【0001】
【発明の属する技術分野】
本発明は、発光素子と該発光素子の発光波長を他の発光波長に変換する蛍光物質を含有した樹脂とを有する発光装置に関するものである。
【0002】
【従来の技術】
発光ダイオードなどの発光素子の発光波長を蛍光物質を用いて波長変換し、元の光と変換後の光を混合して出力する発光装置はかなり以前から知られている。例えば、ガリウム砒素の赤外発光ダイオードで、モールド樹脂内に蛍光物質を混合し、赤外線を青色に変換したものなどが知られている(特開平8−64860参照)。最近では、ガリウムナイトライド系青色発光素子で、モールド樹脂内に蛍光物質を混合し、白色に発光させる白色発光素子装置が製品化されている。この白色発光素子装置の演色性向上のために、蛍光物質を含有した樹脂のモールド方法或いはコーティング方法が種々知られている。チップタイプLEDの筐体内に配置させたLEDチップが発光した光によって励起され発光する蛍光体を含有する透明樹脂を筐体内に充填させるモールド方法が知られている(特開平10−242513参照)。この方法では発光素子から放出される光の角度により、蛍光物質が含有された樹脂部を光が通過する光路長が異なるために、波長変換効率に差が生じ、発光観測面側から見て黄色の色むらが生じ演色性が良くない。光路長の差異を小さくする方法として、開口部底面にLEDチップを配置し、開口部内にLEDチップ上の第1のコーティング部と蛍光物質が含まれた第2のコーティング部を有する発光装置が知られている(特開平10−190065参照)。しかし、開口部内の蛍光物質を含有したコーティング部の厚みを均一にすることが困難で、この方法でも色むらは十分に解消されていない。このために発光素子を配置後に樹脂でモールド或いはコーティングせずに、予めフリップチップ方式でサブマウント部材上に配置した発光素子を覆うように蛍光物質を含有した樹脂で塗布したものを作成し、その後光反射カップ内部に配置する方法が知られている(特開平11−040848参照)。この方式では、発光素子の側面の被服樹脂の厚みを正確に制御することが難しく、発光素子の側面から発射される全放射光の約半分程度の発光によって色むらが生じやすい。上記のいずれの方法も、蛍光物質を均一に分散させた樹脂層で発光素子を全面的に覆い、樹脂層を通過中に蛍光物質に吸収され励起発光した色と、吸収されずに通過した発光素子から光の色と、の混合により白色を作成している。従って、色むらを避けるためには、発光素子を覆っている蛍光物質含有層の厚み、蛍光物質濃度を均一にする等の制御を正確に行う必要がある。
【0003】
【発明が解決しようとする課題】
本発明は発光素子と蛍光物質による白色発光装置の演色性を改善する発光装置を提供する。
【0004】
【問題を解決するための手段】
従来のように蛍光物質を含有した樹脂で発光素子を覆う或いは被服するのではなく、蛍光物質を含有しない樹脂領域部分と蛍光物質を含有した樹脂領域部分とからなるようにモールド層を構成する。すなわち、蛍光物質を含有しない樹脂領域部分を通過した発光素子からの光と、蛍光物質を含有した樹脂領域部分を通過し発光素子からの光がほぼ完全に吸収され波長変換された光と、が実質的となる混合により白色光化することを特徴とする。
【0005】
【発明の実施の形態】
以下に本発明の実施の形態を図面を用いて説明する。図面1は本実施の形態によるガリウムナイトライド系発光装置の断面図である。図中、1は基板である。ガラスエポキシ樹脂等からなる基板1の両端には、外部回路に接続するための外部電極2a、2bが設けられている。一方の外部電極2aの中央部には、基板1の中央部に張り出させて発光ダイオード塔載部2aが設けられており、その端部に、ガリウムナイトライド系化合物半導体を発光層として有する発光素子3が実装されている。他方の外部電極2には、ダイオード搭載部2aに対向させて内部電極2bが設けられている。発光素子3の一方の電極は、金線4により素子搭載部2aと、他方の電極は金線4により内部電極2bと接続されている。
【0006】
