JP2004182879A - High performance water-soluble metal working fluid - Google Patents
High performance water-soluble metal working fluid Download PDFInfo
- Publication number
- JP2004182879A JP2004182879A JP2002352206A JP2002352206A JP2004182879A JP 2004182879 A JP2004182879 A JP 2004182879A JP 2002352206 A JP2002352206 A JP 2002352206A JP 2002352206 A JP2002352206 A JP 2002352206A JP 2004182879 A JP2004182879 A JP 2004182879A
- Authority
- JP
- Japan
- Prior art keywords
- water
- oil
- boron nitride
- fine powder
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Auxiliary Devices For Machine Tools (AREA)
- Lubricants (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、切削、研削加工をはじめとし、塑性加工などの金属加工へも広く適用できる水溶性金属加工油剤に関し、特に、潤滑性能の向上した優れた効果を発揮する水溶性金属加工油剤に関するものである。
【0002】
【従来の技術】
切削、研削加工分野に広く用いられる切削油剤には、鉱油をベースにした非水溶性切削油剤と、鉱油、界面活性剤、有機アミン等を含有し、水に希釈して使用する水溶性切削油剤とがある。そして、これらの切削油剤には、油剤の潤滑性能を向上させるために、極圧添加剤と呼ばれる化合物を添加処方する場合がある(例えば、特許文献1参照。)。
【0003】
この極圧添加剤の代表的化合物としては、含塩素化合物、含硫黄化合物、含モリブデン化合物等が挙げられる。金属加工油剤は使用後には廃油が発生するため、例えば、その廃油を燃焼処理した場合には、塩素ガス、塩化水素ガス、硫黄酸化物ガス等の発生による焼却炉の損傷、及び寿命低下につながる。また、一部の塩素系添加剤においてはダイオキシンの発生が認められている。一方、モリブデン化合物は、PRTR法の規制対象となったため厳重な管理が必要とされる。
【0004】
これらの極圧添加剤は、油剤の潤滑性能を向上させるためには必要不可欠な化合物であるが、近年の地球資源の節約、地球環境悪化防止の観点から、従来よりも一層地球環境を汚染しない油剤、更にはできるだけ工具などの寿命を延ばすような油剤の開発が求められている。
【0005】
このような問題を解決するために、液成分中に窒化硼素微粉末を有効量分散含有させた高性能潤滑油が本発明者らによってすでに開発されている(例えば、特許文献2参照。)。これらの潤滑油は、含有する窒化硼素の効果によって切削用、研削用及び/又は研磨用に優れた性能を発揮することが確認されているが、非水溶性の切削油として使用する場合には優れた効果を発揮するものの、引火の危険性があり大量の油剤を必要とする大型の設備では火災対策上水溶性切削油が使用されることが多くなっている。一方、窒化硼素は切削油剤に極圧剤として使用すると刃物が長持ちしたり、切削速度を挙げられる等、コストや作業効率の面で多くの特徴があるが、固体であるため切削油剤に溶かし込むことができず、また、比重が約2.27と大きいために、切削油剤に直接分散させて使用すると沈降するという問題がある。また、無機系固体潤滑剤を含有する水分散型塑性加工用潤滑剤が報告されているが(例えば、特許文献3参照。)、鍛造、圧延、伸線、押出し等の塑性加工する際の潤滑油に限定され、油滴の大きさは使用される固体潤滑剤の粒径から推定すると、50μm強、小さくても5μm強とかなり大きな粒子状になるように意図されている。これに対して、切削用、研削用、及び研磨用等の金属加工では、性能の点から細かい方が好ましく、一般的なエマルジョンタイプと呼ばれる水溶性切削油剤の油滴の粒径は2〜5μmであり、循環再使用での濾過装置の使用を考えると、5μm以下に揃えることが望ましいが、これらに適応できない。従って、水溶性で且つ窒化硼素の分散性の良い高性能の金属加工用潤滑剤が求められている。
【0006】
【特許文献1】
特開平11−166190号公報
【特許文献2】
特許第2911113号公報
【特許文献3】
特開平10−316989号公報
【0007】
【発明が解決しようとする課題】
そこで本発明は、二硫化モリブデン等の重金属を含まず、且つ廃棄処理時にダイオキシン等の有害物質を発生しない、環境に優しい水溶性金属加工油剤を提供することを目的とする。
【0008】
また、極圧剤として用いる窒化硼素微粉末が凝集して沈降するという問題点を解決し、ユーザーの使用時における攪拌・再分散を不要にする等、取扱が容易な、かつ火災の心配の少ない水溶性金属加工油剤を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は上記課題を解決するものであって、水溶性金属加工油剤に含まれる極圧剤としての窒化硼素微粉末、特に、優れた分散性と潤滑性を有する結晶性乱層構造の窒化硼素微粉末を基油に分散し、その混合物を微細化して水に乳化し、水中油滴型エマルジョンとすることによって、油と水の界面で窒化硼素微粉末をそれぞれ微量に分割・隔離して再凝集を防ぎ、その界面内に油とともに閉じこめることによって、油の浮力によって窒化硼素微粉末の沈降を抑えられることを見出し、本発明を完成するに至った。
【0010】
すなわち、第一の視点において、本発明の水溶性金属加工油剤は、基油に結晶性乱層構造の窒化硼素微粉末を有効量分散させた油系を、乳化剤を用いて水系に乳化させた形態からなることを特徴とするものであって、前記窒化硼素微粉末が微粒子状に分散乳化されて沈降が抑えられることにより改善された分散性及び乳化安定性を有する。第二の視点において、本発明の水溶性金属加工油剤は、基油に一次粒子の平均粒径が1μm以下の六方晶系、及び/又は結晶性乱層構造の窒化硼素微粉末を有効量分散させた油系を、乳化剤を用いて水系に乳化させた形態からなることを特徴とするものであって、前記窒化硼素微粉末が微粒子状に分散乳化されて沈降が抑えられることにより改善された分散性及び乳化安定性を有する。
【0011】
【発明の実施の形態】
本発明の水溶性金属加工油剤を構成する潤滑油基油としては、鉱油、合成油、動植物油、又はこれらの混合物を用いることができる。この鉱油、合成油、動植物油については、一般に金属加工油の基油として用いられているものであればよく、特に制限はない。鉱油としては、例えば、ISO VG10からISO VG 460の精製鉱油が好ましく、パラフィン系、ナフテン系の何れでもよい。一方、合成油としては、ポリオールエステル、ポリグリコール、ポリαオレフィン、αオレフィン、ノルマルパラフィン、イソパラフィン、アルキルベンゼン、及びポリエーテルなどを用いることができる。また動植物油としては、牛脂、菜種油、大豆油、ひまわり油、サンフラワー油、ひまし油、椰子油、椰子殻油などを用いることができる。これらの基油は、それぞれ単独で、あるいは二種以上を組み合わせて使用することができ、鉱油、合成油、動植物油を組み合わせて使用してもよい。
【0012】
本発明の水溶性金属加工油剤を構成する窒化硼素微粉末は、黒鉛等の他の固体潤滑剤と比べて化学的に安定であり、空気中では1000℃近くまで酸化されないという特徴がある。窒化硼素(BN)は硼素と窒素からなる化合物であるが、窒化硼素には炭素とほぼ同じ結晶構造を有する多型が存在し、無定型窒化硼素(以下、「a−BN」という。)、六角形の網目層が二層周期で積層した構造を有する六方晶系の窒化硼素(以下、「h−BN」という。)、六角形の網目層が三層周期で積層した構造の菱面体晶窒化硼素(以下、「r−BN」という。)、六角形の網目層がランダムに積層した乱層構造の窒化硼素(以下、「t−BN」という。)及び高圧相の立方晶窒化硼素(以下、「c−BN」という。)が知られている。
【0013】
h−BN結晶には六方晶系の黒鉛結晶と同様の劈開性があって良好な固体潤滑性を示すことが知られている。h−BN結晶の潤滑性の由来は、黒鉛の場合と同じく二次元の六角網目層間の結合が弱いファンデアファールス結合であり、この面で顕著な劈開性を示し、層間で鱗片状に劈開した結晶粒子が互いに滑りやすいという性質があるためであると考えられる。
【0014】
本発明では二次元の結晶構造が発達しているが、層間の積層状態はh−BNほど発達せず、六角形の網目層がランダムに積層して乱層構造を有する結晶性窒化硼素を結晶性t−BNという。この結晶性t−BNの特徴的な構造は、粉末X線回折図を測定することにより得られる特徴的なピークによって規定することができ、例えば、特開平10−203807号公報の図2に示される回折パターンを有する。
【0015】
結晶性t−BN微粉末は、例えば、無水硼酸及び尿素(さらに任意成分として硼酸ナトリウム等の硼酸アルカリ)を含む混合原料を非酸化性雰囲気中とした反応容器中で加熱し、約1100℃以下(好ましくは950℃以下)で反応させてa−BNを生成させ、次いで反応生成物を1200℃以上1500℃以下(好ましくは1200〜1400℃、より好ましくは1250〜1350℃)で加熱し、a−BNをt−BNに結晶化させることによって高収率で合成できる。得られた反応物を(好ましくは熱水で)水洗(必要に応じ酸洗をも含む)して精製し、アルカリや酸化硼素等の可溶性成分を除けば、一次粒子の平均粒径1μm以下の結晶性t−BNの微粉末を高収率で製造でき、安価に量産できる。この合成方法によれば、結晶化させる温度と時間を変化させることによって一次粒子の粒径を変化させることができ、h−BNと結晶性t−BNの共存する窒化硼素粉末を合成することができる。この合成方法は、特開平10−203807号公報に詳細に説明されており、必要に応じその内容は本願に引用を持って援用される。
【0016】
上記により合成され、精製された結晶性t−BNは通常粒径が1μm以下の微細な一次粒子が凝集した二次粒子となっているが、強制的に分散させれば大部分が一次粒子である結晶性t−BN微粉末の分散体とすることができる。分散は必要に応じ(ジルコニア質等の)セラミックスのビーズやボールを粉砕メディアとするアトリションミル、ボールミル、その他(2本式又は3本式を含む)ロール式の剪断性ミル等を用いての湿式粉砕、あるいはジェットミル等の乾式粉砕により、例えば平均粒径が1μm以下(好ましくは平均粒径が0.5μm以下、さらに0.3μm以下、最も好ましくは0.1μm以下)の微細な一次粒子にまで解砕、かつ解離できる。この結晶性t−BN微粉末にはa−BN粉末に見られるような吸湿性がなく、安定で耐酸化性もある。前述の製造方法によれば、h−BNについても同様な粒度分布を有する微粉末の提供が可能であり、h−BNを部分的に含有する主として結晶性t−BNからなる結晶性窒化硼素微粉末も量産可能である。即ち、結晶性t−BN微粉末は1450℃以上で熱処理するとh−BNへの転化が始まり、t−BNとh−BNが混在した粉末になる。水溶性金属加工油剤中に分散させる窒化硼素微粉末は結晶性t−BN微粉末の割合が多ければ優れた潤滑性を発揮する。優れた潤滑性を発揮させるため、好ましくは水溶性金属加工油剤に含まれる窒化硼素微粉末の50重量%以上(70重量%以上、さらに好ましくは80重量%以上、より好ましくは90重量%以上)を結晶性t−BN微粉末とするのが好ましい。窒化硼素微粉末中の結晶性t−BN微粉末の含有割合は、粉末X線回折により得られる回折線の強度(回折線の有する面積)を、混合割合が既知の標準の窒化硼素微粉末の粉末X線回折の強度と比較することによって測定できる。
【0017】
h−BN粉末及び結晶性t−BN微粉末はいずれも劈開性を有する結晶粒子からなり、h−BN微粉末及び結晶性t−BN微粉末、特に結晶性t−BN微粉末は優れた固体潤滑性を示す。
【0018】
