の周囲に略円板状に取り付けられ、上面側の発電部20と、下面側の反射部40とを具備して構成されている。
【0014】
発電部20は、面状に設置された複数(五つ)の太陽電池21と、これら各太陽電池21の間に設けられる開口からなる複数(五つ)の光通過部25とを具備して構成されている。ここで五つの太陽電池21は何れも表裏両面に入射する光により発電する面状の両面発電型の太陽電池であり、五つの太陽電池21全体で表面に向けて凸となる湾曲面(この実施の形態では球面)に構成されている。また発電部20の各太陽電池21と各光通過部25とは、発電部20の中央(支柱70部分)から放射状に伸びる線で等間隔に分割された複数(10個)の領域に交互に設けられている。
【0015】
反射部40はその表面の反射面41を裏面に向けて凸となる湾曲面(この実施の形態では球面)とすることで、発電部20の光通過部25から入射して反射面41で反射する反射光を集光光となるようにしている。反射面41には反射率が大きく、耐候性のある材質のもの、例えば鏡面状のステンレス鋼板等を使用している。
【0016】
次にこのハイブリッド発電装置1の動作を説明する。まず風によって翼81が回転すると、風力発電装置80の発電機によって発電が行なわれ、この発電電力は直流に変換された後にインバータ95を介して直接需要部門に供給されたり、或いは蓄電装置90に一旦充電した後に需要に応じてインバータ95を介して需要部門に供給されたりする。
【0017】
一方発電装置10に太陽光等の光が当たると、太陽電池21の表面に照射される直射光によって各太陽電池21は発電する。同時に発電装置10に照射された光の内で光通過部25からその内部に入射した光は、反射部40表面によって反射され、この反射光の一部は光通過部25から再び外部に放射されるが、他の一部は太陽電池21の裏面に照射され、これによっても各太陽電池21は発電する。これら太陽電池21の両面で発電された電力は、前記風力発電装置80の場合と同様に、インバータ95を介して直接需要部門に供給されたり、或いは蓄電装置90に一旦充電した後に需要に応じてインバータ95を介して需要部門に供給されたりする。
【0018】
ここでこの発電装置10においては、反射部40の反射面41を裏面に向けて凸となる湾曲面としているので、反射面41によって反射された反射光は、集光光となり、より多くの光を太陽電池21の裏面に照射することができ、より効率良く発電することができる。即ち図3(a)に示すように入射角度の高い光a1も低い光a2も、反射面41によって反射された反射光は太陽電池21の裏面方向に向けて集光され、これによって光通過部25から入射した光を、反射面41を平面状とした場合に比べてより多く太陽電池21の裏面に照射することができ、発電効率を向上できる。なお反射光を効果的に太陽電池21の裏面に集光する形状であれば、反射面41は球面状に限らず、他の各種湾曲面形状であっても良く、また多面体形状であっても良い。
【0019】
またこの発電装置10によれば、太陽電池21を表面に向けて凸となる湾曲面に構成したので、太陽電池21の表面側においても効果的な発電ができる。即ち太陽電池21を表面に向けて凸となる湾曲面に構成すれば、図3(b)に示すように、これに入射する光a3の量は、太陽電池21が平面状に設置されている場合(一点鎖線で示す)の光a4の量に比べて多くなり、太陽電池21による発電量が増える。言い換えれば同じ量の発電電力を得るのであれば、発電装置10の小型化が図れる。なおこのような効果は、太陽電池21の表面を球面状にする場合に限らず、円錐形状等の他の各種湾曲面形状とした場合や、多角錐形状等の多面体形状とした場合にも生じる。また逆にこのような効果を期待しないのであれば、太陽電池21は平面状に形成しても良い。
【0020】
またこの実施の形態にかかる発電装置10は支柱70の外周を囲むように取り付ける構造なので、支柱70から外方に突出する寸法が小さく、例え支柱70の近くに建物などが接近していても、その取り付けを行うことができる。特に上記実施の形態では発電装置10の外形を円形(又は多角形)にしたので、外方への張り出し寸法を小さくでき、好適である。なおもちろんこの発電装置10を太陽の方向に傾けて設置しても良い。
【0021】
また図4に示すように、発電装置10−2の外周につば状の反射板50を設置してもよい。反射板50を設ければ、この反射板50で反射させた反射光の一部を太陽電池21の表面側に照射させることができ、さらに効果的な発電を行うことができる。
【0022】
また上記実施の形態では本発明にかかる発電装置10を風力発電装置80と組み合わせたハイブリッド発電装置1として構成することで、風力エネルギーが得られない状況でも、太陽光によって効率良く発電できるように構成したが、もちろん発電装置10を単独に設置して使用しても良い。例えば図5に示すように、電柱100にこの発電装置10を設置して電柱100に取り付けた街灯150用の電気として昼間に蓄電しても良い。前述のようにこの実施の形態にかかる発電装置10は電柱100等の支柱の近くに建物などが接近していても、その取り付けを容易に行うことができる。
【0023】
