【0001】
【発明の属する技術分野】
本発明は、パワートランジスタ等の放熱素子が搭載される回路基板の放熱を効率良くできるようにした半導体装置に関する。
【0002】
【従来の技術】
近年、携帯電話機等の通信機器の分野では、薄膜プロセスによる高周波モジュールが年々小型化されるに伴い、パワー系ICチップなどの発熱素子からの熱を効率よく速やかに外部に廃棄できる放熱構造が望まれている。
この種の発熱素子用の放熱構造として従来、パワーICチップそのものの背面側にヒートシンク用メタル部材を取り付けた構造、あるいは、基板に放熱用のサーマルビアを形成し、このサーマルビア上のバンプにワイヤボンディングでパワーICチップの裏面を接続した構造などが知られている。
【0003】
ところで、上述のような放熱構造の他に、ダイヤモンド膜の高熱伝導性を利用した放熱構造が知られている。(特許文献1参照)
この特許文献1には、ダイヤモンド膜を被覆したシリコン基板にエネルギービームを走査し、走査部の一部をグラファイト膜に相変化させた後、このグラファイト膜上に金属膜の配線パターンを形成し、金属膜の配線パターン上にダイヤモンド膜の成膜が可能な導電性物質を選択的に成長させた後、基板上にダイヤモンド膜を被覆し、エネルギービームを走査してグラファイト膜よりなる配線パターンを形成し、その後に基板上のビア形成位置を選択的にエネルギービームで走査して穴開けし、穴のグラファイト膜上に金属膜を形成して金属配線パターンとビアを形成し、高密度配線が発生させる熱をダイヤモンド膜で伝達して高密度配線部分に熱が蓄積されないようにした構造が開示されている。
【0004】
【特許文献1】
特開平5−175359号公報
【0005】
【発明が解決しようとする課題】
しかしながら、先に記載したパワーICチップそのものの背面側にヒートシンク用メタル部材を取り付ける構造では、薄膜プロセスとの整合性、あるいは、チップと基板との取付構造との整合性、メタル部材取付構造との整合性は全く考慮されておらず、ヒートシンク用メタル部材を必要箇所に別途取り付けるという不効率な手段を採用しなくてはならない上に、放熱効率の面でも不十分になり易いという問題がある。また、小型化した高実装タイプの基板においては、発熱部品の1つ1つにメタル部材を個々に取り付けること自体困難な問題がある。
次に、この種の基板に設けられるサーマルビアとパワー系ICをボンディングワイヤで接続する構造においても放熱効率の面では不十分な問題がある。
また、前記特許文献1に記載された技術では、基板全体に速やかに熱を伝えるので局所的な温度上昇は防げるものの、外部への放熱性という点では不充分なものであった。
【0006】
本発明は上述の課題に鑑みてなされたもので、パワー系IC等の発熱素子からの熱を熱伝導層を介して効率良く伝達して放熱することができる放熱構造を備えた半導体装置の提供を目的とする。
また本発明は、アース回路と誘電体層と回路配線を備えた基板に発熱素子が実装される構造において発熱素子からの熱を熱伝導層を介して効率よく伝達して放熱することができる放熱構造を備えた半導体装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の照明装置は前述の目的を達成するために、パワートランジスタ等の発熱素子が搭載され、導電回路が形成される基板を備えた半導体装置であって、前記基板の内部にダイヤモンドライクカーボンからなる熱伝導層が形成され、前記基板の少なくとも一面側に前記熱伝導層に直接あるいは熱伝達部材を介して前記発熱素子が設けられるとともに、前記発熱素子が設けられた前記基板の前記素子取付面側と反対面側に前記基板外面の一部に開口し、前記熱伝導層に達する放熱孔が形成されたことを特徴とする。
ダイヤモンドライクカーボンの熱伝導層はSi基板あるいは通常の金属材料に比べて熱伝導率の面において格段に優れているので、発熱素子からの熱を熱伝導層により効率良く伝達できる。熱伝導層が伝えた発熱素子からの熱は、発熱素子から離れた部分にまで速やかに伝達されるので、発熱素子まわりに熱が蓄積されることがない。
【0008】
また、基板において発熱素子を設けた面の側と反対面側に放熱孔が開口されているので、発熱素子からの熱を熱伝導層が放熱孔側まで効率良く伝達し、放熱孔を介して効率良く基板の外部に放出できる。このような基板反対面側に開口する多数の放熱孔の存在により放熱効率が向上する。
【0009】
本発明は、前記基板が、基板本体と、該基板本体の一面側に形成された熱伝導層と、該熱伝導層上に形成されたアース回路と、該アース回路を覆って前記熱伝導層上に形成された誘電体層と、該誘電体層上に形成された回路配線とを具備してなることを特徴とする。
本発明をアース回路と回路配線を備えた基板に適用することができる。この場合、誘電体層を挟むアース回路と回路配線によりマイクロストリップラインを構成することができ、マイクロストリップラインを高密度実装した場合に発熱を生じても発生する熱を高熱伝導性の熱導電層で速やかにかつ効率よく放熱孔側に導いて基板外部側に排熱できる。
【0010】
本発明は、前記発熱素子が前記熱伝導層上に熱伝導部材を介して直接搭載されてなることを特徴とする。
発熱素子から発生された熱が熱伝導部材を介して直接熱伝導層側に伝達されて発熱素子から離れた部分に伝達されるので、発熱素子の熱を速やかに効率良く伝達して発熱素子近傍に熱を滞留させることがない。よって発熱素子の排熱効率を更に向上させ得る。
本発明は、前記放熱孔の内面に前記熱伝導層に接続するダイヤモンドライクカーボン製の放熱層が形成されてなることを特徴とする。
放熱孔の内面に形成した放熱層は、熱伝導層に対して放熱器の作用を奏し、基板周囲の空気に対する熱伝導層の接触面積を増加させるので、熱伝導層のみを設ける場合よりも放熱効率が向上する。即ち、放熱孔の内面側まで高熱伝導率のダイヤモンドライクカーボンを設けることで、空気に接触する熱の放出部分の面積を増大させて放熱効率の更なる向上に寄与する。
【0011】
【発明の実施の形態】
[第1実施形態]
図1は本発明に係る半導体装置の第1実施形態としてのチップ実装基板の断面図であり、図2は同基板の要部断面図である。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の膜厚や寸法の比率などを適宜異ならせて表示してある。また、本発明が以下の各実施形態に限定されるものではないのは勿論である。
【0012】
図1に示すように本発明に係る半導体装置としてのチップ実装基板Aは、Siなどからなる基板1と、この基板1の上面のほぼ全面に被覆形成されたダイヤモンドライクカーボンからなる熱伝導層2と、この熱伝導層2の上の必要部分に形成されたアース回路3と、該アース回路3を覆った誘電体層5と、該誘電体層5の上に必要な形状に形成された回路配線6と、該回路配線6に接続された形で設置されたパワーIC等の半導体素子としての半導体チップ(発熱素子)7とを具備して構成されている。
このようなチップ実装基板Aは、例えば、FAW(加入者系無線アクセスシステム)等に用いられる小型・高性能な送受RFモジュール用として、あるいは、小型高性能なHigh−Qフィルタ、アンテナ、薄膜素子搭載モジュール等のデータ転送カードモデム用として、または、追突防止レーダ、車車間通信システム等のITS(インテリジェントトランスポートシステム)用として、更には、超高速無線LAN、無線ホームリンク等のMMC(マルチメディア異動アクセス)用として、あるいはその他の種々の用途に供される種々の形態の高周波モジュール用などの半導体素子や各種発熱素子が実装された基板である。ここで用いられる発熱素子とは、発熱量が多いパワー系ICなどの素子、あるいは、パワー系トランジスタ、IC、及びMMICなどの素子である。なお、例えば、動作電流がトランジスタでは5mA以上、ICでは2mA以上の素子が対象となる。
【0013】