h−BNや結晶性t−BNの窒化硼素微粉末は、細かい方が少ない添加量でも良好な潤滑効果を示す。このため、水溶性金属加工油剤中の窒化硼素微粉末の平均粒径は二次粒子を含めて、1μ以下とするのが好ましい。窒化硼素微粉末をミル等で粉砕すれば、二次粒子を細かい一次粒子からなる微粉末にまで比較的容易に分散できる。
【0019】
水溶性金属加工油剤中の窒化硼素微粉末の混合量は、その使用条件によって適切で経済的な含有量が存在するが、良好な潤滑効果を付与できると共に広範な潤滑条件をカバーできることから、水溶性金属加工油剤中の窒化硼素微粉末の混合量は0.1〜35重量%とするのが好ましい。その理由は、混合量が0.1重量%以下では得られる潤滑効果が小さく、35重量%を超えて混合すると均一に分散することが難しく、流動性が損なわれるので、良好な潤滑特性の発揮が難しくなるからである。潤滑性をコストパフォーマンスよく発揮させるためには、窒化硼素微粉末の混合量を0.1〜25重量%とするのが特に好ましい。
【0020】
二次元の結晶構造が発達した結晶性t−BN微粉末は、その一次粒子の形状が略円板状又は略球形状を呈し、且つ優れた潤滑性能を有する。その一次粒子の形状は走査型電子顕微鏡(SEM)の写真によって観察することができ、例えば、特開平10−203807号公報の図5のSEM写真のような形状である。結晶性t−BN微粉末の添加が水溶性金属加工油剤に優れた潤滑性を付与し得ることから、本発明においては好ましくは水溶性金属加工油剤中に含まれる窒化硼素微粉末の一次粒子の50重量%以上、さらに好ましくは70重量%以上、(最も好ましくは実質的に全て)が略円板状又は略球形状である。結晶性t−BN微粉末の一次粒子がh−BNの結晶粒子のように六角板状にならないのは、結晶性t−BNが二次元網目層の層と層の間の積層関係に規則性を持たないためであると理解される。
【0021】
本発明の水溶性金属加工油剤を構成する乳化剤としては、陰イオン性界面活性剤、非イオン性界面活性剤、又はこれらの混合物を用いることができる。乳化剤のHLB(hydrophile−lipophile balance、親水−親油平衡)は、潤滑油基油に鉱油を使用する場合、好ましくは10〜18程度、さらに好ましくは12〜16である。潤滑油基油に合成油や動植物油を使用したり、添加剤の添加量が多い場合は、HLBが異なる可能性があるので、都度確認を要する。また乳化剤の含有量は、全組成物を基準として好ましくは0.1〜30重量%、さらに好ましくは0.1〜20重量%である。
【0022】
陰イオン性界面活性剤としては、▲1▼天然の牛脂やヤシ油、パーム油などを原料とした石鹸、ロジン石鹸、アルキルエーテルカルボン酸塩等のカルボン酸塩、▲2▼直鎖アルキルベンゼンスルホン酸塩、αオレフィンスルホン酸塩、ジアルキルスルホコハク酸塩、ナフタレンスルホン酸塩等のスルホン酸塩、▲3▼アルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩等の硫酸エステル塩、▲4▼リン酸エステル塩、アシル−N−メチルタウリン塩等があり、また非イオン性界面活性剤としては、▲5▼グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、蔗糖脂肪酸エステル等のエステル型、▲6▼ポリオキシエチレンアルキルエーテル、同成分中の酸化エチレンの一部を酸化プロピレンに代えたもの、ポリオキシエチレンアルキルフヱニルエーテル、ポリオキシエチレン・ポリオキシプロピレングリコール等のエーテル型、▲7▼エステル・エーテル型、▲8▼脂肪酸アルカノールアミド型、アルキルポリグリコシド等、その他の非イオン性界面活性剤があるが、界面活性剤は基油や他の添加剤等との相性があり、組合せによっては乳化が不安定になることもあるので、適宜選択、確認して使用することが好ましい。
【0023】
本発明の水溶性金属加工油剤は、以上に述べた基油、窒化棚素微粉末、乳化剤を用い、基油に窒化棚素微粉末を分散含有させた油の系を水の系に加え、ミキサー、ホモジナイザー、又はコロイドミル等の攪拌混合機、好ましくはホモジナイザーを使って高速攪拌することにより微粒子状に分散乳化させる。
【0024】
この高速攪拌に先立ち、窒化棚素微粉末は、各種ミルやミキサー、ホモジナイザー等を使用して、基油と共に解砕混合して十分細かく均質に分散させる。好ましくは事前に、窒化棚素微粉末を少量の基油で解砕混合すると、窒化棚素微粉末同士の衝突が増え、より細かく解砕することができる。このようにして分散、乳化させた窒化棚素微粉末を含有する油滴の平均粒径は2μm以下、好ましくは1μm以下であり、細かくなることによって窒化棚素微粉末の沈降を防止し、分散が安定化すると同時に、より安定な潤滑作用を発揮する。
【0025】
乳化剤も、この高速攪拌前に、油の系又は水の系のどちらか一方にその全量を添加するか、又はこれらの両方の系に適宜分割して添加し、よく混合攪拌しておく。好ましくは選択された乳化剤が適度に溶解するまで、一般には60℃程度まで加熱して、混合攪拌する。また乳化剤の有無に関わらず、油系及び水系の両方を加熱しておくと、乳化がより容易となり好ましい。乳化後は、乳化状態を安定させるため、好ましくは常温近くまで強制的に冷却する。
【0026】
本発明の好ましい実施形態において、使用条件に合わせて前記油系及び/又は水系に酸化防止剤、粘度指数向上剤、流動点降下剤、腐敗防止剤、防錆剤、油性向上剤、極圧添加剤、消泡剤等を添加する。
【0027】
油系に添加剤を添加する場合、60℃程度に加熱してから添加すると粘度が低下して扱いやすくなる。また添加後は油系を60℃まで加熱して混合すると分散しやすくなり好ましい。なお添加剤の添加は基油に窒化棚素微粉末を分散含有させた後に行うのが好ましい。これは先に添加剤を添加すると、窒化棚素微粉末の解砕が妨げられ、凝集を取り除きにくくなるためである。水系に添加剤を添加する場合、乳化冷却後、乳化状態が安定してから、乳化物にミキサーやホモジナイザー等を使って混練りすることが好ましい。乳化前に添加する場合は、事前に乳化安定を阻害しないことを確認する必要がある。また水に溶け難い添加剤を添加する場合は、他の水に溶けやすい添加剤に、事前に溶かしておいてから添加する等の対策が必要である。
【0028】
前記酸化防止剤としては、▲1▼2,6−ジターシャリー−ブチル−パラクレゾール(DBPC)のフェノール系ラジカル捕捉剤、▲2▼フェニル−アルファ−ナフチルアミン、ジアルキルジフェニルアミンのアミン系ラジカル捕捉剤、▲3▼ZnDTPのハイドロパーオキシド分解剤、▲4▼ペンゾトリアゾール、ジアルキルジチオリン酸亜鉛類、ジアルキルセレン、金属フェネート類、有機窒素化合物類の金属不活性化剤等が使用可能である。
【0029】
前記粘度指数向上剤としては、ポリメタクリレート、ポリアクリレート、ポリイソプチレン、オレフィン(コポリマー)共重合体、ポリアルキルスチレン、エチレン−プロピレン共重合体、スチレン−ジエンコポリマーの水素化物等が使用可能である。
【0030】
前記流動点降下剤としては、(低分子量の)ポリメタクリレート、ポリアクリレート、塩素化パラフィン−ナフタレン縮合物、塩素化パラフィン−フェノール縮合物、ポリアルキルスチレン系等が使用可能である。
【0031】
前記腐敗防止剤としては、ベンゾイソチアゾリン系化合物、トリアジン系化合物、フェノール系化合物、ホルムアルデヒド供与体化合物、サリチルアニリド系化合物等が使用可能である。
【0032】
前記防錆剤としては、▲1▼金属石鹸、アミン塩のカルボン酸塩系、▲2▼アルケニルこはく酸誘導体のカルボン酸系、▲3▼金属スルフォネート塩、ジアルキルナフタレンスルホン酸塩のスルホン酸塩系、▲4▼オレイン酸とその塩のオレイン酸系、▲5▼ソルビタンモノオレエートのエステル系、▲6▼アルキルアミン、酸性アルキルリン酸エステル、ジブチル酸性リン酸エステルのリン酸およびリン酸塩系等が使用可能である。
【0033】
前記油性向上剤としては、高級脂肪酸、高級アルコール、脂肪酸アミン、脂肪酸アミド、エステル等が使用可能である。
【0034】
前記極圧添加剤としては、▲1▼オレフィンポリサルファイド、硫化油脂、ジベンジルジサルファイド等の硫黄系、▲2▼アルキルおよびアリルリン酸エステル、アルキルおよびアリル亜エステル、りん酸エステルのアミン塩、チオリン酸エステル、チオリン酸エステルのアミン塩等のりん系、▲3▼ナフテン酸塩等の有機金属系等が使用可能である。
【0035】
前記消泡剤としては、シリコーン油、シリコーンポリマー類、エステル、多価脂肪族アルコール、アルケニルこはく酸誘導体、金属石鹸、ポリアクリレート、アシル化ポリアミド等が使用可能である。
【0036】
本発明の更に好ましい実施形態において、前記水系に水溶性アミン、油溶性アミン、及び脂肪酸を含有する水溶性金属加工油剤が提供される。この水溶性アミンとしては、例えば、トリエタノールアミン、トリイソプロパノールアミン、メチルジエタノールアミン、ジメチルエタノールアミン、モノイソプロパノールアミン、2−アミノ2−メチル−1−プロパノール、2−(2−アミノエトキシ)エタノール、ジエチルモノイソブロパノールアミン、N,N−ジブチルアミノエタノール、N,N−ジ−n−ブチルアミノイソプロパノール、N,N−ジ−n−プロピルアミノイソプロパノール、N,N−ジターシャリーブチルジエタノールアミン、N,N−エチレンジアミン(ジイソプロパノール)、N,N−エチレンジアミン(ジエタノール)、モノ−n−ブチルジエタノールアミン、モノエチルジイソプロパノールアミン、などがあげられるが、その他の水溶性アミンあるいは無機アルカリを含有してもかまわない。
【0037】
具体的には、トリイソプロパノールアミン、メチルジエタノールアミンから1種または2種と、モノイソプロパノールアミン、2−アミノ2−メチル−1−プロパノール、2−(2−アミノエトキシ)エタノールから1種または2種の組み合わせなどがあげられる。
【0038】
脂溶性アミンとしては、モノシクロヘキシルアミン、ジシクロヘキシルアミン、1,3−ビスアミノメチルシクロヘキサン、メタキシレンジアミン、モルホリン、ラウリルアミン、オレイルアミン等が挙げられる。
【0039】
また、脂肪酸としては、直鎖および/または分岐型の飽和および/または不飽和脂肪酸および/または二塩基酸が挙げられる。例えば、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデカン酸、ドデカン酸、トリデカン醜、ペンタデカン酸、ヘプタデカン酸、ノナデカン酸、ラウリル酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキン酸、べへン酸、イソステアリン酸、エライジン酸、オレイン酸、リノール酸、リノレイン酸、ヒドロキシラウリル酸、ヒドロキシミリスチン酸、ヒドロキシパルミチン酸、ヒドロキシステアリン酸、ヒドロキシアラキン酸、ヒドロキシべへン酸、リシノレイン酸、ヒドロキシオクタデセン酸、セバシン酸、ドデカン二酸、ドデシルコハク酸、ラウリルコハク酸、ステアリルコハク酸、イソステアリルコハク酸、ダイマー酸などがあげられる。不飽和脂肪酸としては、例えば、へプテン酸、オクテン酸、ノネン酸、デシレン酸、ウンデシレン酸、ドデシレン酸、トリデシレン酸、ノナデセン酸、エイコセン酸、イソヘプテン酸、イソオクテン酸、イソノネン酸、イソデシレン酸、イソウンデシレン酸、インドデシレン酸、イソトリデシレン酸、へプタンジエン酸、オクタンジエン酸、ノナンジエン酸、デカンジエン酸、ウンデカンジエン酸、ドデカンジエン酸、トリデカンジエン酸、イソヘプタンジエン酸、イソオクタンジエン酸、イソノナンジエン酸、イソデカンジエン酸、イソウンデカンジエン酸、インドデカンジエン酸、イソトリデカンジエン酸、ネオデセン酸などが挙げられる。その他、動物、魚、植物、穀物などの天然油脂から得られる脂肪酸でもかまわない。
【0040】
【実施例】
以下に本発明の高性能水溶性金属加工油を用いて金属加工テストを行った結果について具体的に説明するが、これらの実施例は本発明の一例であって、何ら限定するものではない。
【0041】
[実施例1]結晶性t−BN微粉末の製造