以上本発明の実施の形態を説明したが、本発明は上記実施の形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載がない何れの形状や構造や材質であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。例えば上記実施の形態では発電装置10の外形形状を円形に構成したが、多角形(四角形や六角形等)やその他の外形形状にしても良い。また上記実施の形態では発電部20の太陽電池21と光通過部25とを、発電部20の中央から放射状に伸びる線で分割した領域に交互に設けたが、太陽電池21と光通過部25の形状やこれらを設ける位置は種々の変更が可能である。
【0024】
【発明の効果】
以上詳細に説明したように本発明によれば以下のような優れた効果を有する。
▲1▼請求項1に記載の発明によれば、発電部の光通過部から入射して反射面で反射した反射光は集光されるので、太陽電池の裏面に照射される反射光の量を多くでき発電量が増え、太陽電池の効率的利用が図れる。言い換えれば両面発電型の太陽電池の有効活用ができ、太陽電池使用量の削減が図れ、また発電装置の小型化が図れる。
【0025】
▲2▼請求項2に記載の発明によれば、太陽電池の表面に照射される光の量が増え、太陽電池による発電量が増える。
【0026】
▲3▼請求項3に記載の発明によれば、発電装置の外周に設けた反射板によってさらに効果的に太陽電池の発電が行なえる。
【0027】
▲4▼請求項4に記載の発明によれば、発電装置がこれを支持する支柱から外方に突出する寸法を小さくでき、例え支柱の近くに建物などの障害物が接近して設置されていても、その取り付けを行うことができる。
【0028】
▲5▼請求項5に記載の発明によれば、風力発電装置用の支柱に本発明にかかる発電装置を小さい設置面積で設置でき、ハイブリッド発電装置全体のコンパクト化が図れる。
【図面の簡単な説明】
【図1】本発明の一実施の形態にかかる発電装置10に風力発電装置80を組み合わせたハイブリッド発電装置1を示す概略斜視図である。
【図2】発電装置10を示す図であり、図2(a)は概略平面図、図2(b)は図2(a)のA−A概略断面図である。
【図3】発電装置10における光の入、反射状態の説明図である。
【図4】他の発電装置10−2を示す図であり、図4(a)は概略平面図、図4(b)は図4(a)のB−B概略断面図である。
【図5】発電装置10を電柱100に設置した一例を示す図である。
【符号の説明】
1 ハイブリッド発電装置
10 発電装置
20 発電部
21 太陽電池
25 光通過部
40 反射部
41 反射面
50 反射板
70 支柱
80 風力発電装置
81 翼
83 腕
90 蓄電装置
95 インバータ
100 電柱
10−2 発電装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power generation device using a double-sided power generation type solar cell.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a power generation device using a solar cell is used as a power generation device using natural clean light energy, or as a power supply device in a remote place or a place without power supply facilities.
[0003]
On the other hand, as a solar cell, a double-sided power generation type solar cell that generates power by light incident on the back side in addition to power generation by light incident on the front side has been put to practical use. This type of power generation device using a dual-sided power generation type solar cell, for example, a flat reflector is installed on the back side of a flat solar cell, and the light radiated to the front side of the solar cell is reflected by the reflector. It was configured to generate power by the reflected light that was reflected and applied to the back side of the solar cell. The use of a dual-sided solar cell is preferable because the amount of the solar cell used can be reduced, the manufacturing cost can be reduced, and the installation area can be reduced.