発光素子3は、エポキシ樹脂等の透光性樹脂から成る第1樹脂層5により封止されている。第1樹脂層5上で筐体7の天面上に、蛍光物質を含有した領域部分と含有しない領域部分とからなる第2樹脂層6が形成されている。蛍光物質を含有しない領域部分6aと含有した領域部分6bからなる第2樹脂層6の形状の一例を図2に平面図として示した。同心円上の円形状部が蛍光物質を含有しない領域部分である。第2樹脂層6は、蛍光物質を含有しない領域部分の円形状部の大きさは中央部付近では小さく、外円周部に行くに従って大きくなる。発光素子を筐体のほぼ中央部に配置すると、発光素子面からほぼ垂直方向に放射される光の一部は蛍光物質を含有しない層を通り、一部は蛍光物質含有層を通り蛍光物質にほぼ吸収、波長変換され、樹脂層外に放射される。発光素子面から斜め方向に放射された光は中央部と同じ状態にすると吸収される割合が多くなるので、蛍光物質を含有しない領域部分の大きさは中央部よりは大きい。更に低角度からの光は筐体内の傾斜面で反射され、図2の外周部付近を主として通過し放射される。蛍光物質を含有しない領域部分の形状、寸法と密度を、設計できる自由度が高い。例えば、形状については、四角形状、同心円形状等がある。第2樹脂層が筐体内に存在すると、筐体内部の樹脂や添加材による光の反射散乱等により、発光素子からの光の吸収される割合が大きくなり、外部に放射されにくくなる。従って、第2樹脂層を通過した光がそのまま外部に放射されるために、第2樹脂層は筐体の上部にあることが好ましく、筐体天面上にあることが特に好ましい。筐体天面上にあると、第2樹脂層を通過した光は外部に放射されるだけになる。
【0007】
以下本発明の発光装置の製造方法について説明する。本発明の発光装置は、基板上に複数個製造された後、カットにより個別に分離される。基板1の両端には、その延在方向を基板1の長手方向と一致させて電極2aが、他方の電極2が設けられており、一方の電極2には、所定の間隔を隔てて、発光素子搭載部2aが、他方の電極2には発光素子搭載部2aと対向する内部電極2bが設けられている。基板1上の各発光素子搭載部2aには発光素子3を銀ペースト等で実装し、各発光素子3の一方の電極を発光素子搭載部2aと、他方の電極を内部電極2bと、金線4,4により各々接続する。
【0008】
次に、筐体の中に透光性樹脂を流し込み硬化させ、第1樹脂層5を筐体天面で平坦になるように形成する。第1樹脂層5を形成後、図2に示した形状のメタルマスクを筐体部上に合わせ、樹脂ペーストをスクリーン印刷法によって塗布する。この樹脂ペーストはエポキシ樹脂にチキソトロピック材を混合したものである。塗布後、メタルマスクを取り外し、熱硬化する。その後、蛍光物質を含有した樹脂を蛍光物質を含有しない領域を覆うように塗布、熱硬化し、ダイシングによって、所定の幅にカットし、個別に分離された発光素子を得る。
第二の方法として、接着法がある。予め金属製の型に蛍光物質を含有した樹脂を流し込み、硬化させ、その成形体の穴部に蛍光物質を含有しない樹脂を流し込み硬化させ作成した第2樹脂層6を、第1樹脂層5の上に筐体開口部口を覆い塞ぐように接着させ硬化させる。
【0009】
第2の樹脂層の構造として複合体組成構造もよい。すなわち、蛍光物質を含有した粉体と含有しない粉体を混合した樹脂組成物からなる複合体組成構造である。予め、蛍光物質を90重量%以上の高濃度に含有したエポキシ樹脂を熱硬化させ、ボールミル等の粉砕機で粉砕後、篩等で10〜50ミクロン程度の所定粒度に分級し粉体を作成する。必要に応じては粉砕後、粉体の形状を整えるためにマルメライザーを通す。又蛍光物質を含有しない粉体も同様の方法で作成する。この2種類の粉体をマトリックスとなるエポキシ樹脂に混合し、第1樹脂層の上に塗布し、熱硬化する。複合体組成の作成方法は、蛍光物質を含有した粉体とマトリックスとなる樹脂との混合、或いは蛍光物質を含有しない粉体と蛍光物質を含んだマトリックスとなる樹脂との混合もよい。又通常樹脂に均一に分散させるのに用いる蛍光物質は5ミクロンより細かい粒子であるが、10〜50ミクロン程度の粗い粒子、或いは細かい粒子を焼結させた粉体を、蛍光物質を含有した粉体の代わりに用いてもよい。