無水硼酸3.5kg、尿素5.3kg、硼砂(Na2B2O3・10H2O)0.63kgからなる混合物を密封できる容量を約12リットルのステンレス鋼製の耐圧容器に入れて900℃まで約1時間で昇温し、900℃に約10分間保って反応を完結させ、a−BNを合成した。この反応時には反応系から水と炭酸ガスが放出されて反応容器の内部の圧力が上昇するので、反応容器内は1気圧より高い水と炭酸ガスの混合ガスで満たされていた。次いで反応容器から取り出したカルメ焼き状の反応物を1mm以下の粒子に粉砕し、粉砕物を蓋付きのアルミナ製容器に収容して窒素ガス雰囲気とした電気炉中に入れ、10時間かけて1300℃まで昇温し、さらに1300℃に2時間保持してt−BNを結晶化し、結晶性t−BN微粉末を得た。この結晶化の際にa−BNと共存する硼酸ナトリウムはa−BNの結晶性t−BNへの転化を促進する働きをするので結晶性t−BN微粉末を高収率で合成できる。縫製された結晶性t−BN微粉末には硼酸ナトリウムその他の不純物が付着しているので、約80℃のイオン交換水で洗って精製し、約0.63kg(硼素換算収率約70%)の結晶性t−BN微粉末を得た。
【0042】
これらの結晶性t−BN微粉末をX線回折装置を用いて解析した結果、結晶性t−BNに特徴的なピークが認められ、特開平10−203807号公報の図2及び図7にその典型例が示されている。
【0043】
[実施例2] 高性能水溶性金属加工油剤の調製
高性能水溶性金属加工油剤を以下のようにして調製した。即ち、表1〜3に示したNo.1〜3の3種類の高性能水溶性金属加工油剤を調製した。原料は、油系、水系、石鹸の3種類に分けて調製した。
【0044】
先ず油系の調製を行った。マシン油No.46とt−BNを容器に取り分け、ホモジナイザー(KINEMATICA AG社製、ポリトロン低ノイズ型ホモジナイザー、本体型番:PT6100、ジェネレーターシャフト型番:DA6050/2、ただし乳化時のみDA6050/6を使用)を使って、7000rpmで10分間、良く攪拌、混合した。
【0045】
油系の残りの原料を、乳化剤の非イオン系界面活性剤であるポリオキシエチレンポリオキシプロピレンアルキルエーテルを除いて、すべて前記混合物に添加し、湯煎で60℃まで温め、ホモジナイザーを使って、7000rpmで10分間、良く攪拌、混合した。
【0046】
この混合物に、ポリオキシエチレンポリオキシプロピレンアルキルエーテルを加え、湯煎で60℃まで温め、ガラス棒を使って、手で良く攪拌・混合した。
【0047】
平行して水系の調製を行った。水とポリオキシエチレンポリオキシポロピレンアルキルエーテルを容器に取り分け、湯煎で60℃まで温め、ガラス棒を使って、手で良く撹拌・混合した。
【0048】
この水系に先に調製した油系を加え、ホモジナイザーを使って、7000rpmで3分間、良く攪拌、混合し、乳化した。乳化物は容器のまま水道水に浸して、温度が30℃以下となるまで、攪拌しながら冷却した。この後石鹸を使わないものは、そのままシリーコン消泡剤を加えてホモジナイザーで、7000rpmで3分間、良く撹拌、混合した。
【0049】
別途、石鹸の調製を行った。量は、今回の調製に必要となる量より多い合計856gを調製した。ヤシ油脂肪酸を湯煎で溶かし、必要量を容器に取り分けた。その他の全ての原料を容器に取り分け、ホモジナイザーで、7000rpmで10分間、良く攪拌、混合した。
【0050】
前記乳化物にこの石鹸をそれぞれ所要量だけ加え、ホモジナイザーで、7000rpmで3分間、良く攪拌、混合した。以上により、表1〜3に示した組成の高性能水溶性金属加工油剤を調製した。このうちNo.1と2に関して、レーザ回折式粒度分布測定装置(島津製作所製、SALD−2000)を使って、油滴の粒度分布を測定したところ、前者が平均値0.624μm、標準偏差0.103μmであり、後者が平均値0.699μm、標準偏差0.094μmであり、平均値+3σを計算すると、それぞれ0.933μmと0.981μmであることからも分かるように、その殆どの油滴の粒子径は1μm以下であった。
【0051】
【表1】高性能水溶性金属加工油剤No.1の組成
【表2】高性能水溶性金属加工油剤No.2の組成
【表3】高性能水溶性金属加工油剤No.3の組成
【0052】
[実施例3]切削テスト1
試験条件は、
(1)使用機械:森精機製縦型マシニングセンター(MV−40A)
(2)被削材:AC8B−T6
(3)工具:OSG製ニューロールタップB−NRT M6×1.0RH7 B
(4)切削速度:10m/分
(5)下穴:φ5.48×30mm(リーマ仕上げ、止まり穴、引っかかり率100%)
(6)切削長:20mm
(7)水溶性切削油剤濃度:10%
(8)加工数:5回
で、市販の水溶性切削油剤Aと、表1の高性能水溶性金属加工油剤No.1とで、トルク評価による比較試験を行った。ただし、切削油剤は下穴に入れただけで行った。結果、高性能水溶性金属加工油剤No.1が市販の水溶性切削油剤Aより、15%低いトルクで切削加工できることが確認された。
【0053】
[実施例4]切削テスト2
試験条件は、
(1)使用機械:やまわエンジニアリング取扱の精密タッビングマシン(メガタップII−G8)
(2)被削材:AC4B
(3)工具:OSG製ニューロールタップB−NRT M6×1.0RH7 B
(4)切削速度:10m/分
(5)下穴:φ5.50±0.05×25mm(止まり穴)、
(6)切削長:15mm
(7)水溶性切削油剤希釈倍率:10倍、20倍、50倍、100倍
(8)加工数:20回
で、市販の水溶性切削油剤Bと、表2の高性能水溶性金属加工油剤No.2とで、トルク評価による比較試験を行った。ただし、切削油剤は下穴に入れただけで行った。結果は以下に示した表4の通りで、高性能水溶性金属加工油剤No.2は市販の水溶性切削油剤Bと比較して、高い希釈倍率での切削性能が高く、2倍以上の希釈で使用できることが分かった。
【0054】
【表4】
【0055】
[実施例5]切削テスト3
試験条件は、
(1)使用機械:ROKU−ROKU SANGYO製マシニングセンターMINIMAC−VA
(2)被削材:チタン合金(硬度HRC47〜48、寸法197×365×40mm)
(3)工具:日立ツールEpoch21 CEPU4100ユニバーサル(CEPU超硬エポックユニバーサルエンドミル)の再研磨品で超硬の表面処理は無し
(4)切削速度:回転数2000rpm、送り200mm/分
(5)切削深さ:1.5mm
(6)切削油剤:被削材平面を上向きにして、長手方向両端をマシニングセンターに固定し、固定箇所側30mm前後を避けて、樹脂で4周囲に、高さ40mm程度の壁を設け、内側に切削油剤を流し込んで試験を行った。
(7)切削パターン:右奥にある半円の凹み部分にエンドミルを落とし、▲1▼左に180mm切削、手前側へ10mm切削、▲2▼右へ160mm切削、手前側へ10mm切削、左へ160mm切削、手前側へ10mm切削、▲3▼▲2▼をさらに2回繰り返す、▲4▼右へ180mm切削、奥へ70mm切削。合計1460mmを切削。
(8)水溶性切削油剤希釈倍率:最初の260mmを5倍希釈、残りを3倍希釈で、表3の高性能水溶性金属加工油剤No.3を使って切削試験を行った。
【0056】
従来、このような難削材は水溶性の切削油剤では切削できず、消火器を置いて、油性の切削油剤を使い、回転を落とし、送り20〜50mm/分程度で行われるが、本発明の高性能水溶性金属加工油剤No.3を使用すると、火災の心配のない水溶性で、しかも高速で切削加工できることが確認できた。また切削油剤の希釈倍率を落とすと、即ち切削油剤を濃くすると、切削面が滑らかになることも確認できた。試験後に刃先を確認したが、減りや偏摩耗等は全く認められなかった。
【0057】
【発明の効果】
本発明の水溶性金属加工油剤は、窒化硼素微粉末が微粒子状に分散、乳化されているため窒化硼素の沈降が抑えられ、性能が安定し、水溶性であるため火災対策上も好ましい切削、研削油剤が得られる。窒化硼素の固体潤滑作用と、水の冷却作用とにより、優れた切削性能と工具の耐磨耗性能を発揮し、特に、結晶性乱層構造の窒化硼素の配合を調整することにより、チタン合金やインコネル等の重切削の分野で使用することも可能である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water-soluble metal working oil which can be widely applied to metal working such as cutting, grinding and plastic working, and more particularly to a water-soluble metal working oil which exhibits excellent effects with improved lubricating performance. It is.
[0002]
[Prior art]
Cutting fluids widely used in the cutting and grinding fields include water-insoluble cutting fluids based on mineral oil and water-soluble cutting fluids that contain mineral oil, surfactants, organic amines, etc., and are diluted with water for use. There is. A compound called an extreme pressure additive may be added to these cutting fluids in order to improve the lubricating performance of the fluid (for example, see Patent Document 1).
[0003]
Representative compounds of this extreme pressure additive include chlorine-containing compounds, sulfur-containing compounds, molybdenum-containing compounds, and the like. Metalworking oils generate waste oil after use, so for example, if the waste oil is burned, it will cause damage to the incinerator due to generation of chlorine gas, hydrogen chloride gas, sulfur oxide gas, etc., and shorten its life . Also, generation of dioxin has been observed in some chlorine-based additives. On the other hand, molybdenum compounds are subject to the PRTR law and require strict management.
[0004]
These extreme pressure additives are indispensable compounds in order to improve the lubrication performance of oils, but from the viewpoint of saving global resources and preventing global environment deterioration in recent years, they do not pollute the global environment more than before. There is a demand for the development of oil agents and, moreover, oil agents that extend the life of tools and the like as much as possible.
[0005]