[0004]
However, in the above-described conventional power generation device, the amount of light irradiation on the back surface of the solar cell by the reflector is not always sufficient, and further improvement in power generation efficiency has been desired.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and its object is to reduce the amount of solar cells used by using a dual-sided power generation type solar cell, and at the same time, to effectively emit light to the back side of the solar cell. An object of the present invention is to provide a power generation device that can improve power generation efficiency by irradiation.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 of the present application provides a power generation unit in which a light passing unit is provided between planar two-sided power generation solar cells and a rear surface side of the power generation unit. A reflecting portion having a surface as a reflecting surface, wherein the reflecting surface of the reflecting portion is formed into a curved surface shape convex toward the back surface or a polyhedral shape convex toward the back surface, whereby the power generation is performed. The power generation device is characterized in that the reflected light that has entered from the light passing portion of the portion and reflected on the reflection surface is condensed, and then is radiated to the solar cell on the back surface side of the power generation portion. According to this power generation device, the reflected light incident from the light passing portion of the power generation unit and reflected by the reflection surface is collected, so that the amount of reflected light applied to the back surface of the solar cell can be increased and the power generation amount can be increased. In addition, efficient use of solar cells can be achieved. In other words, the dual-sided power generation type solar cell can be effectively used, the usage of the solar cell can be reduced, and the power generation device can be downsized.
[0007]
The invention according to claim 2 of the present application is characterized in that the solar cell of the power generation unit is formed in a curved surface shape convex toward the surface or a polyhedral shape convex toward the surface. Item 1 is the power generator according to Item 1. According to the present invention, the amount of light applied to the surface of the solar cell increases, and the amount of power generated by the solar cell increases.
[0008]
According to the invention of claim 3 of the present application, by installing a brim-shaped reflector on the outer periphery of the power generation device, a part of the light reflected by the reflector is radiated to the solar cell on the surface side of the power generation unit. The power generator according to claim 1 or 2, wherein the power generation is performed. According to the present invention, the power generation of the solar cell can be more effectively performed by the reflection plate provided on the outer periphery of the power generation device.
[0009]
The invention according to claim 4 of the present application is characterized in that the power generation device is mounted so as to surround an outer periphery of a column that supports the power generation device. It is in. ADVANTAGE OF THE INVENTION According to this invention, the dimension which a power generator protrudes outward from the support | pillar which supports this can be made small, and even if an obstruction such as a building is installed close to the support, it is mounted. Can be.
[0010]
The invention according to claim 5 of the present application is the power generator according to claim 4, wherein a wind power generator is installed on the support. According to the present invention, the power generation device according to the present invention can be installed in a small installation area on the support for the wind power generation device, and the entire hybrid power generation device can be made compact.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic perspective view showing a hybrid power generator 1 in which a wind power generator 80 is combined with a power generator 10 according to one embodiment of the present invention. In the hybrid power generator 1 shown in the figure, a wind power generator 80 is installed above a support 70, and a power generator 10 using a solar cell is installed in the middle of the support 70, and power is generated by the power generator 10 and the wind power generator 80. It is configured to supply electricity to the power storage device 90 and the inverter 95. Hereinafter, each component will be described.
[0012]
The wind power generator 80 is a vertical axis wind power generator, in which a plurality of vertically oriented wings 81 are attached to the vertical axis installed inside the support 70 by the arm 83, and the generator installed inside the support 70 by the vertical axis is used. It is configured to be driven. This vertical axis type wind power generator 80 is a wind power generator capable of generating power without depending on the wind direction.
[0013]
Next, FIG. 2 is a diagram showing the power generator 10, FIG. 2 (a) is a schematic plan view, and FIG. 2 (b) is a schematic cross-sectional view along AA in FIG. 2 (a). As shown in the figure, the power generation device 10 is attached in a substantially disk shape around a support column 70, and includes a power generation unit 20 on an upper surface side and a reflection unit 40 on a lower surface side.
[0014]
The power generation unit 20 includes a plurality (five) of solar cells 21 arranged in a plane and a plurality (five) of light passing units 25 including openings provided between the respective solar cells 21. It is configured. Here, each of the five solar cells 21 is a planar two-sided power generation type solar cell that generates electric power by light incident on the front and back surfaces, and has a curved surface that is convex toward the surface of the entire five solar cells 21 (this embodiment). In the form of a spherical surface). Each of the solar cells 21 and each of the light passing portions 25 of the power generation unit 20 are alternately formed in a plurality (10) of regions divided at equal intervals by a line extending radially from the center of the power generation unit 20 (the column 70). Is provided.
[0015]
The reflecting portion 40 has a curved reflecting surface 41 (a spherical surface in this embodiment) that is convex toward the rear surface, so that the light enters from the light passing portion 25 of the power generation unit 20 and is reflected by the reflecting surface 41. The reflected light is made to be condensed light. The reflection surface 41 is made of a material having high reflectance and weather resistance, such as a mirror-like stainless steel plate.