蛍光物質を含有しない粉体とマトリックス樹脂部を通過し外部に放射される発光素子の光と、蛍光物質を含有した粉体を通過し波長変換された光とは、混合され白色化する。又第1樹脂部を蛍光物質を含有しない粉体とマトリックス樹脂が混合された組成にすることで、筐体の天面までの樹脂注入量の制御を容易にでき、第2樹脂層の蛍光物質を含有した粉体或いは粗い蛍光物質の沈み込みを防止できる。2種類からなる粉体の複合組成物を説明しているが、蛍光物質の濃度を変えた粉体等の3種類以上の組成もよい。上記の方法で作成した発光装置には色むらがなかった。
【0010】
なお、前記実施の形態においては、チップタイプ発光素子の筐体内において発光素子を配置する方法、即ち表面実装型発光ダイオード発光装置につき説明しているがこれに限定されるものでなく、砲弾型発光装置にも適用可能である。通常、砲弾型発光装置は発光素子を光反射カップ内に配置し、カップ内に樹脂をディスペンサーで所定量滴下、硬化し作成する。前記したような蛍光物質を高濃度に含有したエポキシ等の樹脂を熱硬化させ、ボールミル等の粉砕機で粉砕後、篩等で所定粒度に分級し粉体と蛍光物質を含有しない粉体の2種類をエポキシ等の樹脂に混合し、第1樹脂層の上に所定量滴下し、熱硬化する方法を採用出来る。
【0011】
発光素子3の発光層がガリウムナイトライド系化合物半導体であって、青色の光を主に発光する場合、蛍光物質としては、セリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光物質等の青色発光を吸収して黄色系を発光する蛍光物質が挙げられる。この混色により発光素子は白色の光を発することになる。白色光について説明しているが、紫外線や赤及び緑の発光素子のそれぞれの発光を蛍光物質の特性によって様々な発光色に変える構成とすることもできる。
【0012】
又ガリウムナイトライド系発光素子を用いた場合につき説明しているが、これに限定されるものではなく、炭化珪素系、セレン化亜鉛系、ガリウム砒素系等の他の色の光を発する発光素子を用いても良く、この場合、発光素子の発光色に対応させて蛍光物質を選択する。蛍光物質は発光素子3の発光波長を他の波長に変換できる、蛍光塗料、蛍光顔料、蛍光体等であり、2種類以上の蛍光物質を混合させてもよい。樹脂としては、エポキシ、シリコーン、ユリア樹脂などが好適に用いられる。基板として、ガラスエポキシ基板を説明しているが、放熱性の良いセラミックス基板、金属基板が好適に挙げられる。
【0013】
【発明の効果】
本願発明の請求項1に記載の発光素子からの光によって励起された光を発光する蛍光物質を含有した領域部分と、該蛍光物質を含有しない領域部分が存在する樹脂部を構成することにより、高視野角においても混色に伴う色むらを少なくすることができる。又樹脂部の各々の領域の形状、寸法、密度と蛍光物質濃度等を規格内で作成することが容易であり、発光装置の製造収率を高くすることができる。従って品質と量産性が向上した発光装置を得ることが出来る。
【図面の簡単な説明】
【図1】本発明の実施形態に係る表面実装型発光装置の構造を示す断面図である。
【図2】本発明の実施形態に係る第2透光性樹脂層を示した平面図である。
【符号の説明】
1基板
2電極
3発光ダイオード素子
4金線
5第1透光性樹脂層
6第2透光性樹脂層
6a蛍光物質を含有しない領域部分
6b蛍光物質を含有した領域部分
7筐体
8ダイボンド樹脂[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light-emitting device including a light-emitting element and a resin containing a fluorescent substance that converts the emission wavelength of the light-emitting element to another emission wavelength.