In order to solve such a problem, the present inventors have already developed a high-performance lubricating oil in which an effective amount of boron nitride fine powder is dispersed and contained in a liquid component (for example, see Patent Document 2). It has been confirmed that these lubricating oils exhibit excellent performance for cutting, grinding and / or polishing due to the effect of boron nitride contained therein, but when used as a water-insoluble cutting oil, Water-soluble cutting oil is often used for fire prevention in large-scale facilities that exhibit excellent effects but have a risk of ignition and require a large amount of oil. On the other hand, when boron nitride is used as an extreme pressure agent in a cutting fluid, it has many features in terms of cost and work efficiency, such as longer tool life and increased cutting speed, but it is a solid and dissolves in the cutting fluid. In addition, since the specific gravity is as large as about 2.27, there is a problem in that when the powder is directly dispersed in a cutting fluid and used, it is settled. Further, a water-dispersion type plastic working lubricant containing an inorganic solid lubricant has been reported (for example, see Patent Document 3). However, lubrication during plastic working such as forging, rolling, wire drawing, and extrusion has been reported. It is limited to oil, and the size of the oil droplets is intended to be considerably large, as little as 50 μm or more, at least 5 μm or less, as estimated from the particle size of the solid lubricant used. On the other hand, in metal processing such as cutting, grinding, and polishing, finer particles are preferable in terms of performance, and the particle size of oil droplets of a water-soluble cutting oil called a general emulsion type is 2 to 5 μm. Considering the use of a filtration device for recirculation, it is desirable to set the thickness to 5 μm or less, but this is not applicable. Accordingly, there is a need for a high performance metalworking lubricant which is water soluble and has good boron nitride dispersibility.
[0006]
[Patent Document 1]
JP-A-11-166190
[Patent Document 2]
Japanese Patent No. 2911113
[Patent Document 3]
JP-A-10-316989
[0007]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide an environmentally friendly water-soluble metalworking oil that does not contain heavy metals such as molybdenum disulfide and does not generate harmful substances such as dioxin during disposal.
[0008]
Also, it solves the problem that the boron nitride fine powder used as an extreme pressure agent agglomerates and settles out. An object of the present invention is to provide a water-soluble metalworking oil.
[0009]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, and a fine powder of boron nitride as an extreme pressure agent contained in a water-soluble metalworking oil, particularly, a boron nitride having a crystalline turbostratic structure having excellent dispersibility and lubricity. The fine powder is dispersed in a base oil, the mixture is finely divided and emulsified in water to form an oil-in-water emulsion. The present inventors have found that by preventing agglomeration and confining the interface with oil in the interface, the sedimentation of the boron nitride fine powder can be suppressed by the buoyancy of the oil, and the present invention has been completed.
[0010]
That is, from the first viewpoint, the water-soluble metalworking oil of the present invention is obtained by emulsifying an oil system obtained by dispersing an effective amount of boron nitride fine powder having a crystalline turbostratic structure in a base oil, into an aqueous system using an emulsifier. Wherein the boron nitride fine powder is dispersed and emulsified into fine particles to suppress sedimentation, thereby having improved dispersibility and emulsion stability. In a second aspect, the water-soluble metalworking fluid of the present invention contains an effective amount of fine boron nitride powder having a hexagonal system and / or a crystalline turbostratic structure having an average primary particle size of 1 μm or less in a base oil. The oil system is characterized in that the oil system is emulsified in an aqueous system by using an emulsifier, and the boron nitride fine powder is dispersed and emulsified into fine particles to improve sedimentation. Has dispersibility and emulsion stability.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
As the lubricating base oil constituting the water-soluble metalworking oil agent of the present invention, mineral oil, synthetic oil, animal and vegetable oil, or a mixture thereof can be used. The mineral oil, synthetic oil, and animal and vegetable oils are not particularly limited as long as they are generally used as base oils for metalworking oils. As the mineral oil, for example, a refined mineral oil of ISO VG10 to ISO VG460 is preferable, and any of a paraffinic type and a naphthenic type may be used. On the other hand, as synthetic oils, polyol esters, polyglycols, polyalphaolefins, alphaolefins, normal paraffins, isoparaffins, alkylbenzenes, polyethers, and the like can be used. Also, as animal and vegetable oils, beef tallow, rapeseed oil, soybean oil, sunflower oil, sunflower oil, castor oil, coconut oil, coconut shell oil and the like can be used. These base oils can be used alone or in combination of two or more, and mineral oil, synthetic oil, and animal and vegetable oils may be used in combination.