[0016]
Next, the operation of the hybrid power generator 1 will be described. First, when the wings 81 are rotated by the wind, power is generated by the generator of the wind power generator 80. The generated power is converted to direct current and then directly supplied to the demand department via the inverter 95, or to the power storage device 90. Once charged, it is supplied to the demand department via the inverter 95 according to demand.
[0017]
On the other hand, when light such as sunlight shines on the power generation device 10, each of the solar cells 21 generates power by direct light applied to the surface of the solar cell 21. At the same time, of the light applied to the power generation device 10, the light that has entered the inside from the light passing portion 25 is reflected by the surface of the reflecting portion 40, and a part of the reflected light is radiated again from the light passing portion 25 to the outside. However, the other part is irradiated to the back surface of the solar cell 21, and each solar cell 21 also generates power. As in the case of the wind power generator 80, the power generated on both sides of the solar cells 21 is supplied directly to the demand department via the inverter 95, or in response to the demand after charging the power storage device 90 once. It is supplied to the demand department via the inverter 95.
[0018]
Here, in the power generation device 10, since the reflecting surface 41 of the reflecting portion 40 is a curved surface that is convex toward the rear surface, the reflected light reflected by the reflecting surface 41 becomes condensed light, and more light Can be radiated to the back surface of the solar cell 21 to generate power more efficiently. That is, as shown in FIG. 3A, both the light a1 having a high incident angle and the light a2 having a low incident angle are reflected by the reflection surface 41 and condensed toward the rear surface of the solar cell 21. Light incident from the light source 25 can be applied to the back surface of the solar cell 21 more than when the reflecting surface 41 is flat, and the power generation efficiency can be improved. The reflecting surface 41 is not limited to a spherical shape, but may be any other curved surface shape or a polyhedral shape as long as the reflected light is effectively condensed on the back surface of the solar cell 21. good.
[0019]
In addition, according to the power generation device 10, since the solar cell 21 is configured to have a curved surface that is convex toward the surface, effective power generation can be performed even on the surface side of the solar cell 21. That is, if the solar cell 21 is configured to have a curved surface that is convex toward the surface, as shown in FIG. 3B, the amount of light a3 incident on the solar cell 21 is set in a planar manner. In this case (indicated by a dashed line), the amount of light a4 increases, and the amount of power generated by the solar cell 21 increases. In other words, if the same amount of generated power is obtained, the size of the power generation device 10 can be reduced. Note that such an effect is not limited to the case where the surface of the solar cell 21 is formed into a spherical surface, but also occurs when the solar cell 21 is formed into various other curved surfaces such as a conical shape, or when a polyhedral shape such as a polygonal pyramid is formed. . Conversely, if such an effect is not expected, the solar cell 21 may be formed in a planar shape.
[0020]
Further, since the power generation device 10 according to this embodiment has a structure in which the power generation device 10 is attached so as to surround the outer periphery of the column 70, the size protruding outward from the column 70 is small, and even if a building or the like is close to the column 70, The installation can be done. In particular, in the above-described embodiment, the outer shape of the power generation device 10 is circular (or polygonal), so that the outward projection can be reduced, which is preferable. Of course, the power generation device 10 may be installed to be inclined in the direction of the sun.
[0021]
Further, as shown in FIG. 4, a brim-shaped reflecting plate 50 may be provided on the outer periphery of the power generation device 10-2. If the reflection plate 50 is provided, a part of the reflected light reflected by the reflection plate 50 can be applied to the front surface side of the solar cell 21, and more effective power generation can be performed.
[0022]
In the above-described embodiment, the power generation device 10 according to the present invention is configured as the hybrid power generation device 1 in combination with the wind power generation device 80, so that the power generation can be efficiently performed by sunlight even in a situation where wind energy cannot be obtained. However, of course, the power generator 10 may be installed and used independently. For example, as shown in FIG. 5, the power generation device 10 may be installed on a utility pole 100 and stored in the daytime as electricity for a street lamp 150 attached to the utility pole 100. As described above, the power generation device 10 according to this embodiment can easily be attached even when a building or the like is near a pole such as the power pole 100 or the like.