前記基板1はSi基板等からなり、その内部には基板1の上面(一面)と下面(他面)に開口する放熱孔1aが複数形成されている。これらの放熱孔1aは、この実施形態では図1に示すように上面側の開口が小さく下面側の開口が大きな上窄まり状(先窄まり状)に形成され、放熱孔1aの上端の開口は熱伝導層2に到達され、熱伝導層2によって閉じられている。前記基板1の厚さは、例えば、0.15〜1.5mm程度の範囲で適宜の厚さにすることが好ましく、より好ましくは0.2〜1mm程度の厚さものが用いられる。この基板1を薄くし過ぎると薄膜プロセスに基板1流すことができなくなり、後述するボンディング等の部分の接合強度を十分に稼げなくなる一方、厚くし過ぎると放熱孔1aを薄膜プロセスにおいて形成することが難しくなり、製品サイズが大型化する傾向となる。
また、この基板1に放熱孔1aを形成するにはMEMS(マイクロエレクトロメカニカルシステム)加工等の精密加工技術によれば良い。ただし、MEMS加工を施す場合においても基板1があまりに厚すぎると加工精度が低下するので、先の範囲の厚さが好ましい。
【0014】
また、放熱孔1aの大きさとそれらの放熱孔1aが形成される間隔は、基板1の機械的強度低下を招かないように例えば放熱孔直径10〜100μm、間隔が40μm程度、また、放熱孔ピッチ10μm〜200μm程度、間隔が100μm程度とすることができる。また、放熱孔1aの熱伝導層2側の開口部の直径は例えば20μm程度であり、放熱孔1aの基板裏面側の開口部の直径は例えば100μmとすることができる。
【0015】
これらの放熱孔1aの形成位置は、基板1の全面に均一に形成しても良いし、特に放熱の激しい発熱素子7の設置部分まわりに対応させて前記の範囲で集中させて形成しても良い。ただし、後述するバンプ接続部の直下の位置には基板1を残しておく必要があるので、バンプ接続を行う場合に放熱孔1aの形成位置には制約がある。
また、放熱孔1aの形状については、後述するドライエッチングでSi基板に穴あけ加工を施せば、放熱孔1aはテーパをもった先窄まり状の孔となる。その他、例えば、水酸化カルシウム(KOH)あるいはテトラメチルアンモニウムハイドライド(TMAH)の10〜30%水溶液に浸漬すると、約1μm/分のエッチングレートで加工することができ、その際の放熱孔の断面形状は先窄まり状となる。
【0016】
前記熱伝導層2はダイヤモンドライクカーボンからなる。このダイヤモンドライクカーボンとは、ダイヤモンドが炭素原子のsp3結合による結晶体であるのに対し、炭素原子のsp3結合によるアモルファス構造体を主体としてなり、イオンビームデポジッション、イオンプレーティング、スパッタリング、電子ビーム蒸着法などのPVD法、炭化水素ガスによるプラズマCVD法などの種々の成膜法で製造可能な膜である。このダイヤモンドライクカーボンは、製造時のバイアスや雰囲気ガス等の条件により炭素原子のsp3結合によるアモルファス相の他に、水素やグラファイト的なsp2結合を多く含むものとなり、その製造状態により熱伝導率が変動するが、熱伝導率が概ね1000〜100(W/mk)程度、例えば1000程度の優れたものである。
これらに対して、Cuの熱伝導率は393(W/mk)、Al2O3の熱伝導率は17(W/mk)、であるので、CuやAl2O3に比べて熱伝導率の差異は明らかである。なお、ダイヤモンドライクカーボンの比抵抗は5.0×107Ωcm程度、Cuの比抵抗は1.7×10−8程度、Al2O3の比抵抗は1×1012程度であるので、ダイヤモンドライクカーボンの熱伝導層2での電気絶縁性は充分である。
【0017】
ただしこのダイヤモンドライクカーボンは、膜の状態でその引張り応力が極めて高いので、成膜可能な厚さとして通常は5μm程度が限界である。また、あまり薄すぎると放熱性としての熱伝導性が低下するので、0.3μm〜5μmの範囲の厚さが好ましく、0.3μm〜2μmの範囲がより好ましい厚さとなる。即ち、5μmを超える厚さでは成膜後にクラックや膜剥がれを生じやすく、信頼性に乏しくなり易く、逆に0.3μmよりも薄い膜厚では熱伝導性が不十分となり易く、発熱素子7の効率的な排熱という目的での熱伝導性の面では特性不足となり易い。
【0018】
この熱伝導層2の上には、必要な平面形状になるようにCuなどの良導電性の金属材料からなるアース回路3が形成され、更にこのアース回路3を覆うように誘電体層5が被覆されている。この誘電体層5はベンゾシクロブテン等の樹脂膜からなり、DLC膜の補強のために設けられている。この誘電体層5は電気的絶縁性を有するとともに、高周波特性に有利なように低誘電率、低誘電損失であることが必要である。
誘電体層5の上には必要な形状になるように、例えば複数のライン状になるようにCuなどの良導電性金属材料からなる回路配線6が形成されている。
【0019】
そして、回路配線6の上に封止材7Aで薄い板状にパッケージングされ、底部側にボールボンディング接続部7a、7bを有した半導体素子(発熱素子)7が実装されている。前記ボールボンディング部7aは回路配線6に接続されて電気的に回路配線6と半導体素子7とを接続するための接続部であり、ボールボンディング接続部7bは誘電体層5に形成された透孔を貫通してアース回路3に接続された形で設けられているサーマルビア(熱伝達部)8に接続するための接続部である。
従って半導体素子7は回路配線6に複数のボールボンディング部7aを介して接続され、アース回路3に複数のボールボンディング接続部7bを介して接続されている。また、ボールボンディング接続された部分とその周囲部分には封止樹脂材9が注入固化されていて半導体素子7と基板1との間の空間が埋められて封止されている。なお、この形態の半導体素子7は例えばチップ幅として2mm程度、チップ厚さとして例えば200μm程度のものである。従ってこの程度の大きさの半導体素子7に対して金属製のフィンなどを備えた従来のヒートシンク用メタル部材を別途装着することは困難となるので、本発明構造が好ましい。
【0020】
前記基板1に形成された放熱孔1aの上端部分とそのまわりの部分の拡大断面を図2に示すが、熱伝導層2は放熱孔1aの上端部の内側の空気に触れた状態とされ、放熱孔1aの上端部の上側に熱伝導層2と誘電体層5とを介してサーマルビア(熱伝達部)8が位置されている。
【0021】
以上の如く構成された半導体装置Aにあっては、発熱素子としての半導体素子7が発熱すると、その熱がボールボンディング接続部7b、サーマルビアの熱伝達部8、誘電体層5を介して、あるいは一部封止樹脂材9を介してダイヤモンドライクカーボン製の熱伝導層2に伝わり、熱伝導層2を伝わって半導体素子7から離れた部分に伝達され、基板1の放熱孔1a側であるいは基板1上で外部に露出されている熱伝導層2の部分から基板1の外部側に放出される。その際、熱伝導層2に対して熱を伝達するサーマルビアの熱伝達部8の近くに複数の放熱孔1aが形成されているので、これらの放熱孔1a内部の空気と熱交換を行うことで熱を伝えるサーマルビアの熱伝達部8の直近で効率良く熱を放出できる。また、図1に示すように基板1の右端部側に示すように基板上に露出されている部分においては直接外気に放熱できる。従って半導体装置Aにおいて熱交換効率の良好な排熱構造が提供される。
【0022】
また、熱伝導層2は特に熱伝導率の優れたダイヤモンドライクカーボンから形成されているので、サーマルビアの熱伝達部8の周囲側に熱が速やかに伝達され、熱伝達部8から離れた位置に存在する放熱孔1aからも積極的に排熱することができるとともに、図1に示すアース回路3と誘電体層5で覆われていない熱伝導層2の上面が露出された領域においても効率良く排熱することができる。従って放熱孔1aは特に発熱素子7の近傍に配置する必要性は低く、基板1の任意の位置に設けることができ、その場合であっても良好な放熱効果を得ることができるが、放熱孔1aを発熱素子7の近傍に配置した方が熱交換効率の面からより有利であることは勿論である。
なお、放熱性を重視すれば発熱素子7の下側の基板1に多くの放熱孔1aを設けることが好ましいが、発熱素子7を回路配線6に接続する場合のチップボンドの耐性(機械強度)の関係でバンプ接続部7aの下側はある程度の基板強度が必要なため、バンプ接続部7a部分とサーマルビア8の固定部分に必要以上に多くの放熱孔1aを設けるのは好ましくない。