[0012]
The fine boron nitride powder constituting the water-soluble metalworking oil of the present invention is chemically stable compared to other solid lubricants such as graphite, and is characterized in that it is not oxidized to near 1000 ° C. in air. Boron nitride (BN) is a compound composed of boron and nitrogen, and boron nitride has a polymorph having substantially the same crystal structure as carbon. Amorphous boron nitride (hereinafter referred to as “a-BN”), Hexagonal boron nitride (hereinafter, referred to as “h-BN”) having a structure in which hexagonal mesh layers are stacked in a two-layer cycle, and rhombohedral crystal having a structure in which hexagonal mesh layers are stacked in a three-layer cycle. Boron nitride (hereinafter, referred to as “r-BN”), boron nitride having a turbostratic structure in which hexagonal mesh layers are randomly stacked (hereinafter, referred to as “t-BN”), and cubic boron nitride as a high-pressure phase (hereinafter, referred to as “t-BN”) Hereinafter, "c-BN" is known.
[0013]
It is known that h-BN crystals have the same cleavage properties as hexagonal graphite crystals and exhibit good solid lubricity. The origin of the lubricity of the h-BN crystal is the van der Afars bond, in which the bond between the two-dimensional hexagonal mesh layers is weak as in the case of graphite, showing remarkable cleavage properties in this plane and cleaved in a scaly manner between the layers. This is considered to be because the crystal particles have a property of slipping easily with each other.
[0014]
In the present invention, a two-dimensional crystal structure is developed, but the lamination state between layers does not develop as much as h-BN, and hexagonal mesh layers are randomly laminated to form crystalline boron nitride having a turbostratic structure. It is called sex t-BN. The characteristic structure of the crystalline t-BN can be defined by characteristic peaks obtained by measuring a powder X-ray diffraction pattern. For example, as shown in FIG. 2 of JP-A-10-203807. Having a diffraction pattern.
[0015]
The crystalline t-BN fine powder is heated in a reaction vessel in which a mixed raw material containing, for example, boric anhydride and urea (further as an optional component, an alkali borate such as sodium borate) is placed in a non-oxidizing atmosphere, and is heated to about 1100 ° C. (Preferably at 950 ° C. or lower) to generate a-BN, and then heat the reaction product at 1200 ° C. to 1500 ° C. (preferably 1200 to 1400 ° C., more preferably 1250 to 1350 ° C.) Crystallization of -BN to t-BN can be achieved in high yield. The obtained reaction product is purified by washing with water (preferably with hot water) (including acid washing if necessary), and excluding soluble components such as alkali and boron oxide, the average particle size of primary particles is 1 μm or less. Fine powder of crystalline t-BN can be produced in high yield and mass-produced at low cost. According to this synthesis method, the particle size of the primary particles can be changed by changing the temperature and time for crystallization, and it is possible to synthesize boron nitride powder in which h-BN and crystalline t-BN coexist. it can. This synthesizing method is described in detail in JP-A-10-203807, and the contents thereof are incorporated by reference in the present application as necessary.
[0016]
The crystalline t-BN synthesized and purified as described above is usually secondary particles in which fine primary particles having a particle size of 1 μm or less are aggregated, but if they are forcibly dispersed, most of them are primary particles. It can be a dispersion of fine crystalline t-BN fine powder. If necessary, dispersion may be performed using an attrition mill, a ball mill, or a roll type (including two or three type) shearing mill using ceramic beads or balls (such as zirconia) as grinding media. Fine primary particles having an average particle size of 1 μm or less (preferably 0.5 μm or less, more preferably 0.3 μm or less, and most preferably 0.1 μm or less), for example, by wet grinding or dry grinding such as a jet mill. Can be disintegrated and dissociated. This crystalline t-BN fine powder does not have hygroscopicity as seen in a-BN powder, is stable and has oxidation resistance. According to the above-mentioned production method, it is possible to provide a fine powder having a similar particle size distribution for h-BN, and it is possible to provide a crystalline boron nitride fine powder mainly composed of crystalline t-BN partially containing h-BN. Powder can also be mass-produced. That is, when the crystalline t-BN fine powder is heat-treated at 1450 ° C. or higher, conversion to h-BN starts, and the powder becomes a mixture of t-BN and h-BN. The fine boron nitride powder dispersed in the water-soluble metal working oil exhibits excellent lubricity when the proportion of the crystalline t-BN fine powder is large. In order to exhibit excellent lubricity, preferably 50% by weight or more (70% by weight or more, more preferably 80% by weight or more, more preferably 90% by weight or more) of the boron nitride fine powder contained in the water-soluble metalworking fluid. Is preferably a crystalline t-BN fine powder. The content ratio of the crystalline t-BN fine powder in the boron nitride fine powder is determined by the intensity (area of the diffraction line) of the diffraction line obtained by powder X-ray diffraction and the mixing ratio of the standard boron nitride fine powder having a known mixing ratio. It can be measured by comparing with the intensity of powder X-ray diffraction.
[0017]
Both the h-BN powder and the crystalline t-BN fine powder consist of crystal particles having cleavage properties, and the h-BN fine powder and the crystalline t-BN fine powder, particularly the crystalline t-BN fine powder, are excellent solids. Shows lubricity.
[0018]
The finer boron nitride fine powder of h-BN and crystalline t-BN exhibits a good lubricating effect even with a small amount of addition. For this reason, it is preferable that the average particle diameter of the boron nitride fine powder in the water-soluble metal working oil agent be 1 μm or less, including the secondary particles. If the boron nitride fine powder is pulverized with a mill or the like, the secondary particles can be relatively easily dispersed into a fine powder composed of fine primary particles.
[0019]
The mixing amount of the fine boron nitride powder in the water-soluble metalworking oil agent is appropriate and economical depending on the conditions of use, but since it can impart a good lubricating effect and can cover a wide range of lubricating conditions, It is preferable that the mixing amount of the fine boron nitride powder in the non-conductive metal working fluid is 0.1 to 35% by weight. The reason is that if the mixing amount is less than 0.1% by weight, the lubricating effect obtained is small, and if the mixing amount exceeds 35% by weight, it is difficult to uniformly disperse and the fluidity is impaired, so that good lubrication properties are exhibited. It becomes difficult. In order to exhibit lubricity with good cost performance, it is particularly preferable that the mixing amount of the fine boron nitride powder is 0.1 to 25% by weight.
[0020]
The crystalline t-BN fine powder in which the two-dimensional crystal structure has been developed has a substantially disk-shaped or substantially spherical primary particle shape, and has excellent lubrication performance. The shape of the primary particles can be observed with a photograph of a scanning electron microscope (SEM), for example, as shown in the SEM photograph of FIG. 5 of JP-A-10-203807. Since the addition of the crystalline t-BN fine powder can impart excellent lubricity to the water-soluble metal working oil, in the present invention, the primary particles of the boron nitride fine powder preferably contained in the water-soluble metal working oil are preferably used. 50% by weight or more, more preferably 70% by weight or more (most preferably substantially all) is substantially disk-shaped or substantially spherical. The reason that the primary particles of the crystalline t-BN fine powder do not form a hexagonal plate shape like the h-BN crystal particles is that the crystalline t-BN has a regularity in the lamination relation between the layers of the two-dimensional network layer. It is understood that it is because it does not have.
[0021]
As the emulsifier constituting the water-soluble metalworking oil agent of the present invention, an anionic surfactant, a nonionic surfactant, or a mixture thereof can be used. When a mineral oil is used as the lubricating base oil, the HLB (hydrophile-lipophile balance) of the emulsifier is preferably about 10 to 18, and more preferably 12 to 16. When a synthetic oil or animal or vegetable oil is used as the lubricating base oil or when the amount of the additive is large, the HLB may be different. The content of the emulsifier is preferably from 0.1 to 30% by weight, more preferably from 0.1 to 20% by weight, based on the whole composition.
[0022]
Examples of the anionic surfactant include: (1) soaps, rosin soaps, and alkyl ether carboxylate salts derived from natural beef tallow, coconut oil, and palm oil; and (2) linear alkylbenzene sulfonic acid. Salts, α-olefin sulfonates, dialkyl sulfosuccinates, sulfonates such as naphthalene sulfonates, (3) sulfates such as alkyl sulfates and alkyl ethersulfates, and (4) phosphates. There are acyl-N-methyltaurine salts and the like, and nonionic surfactants include (5) ester type such as glycerin fatty acid ester, sorbitan fatty acid ester, and sucrose fatty acid ester; and (6) polyoxyethylene alkyl ether. Polyethylene oxide in which some of the ethylene oxide in the components is replaced with propylene oxide Other nonionic surfactants, such as ethers such as kilphenyl ether and polyoxyethylene / polyoxypropylene glycol, (7) ester / ether type, (8) fatty acid alkanolamide type, alkyl polyglycoside, etc. However, surfactants are compatible with base oils and other additives, and emulsification may be unstable depending on the combination. Therefore, it is preferable to select and confirm surfactants as appropriate.
[0023]
The water-soluble metalworking oil agent of the present invention uses the above-described base oil, fine silicon nitride fine powder, and an emulsifier, and adds an oil system in which fine silicon nitride fine powder is dispersed and contained in the base oil to a water system. Fine particles are dispersed and emulsified by high-speed stirring using a stirring mixer such as a mixer, a homogenizer, or a colloid mill, preferably a homogenizer.