[0023]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications may be made within the scope of the claims and the technical idea described in the specification and the drawings. Deformation is possible. Note that any shape, structure, or material not directly described in the specification and drawings is within the scope of the technical idea of the present invention as long as the effects and effects of the present invention are exhibited. For example, in the above-described embodiment, the outer shape of the power generator 10 is configured to be circular, but may be a polygon (such as a square or a hexagon) or another outer shape. In the above-described embodiment, the solar cell 21 and the light passing unit 25 of the power generation unit 20 are provided alternately in a region divided by a line extending radially from the center of the power generation unit 20. The shape and the position where these are provided can be variously changed.
[0024]
【The invention's effect】
As described above in detail, the present invention has the following excellent effects.
(1) According to the first aspect of the present invention, since the reflected light incident from the light passage portion of the power generation unit and reflected by the reflection surface is collected, the amount of the reflected light applied to the back surface of the solar cell And the amount of power generation can be increased, and solar cells can be used efficiently. In other words, the dual-sided power generation type solar cell can be effectively used, the usage of the solar cell can be reduced, and the power generation device can be downsized.
[0025]
(2) According to the second aspect of the present invention, the amount of light applied to the surface of the solar cell increases, and the amount of power generated by the solar cell increases.
[0026]
{Circle over (3)} According to the third aspect of the invention, the power generation of the solar cell can be more effectively performed by the reflection plate provided on the outer periphery of the power generation device.
[0027]
(4) According to the invention as set forth in claim 4, the size of the power generator protruding outward from the supporting column can be reduced, and an obstacle such as a building is installed close to the column. Even so, the attachment can be performed.
[0028]
(5) According to the fifth aspect of the present invention, the power generation device according to the present invention can be installed in a small installation area on the support for the wind power generation device, and the entire hybrid power generation device can be made compact.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a hybrid power generator 1 in which a wind power generator 80 is combined with a power generator 10 according to one embodiment of the present invention.
FIG. 2 is a view showing the power generator 10, FIG. 2 (a) is a schematic plan view, and FIG. 2 (b) is a schematic cross-sectional view along AA in FIG. 2 (a).
FIG. 3 is an explanatory diagram of a light input and reflection state in the power generation device 10.
4 is a diagram showing another power generation device 10-2, FIG. 4 (a) is a schematic plan view, and FIG. 4 (b) is a BB schematic cross-sectional view of FIG. 4 (a).
FIG. 5 is a diagram showing an example in which the power generator 10 is installed on a utility pole 100.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 hybrid power generation device 10 power generation device 20 power generation unit 21 solar cell 25 light passing unit 40 reflection unit 41 reflection surface 50 reflection plate 70 support 80 wind power generation device 81 wing 83 arm 90 power storage device 95 inverter 100 power pole 10-2 power generation device

Claims (5)

面状の両面発電型の太陽電池の間に光通過部を設けてなる発電部と、
前記発電部の裏面側に配置され、その表面を反射面とした反射部とを具備し、
前記反射部の反射面を裏面に向けて凸となる湾曲面形状又は裏面に向けて凸となる多面体形状に形成することで、前記発電部の光通過部から入射して反射面で反射した反射光を集光した上で発電部裏面側の太陽電池に照射することを特徴とする発電装置。
A power generation unit having a light passing unit provided between planar two-sided power generation solar cells,
A reflection unit disposed on the back side of the power generation unit and having the surface as a reflection surface,
By forming the reflecting surface of the reflecting portion into a curved surface shape convex toward the back surface or a polyhedral shape convex toward the back surface, the reflection reflected from the light passing portion of the power generation unit and reflected by the reflecting surface A power generation device, which collects light and irradiates the solar cell on the back side of the power generation unit.
前記発電部の太陽電池は、表面に向けて凸となる湾曲面形状又は表面に向けて凸となる多面体形状に形成されていることを特徴とする請求項1に記載の発電装置。The power generation device according to claim 1, wherein the solar cell of the power generation unit is formed in a curved surface shape convex toward the surface or a polyhedron shape convex toward the surface. 前記発電装置の外周につば状の反射板を設置することで、この反射板で反射した反射光の一部を発電部の表面側の太陽電池に照射させることを特徴とする請求項1又は2に記載の発電装置。3. A solar cell on a front surface side of a power generation unit by irradiating a part of the light reflected by the reflection plate by installing a brim-shaped reflection plate on an outer periphery of the power generation device. A power generating device according to claim 1. 前記発電装置は、この発電装置を支持する支柱の外周を囲むように取り付けられていることを特徴とする請求項1又は2又は3に記載の発電装置。The power generator according to claim 1, 2 or 3, wherein the power generator is attached so as to surround an outer periphery of a column supporting the power generator. 前記支柱に風力発電装置を設置したことを特徴とする請求項4に記載の発電装置。The power generator according to claim 4, wherein a wind power generator is installed on the support.