【0023】
以上のことから、図1に示す構造の半導体装置Aであるならば、ダイヤモンドライクカーボンの熱伝導層2を有効に利用して発熱素子7が発生させた熱を排出することができる。また、発熱素子7が発生させた熱は封止樹脂9が設けられた部分に特に溜まり易い傾向を有するがこの部分にサーマルビアの熱伝達部8を設けているので、この熱伝達部8を介して熱伝導部8に速やかに熱を伝達することができ、封止樹脂9とその周囲部分に熱を溜めてしまう恐れが少ない。
次に、熱伝導層2はアース回路3の下にも形成されているので、アース回路3自体が発生させる熱も効率良く伝達し、放熱孔1aから基板外部に排出することができる。更に、各放熱孔1aは熱伝導層2側に向いて先窄まり状となり、基板1の裏面側に末広がり形状とされているので、熱伝導層2側の開口部の大きさをできるだけ小さくして薄い熱伝導層2並びに基板1の強度低下を防止しつつ、放熱孔1aの内部空間側の空気を媒介とする熱交換の面では空気と積極的に広い空間容積で熱対流して積極的に熱交換できるようにするために熱伝導層2側に先窄まり状、基板裏面側に末広がり状とされていることが望ましい。
【0024】
ところで、第1実施形態の実装基板Aにおいては1個の発熱素子7を搭載した例について述べたが、通常の実装基板には複数の発熱素子が混在して複数搭載される。従って搭載されている発熱素子の数に合わせて放熱孔1aの位置や設置数を適宜増減して対応しても良いのは勿論である。また、図1に示す実装基板Aでは発熱素子7の近くの基板裏面側とその他の部分に放熱孔1aを設けたが、放熱孔1aは基板1の裏面側の均一な位置に適宜配列形成しても良い。
【0025】
図3は本発明に係る第2の実施形態の半導体装置に適用される放熱孔の要部断面構造を示すもので、この第2の実施形態の半導体装置においては、基板1の放熱孔1aの内面のほぼ全面を覆うようにダイヤモンドライクカーボンからなる放熱層21が形成されてなる。その他の構成については先の第1実施形態の構造と同等であるので、同等の部分の構成の説明は省略する。
この形態の構造では、放熱孔1aの内面に熱伝導層20に接続して一体化される熱伝導層20と同じ材料からなる放熱用の放熱層21が形成された状態とされている。このため、熱伝導層20は放熱層21でもってより広い面積で放熱孔1a内部の空気と熱交換できると同時に、放熱孔1aの外部の空気とも効率良く熱交換できるので、図1と図2に示す実施形態の構造よりも更に熱交換効率を向上させることができ、効率の良い排熱ができる。
【0026】
なお、この形態で用いた放熱層21は基板1の放熱孔1aの内面だけに形成されるものではなく、後述する形態の如く放熱孔1aの内面に加えて基板1の裏面側に形成されていても良い。このように基板1の裏面側にまで放熱層21を形成しておくならば、基板裏面側で放熱層21を介して放熱冷却できるので、熱交換効率が更に向上する。
【0027】
図4は本発明に係る第3の実施形態の半導体装置としての実装基板Bを示すもので、この実施形態の実装基板Bは、Siなどからなる基板10と、この基板10の上面に被覆されたダイヤモンドライクカーボンからなる熱伝導層12と、この熱伝導層12の一部分の上に熱伝導性接着層(熱伝達部材)13を介して直に固定されたパワーIC等の発熱素子(半導体チップ、半導体素子)15と、熱伝導層12の他の一部分上に形成されたアース導体16、16と、これらのアース導体16を覆った誘電体層17と、該誘電体層17上に形成された回路配線18と、前記回路配線18と発熱素子15のボール接続部19とを接続したボンディングワイヤ25を具備して構成されている。また、前記基板10には先の実施形態において基板1に形成されていた放熱孔1aと同等の放熱孔10aが複数形成されている。この実施形態では発熱素子15が基板側に直接固定されたダイボンディング構成とされたものである。
【0028】
この図4に示す第3の実施形態の実装基板Bにおいてもダイヤモンドライクカーボンからなる熱伝導層12を発熱素子15の下に直に設けているので、この熱伝導層15の高熱伝導性を利用して発熱素子15の熱を放熱孔10a側に導き、放熱孔10aを利用して空気層と熱交換し、放熱ができる。また、熱伝導層12の上面においてアース導体16や誘電体層17に覆われずに露出されている部分においても周囲の空気層と熱交換して放熱することができる。
その際に熱伝導層12の熱伝導性が金属材料や樹脂に比べて特に優れているので、発熱部分と放熱部分が多少離れていても十分な排熱ができる点については先の実施形態の場合と同等の効果を得ることができる。
また、この実施形態においてはアース回路16の下に直に熱伝導層12が形成されているので、アース回路16が発生させる熱を熱伝導層12を介して放熱孔10a側、あるいは、熱伝導層12の周縁部側の熱伝導層12が露出した領域に効率良く伝達させて排熱できる。従ってこの実施形態においても先の実施形態の構造と同様に効率的な排熱ができ、発熱素子15の熱をその周りに蓄積させないとともに、アース回路16の発生させる熱についても熱伝導層12で直に熱伝達して排熱することができる。
【0029】
次に、先に説明した第1の実施形態あるいは第3の実施形態の如く誘電体層を挟んで回路配線とアース回路を形成する場合、この種の回路配線がGHzの高周波帯域で使用されるものであり、誘電体層を挟んでその一側にアース回路をその他側に回路配線を設けたマイクロストリップラインとして適用される場合、ギャップ幅(μm)とストリップライン幅(回路配線幅)との関係は以下のように求められる。
【0030】
インピーダンスをZ0、マイクロストリップライン幅をW、ギャップ幅をh、マイクロストリップライン厚をt、実効透磁率をεeff、比誘電率をεとすると、以下の関係式が成立する。
εeff={(ε+1)/2}+{(ε−1)/2}・F(W/h) −{(ε−1)/4.6}・{(t/h)/(W/h)1/2}
の関係式が成立し、ここで、
F(W/h)={1+12(h/W)}−1/2 (W/h≧1)
の関係式が成立する。以上の場合に、
Z0={120π/(εeff)1/2 }×[(We/h)+1.393+0.667ln((We/h)+1.444)]−1
の関係が成立する。ただし、
We=W+(1.25t/π)・{1+ln(2h/t)}とする。
更に、(W/h)≧(1/2π)とする。
以上のマイクロストリップラインを導き出す関係式から計算すると、ギャップ幅とマイクロストリップラインの関係が得られる。
【0031】
以上説明のごとく、誘電体層を挟んで回路配線とアース回路を形成する場合であって、この種の回路配線がGHzの高周波帯域で使用されるものである場合、前述の回路配線のギャップ幅が小さくなるにつれてマイクロストリップライン幅も急激に細くなるので、配線密度の向上を図ることができるが、その場合に当然の如く発熱も増加するので、本願発明のごときダイヤモンドライクカーボンを用いた熱伝導層を用いることでマイクロストリップラインとしての回路配線からの発熱の問題を解消することができ、回路設計が容易となる。
【0032】
図5は本発明に係る第4の実施形態の半導体装置としての実装基板Dを示すもので、この形態の実装基板Dは、先の第1実施形態の実装基板Aに対し、基板1の裏面全部と放熱孔1aの内面側全部にダイヤモンドライクカーボンの補助熱伝導層27を形成した点に特徴を有する。その他の構成については先の第1実施形態の構造と同等である。
この形態においては熱伝導率の優れたダイヤモンドライクカーボンの補助熱伝導層27を放熱孔1aの内面側と基板1の裏面側に広い面積で設けているので、発熱素子7から発生された熱を熱伝導層2が速やかに補助熱伝導層27側に伝達し、放熱孔1aの内面側の補助熱伝導層27と基板裏面側の補助熱伝導層27が広い面積で周囲の空気と熱交換できるので、放熱面積を大幅に向上させることができ、極めて高い放熱効果を得ることができる。
その他の効果については先の第1の実施形態の構造と同等である。
【0033】