[0024]
Prior to the high-speed stirring, the finely divided shelf nitride powder is crushed and mixed with the base oil using various mills, mixers, homogenizers, and the like, and sufficiently finely and uniformly dispersed. Preferably, beforehand, if fine pulverized sulfur nitride is pulverized and mixed with a small amount of base oil in advance, collisions between fine pulverized silicon nitride powders increase, and finer pulverization can be performed. The oil droplets containing the dispersed and emulsified silicon nitride fine powder thus dispersed have an average particle diameter of 2 μm or less, preferably 1 μm or less. And at the same time exhibit more stable lubrication.
[0025]
Before the high-speed stirring, the emulsifier is also added to either the oil system or the water system in its entirety, or is added to both of these systems as appropriate, and mixed and stirred well. Preferably, the mixture is heated and stirred until the selected emulsifier is appropriately dissolved, generally at about 60 ° C. It is preferable to heat both the oil system and the water system regardless of the presence or absence of the emulsifier, because the emulsification becomes easier. After the emulsification, in order to stabilize the emulsified state, it is preferably forcibly cooled to near normal temperature.
[0026]
In a preferred embodiment of the present invention, an antioxidant, a viscosity index improver, a pour point depressant, an antiseptic, a rust preventive, an oiliness improver, and an extreme pressure additive are added to the oil system and / or the water system according to use conditions. Agents, defoamers and the like are added.
[0027]
When the additive is added to the oil system, if the additive is heated to about 60 ° C. and then added, the viscosity is reduced and the oil is easily handled. After the addition, the oil system is preferably heated to 60 ° C. and mixed, which is preferable because it is easily dispersed. It is preferable to add the additive after dispersing and containing fine silicon nitride fine powder in the base oil. This is because if the additives are added first, the disintegration of the fine silicon nitride fine powder is hindered, and it becomes difficult to remove agglomeration. When the additive is added to the aqueous system, it is preferable to knead the emulsion with a mixer or a homogenizer after the emulsified state is stabilized after cooling the emulsion. When adding before emulsification, it is necessary to confirm in advance that emulsion stability is not hindered. In addition, when an additive that is hardly soluble in water is added, it is necessary to take measures such as dissolving it in another water-soluble additive in advance and then adding it.
[0028]
Examples of the antioxidant include: (1) a phenolic radical scavenger of 2,6-ditert-butyl-para-cresol (DBPC); (2) an amine radical scavenger of phenyl-alpha-naphthylamine and dialkyldiphenylamine; (3) ZnDTP hydroperoxide decomposer, (4) Penzotriazole, zinc dialkyldithiophosphates, dialkylselenium, metal phenates, metal deactivators of organic nitrogen compounds and the like can be used.
[0029]
Examples of the viscosity index improver include polymethacrylate, polyacrylate, polyisobutylene, olefin (copolymer) copolymer, polyalkylstyrene, ethylene-propylene copolymer, and hydrogenated styrene-diene copolymer.
[0030]
Examples of the pour point depressant include (low molecular weight) polymethacrylate, polyacrylate, chlorinated paraffin-naphthalene condensate, chlorinated paraffin-phenol condensate, and polyalkylstyrene.
[0031]
As the above-mentioned putrefaction inhibitor, benzoisothiazoline compounds, triazine compounds, phenol compounds, formaldehyde donor compounds, salicylanilide compounds, and the like can be used.
[0032]
Examples of the rust preventive include: (1) a metal soap, a carboxylate of an amine salt, (2) a carboxylic acid of an alkenylsuccinic acid derivative, (3) a sulfonic acid salt of a metal sulfonate salt, and a dialkylnaphthalene sulfonate. (4) Oleic acid based on oleic acid and its salt, (5) Ester based sorbitan monooleate, (6) Phosphoric acid and phosphate based on alkylamine, acidic alkyl phosphate, dibutyl acid phosphate Etc. can be used.
[0033]
As the oiliness improver, higher fatty acids, higher alcohols, fatty acid amines, fatty acid amides, esters and the like can be used.
[0034]
Examples of the extreme pressure additives include: (1) sulfur-based materials such as olefin polysulfide, sulfurized oils and fats, and dibenzyl disulfide; (2) alkyl and allyl phosphates; alkyl and allyl subesters; amine salts of phosphates; Phosphorus compounds such as amine salts of esters and thiophosphate esters, and (3) organometallic compounds such as naphthenate salts can be used.
[0035]
As the antifoaming agent, silicone oil, silicone polymers, esters, polyhydric aliphatic alcohols, alkenylsuccinic acid derivatives, metal soaps, polyacrylates, acylated polyamides and the like can be used.
[0036]
In a further preferred embodiment of the present invention, there is provided a water-soluble metalworking oil containing the water-based amine, an oil-soluble amine, and a fatty acid. Examples of the water-soluble amine include triethanolamine, triisopropanolamine, methyldiethanolamine, dimethylethanolamine, monoisopropanolamine, 2-amino-2-methyl-1-propanol, 2- (2-aminoethoxy) ethanol, and diethyl. Monoisopropanolamine, N, N-dibutylaminoethanol, N, N-di-n-butylaminoisopropanol, N, N-di-n-propylaminoisopropanol, N, N-di-tert-butyldiethanolamine, N, N -Ethylenediamine (diisopropanol), N, N-ethylenediamine (diethanol), mono-n-butyldiethanolamine, monoethyldiisopropanolamine, etc., and other water-soluble amines or It may also contain an alkali.
[0037]
Specifically, one or two of triisopropanolamine and methyldiethanolamine and one or two of monoisopropanolamine, 2-amino-2-methyl-1-propanol and 2- (2-aminoethoxy) ethanol Combinations and the like.
[0038]
Examples of the fat-soluble amine include monocyclohexylamine, dicyclohexylamine, 1,3-bisaminomethylcyclohexane, metaxylenediamine, morpholine, laurylamine, and oleylamine.
[0039]
Examples of the fatty acids include linear and / or branched saturated and / or unsaturated fatty acids and / or dibasic acids. For example, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, dodecanoic acid, tridecane, pentadecanoic acid, heptadecanoic acid, nonadecanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, Behenic acid, isostearic acid, elaidic acid, oleic acid, linoleic acid, linoleic acid, hydroxylauric acid, hydroxymyristic acid, hydroxypalmitic acid, hydroxystearic acid, hydroxyarachinic acid, hydroxybehenic acid, ricinoleic acid, hydroxy Octadecenoic acid, sebacic acid, dodecandioic acid, dodecylsuccinic acid, laurylsuccinic acid, stearylsuccinic acid, isostearylsuccinic acid, dimer acid and the like. Examples of unsaturated fatty acids include, for example, heptenoic acid, octenoic acid, nonenic acid, decylenic acid, undecylenic acid, dodecylenic acid, tridecylenic acid, nonadecenoic acid, eicosenoic acid, isoheptenoic acid, isooctenoic acid, isononenoic acid, isodecylenic acid, isoundecilene Acid, indodecylenic acid, isotridecylenic acid, heptanedienoic acid, octanedienoic acid, nonandienoic acid, decanedienoic acid, undecandienoic acid, dodecanedienoic acid, tridecanedienoic acid, isoheptanedienoic acid, isooctanedienoic acid, isononanedienoic acid, isodecaneide Examples include dienoic acid, isoundecanedienoic acid, indodecanedienoic acid, isotridecanedienoic acid, and neodecenoic acid. In addition, fatty acids obtained from natural fats and oils such as animals, fish, plants, and grains may be used.
[0040]
【Example】
Hereinafter, the results of metal working tests performed using the high-performance water-soluble metal working oil of the present invention will be specifically described, but these examples are merely examples of the present invention and do not limit the present invention.
[0041]
[Example 1] Production of crystalline t-BN fine powder
3.5 kg of boric anhydride, 5.3 kg of urea, borax (Na 2 B 2 O 3 ・ 10H 2 O) A mixture capable of sealing 0.63 kg of a mixture is placed in a stainless steel pressure-resistant vessel of about 12 liters, heated to 900 ° C. in about 1 hour, and kept at 900 ° C. for about 10 minutes to complete the reaction. a-BN was synthesized. During this reaction, water and carbon dioxide are released from the reaction system and the pressure inside the reaction vessel rises, so that the inside of the reaction vessel was filled with a mixed gas of water and carbon dioxide higher than 1 atm. Next, the calm-baked reactant taken out of the reaction vessel was pulverized into particles of 1 mm or less, and the pulverized substance was placed in an alumina container with a lid, placed in an electric furnace in a nitrogen gas atmosphere, and placed at 1300 ° C. for 10 hours. The temperature was further raised to 1,300 ° C. for 2 hours to crystallize t-BN to obtain crystalline t-BN fine powder. At the time of this crystallization, sodium borate coexisting with a-BN serves to promote the conversion of a-BN to crystalline t-BN, so that crystalline t-BN fine powder can be synthesized in high yield. Since sodium borate and other impurities are attached to the sewn crystalline t-BN fine powder, the powder is washed with ion-exchanged water at about 80 ° C. and purified to obtain about 0.63 kg (yield in terms of boron of about 70%). Of crystalline t-BN fine powder was obtained.
[0042]
As a result of analyzing these crystalline t-BN fine powders using an X-ray diffractometer, characteristic peaks of crystalline t-BN were recognized, and the peaks are shown in FIGS. 2 and 7 of JP-A-10-203807. A typical example is shown.
[0043]
[Example 2] Preparation of high-performance water-soluble metalworking oil
A high performance water soluble metalworking fluid was prepared as follows. That is, No. 1 shown in Tables 1-3. Three types of high performance water-soluble metalworking oils of 1-3 were prepared. Raw materials were prepared by dividing into three types: oil-based, water-based, and soap.