JP2002351729A 2002-12-03 2002-12-03 Generator Pending JP2004186437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351729A JP2004186437A (en) 2002-12-03 2002-12-03 Generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351729A JP2004186437A (en) 2002-12-03 2002-12-03 Generator

Publications (1)

Publication Number Publication Date
JP2004186437A true JP2004186437A (en) 2004-07-02

Family

ID=32753560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351729A Pending JP2004186437A (en) 2002-12-03 2002-12-03 Generator

Country Status (1)

Country Link
JP (1) JP2004186437A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125105A1 (en) * 2012-02-20 2013-08-29 立山科学工業株式会社 Photovoltaic power system
KR200468885Y1 (en) 2011-08-29 2013-09-06 주식회사 페코에너지코리아 Hybrid streetlight
WO2014119055A1 (en) * 2013-02-01 2014-08-07 立山科学工業株式会社 Solar panel installation surface structure
JP2017503467A (en) * 2013-11-12 2017-01-26 エーエスエム アイピー ホールディングス エルエルシー Solar energy collection assembly, system and method
JP2018512833A (en) * 2015-03-04 2018-05-17 ボリメディア・ホールディングス・カンパニー・リミテッド Surface solar system
JP2018512839A (en) * 2015-02-12 2018-05-17 ボリメディア・ホールディングス・カンパニー・リミテッド Concentrating solar system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200468885Y1 (en) 2011-08-29 2013-09-06 주식회사 페코에너지코리아 Hybrid streetlight
WO2013125105A1 (en) * 2012-02-20 2013-08-29 立山科学工業株式会社 Photovoltaic power system
WO2014119055A1 (en) * 2013-02-01 2014-08-07 立山科学工業株式会社 Solar panel installation surface structure
JP2014150180A (en) * 2013-02-01 2014-08-21 Tateyama Kagaku Kogyo Kk Installation surface structure for photovoltaic power generation panel
JP2017503467A (en) * 2013-11-12 2017-01-26 エーエスエム アイピー ホールディングス エルエルシー Solar energy collection assembly, system and method
JP2018512839A (en) * 2015-02-12 2018-05-17 ボリメディア・ホールディングス・カンパニー・リミテッド Concentrating solar system
JP2018512833A (en) * 2015-03-04 2018-05-17 ボリメディア・ホールディングス・カンパニー・リミテッド Surface solar system

Similar Documents

Publication Publication Date Title
RU2538756C2 (en) Solar powered lighting installation
JP2008547209A (en) Planar concentrating photovoltaic solar cell plate with individual articulating concentrating elements
WO2003107078B1 (en) Mini-optics solar energy concentrator
RU2676214C1 (en) Concentrated solar power system
WO2012113195A1 (en) Solar secondary light concentrating frequency dividing method and apparatus thereof based on dish-like light concentration
KR20170011572A (en) Solar battery using bifacial solar panels
JP2009231315A (en) Solar power generator
JP5043244B1 (en) Solar power system
JP3133650U (en) Solar energy supply equipment
CN103022206A (en) Groove-type compound parabolic concentrating power generation component
JP2021535624A (en) Solar power generator
KR20200144804A (en) Generating system of bi-facial solar cell with reflection body reflecting beam onto the under face
JP2004186437A (en) Generator
JP2018512833A (en) Surface solar system
JP2003346521A (en) Lighting equipment
US8378282B2 (en) Device for increasing the luminous flux per unit area with the ability to reduce the light-taking distance in respect to the opposite light source
CN216892080U (en) Photovoltaic sound insulation barrier
CN211127649U (en) Solar cell module
CN105490636B (en) For the reflector of two-sided photovoltaic module and the photovoltaic system of application reflector
JP6259140B1 (en) Photovoltaic generator
CN205195650U (en) Reflective solar photovoltaic electricity generation increase device
JP2001111090A (en) Optical position sensor, optical tracking system and optical tracking type power generation system
US11626526B2 (en) 3D printed three-dimensional photovoltaic module
KR100886803B1 (en) Solar collector
CN201742327U (en) Solar energy side focusing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080916