図6は本発明にかかる第5の実施形態の半導体装置としての実装基板Eを示すもので、この形態の実装基板Eは先の第3の実施形態の実装基板Bに対し、基板10の裏面全部と放熱孔10aの内面側全部にダイヤモンドライクカーボンの補助熱伝導層28を形成した点に特徴を有する。その構成については先の第4実施形態の構造と同等である。
この形態においては熱伝導率の優れたダイヤモンドライクカーボンの熱伝導層28を放熱孔10aの内面側と基板10の裏面側に広い面積で設けているので、発熱素子15から発生された熱を熱伝導層12が速やかに熱伝導層28側に伝達し、放熱孔10a内部の補助熱伝導層28と基板裏面側の補助熱伝導層28が広い面積で周囲の空気と熱交換できるので、放熱面積を大幅に向上させることができ、極めて高い放熱効果を得ることができる。
その他の効果については先の第3の実施形態の構造と同等である。
【0034】
図7はSiの基板1の裏面側に形成した放熱孔1aの配置例を示す。この例の如く放熱孔1aを所定の間隔をあけて配置することで基板全体の放熱を均一に行うように設計することができる。図7の符号30で示す線が発熱素子7の外形を示すが、発熱素子7の外形に対して発熱量の多い中心部側に多少密になるように放熱孔1aを配置するのが好ましい。
【0035】
【実施例】
厚さ200μmのSi基板を用意し、この基板上面にプラズマCVD法で厚さ1μmのダイヤモンドライクカーボンの熱伝導層を成膜した。成膜条件は以下のように設定した。
【0036】
この熱伝導層上にグランド回路とするためのCu膜をスパッタにより成膜し、フォトリソグラフィ法とウエットエッチング法(オキソン:過硫酸塩水溶液利用)の常法によりCuのアース回路を形成した。これらの上に、誘電体層として、ダウケミカル製のBCB(ベンゾシクロブテン)を厚さ20μmになるようにスピンコートにより塗布し、真空アニール炉で250℃で1時間加熱処理した。
スピンコート法により塗布したベンゾシクロブテン膜の加工はその上にレジストパターンを形成し、SF6ガスによりドライエッチングする方法を採用し、残った部分を誘電体層とした。
【0037】
ドライエッチング後のベンゾシクロブテン膜の上にCuのメッキで回路配線を形成した。即ち、厚さ1000ÅのCuシード層をスパッタにより成膜後、レジストパターンを形成し、硫酸銅溶液で銅メッキを施すことでベンゾシクロブテン膜の誘電体層上にCuの回路配線を形成した。
Si基板の表面をレジストで覆って保護し、Si基板の裏面にフォトリソグラフィ法でレジストパターンを形成する。更にフッ素系ガスを用いたドライエッチングによりSi基板裏面側から先の熱伝導層に達する放熱孔を0.5mmピッチで複数形成した。
次いでSi基板の両面側に残留しているレジストを除去することでSi基板上にダイヤモンドライクカーボンの熱伝導層が形成され、更にその上にアース回路が形成され、更にアース回路上に誘電体層と回路配線が形成された基板が得られた。
続いてこの基板の熱伝導層上であって、アース回路が形成されていない部分にパワートランジスタをダイボンディングして固定し、パワートランジスタのボールボンディング部分と先の回路配線部分をワイヤボンディング接続することで図4に構造を示す実装基板と同じ構造の実装基板を得ることができた。
【0038】
【発明の効果】
以上詳述したように本発明によれば、基板の内部にダイヤモンドライクカーボンからなる熱伝導層を形成し、これに直接あるいは熱伝達部材を介して発熱素子を設け、基板において発熱素子取付面側と反対面側に熱伝導層に接続し基板外面に開口する放熱孔を形成したので、Si製などの基板や金属材料からなる回路配線よりも遥かに熱伝導率の高いダイヤモンドライクカーボンの熱伝導層により、効率良くかつ速やかに熱を伝達して排熱できる。
また、基板において発熱素子を設けた面側と反対面側に放熱孔が開口されているので、発熱素子からの熱を熱伝導層が放熱孔まで効率よく伝達し、放熱孔を介して効率良く外部に放出できる。このような基板反対側の放熱孔の存在により放熱効率が向上する。
【0039】
本発明をアース回路と回路配線を誘電体層を挟んで備えた基板に適用することができる。この場合、誘電体層を挟むアース回路と回路配線によりマイクロストリップラインを構成することができ、マイクロストリップラインを高密度実装した場合に発熱を生じても発生する熱を高熱伝導性の熱導電層で速やかにかつ効率よく放熱孔側に導いて排熱できる。
この構造の場合に熱伝達部材を介して熱導電層に発熱素子の熱を伝えるようにすることで更に発熱素子の排熱が効率よく行えるようになる。
【0040】
本発明において、放熱孔の内面に熱伝導層に接続するダイヤモンドライクカーボン製の放熱層を形成したので、熱伝導層に対して放熱器の作用を奏し、基板周囲の空気に対する熱伝導層の接触面積を増加させるので、熱伝導層のみを設ける場合よりも更に放熱効率を向上できる。
【図面の簡単な説明】
【図1】本発明に係る構造の熱伝導層を採用した実装基板の第1実施形態を示す断面図である。
【図2】同第1実施形態の実装基板の部分断面図である。
【図3】本発明に係る第2実施形態の実装基板の熱伝導層の要部を示す部分断面図である。
【図4】本発明に係る第3実施形態の実装基板の熱伝導層の要部を示す部分断面図である。
【図5】本発明に係る構造の熱伝導層を採用した実装基板の第4実施形態を示す断面図である。
【図6】本発明に係る構造の熱伝導層を採用した実装基板の第5実施形態を示す断面図である。
【図7】本発明に係る実装基板に適用される放熱孔の配置状態の一例を示す底面図である。
【符号の説明】
A、B、D…実装基板、1、10…基板、1a、10a…放熱孔、2、12、20…熱伝導層、3、16…アース回路、5、17…誘電体層、6、18…回路配線、7、15…発熱素子(半導体素子)、8…熱伝達部材(サーマルビア)、9…封止樹脂、13…熱伝達部材(熱伝導性接着剤)、27、28…補助熱伝導層。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device capable of efficiently dissipating heat from a circuit board on which a heat dissipation element such as a power transistor is mounted.
[0002]
[Prior art]
In recent years, in the field of communication equipment such as mobile phones, a heat dissipation structure that can efficiently and quickly dissipate heat from heat-generating elements such as power IC chips to the outside is desired as high-frequency modules using thin-film processes are downsized year by year. It is rare.
Conventionally, a heat dissipation structure for this type of heating element has a structure in which a heat sink metal member is attached to the back side of the power IC chip itself, or a thermal via for heat dissipation is formed on the substrate, and a wire is formed on the bump on the thermal via. A structure in which the back surface of the power IC chip is connected by bonding is known.
[0003]
Incidentally, in addition to the above heat dissipation structure, a heat dissipation structure utilizing the high thermal conductivity of a diamond film is known. (See Patent Document 1)
In Patent Document 1, a silicon substrate coated with a diamond film is scanned with an energy beam, a part of the scanning part is changed into a graphite film, and then a wiring pattern of a metal film is formed on the graphite film. After selectively growing a conductive material capable of forming a diamond film on a metal film wiring pattern, the diamond film is coated on the substrate, and an energy beam is scanned to form a wiring pattern made of a graphite film. After that, the via formation position on the substrate is selectively scanned with an energy beam to make a hole, a metal film is formed on the graphite film in the hole to form a metal wiring pattern and a via, and high density wiring is generated. A structure is disclosed in which heat to be transmitted is transmitted by a diamond film so that heat is not accumulated in a high-density wiring portion.
[0004]
[Patent Document 1]
JP-A-5-175359
[0005]
[Problems to be solved by the invention]
However, in the structure in which the heat sink metal member is attached to the back side of the power IC chip itself described above, the compatibility with the thin film process or the compatibility between the chip and the substrate mounting structure, the metal member mounting structure Consistency is not considered at all, and there is a problem that an inefficient means of separately attaching a heat sink metal member to a necessary portion has to be adopted, and also in terms of heat dissipation efficiency. Further, in a miniaturized high-mounting type substrate, there is a problem that it is difficult to attach a metal member individually to each heat generating component.
Next, there is an insufficient problem in terms of heat dissipation efficiency even in a structure in which a thermal via provided on this type of substrate and a power IC are connected by a bonding wire.
Further, the technique described in Patent Document 1 transmits heat to the entire substrate promptly, so that local temperature rise can be prevented, but it is insufficient in terms of heat dissipation to the outside.
[0006]
The present invention has been made in view of the above-described problems, and provides a semiconductor device having a heat dissipation structure capable of efficiently transmitting heat from a heat generating element such as a power IC through a heat conductive layer to dissipate heat. With the goal.
Further, the present invention provides a heat dissipation that can efficiently dissipate heat from a heat generating element through a heat conductive layer in a structure in which the heat generating element is mounted on a substrate having a ground circuit, a dielectric layer, and circuit wiring. An object of the present invention is to provide a semiconductor device having a structure.
[0007]
[Means for Solving the Problems]
In order to achieve the above-described object, the illumination device of the present invention is a semiconductor device including a substrate on which a heating element such as a power transistor is mounted and on which a conductive circuit is formed, and diamond-like carbon is formed inside the substrate. A heat conductive layer is formed, and the heat generating element is provided on at least one surface side of the substrate directly or via a heat transfer member, and the element mounting surface of the substrate on which the heat generating element is provided A heat radiating hole that opens to a part of the outer surface of the substrate and reaches the heat conductive layer is formed on the side opposite to the side.
Since the heat conduction layer of diamond-like carbon is remarkably superior in terms of heat conductivity as compared with a Si substrate or a normal metal material, heat from the heating element can be efficiently transferred to the heat conduction layer. Since the heat from the heat generating element transmitted by the heat conductive layer is quickly transmitted to a part away from the heat generating element, the heat is not accumulated around the heat generating element.
[0008]
In addition, since the heat radiating hole is opened on the side opposite to the surface on which the heat generating element is provided on the substrate, the heat conduction layer efficiently transmits the heat from the heat generating element to the heat radiating hole side, through the heat radiating hole. It can be efficiently discharged outside the substrate. The heat dissipation efficiency is improved by the existence of a large number of heat dissipation holes opened on the side opposite to the substrate.
[0009]
In the present invention, the substrate includes a substrate body, a heat conductive layer formed on one side of the substrate body, a ground circuit formed on the heat conductive layer, and the heat conductive layer covering the ground circuit. It is characterized by comprising a dielectric layer formed thereon and circuit wiring formed on the dielectric layer.
The present invention can be applied to a substrate provided with a ground circuit and circuit wiring. In this case, a microstrip line can be constituted by a ground circuit and circuit wiring sandwiching a dielectric layer, and heat generated even when heat is generated when the microstrip line is mounted at a high density is a heat conductive layer having high thermal conductivity. In this case, the heat can be quickly and efficiently guided to the heat radiation hole side and exhausted to the outside of the substrate.
[0010]
The present invention is characterized in that the heating element is directly mounted on the heat conducting layer via a heat conducting member.
Heat generated from the heating element is directly transmitted to the heat conduction layer side through the heat conducting member and transmitted to a part away from the heating element, so that the heat of the heating element is quickly and efficiently transmitted to the vicinity of the heating element. Heat is not retained. Therefore, the exhaust heat efficiency of the heating element can be further improved.
The present invention is characterized in that a heat radiating layer made of diamond-like carbon connected to the heat conducting layer is formed on the inner surface of the heat radiating hole.
The heat dissipating layer formed on the inner surface of the heat dissipating hole acts as a heat dissipator for the heat conducting layer and increases the contact area of the heat conducting layer with the air around the substrate, so that heat is dissipated rather than providing only the heat conducting layer. Efficiency is improved. That is, by providing diamond-like carbon having high thermal conductivity up to the inner surface side of the heat radiating hole, the area of the heat releasing portion that comes into contact with air is increased, which contributes to further improving the heat radiating efficiency.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
FIG. 1 is a cross-sectional view of a chip mounting substrate as a first embodiment of a semiconductor device according to the present invention, and FIG. 2 is a cross-sectional view of a principal part of the substrate. In all of the following drawings, the film thicknesses and dimensional ratios of the respective constituent elements are appropriately changed for easy understanding. Of course, the present invention is not limited to the following embodiments.
[0012]
As shown in FIG. 1, a chip mounting substrate A as a semiconductor device according to the present invention includes a substrate 1 made of Si and the like, and a heat conductive layer 2 made of diamond-like carbon that is coated on almost the entire upper surface of the substrate 1. A ground circuit 3 formed on a necessary portion of the heat conductive layer 2, a dielectric layer 5 covering the ground circuit 3, and a circuit formed on the dielectric layer 5 in a necessary shape. The wiring 6 and a semiconductor chip (heating element) 7 as a semiconductor element such as a power IC installed in a form connected to the circuit wiring 6 are provided.
Such a chip mounting substrate A is used for, for example, a small and high performance RF module used in a FAW (subscriber radio access system) or the like, or a small high performance High-Q filter, antenna, thin film element. For data transfer card modems such as on-board modules, or for ITS (intelligent transport systems) such as rear-end collision prevention radar and inter-vehicle communication systems, and for MMC (multimedia) such as ultra-high-speed wireless LAN and wireless home link It is a substrate on which semiconductor elements and various heating elements for various types of high-frequency modules used for various access purposes or for various other purposes are mounted. The heat generating element used here is an element such as a power IC that generates a large amount of heat, or an element such as a power transistor, IC, or MMIC. For example, an element having an operating current of 5 mA or more for a transistor and 2 mA or more for an IC is targeted.
[0013]
The substrate 1 is made of a Si substrate or the like, and a plurality of heat radiation holes 1a are formed in the substrate 1 so as to open on the upper surface (one surface) and the lower surface (other surface) of the substrate 1. In this embodiment, these heat radiation holes 1a are formed in an upper constricted shape (a tapered shape) with a small opening on the upper surface side and a large opening on the lower surface side as shown in FIG. 1, and the opening at the upper end of the heat radiation hole 1a. Reaches the heat conducting layer 2 and is closed by the heat conducting layer 2. The thickness of the substrate 1 is preferably an appropriate thickness in the range of, for example, about 0.15 to 1.5 mm, and more preferably about 0.2 to 1 mm. If the substrate 1 is made too thin, the substrate 1 cannot flow in the thin film process, and the bonding strength of a portion such as bonding described later cannot be sufficiently obtained. On the other hand, if the substrate 1 is made too thick, the heat radiation hole 1a can be formed in the thin film process. It becomes difficult and the product size tends to increase.
Further, in order to form the heat radiating hole 1a in the substrate 1, a precision processing technique such as MEMS (micro electro mechanical system) processing may be used. However, when the MEMS processing is performed, if the substrate 1 is too thick, the processing accuracy is lowered.
[0014]
Further, the size of the heat radiation holes 1a and the interval between the heat radiation holes 1a are, for example, a heat radiation hole diameter of 10 to 100 μm and a distance of about 40 μm so that the mechanical strength of the substrate 1 is not reduced. The interval can be about 10 μm to 200 μm and the interval can be about 100 μm. Moreover, the diameter of the opening part by the side of the heat conductive layer 2 of the thermal radiation hole 1a is about 20 micrometers, for example, and the diameter of the opening part by the side of the board | substrate back surface of the thermal radiation hole 1a can be 100 micrometers.
[0015]
These heat radiation holes 1a may be formed uniformly on the entire surface of the substrate 1 or may be formed in a concentrated manner in the above-mentioned range corresponding to the area around the heating element 7 where heat radiation is particularly intense. good. However, since it is necessary to leave the substrate 1 at a position directly below the bump connecting portion described later, there is a restriction on the position where the heat radiation hole 1a is formed when bump connection is performed.
As for the shape of the heat radiation hole 1a, if the Si substrate is drilled by dry etching described later, the heat radiation hole 1a becomes a tapered hole with a taper. In addition, for example, when immersed in a 10 to 30% aqueous solution of calcium hydroxide (KOH) or tetramethylammonium hydride (TMAH), it can be processed at an etching rate of about 1 μm / min. Is tapered.
[0016]
The heat conductive layer 2 is made of diamond-like carbon. This diamond-like carbon is a diamond sp3In contrast to a crystal formed by a bond, sp of a carbon atom3A film that can be manufactured by various film-forming methods such as PVD methods such as ion beam deposition, ion plating, sputtering, and electron beam evaporation, and plasma CVD methods using hydrocarbon gas. is there. This diamond-like carbon has carbon atom sps depending on conditions such as bias and atmospheric gas during production.3In addition to amorphous phase due to bonding, hydrogen and graphite-like sp2It contains a lot of bonds, and its thermal conductivity varies depending on its production state, but it has an excellent thermal conductivity of about 1000 to 100 (W / mk), for example, about 1000.
In contrast, the thermal conductivity of Cu is 393 (W / mk), Al2O3Since the thermal conductivity of 17 is 17 (W / mk), Cu and Al2O3The difference in thermal conductivity is clear compared to. The specific resistance of diamond-like carbon is 5.0 × 107About Ωcm, Cu resistivity is 1.7 × 10-8Degree, Al2O3Specific resistance of 1 × 1012Therefore, the electrical insulation in the heat conductive layer 2 of diamond-like carbon is sufficient.
[0017]
However, since the diamond-like carbon has a very high tensile stress in the film state, the thickness that can be formed is usually about 5 μm. Moreover, since heat conductivity as heat dissipation will fall when too thin, the thickness of the range of 0.3 micrometer-5 micrometers is preferable, and the range of 0.3 micrometer-2 micrometers becomes a more preferable thickness. That is, if the thickness exceeds 5 μm, cracks and film peeling are likely to occur after film formation, and the reliability tends to be poor. Conversely, if the film thickness is less than 0.3 μm, thermal conductivity tends to be insufficient, In terms of thermal conductivity for the purpose of efficient exhaust heat, the characteristics tend to be insufficient.
[0018]
An earth circuit 3 made of a highly conductive metal material such as Cu is formed on the heat conductive layer 2 so as to have a necessary planar shape, and a dielectric layer 5 is formed so as to cover the earth circuit 3. It is covered. The dielectric layer 5 is made of a resin film such as benzocyclobutene and is provided to reinforce the DLC film. The dielectric layer 5 needs to have electrical insulation and low dielectric constant and low dielectric loss so as to be advantageous for high frequency characteristics.
On the dielectric layer 5, circuit wiring 6 made of a highly conductive metal material such as Cu is formed so as to have a required shape, for example, a plurality of lines.
[0019]
Then, a semiconductor element (heating element) 7 is mounted on the circuit wiring 6 in a thin plate shape with a sealing material 7A, and has ball bonding connection portions 7a and 7b on the bottom side. The ball bonding portion 7 a is a connection portion that is connected to the circuit wiring 6 to electrically connect the circuit wiring 6 and the semiconductor element 7, and the ball bonding connection portion 7 b is a through hole formed in the dielectric layer 5. Is a connection portion for connecting to a thermal via (heat transfer portion) 8 provided in a form penetrating through and connected to the earth circuit 3.
Accordingly, the semiconductor element 7 is connected to the circuit wiring 6 through a plurality of ball bonding portions 7a, and is connected to the ground circuit 3 through a plurality of ball bonding connection portions 7b. In addition, a sealing resin material 9 is injected and solidified in the ball bonding connected portion and the surrounding portion, and the space between the semiconductor element 7 and the substrate 1 is filled and sealed. The semiconductor element 7 in this form has, for example, a chip width of about 2 mm and a chip thickness of, for example, about 200 μm. Accordingly, it is difficult to separately attach a conventional heat sink metal member having metal fins or the like to the semiconductor element 7 of such a size, so the structure of the present invention is preferable.
[0020]
FIG. 2 shows an enlarged cross section of the upper end portion of the heat radiating hole 1a formed in the substrate 1 and the surrounding portion thereof, but the heat conduction layer 2 is in a state of being in contact with the air inside the upper end portion of the heat radiating hole 1a, A thermal via (heat transfer portion) 8 is located above the upper end portion of the heat radiating hole 1 a via the heat conductive layer 2 and the dielectric layer 5.
[0021]
In the semiconductor device A configured as described above, when the semiconductor element 7 as the heat generating element generates heat, the heat is passed through the ball bonding connection portion 7b, the heat transfer portion 8 of the thermal via, and the dielectric layer 5. Alternatively, the heat is transmitted to the heat conduction layer 2 made of diamond-like carbon through a part of the sealing resin material 9, transmitted to the portion away from the semiconductor element 7 through the heat conduction layer 2, or on the heat radiation hole 1 a side of the substrate 1 or The heat conduction layer 2 exposed to the outside on the substrate 1 is discharged to the outside of the substrate 1. At that time, since a plurality of heat radiation holes 1a are formed near the heat transfer portion 8 of the thermal via that transmits heat to the heat conduction layer 2, heat exchange with the air inside these heat radiation holes 1a is performed. The heat can be efficiently released in the immediate vicinity of the heat transfer portion 8 of the thermal via that transfers heat. Further, as shown in FIG. 1, the portion exposed on the substrate as shown on the right end side of the substrate 1 can directly radiate heat to the outside air. Therefore, an exhaust heat structure with good heat exchange efficiency is provided in the semiconductor device A.
[0022]
Further, since the heat conductive layer 2 is made of diamond-like carbon having particularly excellent heat conductivity, heat is quickly transferred to the peripheral side of the heat transfer portion 8 of the thermal via, and the position away from the heat transfer portion 8. The heat can be positively exhausted from the heat radiating hole 1a existing in the substrate, and the efficiency is improved even in the region where the upper surface of the heat conductive layer 2 not covered with the ground circuit 3 and the dielectric layer 5 shown in FIG. It can exhaust heat well. Therefore, it is not particularly necessary to dispose the heat radiation hole 1a in the vicinity of the heating element 7, and it can be provided at any position on the substrate 1. Even in this case, a good heat radiation effect can be obtained. Of course, it is more advantageous to arrange 1a in the vicinity of the heating element 7 in terms of heat exchange efficiency.
If heat dissipation is important, it is preferable to provide a large number of heat dissipation holes 1a in the substrate 1 on the lower side of the heat generating element 7. However, chip bond resistance when the heat generating element 7 is connected to the circuit wiring 6 (mechanical strength). Therefore, a certain amount of substrate strength is required on the lower side of the bump connection portion 7a. Therefore, it is not preferable to provide more heat radiation holes 1a in the bump connection portion 7a portion and the thermal via 8 fixing portion than necessary.
[0023]
From the above, in the case of the semiconductor device A having the structure shown in FIG. 1, the heat generated by the heating element 7 can be discharged by effectively using the heat conductive layer 2 of diamond-like carbon. Further, the heat generated by the heating element 7 tends to accumulate particularly in the portion where the sealing resin 9 is provided, but the heat transfer portion 8 of the thermal via is provided in this portion. Therefore, heat can be quickly transferred to the heat conducting portion 8, and there is little risk of heat being accumulated in the sealing resin 9 and the surrounding portion.
Next, since the heat conductive layer 2 is also formed under the earth circuit 3, the heat generated by the earth circuit 3 itself can be efficiently transmitted and discharged to the outside of the substrate from the heat radiation hole 1a. Further, since each heat radiation hole 1a is tapered toward the heat conducting layer 2 side, and is formed in a divergent shape on the back side of the substrate 1, the size of the opening on the heat conducting layer 2 side is made as small as possible. In addition, while preventing the strength of the thin and thin heat conductive layer 2 and the substrate 1 from decreasing, the heat exchange using air on the inner space side of the heat radiation hole 1a is actively conducted by actively convection with air in a wide space volume. In order to enable heat exchange, it is desirable that the heat conduction layer 2 is tapered and the substrate rear surface is widened.
[0024]
By the way, although the example in which one heating element 7 is mounted on the mounting board A of the first embodiment has been described, a plurality of heating elements are mixedly mounted on a normal mounting board. Therefore, it goes without saying that the position and the number of installed heat radiation holes 1a may be appropriately increased or decreased in accordance with the number of mounted heating elements. Further, in the mounting substrate A shown in FIG. 1, the heat radiation holes 1a are provided on the back surface side of the substrate near the heat generating element 7 and other portions. The heat radiation holes 1a are appropriately arranged and formed at uniform positions on the back surface side of the substrate 1. May be.
[0025]
FIG. 3 shows a cross-sectional structure of a main part of a heat radiation hole applied to the semiconductor device of the second embodiment according to the present invention. In the semiconductor device of this second embodiment, the heat radiation hole 1a of the substrate 1 is shown. A heat radiation layer 21 made of diamond-like carbon is formed so as to cover almost the entire inner surface. Since the other configuration is the same as that of the first embodiment, the description of the configuration of the equivalent portion is omitted.
In the structure of this embodiment, a heat radiation layer 21 made of the same material as the heat conduction layer 20 connected to and integrated with the heat conduction layer 20 is formed on the inner surface of the heat radiation hole 1a. For this reason, the heat conduction layer 20 can exchange heat with the air inside the heat radiation hole 1a in a wider area with the heat radiation layer 21, and at the same time, can efficiently exchange heat with the air outside the heat radiation hole 1a. The heat exchange efficiency can be further improved than the structure of the embodiment shown in FIG.
[0026]
The heat radiation layer 21 used in this embodiment is not formed only on the inner surface of the heat radiation hole 1a of the substrate 1, but is formed on the back surface side of the substrate 1 in addition to the inner surface of the heat radiation hole 1a as described later. May be. If the heat dissipation layer 21 is formed on the back side of the substrate 1 in this way, the heat exchange efficiency can be further improved because the heat dissipation can be cooled via the heat dissipation layer 21 on the back side of the substrate.
[0027]
FIG. 4 shows a mounting board B as a semiconductor device according to the third embodiment of the present invention. The mounting board B of this embodiment is covered with a substrate 10 made of Si or the like and an upper surface of the substrate 10. A heat conductive layer 12 made of diamond-like carbon, and a heating element (semiconductor chip) such as a power IC fixed directly on a part of the heat conductive layer 12 via a heat conductive adhesive layer (heat transfer member) 13 , Semiconductor element) 15, ground conductors 16, 16 formed on another part of the heat conductive layer 12, a dielectric layer 17 covering these ground conductors 16, and formed on the dielectric layer 17. The circuit wiring 18 and the bonding wire 25 connecting the circuit wiring 18 and the ball connecting portion 19 of the heat generating element 15 are provided. The substrate 10 is formed with a plurality of heat radiation holes 10a equivalent to the heat radiation holes 1a formed in the substrate 1 in the previous embodiment. In this embodiment, the heating element 15 has a die bonding configuration in which the heating element 15 is directly fixed to the substrate side.
[0028]
Also in the mounting substrate B of the third embodiment shown in FIG. 4, since the heat conductive layer 12 made of diamond-like carbon is provided directly under the heating element 15, the high heat conductivity of the heat conductive layer 15 is utilized. Then, the heat of the heat generating element 15 is guided to the heat radiating hole 10a side, and heat can be radiated by exchanging heat with the air layer using the heat radiating hole 10a. In addition, heat can be dissipated by exchanging heat with the surrounding air layer even in a portion of the upper surface of the heat conductive layer 12 exposed without being covered with the ground conductor 16 or the dielectric layer 17.
At that time, the thermal conductivity of the heat conductive layer 12 is particularly superior to that of a metal material or resin, so that sufficient heat can be exhausted even if the heat generating portion and the heat radiating portion are somewhat separated from each other. The same effect as the case can be obtained.
In this embodiment, since the heat conductive layer 12 is formed directly under the ground circuit 16, the heat generated by the ground circuit 16 can be transferred to the heat radiation hole 10 a side or through the heat conductive layer 12. The heat conduction layer 12 on the peripheral edge side of the layer 12 can be efficiently transferred to the exposed area and exhausted. Therefore, in this embodiment as well, as in the structure of the previous embodiment, efficient exhaust heat can be obtained, the heat of the heating element 15 is not accumulated around it, and the heat generated by the ground circuit 16 is also generated in the heat conduction layer 12. Heat can be transferred directly and exhausted.
[0029]
Next, when the circuit wiring and the ground circuit are formed with the dielectric layer interposed therebetween as in the first embodiment or the third embodiment described above, this type of circuit wiring is used in the high frequency band of GHz. When applied as a microstrip line with a grounding circuit on one side and circuit wiring on the other side across a dielectric layer, the gap width (μm) and stripline width (circuit wiring width) The relationship is sought as follows.
[0030]
Impedance is Z0When the microstrip line width is W, the gap width is h, the microstrip line thickness is t, the effective permeability is εeff, and the relative dielectric constant is ε, the following relational expression is established.
εeff = {(ε + 1) / 2} + {(ε−1) / 2} · F (W / h) − {(ε−1) /4.6} · {(t / h) / (W / h) )1/2}
Is established, where
F (W / h) = {1 + 12 (h / W)}-1/2 (W / h ≧ 1)
The following relational expression holds. In these cases,
Z0= {120π / (εeff)1/2 } × [(We / h) + 1.393 + 1.667ln ((We / h) +1.444)]-1
The relationship is established. However,
We = W + (1.25t / π) · {1 + ln (2h / t)}.
Further, (W / h) ≧ (1 / 2π).
By calculating from the relational expression for deriving the above microstrip line, the relationship between the gap width and the microstrip line is obtained.
[0031]
As described above, when the circuit wiring and the earth circuit are formed across the dielectric layer, and this type of circuit wiring is used in a high frequency band of GHz, the gap width of the circuit wiring described above. As the microstrip line becomes smaller, the width of the microstrip line sharply narrows, so that the wiring density can be improved. However, in that case, the heat generation naturally increases, so that heat conduction using diamond-like carbon as in the present invention is performed. By using the layer, the problem of heat generation from the circuit wiring as the microstrip line can be solved, and the circuit design becomes easy.
[0032]
FIG. 5 shows a mounting board D as a semiconductor device of the fourth embodiment according to the present invention. The mounting board D of this embodiment is the back surface of the board 1 with respect to the mounting board A of the first embodiment. A feature is that an auxiliary heat conduction layer 27 of diamond-like carbon is formed on all and the entire inner surface side of the heat radiation hole 1a. Other configurations are the same as those of the first embodiment.
In this embodiment, the auxiliary heat conductive layer 27 of diamond-like carbon having excellent thermal conductivity is provided in a wide area on the inner surface side of the heat radiating hole 1a and the rear surface side of the substrate 1, so that the heat generated from the heating element 7 can be reduced. The heat conductive layer 2 quickly transmits to the auxiliary heat conductive layer 27 side, and the auxiliary heat conductive layer 27 on the inner surface side of the heat radiation hole 1a and the auxiliary heat conductive layer 27 on the back surface side of the substrate can exchange heat with the surrounding air over a wide area. Therefore, the heat radiation area can be greatly improved, and an extremely high heat radiation effect can be obtained.
Other effects are the same as the structure of the first embodiment.
[0033]
FIG. 6 shows a mounting substrate E as a semiconductor device according to the fifth embodiment of the present invention. The mounting substrate E of this embodiment is the back surface of the substrate 10 with respect to the mounting substrate B of the third embodiment. A feature is that an auxiliary heat conductive layer 28 of diamond-like carbon is formed on all and the entire inner surface side of the heat radiating hole 10a. About the structure, it is equivalent to the structure of previous 4th Embodiment.
In this embodiment, the heat conduction layer 28 of diamond-like carbon having excellent thermal conductivity is provided in a wide area on the inner surface side of the heat radiating hole 10a and the rear surface side of the substrate 10, so that the heat generated from the heating element 15 is heated. The conductive layer 12 is quickly transmitted to the heat conductive layer 28 side, and the auxiliary heat conductive layer 28 inside the heat radiation hole 10a and the auxiliary heat conductive layer 28 on the back side of the substrate can exchange heat with the surrounding air over a wide area. Can be greatly improved, and an extremely high heat dissipation effect can be obtained.
Other effects are the same as those of the third embodiment.
[0034]
FIG. 7 shows an arrangement example of the heat radiation holes 1 a formed on the back surface side of the Si substrate 1. As in this example, the heat radiation holes 1a are arranged at a predetermined interval so that the entire substrate can be designed to uniformly dissipate heat. A line indicated by reference numeral 30 in FIG. 7 shows the outer shape of the heat generating element 7. It is preferable to dispose the heat radiating holes 1 a so as to be somewhat dense on the center side where the heat generation amount is larger than the outer shape of the heat generating element 7.
[0035]
【Example】
A Si substrate having a thickness of 200 μm was prepared, and a diamond-like carbon thermal conductive layer having a thickness of 1 μm was formed on the upper surface of the substrate by plasma CVD. The film forming conditions were set as follows.
[0036]
A Cu film for forming a ground circuit was formed on the heat conductive layer by sputtering, and a Cu ground circuit was formed by a conventional method of photolithography and wet etching (using oxone: persulfate aqueous solution). On top of these, as a dielectric layer, BCB (benzocyclobutene) manufactured by Dow Chemical was applied by spin coating so as to have a thickness of 20 μm, and heat-treated at 250 ° C. for 1 hour in a vacuum annealing furnace.
The processing of the benzocyclobutene film applied by the spin coat method forms a resist pattern on the SF, and SF6A dry etching method using a gas was employed, and the remaining portion was used as a dielectric layer.
[0037]
Circuit wiring was formed on the benzocyclobutene film after dry etching by Cu plating. Specifically, a Cu seed layer having a thickness of 1000 mm was formed by sputtering, a resist pattern was formed, and copper plating was performed with a copper sulfate solution to form a Cu circuit wiring on the dielectric layer of the benzocyclobutene film.
The surface of the Si substrate is covered and protected with a resist, and a resist pattern is formed on the back surface of the Si substrate by a photolithography method. Further, a plurality of heat radiation holes reaching the previous heat conductive layer from the back side of the Si substrate by dry etching using a fluorine-based gas were formed at a pitch of 0.5 mm.
Next, by removing the resist remaining on both sides of the Si substrate, a diamond-like carbon thermal conductive layer is formed on the Si substrate, and a ground circuit is further formed thereon, and a dielectric layer is further formed on the ground circuit. A substrate on which circuit wiring was formed was obtained.
Subsequently, the power transistor is die-bonded and fixed to a portion of the substrate on which the ground circuit is not formed, and the ball bonding portion of the power transistor and the previous circuit wiring portion are connected by wire bonding. Thus, a mounting board having the same structure as that shown in FIG. 4 was obtained.
[0038]
【The invention's effect】
As described above in detail, according to the present invention, a heat conductive layer made of diamond-like carbon is formed inside a substrate, and a heating element is provided directly or via a heat transfer member. The heat conduction of diamond-like carbon, which has a much higher thermal conductivity than circuit wiring made of a substrate such as Si or a metal material, is formed on the opposite side to the heat conduction layer and opened to the outer surface of the substrate. By the layer, heat can be transferred efficiently and quickly.
In addition, since the heat dissipation holes are opened on the opposite side of the surface on which the heat generating elements are provided on the substrate, the heat conduction layer efficiently transmits the heat from the heat generating elements to the heat dissipation holes and efficiently through the heat dissipation holes. Can be released to the outside. Due to the existence of the heat dissipation holes on the opposite side of the substrate, the heat dissipation efficiency is improved.
[0039]
The present invention can be applied to a substrate provided with a ground circuit and circuit wiring with a dielectric layer interposed therebetween. In this case, a microstrip line can be constituted by a ground circuit and circuit wiring sandwiching a dielectric layer, and heat generated even when heat is generated when the microstrip line is mounted at a high density is a heat conductive layer having high thermal conductivity. The heat can be quickly and efficiently led to the heat radiating hole.
In the case of this structure, the heat of the heat generating element can be further efficiently exhausted by transmitting the heat of the heat generating element to the heat conductive layer via the heat transfer member.
[0040]
In the present invention, the heat radiation layer made of diamond-like carbon connected to the heat conduction layer is formed on the inner surface of the heat radiation hole, so that the heat conduction layer acts as a heat radiator, and the heat conduction layer contacts the air around the substrate. Since the area is increased, the heat radiation efficiency can be further improved as compared with the case where only the heat conductive layer is provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of a mounting substrate employing a heat conductive layer having a structure according to the present invention.
FIG. 2 is a partial cross-sectional view of the mounting board of the first embodiment.
FIG. 3 is a partial cross-sectional view showing a main part of a heat conductive layer of a mounting board according to a second embodiment of the present invention.
FIG. 4 is a partial cross-sectional view showing a main part of a heat conductive layer of a mounting board according to a third embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a fourth embodiment of a mounting board employing a heat conductive layer having a structure according to the present invention.
FIG. 6 is a cross-sectional view showing a fifth embodiment of a mounting substrate employing a heat conductive layer having a structure according to the present invention.
FIG. 7 is a bottom view showing an example of an arrangement state of heat dissipation holes applied to the mounting board according to the present invention.
[Explanation of symbols]
A, B, D ... Mounting substrate, 1, 10 ... Substrate, 1a, 10a ... Radiation hole, 2, 12, 20 ... Thermal conduction layer, 3, 16 ... Earth circuit, 5, 17 ... Dielectric layer, 6, 18 ... Circuit wiring, 7, 15 ... Heating element (semiconductor element), 8 ... Heat transfer member (thermal via), 9 ... Sealing resin, 13 ... Heat transfer member (heat conductive adhesive), 27, 28 ... Auxiliary heat Conductive layer.