[0044]
First, an oil system was prepared. Machine oil No. Separate 46 and t-BN into a container and use a homogenizer (manufactured by KINEMATICA AG, polytron low noise homogenizer, main body model number: PT6100, generator shaft model number: DA6050 / 2, but use DA6050 / 6 only during emulsification) The mixture was well stirred and mixed at 7000 rpm for 10 minutes.
[0045]
The remaining oil-based raw materials were added to the above mixture except for polyoxyethylene polyoxypropylene alkyl ether, which is a nonionic surfactant as an emulsifier, warmed to 60 ° C. in a water bath, and 7000 rpm using a homogenizer. And mixed well for 10 minutes.
[0046]
Polyoxyethylene polyoxypropylene alkyl ether was added to this mixture, warmed to 60 ° C. with hot water, and thoroughly stirred and mixed by hand using a glass rod.
[0047]
An aqueous preparation was performed in parallel. Water and polyoxyethylene polyoxypropylene alkyl ether were separately placed in a container, warmed to 60 ° C. in hot water, and thoroughly stirred and mixed by hand using a glass rod.
[0048]
The oil system prepared above was added to the aqueous system, and the mixture was thoroughly stirred, mixed, and emulsified at 7000 rpm for 3 minutes using a homogenizer. The emulsion was immersed in tap water in a container and cooled with stirring until the temperature became 30 ° C. or lower. After that, those without using soap were added with Silicon defoamer as they were, and stirred and mixed well at 7000 rpm for 3 minutes with a homogenizer.
[0049]
Separately, soap was prepared. The amount prepared was 856 g, which is larger than that required for the present preparation. The coconut oil fatty acid was dissolved in hot water and the required amount was set aside in containers. All the other raw materials were separated into containers, and were thoroughly stirred and mixed with a homogenizer at 7000 rpm for 10 minutes.
[0050]
A required amount of each of the soaps was added to the emulsion, and the mixture was thoroughly stirred and mixed with a homogenizer at 7000 rpm for 3 minutes. Thus, high-performance water-soluble metalworking oils having the compositions shown in Tables 1 to 3 were prepared. No. Regarding 1 and 2, when the particle size distribution of oil droplets was measured using a laser diffraction type particle size distribution analyzer (manufactured by Shimadzu Corporation, SALD-2000), the former had an average value of 0.624 μm and a standard deviation of 0.103 μm. The latter has an average value of 0.699 μm and a standard deviation of 0.094 μm, and when calculating the average value + 3σ, it can be seen from the fact that they are 0.933 μm and 0.981 μm, respectively. It was 1 μm or less.
[0051]
[Table 1] High-performance water-soluble metalworking oil No. Composition of 1
[Table 2] High-performance water-soluble metalworking oil No. Composition of 2
[Table 3] High-performance water-soluble metalworking oil No. Composition of 3
[0052]
[Example 3] Cutting test 1
The test conditions are
(1) Machine used: Mori Seiki vertical machining center (MV-40A)
(2) Work material: AC8B-T6
(3) Tool: OSG New Roll Tap B-NRT M6 × 1.0RH7 B
(4) Cutting speed: 10m / min
(5) Prepared hole: φ5.48 × 30 mm (reamed finish, blind hole, hooking rate 100%)
(6) Cutting length: 20mm
(7) Water-soluble cutting oil concentration: 10%
(8) Number of processing: 5 times
And a commercially available water-soluble cutting fluid A and a high-performance water-soluble metalworking fluid No. 1 and a comparative test by torque evaluation was performed. However, the cutting oil was simply placed in the pilot hole. As a result, the high-performance water-soluble metalworking oil No. It was confirmed that No. 1 can be cut with a torque 15% lower than that of a commercially available water-soluble cutting oil A.
[0053]
[Example 4] Cutting test 2
The test conditions are
(1) Machine used: Precision tapping machine handled by Yamawa Engineering (Mega Tap II-G8)
(2) Work material: AC4B
(3) Tool: OSG New Roll Tap B-NRT M6 × 1.0RH7 B
(4) Cutting speed: 10m / min
(5) pilot hole: φ5.50 ± 0.05 × 25mm (blind hole),
(6) Cutting length: 15mm
(7) Water-soluble cutting oil dilution ratio: 10 times, 20 times, 50 times, 100 times
(8) Number of processing: 20 times
And a commercially available water-soluble cutting oil B and a high-performance water-soluble metalworking oil No. 2 and a comparative test by torque evaluation was performed. However, the cutting oil was simply placed in the pilot hole. The results are as shown in Table 4 below, and the results are shown in Table 4. It was found that No. 2 had high cutting performance at a high dilution ratio as compared with commercially available water-soluble cutting fluid B, and could be used at a dilution of 2 times or more.
[0054]
[Table 4]
[0055]
[Example 5] Cutting test 3
The test conditions are
(1) Machine used: ROKU-ROKU SANGYO MINIMAC-VA machining center
(2) Work material: titanium alloy (hardness HRC 47-48, dimensions 197 × 365 × 40 mm)
(3) Tool: Hitachi Tool Epoch21 CEPU4100 Universal (CEPU Carbide Epoch Universal End Mill), no polished surface treatment
(4) Cutting speed: rotation speed 2000 rpm, feed 200 mm / min
(5) Cutting depth: 1.5mm
(6) Cutting fluid: With the work material plane facing upward, both ends in the longitudinal direction are fixed to the machining center, avoiding around 30 mm on the fixed point side, providing a resin around 4 and a wall with a height of about 40 mm around the fixing point side, and inside The test was performed by pouring a cutting fluid.
(7) Cutting pattern: Drop the end mill into the semicircular dent at the back right, (1) cut 180mm to the left, cut 10mm to the front, (2) cut 160mm to the right, cut 10mm to the front, left 160 mm cutting, 10 mm cutting to the near side, (3) and (2) are repeated twice more. (4) 180 mm cutting to the right and 70 mm cutting to the back. Cutting a total of 1460mm.
(8) Dilution ratio of water-soluble cutting fluid: The first 260 mm was diluted 5-fold, and the rest was diluted 3-fold. No. 3 was used to perform a cutting test.
[0056]
Conventionally, such a difficult-to-cut material cannot be cut with a water-soluble cutting fluid, but is placed at a fire extinguisher, using an oil-based cutting fluid, reduced in rotation, and fed at a feed rate of about 20 to 50 mm / min. High performance water-soluble metalworking oil No. It was confirmed that when No. 3 was used, it was water-soluble without fear of fire and could be cut at high speed. It was also confirmed that when the dilution ratio of the cutting fluid was reduced, that is, when the cutting fluid was made thicker, the cut surface became smooth. After the test, the cutting edge was confirmed, but no reduction or uneven wear was observed at all.
[0057]
【The invention's effect】
The water-soluble metalworking oil agent of the present invention is characterized in that boron nitride fine powder is dispersed and emulsified in fine particles, so that sedimentation of boron nitride is suppressed, and the performance is stable. A grinding oil is obtained. The solid lubricating action of boron nitride and the cooling action of water provide excellent cutting performance and tool wear resistance. In particular, by adjusting the composition of boron nitride having a crystalline turbostratic structure, titanium alloy And in the field of heavy cutting such as Inconel.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002352206A JP3709990B2 (en) | 2002-12-04 | 2002-12-04 | High performance water-soluble metalworking fluid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002352206A JP3709990B2 (en) | 2002-12-04 | 2002-12-04 | High performance water-soluble metalworking fluid |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005001478A Division JP3753728B2 (en) | 2005-01-06 | 2005-01-06 | Method for producing metal product using high-performance water-soluble metalworking fluid and water-soluble metalworking fluid |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004182879A true JP2004182879A (en) | 2004-07-02 |
JP2004182879A5 JP2004182879A5 (en) | 2005-08-04 |
JP3709990B2 JP3709990B2 (en) | 2005-10-26 |
Family
ID=32753886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002352206A Expired - Fee Related JP3709990B2 (en) | 2002-12-04 | 2002-12-04 | High performance water-soluble metalworking fluid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3709990B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008201875A (en) * | 2007-02-19 | 2008-09-04 | Kohjin Co Ltd | Water soluble processing oil agent |
JP2008539316A (en) * | 2005-04-26 | 2008-11-13 | リニューアブル リューブリカンツ インコーポレーテッド | High temperature bio-based lubricant composition containing boron nitride |
WO2009128258A1 (en) * | 2008-04-14 | 2009-10-22 | 有限会社アプライドダイヤモンド | Oil-in-water type emulsion composition |
JP2009281608A (en) * | 2008-05-20 | 2009-12-03 | Tsukishima Kankyo Engineering Ltd | Incineration disposal method and device for chromium-containing waste liquid |
US7700526B2 (en) | 2005-02-02 | 2010-04-20 | Osamu Yamamoto | Process for machining metal and high performance aqueous lubricant therefor |
WO2011105199A1 (en) * | 2010-02-24 | 2011-09-01 | 株式会社牧野フライス製作所 | Machine tool, machining fluid supply device, and machining fluid |
JP2013200117A (en) * | 2013-05-22 | 2013-10-03 | Tsukishima Kankyo Engineering Ltd | Incineration disposal device and incineration disposal method of chromium-containing waste liquid |