[0002]
[Prior art]
A light emitting device that converts the emission wavelength of a light emitting element such as a light emitting diode using a fluorescent substance, mixes the original light and the converted light, and outputs the mixed light has been known for a long time. For example, a gallium arsenide infrared light emitting diode in which a fluorescent substance is mixed in a mold resin to convert infrared light into blue light is known (see Japanese Patent Application Laid-Open No. 8-64860). Recently, a white light-emitting element device that emits white light by mixing a fluorescent substance in a mold resin, which is a gallium nitride-based blue light-emitting element, has been commercialized. In order to improve the color rendering properties of the white light emitting device, various methods of molding or coating a resin containing a fluorescent substance are known. There is known a molding method in which a transparent resin containing a phosphor that emits light when excited by light emitted from an LED chip disposed in a housing of a chip type LED is filled in the housing (see JP-A-10-242513). In this method, since the optical path length of the light passing through the resin portion containing the fluorescent substance varies depending on the angle of the light emitted from the light emitting element, a difference occurs in the wavelength conversion efficiency, and the yellow color is seen from the light emission observation surface side. And the color rendering properties are not good. As a method of reducing the difference in optical path length, a light emitting device is known in which an LED chip is disposed on the bottom surface of an opening and the opening has a first coating portion on the LED chip and a second coating portion containing a fluorescent substance. (See JP-A-10-190065). However, it is difficult to make the thickness of the coating portion containing the fluorescent substance in the opening uniform, and even with this method, color unevenness has not been sufficiently eliminated. For this reason, after arranging the light emitting elements, they are not molded or coated with a resin, but are prepared by applying a resin containing a fluorescent substance so as to cover the light emitting elements arranged on the submount member in advance by a flip chip method, and thereafter, A method of disposing the light reflection cup inside the light reflection cup is known (see JP-A-11-040848). In this method, it is difficult to accurately control the thickness of the coating resin on the side surface of the light emitting element, and color unevenness is likely to occur due to emission of about half of the total radiation emitted from the side surface of the light emitting element. In any of the above methods, the light emitting element is entirely covered with a resin layer in which the fluorescent substance is uniformly dispersed, and the color that is excited and emitted by the fluorescent substance while passing through the resin layer and the light that passes without being absorbed White is created by mixing the color of light from the element. Therefore, in order to avoid color unevenness, it is necessary to accurately control the thickness of the fluorescent substance-containing layer covering the light emitting element and the uniformity of the fluorescent substance concentration.
[0003]
[Problems to be solved by the invention]
The present invention provides a light emitting device that improves color rendering of a white light emitting device using a light emitting element and a fluorescent substance.
[0004]
[Means to solve the problem]
Instead of covering or covering the light emitting element with a resin containing a fluorescent substance as in the related art, the mold layer is configured to include a resin region part containing no fluorescent substance and a resin region part containing the fluorescent substance. That is, light from the light-emitting element that has passed through the resin region portion that does not contain the fluorescent substance, and light that has passed through the resin region portion that has contained the fluorescent substance and has undergone wavelength conversion after light from the light-emitting element has been almost completely absorbed, It is characterized in that white light is obtained by substantial mixing.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a gallium nitride-based light emitting device according to the present embodiment. In the figure, 1 is a substrate. External electrodes 2a and 2b for connecting to an external circuit are provided at both ends of a substrate 1 made of glass epoxy resin or the like. At the center of one of the external electrodes 2a, a light emitting diode mounting portion 2a is provided so as to protrude from the center of the substrate 1, and a light emitting layer having a gallium nitride-based compound semiconductor as a light emitting layer at an end thereof. Element 3 is mounted. On the other external electrode 2, an internal electrode 2b is provided so as to face the diode mounting portion 2a. One electrode of the light emitting element 3 is connected to the element mounting portion 2a by a gold wire 4, and the other electrode is connected to the internal electrode 2b by a gold wire 4.
[0006]
The light emitting element 3 is sealed with a first resin layer 5 made of a translucent resin such as an epoxy resin. On the top surface of the housing 7 on the first resin layer 5, a second resin layer 6 including a region containing a fluorescent substance and a region not containing a fluorescent substance is formed. FIG. 2 is a plan view showing an example of the shape of the second resin layer 6 including the region portion 6a containing no fluorescent material and the region portion 6b containing the fluorescent material. The circular portion on the concentric circle is a region portion containing no fluorescent substance. In the second resin layer 6, the size of the circular portion in the region not containing the fluorescent substance is small near the center portion and becomes larger toward the outer circumferential portion. When the light-emitting element is placed almost in the center of the housing, part of the light emitted in a substantially vertical direction from the light-emitting element surface passes through a layer that does not contain a fluorescent substance, and part of the light passes through a layer containing a fluorescent substance and becomes a fluorescent substance. Almost absorbed, wavelength converted, and emitted outside the resin layer. When the light emitted in the oblique direction from the light emitting element surface is in the same state as the central portion, the proportion of light absorbed is increased. Therefore, the size of the region containing no fluorescent substance is larger than the central portion. Further, light from a low angle is reflected by the inclined surface in the housing, and mainly passes near the outer peripheral portion in FIG. 2 and is emitted. There is a high degree of freedom in designing the shape, size and density of the region portion containing no fluorescent substance. For example, the shape includes a square shape, a concentric shape, and the like. When the second resin layer is present in the housing, the ratio of light absorbed from the light emitting element is increased due to reflection and scattering of light by the resin and the additive in the housing, and the light is hardly radiated to the outside. Therefore, the second resin layer is preferably located on the top of the housing, particularly preferably on the top surface of the housing, because the light that has passed through the second resin layer is radiated to the outside as it is. When it is on the top surface of the housing, the light that has passed through the second resin layer is only emitted outside.
[0007]
Hereinafter, a method for manufacturing the light emitting device of the present invention will be described. After a plurality of light emitting devices of the present invention are manufactured on a substrate, they are individually separated by cutting. At both ends of the substrate 1, an electrode 2 a and an other electrode 2 are provided so that the extending direction thereof coincides with the longitudinal direction of the substrate 1, and the one electrode 2 is provided with a light emission at a predetermined interval. The element mounting portion 2a is provided on the other electrode 2 with an internal electrode 2b facing the light emitting element mounting portion 2a. The light emitting element 3 is mounted on each light emitting element mounting part 2a on the substrate 1 with a silver paste or the like. One electrode of each light emitting element 3 is a light emitting element mounting part 2a, the other electrode is an internal electrode 2b, and a gold wire. They are connected by 4 and 4, respectively.
[0008]
Next, the first resin layer 5 is formed so as to be flat on the top surface of the housing by pouring a transparent resin into the housing and curing the resin. After forming the first resin layer 5, a metal mask having the shape shown in FIG. 2 is fitted on the housing, and a resin paste is applied by a screen printing method. This resin paste is obtained by mixing a thixotropic material with an epoxy resin. After application, remove the metal mask and heat cure. Thereafter, a resin containing a fluorescent substance is applied so as to cover a region not containing the fluorescent substance, thermally cured, and cut to a predetermined width by dicing to obtain individually separated light emitting elements.
The second method is a bonding method. A resin containing a fluorescent substance is poured into a metal mold in advance and cured, and a resin not containing a fluorescent substance is poured into the hole of the molded body and cured to form a second resin layer 6 formed of the first resin layer 5. It is adhered and cured so as to cover and close the housing opening.
[0009]
A composite composition structure may be used as the structure of the second resin layer. That is, it is a composite composition structure composed of a resin composition in which a powder containing a fluorescent substance and a powder not containing a fluorescent substance are mixed. An epoxy resin containing a fluorescent substance at a high concentration of 90% by weight or more is heat-cured in advance, crushed by a crusher such as a ball mill, and then classified to a predetermined particle size of about 10 to 50 microns by a sieve or the like to prepare a powder. . If necessary, after pulverization, the powder is passed through a marmellaizer to adjust the shape of the powder. A powder containing no fluorescent substance is prepared in the same manner. The two types of powders are mixed with an epoxy resin serving as a matrix, applied on the first resin layer, and thermally cured. The method of preparing the composite composition may be a mixture of a powder containing a fluorescent substance and a resin serving as a matrix, or a mixture of a powder containing no fluorescent substance and a resin serving as a matrix containing a fluorescent substance. Usually, the fluorescent substance used for uniformly dispersing the resin is fine particles of less than 5 microns, but the coarse particles of about 10 to 50 microns or the powder obtained by sintering the fine particles are replaced with the powder containing the fluorescent substance. It may be used instead of the body. The light of the light emitting element which passes through the powder containing no fluorescent substance and the matrix resin portion and is radiated to the outside, and the light which passes through the powder containing the fluorescent substance and is subjected to wavelength conversion are mixed and whitened. Further, since the first resin portion has a composition in which a powder containing no fluorescent substance and a matrix resin are mixed, the amount of resin injected to the top surface of the housing can be easily controlled, and the fluorescent substance in the second resin layer can be easily controlled. Sinking of a powder or a coarse fluorescent substance containing Although a composite composition of two kinds of powders is described, three or more kinds of compositions such as powders having different concentrations of the fluorescent substance may be used. The light emitting device prepared by the above method did not have color unevenness.
[0010]
In the above embodiment, the method of arranging the light emitting element in the housing of the chip type light emitting element, that is, the surface mount type light emitting diode light emitting device has been described. However, the present invention is not limited to this. It is also applicable to devices. In general, a shell-type light-emitting device is prepared by disposing a light-emitting element in a light-reflecting cup, dropping a predetermined amount of resin into the cup with a dispenser, and curing the resin. A resin such as epoxy containing a high concentration of the above-described fluorescent substance is thermally cured, crushed by a crusher such as a ball mill, and then classified to a predetermined particle size by a sieve or the like. A method in which the type is mixed with a resin such as epoxy, a predetermined amount is dropped on the first resin layer, and thermosetting can be adopted.
[0011]
When the light-emitting layer of the light-emitting element 3 is a gallium nitride-based compound semiconductor and emits mainly blue light, the fluorescent substance is a blue light-emitting substance such as a yttrium-aluminum-garnet-based fluorescent substance activated with cerium. And a fluorescent substance that emits yellow light by absorbing light. Due to this color mixture, the light emitting element emits white light. Although white light has been described, it is also possible to adopt a configuration in which the emission of each of the ultraviolet, red and green light emitting elements is changed to various emission colors depending on the characteristics of the fluorescent substance.
[0012]
Also, the case where a gallium nitride-based light emitting element is used is described, but the light emitting element is not limited to this, and emits light of another color such as silicon carbide, zinc selenide, and gallium arsenide. May be used. In this case, the fluorescent substance is selected in accordance with the emission color of the light emitting element. The fluorescent substance is a fluorescent paint, a fluorescent pigment, a fluorescent substance, or the like that can convert the emission wavelength of the light emitting element 3 to another wavelength, and two or more fluorescent substances may be mixed. As the resin, epoxy, silicone, urea resin and the like are preferably used. Although a glass epoxy substrate has been described as a substrate, a ceramic substrate or a metal substrate having good heat dissipation properties is preferably used.
[0013]
【The invention's effect】
By configuring a resin portion having a region portion containing a fluorescent substance that emits light excited by light from the light emitting element according to claim 1 of the present invention and a region portion not containing the fluorescent material, Even at a high viewing angle, color unevenness accompanying color mixing can be reduced. In addition, the shape, size, density, fluorescent substance concentration and the like of each region of the resin portion can be easily prepared within the standard, and the production yield of the light emitting device can be increased. Therefore, a light-emitting device with improved quality and mass productivity can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a structure of a surface-mounted light emitting device according to an embodiment of the present invention.
FIG. 2 is a plan view showing a second translucent resin layer according to the embodiment of the present invention.
[Explanation of symbols]
1 substrate 2 electrodes 3 light emitting diode element 4 gold wire 5 first translucent resin layer 6 second translucent resin layer 6 a region not containing fluorescent material 6 b region containing fluorescent material 7 housing 8 die bonding resin