CN103525530A (en) * | 2013-09-26 | 2014-01-22 | 无锡阳工机械制造有限公司 | Antibacterial cutting fluid |
WO2014157572A1 (en) * | 2013-03-29 | 2014-10-02 | 出光興産株式会社 | Water-based metalworking fluid |
CN104120023A (en) * | 2014-06-25 | 2014-10-29 | 安徽豪鼎金属制品有限公司 | Metal cutting fluid with anti-rust wear-resisting effect and preparation method of metal cutting fluid with anti-rust wear-resisting effect |
CN104120007A (en) * | 2014-06-30 | 2014-10-29 | 安徽铖友汽车零部件制造有限公司 | Safety and environment-friendly cutting fluid used for metal processing, as well as preparation method thereof |
CN104263489A (en) * | 2014-09-24 | 2015-01-07 | 无锡康柏斯机械科技有限公司 | Turning finish cutting fluid |
CN104263490A (en) * | 2014-09-24 | 2015-01-07 | 无锡康柏斯机械科技有限公司 | Cutting fluid for drilling process |
CN104388162A (en) * | 2014-10-31 | 2015-03-04 | 无锡阳工机械制造有限公司 | Metal cooling fluid |
CN108329974A (en) * | 2018-03-30 | 2018-07-27 | 江苏捷达油品有限公司 | A kind of anticorrosive emulsified oil and its preparation method and application that the effect that cools is good |
CN108659931A (en) * | 2018-06-12 | 2018-10-16 | 浙江埃力普润滑科技有限公司 | A kind of novel washable high extrusion forming oil preparation method of tapping |
CN108774568A (en) * | 2018-05-25 | 2018-11-09 | 清华大学天津高端装备研究院 | A kind of semi-synthetic aluminium alloy working fluid and preparation method thereof |
CN113772637A (en) * | 2021-10-18 | 2021-12-10 | 青海大学 | Heat-conducting and wave-absorbing integrated nano composite material and preparation method thereof |
KR20210152713A (en) * | 2020-06-09 | 2021-12-16 | (주)투디엠 | Filler for cutting oil and cutting oil containing the same filler |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107418693B (en) * | 2017-06-05 | 2020-02-21 | 南南铝业股份有限公司 | Aluminum alloy cutting fluid and preparation method thereof |
CN110229711A (en) * | 2019-06-24 | 2019-09-13 | 湖北诚祥科技有限公司 | The high-accuracy Metalworking fluid of mirror surface grade and preparation method thereof suitable for bloom processing technology |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10203807A (en) * | 1997-01-20 | 1998-08-04 | Osamu Yamamoto | Boron nitride powder of turbostratic structure and its production |
JPH10316989A (en) * | 1997-03-18 | 1998-12-02 | Kyodo Yushi Kk | Water-dispersion-type lubricant for plastic working |
JPH10330779A (en) * | 1997-06-02 | 1998-12-15 | Osamu Yamamoto | Engine lubricating oil and lubrication |
JPH10330775A (en) * | 1997-06-02 | 1998-12-15 | Agency Of Ind Science & Technol | High-performance lubricating oil |
-
2002
- 2002-12-04 JP JP2002352206A patent/JP3709990B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10203807A (en) * | 1997-01-20 | 1998-08-04 | Osamu Yamamoto | Boron nitride powder of turbostratic structure and its production |
JPH10316989A (en) * | 1997-03-18 | 1998-12-02 | Kyodo Yushi Kk | Water-dispersion-type lubricant for plastic working |
JPH10330779A (en) * | 1997-06-02 | 1998-12-15 | Osamu Yamamoto | Engine lubricating oil and lubrication |
JPH10330775A (en) * | 1997-06-02 | 1998-12-15 | Agency Of Ind Science & Technol | High-performance lubricating oil |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7700526B2 (en) | 2005-02-02 | 2010-04-20 | Osamu Yamamoto | Process for machining metal and high performance aqueous lubricant therefor |
JP2008539316A (en) * | 2005-04-26 | 2008-11-13 | リニューアブル リューブリカンツ インコーポレーテッド | High temperature bio-based lubricant composition containing boron nitride |
JP2008201875A (en) * | 2007-02-19 | 2008-09-04 | Kohjin Co Ltd | Water soluble processing oil agent |
US8507414B2 (en) | 2008-04-14 | 2013-08-13 | Applied Diamond Inc. | Oil-in-water emulsion composition |
WO2009128258A1 (en) * | 2008-04-14 | 2009-10-22 | 有限会社アプライドダイヤモンド | Oil-in-water type emulsion composition |
JP5613889B2 (en) * | 2008-04-14 | 2014-10-29 | 有限会社アプライドダイヤモンド | Oil-in-water emulsion composition |
JP2009281608A (en) * | 2008-05-20 | 2009-12-03 | Tsukishima Kankyo Engineering Ltd | Incineration disposal method and device for chromium-containing waste liquid |
JP2011173199A (en) * | 2010-02-24 | 2011-09-08 | Makino Milling Mach Co Ltd | Machine tool, working fluid feeder, and working fluid |
US9022175B2 (en) | 2010-02-24 | 2015-05-05 | Makino Milling Machine Co., Ltd. | Machine tool, working fluid supply apparatus, and working fluid |
WO2011105199A1 (en) * | 2010-02-24 | 2011-09-01 | 株式会社牧野フライス製作所 | Machine tool, machining fluid supply device, and machining fluid |
WO2014157572A1 (en) * | 2013-03-29 | 2014-10-02 | 出光興産株式会社 | Water-based metalworking fluid |
JP2013200117A (en) * | 2013-05-22 | 2013-10-03 | Tsukishima Kankyo Engineering Ltd | Incineration disposal device and incineration disposal method of chromium-containing waste liquid |
CN103525530A (en) * | 2013-09-26 | 2014-01-22 | 无锡阳工机械制造有限公司 | Antibacterial cutting fluid |
CN104120023A (en) * | 2014-06-25 | 2014-10-29 | 安徽豪鼎金属制品有限公司 | Metal cutting fluid with anti-rust wear-resisting effect and preparation method of metal cutting fluid with anti-rust wear-resisting effect |
CN104120007A (en) * | 2014-06-30 | 2014-10-29 | 安徽铖友汽车零部件制造有限公司 | Safety and environment-friendly cutting fluid used for metal processing, as well as preparation method thereof |
CN104263490A (en) * | 2014-09-24 | 2015-01-07 | 无锡康柏斯机械科技有限公司 | Cutting fluid for drilling process |
CN104263489A (en) * | 2014-09-24 | 2015-01-07 | 无锡康柏斯机械科技有限公司 | Turning finish cutting fluid |
CN104388162A (en) * | 2014-10-31 | 2015-03-04 | 无锡阳工机械制造有限公司 | Metal cooling fluid |
CN108329974A (en) * | 2018-03-30 | 2018-07-27 | 江苏捷达油品有限公司 | A kind of anticorrosive emulsified oil and its preparation method and application that the effect that cools is good |
CN108329974B (en) * | 2018-03-30 | 2021-05-07 | 江苏捷达油品有限公司 | Antirust emulsified oil with good cooling effect and preparation method and application thereof |
CN108774568A (en) * | 2018-05-25 | 2018-11-09 | 清华大学天津高端装备研究院 | A kind of semi-synthetic aluminium alloy working fluid and preparation method thereof |
CN108659931A (en) * | 2018-06-12 | 2018-10-16 | 浙江埃力普润滑科技有限公司 | A kind of novel washable high extrusion forming oil preparation method of tapping |
KR20210152713A (en) * | 2020-06-09 | 2021-12-16 | (주)투디엠 | Filler for cutting oil and cutting oil containing the same filler |
KR102430711B1 (en) * | 2020-06-09 | 2022-08-12 | (주)투디엠 | Filler for cutting oil and cutting oil containing the same filler |
CN113772637A (en) * | 2021-10-18 | 2021-12-10 | 青海大学 | Heat-conducting and wave-absorbing integrated nano composite material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3709990B2 (en) | 2005-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3709990B2 (en) | High performance water-soluble metalworking fluid | |
US7700526B2 (en) | Process for machining metal and high performance aqueous lubricant therefor | |
WO2018032853A1 (en) | Micro-emulsion cutting fluid and preparation process therefor | |
CA2708595C (en) | Formulation of a metalworking fluid | |
JP5613889B2 (en) | Oil-in-water emulsion composition | |
JP5113040B2 (en) | Metalworking lubricant composition based on supercritical carbon dioxide | |
US20110118156A1 (en) | Lubricant additives for improving the tribological properties, novel lubricants, process for the preparation thereof and the use thereof | |
CN103215115A (en) | Water-soluble high-efficiency micro-emulsion cutting fluid used in metal processing | |
CN101240218A (en) | Emulsification type metal cutting liquor composition | |
CN104812879A (en) | Water-soluble metal working oil, metal working fluid, and metal working method | |
EP2705128A1 (en) | Amine-free voc-free metal working fluid | |
CN105861134A (en) | Method for using water-soluble metal processing oil | |
TW201540825A (en) | Water-soluble metalworking fluid, and metalworking coolant | |
CN106590882A (en) | Emulsion cutting fluid | |
JP2010507718A (en) | Soluble oil containing overbased sulfonate additive | |
US20240327746A1 (en) | Aqueous suspension and cutting fluid including the same | |
JP2008169371A (en) | Composition of water-soluble metalworking fluid utilizing distillation residue generated during production of biodiesel | |
JP2002294272A (en) | Water dispersible lubricating agent for warm or hot forging and method for forging to process | |
CN102925271B (en) | Multiple-effect type semi-synthetic micro-emulsion cutting solution | |
JP2009242700A (en) | Rolling oil for cold rolling, and cold rolling method | |
JP3753728B2 (en) | Method for producing metal product using high-performance water-soluble metalworking fluid and water-soluble metalworking fluid | |
WO2011117892A2 (en) | Composition of oil for high speed thin and thick gauge steel sheet rolling in tandem mills | |
JP5517238B2 (en) | Emulsion composition | |
JP2004256771A (en) | Water-soluble cutting and grinding oil agent composition and method for using the same | |
JPH11106778A (en) | Flame retardant lubricating oil composition and cutting liquid and cutting method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050106 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050202 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20050202 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20050316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050322 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050510 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050803 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080819 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110819 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |