【0001】
【発明の属する技術分野】本発明は、ナトリウム−硫黄電池に関し、更に詳しくは、エネルギー密度が向上しても活物質の漏れがより確実に防止されるナトリウム−硫黄電池に関する。
【0002】
【従来の技術】ナトリウム−硫黄電池(以下、「NAS電池」ということもある)は、300〜350℃の高温で作動させる密閉型高温二次電池であって、負極活物質であるナトリウムと正極活物質である硫黄とを、ナトリウムイオンを選択的に透過させる機能を有する固体電解質(例えば、β−アルミナ、β”−アルミナ等)を経由して隔離収納した構造を有するものである。
【0003】例えば、図2に示すNAS電池101は、有底筒状の正極容器102と、正極容器102の内側に配設された有底筒状の固体電解質管103と、固体電解質管103の内側に配設された底部に小孔105が設けられた有底筒状の負極容器104とを備え、正極容器102と固体電解質管103との間に形成される空間(正極空間)110に正極活物質としての硫黄120及び加熱分解によって窒素ガスG10を発生する圧力(正極側圧力)発生源としてのアジ化ナトリウム121を配設し、負極容器104内にナトリウム122及び圧力(負極側圧力)発生源としての気体G20を配し、負極容器104の底部に設けられた小孔105を経由して、溶融したナトリウム122を気体G20の圧力により負極容器104と固体電解質管103との間の空間(負極空間)111に供給し、放電時にはナトリウム122がナトリウムイオンとなって負極容器104から小孔105及び固体電解質管103を経由して正極空間110へ移動し、充電時にはナトリウムイオンが正極空間110から固体電解質管103及び小孔105を経由して負極容器104へ移動するものである。尚、図2において、130は絶縁リング、131は正極金具、132は負極金具、133は負極蓋、134は正極側端子、135は負極側端子をそれぞれ示す。
【0004】つまり、放電時には、負極活物質であるナトリウム122が外部回路に電子を放出してナトリウムイオンとなり、ナトリウムイオンとなったナトリウム122が固体電解質管103内を透過して正極側に移動し、正極活物質である硫黄120および外部回路から供給される電子と反応して多硫化ナトリウムを生成することによって、2V程度の電圧を発生させる。
【0005】一方、充電時には外部回路から電圧を印加することによって、多硫化ナトリウムが外部回路に電子を放出して硫黄とナトリウムイオンを生成し、固体電解質管103内を透過して負極容器104内に移動したナトリウムイオンを、外部回路から供給する電子と反応させて電気的に中性化する(ナトリウム122となる)ことにより、電気エネルギーを化学エネルギーに変換する。
【0006】このような構造を有するNAS電池は大量の電力を貯蔵できる能力を有するために、電力貯蔵用の電池として注目を浴びている。そして、NAS電池の電力の貯蔵量を大きくするためには、NAS電池の電気エネルギー密度を向上させることが好ましいが、その方法としては、正極活物質の硫黄及び負極活物質のナトリウムの充填密度を高くすることが挙げられる。硫黄及びナトリウムの充填密度が高くなると、電気に変換される物質の量が増加することになるため電力の貯蔵量が大きくなるのである。しかし、この場合、変化する物質量が増加すると、それに従い、正極ガス及び負極ガスの圧力が大きく変化するようになり、例えば、正極ガスの圧力が高くなり正極ガスの圧力と負極ガスの圧力の差が大きくなった場合には、固体電解質管が破損した場合に、活物質である硫黄、ナトリウム、多硫化ナトリウムが電池外部に漏洩するおそれがあった。また、負極ガスの圧力が大気圧より高くなった場合には、負極空間のシール部に不良が発生した場合等に、ナトリウムが電池外部に漏洩するおそれがあった(例えば、特許文献1、2参照)。
【0007】
【特許文献1】
特公平7−82877号公報
【特許文献2】
特開平2−234363号公報
【0008】
【発明が解決しようとする課題】本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その目的とするところは、エネルギー密度が向上しても活物質(ナトリウム及び硫黄)の漏れがより確実に防止されるナトリウム−硫黄電池を提供することにある。
【0009】
【課題を解決するための手段】上記目的を達成するため、本発明によって以下のナトリウム−硫黄電池が提供される。
[1] 有底筒状の正極容器と、前記正極容器の内側に配設された有底筒状の固体電解質管と、前記固体電解質管の内側に配設された底部に小孔が設けられた有底筒状の負極容器とを備え、前記正極容器と前記固体電解質管との間に形成される空間(正極空間)に正極活物質としての硫黄及び不活性ガスを発生する圧力(正極側圧力)発生源としてのアジ化ナトリウム又は気体が、また、前記負極容器内にナトリウム及び圧力(負極側圧力)発生源としての気体がそれぞれ配設され、前記負極容器の底部に設けられた前記小孔を経由して、溶融した前記ナトリウムを前記気体の圧力により前記負極容器と前記固体電解質管との間の空間に供給し、放電時には前記ナトリウムがナトリウムイオンとなって負極容器から前記小孔及び前記固体電解質管を経由して正極空間へ移動し、充電時には前記ナトリウムイオンが前記正極空間から前記固体電解質管及び前記小孔を経由して前記負極容器へ移動するナトリウム−硫黄電池であって、完全充電時の、前記負極側圧力が1013hPa以下であり、かつ前記負極側圧力が、前記正極側圧力より大きく、前記完全充電時から放電完了時までを通じて、前記正極側圧力と前記負極側圧力との差の絶対値が1000hPa以下であることを特徴とするナトリウム−硫黄電池。
[2] 前記負極容器と、前記固体電解質管との間に、有底筒状の安全管をさらに備えた[1]に記載のナトリウム−硫黄電池。
[3] 前記正極容器がアルミニウムを含む材料から構成されてなる[1]又は[2]に記載のナトリウム−硫黄電池。
[4] 前記固体電解質管がβ−アルミナを含む材料から構成されてなる[1]〜[3]のいずれかに記載のナトリウム−硫黄電池。
[5] 前記負極側圧力発生源としての気体がアルゴンを含有してなる[1]〜[4]のいずれかに記載のナトリウム−硫黄電池。
[6] 前記安全管がアルミニウムを含む材料から構成されてなる[2]〜[5]のいずれかに記載のナトリウム−硫黄電池。
【0010】このように、完全充電時の、負極側圧力発生源としての気体の圧力が1013hPa以下であるため、負極容器中のナトリウムが電池外部に漏洩することを抑制することができる。そして、負極側圧力が正極側圧力より大きいため、エネルギー密度が大きくなり、放電時の負極側圧力の下降及び正極側圧力の上昇の程度が大きくなっても、負極側圧力が下降し過ぎず、かつ正極側圧力が上昇し過ぎないようにすることができる。さらに、完全充電時から放電完了時までを通じて、正極側圧力と負極側圧力との差の絶対値が1000hPa以下であるため、固体電解質管が破損した場合等にも活物質である硫黄、ナトリウム、多硫化ナトリウムが電池外部に漏洩することを抑制することができる。
【0011】
【発明の実施の形態】次に本発明の実施の形態を図面を参照しながら詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。
【0012】図1は、本発明のナトリウム−硫黄電池(NAS電池)の一の実施の形態を模式的に示す、筒状の正極容器の軸方向(鉛直方向)を含む平面で切断した断面図である。図1に示すように、NAS電池1は、有底筒(円筒)状の正極容器2と、正極容器2の内側に配設された有底筒(円筒)状の固体電解質管3と、固体電解質管3の内側に配設された底部に小孔5が設けられた有底筒(円筒)状の負極容器4とを備え、正極容器2と固体電解質管3との間に形成される空間(正極空間)10に正極活物質としての硫黄20及び加熱分解によって窒素ガスG1を発生する圧力(正極側圧力)発生源としてのアジ化ナトリウム21を配設し(正極空間10の空間部分にはアジ化ナトリウム21の熱分解により発生した窒素ガスG1が存在し、窒素ガスG1が正極空間10の圧力発生源としての気体となる)、負極容器4内に負極活物質としてのナトリウム22及び圧力(負極側圧力)発生源としての気体G2を配し、負極容器4の底部に設けられた小孔5を経由して、溶融したナトリウム22を気体G2の圧力により負極容器4と固体電解質管3との間の空間(負極空間)11に供給し、放電時にはナトリウム22がナトリウムイオンとなって負極容器4から小孔5及び固体電解質管3を経由して正極空間10へ移動し、充電時にはナトリウムイオンが正極空間10から固体電解質管3及び小孔5を経由して負極容器4へ移動するものである。
【0013】つまり、放電時には、負極活物質であるナトリウム22が外部回路に電子を放出してナトリウムイオンとなり、ナトリウムイオンとなったナトリウム22が固体電解質管3内を透過して正極側に移動し、正極活物質である硫黄20および外部回路から供給される電子と反応して多硫化ナトリウムを生成することによって、2V程度の電圧を発生させる。
【0014】一方、充電時には外部回路から電圧を印加することによって、多硫化ナトリウムが外部回路に電子を放出して硫黄とナトリウムイオンを生成し、固体電解質管3内を透過して負極容器4内に移動したナトリウムイオンを、外部回路から供給する電子と反応させて電気的に中性化する(ナトリウム22となる)ことにより、電気エネルギーを化学エネルギーに変換する。
【0015】そして、正極容器2と固体電解質管3とは、絶縁リング30及び正極金具31を介して結合されている。また、絶縁リング30の上端面には負極金具32が熱圧接合され、この負極金具32に負極蓋33が溶接固定されている。正極容器2の外周上部と負極蓋33の上面には、それぞれ正極側端子34と負極側端子35が設けられている。また、負極容器4の外側で、固体電解質管3の内側に、有底筒状の安全管6が備えられている。そして、上述した構造のNAS電池(単電池)はサヤ管40に収納されている。
【0016】本実施の形態のNAS電池は、上述した構造のNAS電池であって、完全充電時の、負極側圧力が1013hPa以下であり、かつ負極側圧力が正極側圧力より大きく、完全充電時から放電完了時までを通じて、窒素ガスG1の圧力と負極側圧力発生源としての気体G2の圧力との差の絶対値が1000hPa以下である。完全充電時の、負極側圧力は好ましくは1013hPa以下、更に好ましくは900hPa以下である。尚、これらの圧力条件は、NAS電池使用時におけるものであり、300〜350℃の範囲のいずれかの温度において本実施の形態の圧力条件が満たされていればよい。
【0017】このように、完全充電時の、負極側圧力発生源としての気体G2の圧力が1013hPa以下であるため、負極容器4中のナトリウム22が電池外部に漏洩することを抑制することができる。そして、負極側圧力発生源としての気体G2の圧力を窒素ガスG1の圧力より大きくすることで、エネルギー密度が大きく、放電時の負極側圧力発生源としての気体G2の圧力の下降及び窒素ガスG1の圧力の上昇の程度が大きくなっても、負極側圧力発生源としての気体G2の圧力が下降し過ぎず、かつ窒素ガスG1の圧力が上昇し過ぎないようにすることができる。さらに、完全充電時から放電完了時までを通じて、窒素ガスG1の圧力と負極側圧力発生源としての気体の圧力G2との差の絶対値が1000hPa以下であるため、固体電解質管3が破損した場合等にも活物質である硫黄20、多硫化ナトリウム、ナトリウム22が電池外部に漏洩することを抑制することができる。
【0018】本実施の形態のNAS電池は、正極空間2の体積に対する硫黄20の体積の比率(充填率)を69〜73%とし、負極容器4の体積に対するナトリウム22の体積の比率(充填率)を96〜98%とすることにより、エネルギー密度を大きくした場合に好適に使用される。正極空間2の体積に対する硫黄20の体積の比率(充填率)が69%より小さい場合は、エネルギー密度が小さくなることがあり、73%より大きい場合は、放電完了時の正極側圧力が高くなり負極側圧力との絶対圧の差が1000hPa以上となることがある。また、負極容器4の体積に対するナトリウム22の体積の比率(充填率)が96%より小さい場合はエネルギー密度が小さくなることがあり、98%より大きい場合は、負極容器4へのナトリウム充填後のナトリウム中の混入ガスの真空脱気工程でナトリウム液面の上昇によりナトリウム22が真空脱気装置に付着し装置が汚損することがある。
【0019】本実施の形態のNAS電池において、正極容器2を構成する材料は特に限定されるものではないが、アルミニウム又はアルミニウム合金から構成されることが好ましい。
【0020】固体電解質管3は、ナトリウムイオンを選択的に透過させる機能を有する、β−アルミナ、β”−アルミナ等から構成されることが好ましい。
【0021】安全管6を構成する材料は特に限定されるものではないが、アルミニウムが好ましい。安全管6は、冷間鍛造(衝撃後方押出し)法により、円板上のアルミニウム片から有底円筒形状のアルミニウム管に加工するか、円筒状(底なし)のアルミニウム管をスピニング加工することにより有底円筒形状に加工することが好ましい。
【0022】負極容器4を構成する材料は特に限定されるものではないが、ステンレス(SUS304等)、アルミニウム合金、SPCC(冷間圧延鋼鈑)、が好ましい。
【0023】負極側圧力発生源としての気体G2は不活性ガスであることが好ましく、更に好ましくは、アルゴン又はアルゴンを含有する不活性ガスの混合ガスである。気体G2は金属製容器(材料は負極容器4と同じ)内に密封され、前記容器に付設された紫外線硬化樹脂で封口された気体出口から加熱中に紫外線硬化樹脂を破裂させ、負極容器中に出てくる。
【0024】正極側圧力発生源としては、加熱分解によって窒素ガスを発生するアジ化ナトリウム、もしくは窒素、アルゴンなどの不活性ガスが好ましい。更に好ましくは、アジ化ナトリウムであり、これは正極容器の気密封口溶接を高信頼の電子ビーム溶接で真空中で実施できるからである。窒素、アルゴンの気体の場合は、前記気密封口溶接を窒素、アルゴンの気体雰囲気下で行う必要があり、信頼性の高い溶接方法の適用が困難である。
【0025】硫黄20及びアジ化ナトリウム21はカーボンマット等の導電材に含浸されていることが好ましい。
【0026】固体電解質管3と安全管6との間隙(半径の差)は、30〜100μmが好ましく、50〜80μmが更に好ましい。30μmより小さいと圧力損失が大きくなるためナトリウムが移動し難くなることがある。100μm以下であることが安全上好ましい。
【0027】絶縁リング30を構成する材料は特に限定されるものではないが、α−アルミナが好ましい。
【0028】本実施の形態のNAS電池は、以下のように作製することができる。
【0029】有底円筒状のアルミニウム製の正極容器2の上端部の内側面に、α−アルミナ製の絶縁リング30を正極金具31を介して熱圧接合し、絶縁リング30の上面に負極金具32を熱圧接合する。正極容器2内にカーボンマットを挿入し、溶融した硫黄20及びアジ化ナトリウム21を含浸させて、その内側に有底円筒状のβ−アルミナ製の固体電解質管3を挿入し固体電解質管3の上端部の外側面を絶縁リング30の内側面に接合固定する。このとき、硫黄20の体積が正極容器2の体積に対して69〜73%になるようにする。正極空間10内の窒素ガスG1の圧力はアジ化ナトリウム21の添加量で調節し、負極側圧力発生源としての気体(気体G2)の圧力より小さくなるようにする。ここで、窒素ガスG1の圧力とは、正極空間10内の全圧力をいい、硫黄20の蒸気圧と窒素ガスの圧力の合計をいう。固体電解質管3の内側に有底円筒状のアルミニウム製の安全管6を配設し、その内側に有蓋かつ有底円筒状のステンレス製の負極容器4を配設する。安全管6は、冷間鍛造(衝撃後方押出し)法により得られる。負極容器4にはナトリウム22及びアルゴンガス(気体G2:負極側圧力発生源としての気体)を挿入しておく。このときのアルゴンガスの圧力は、完全充電時に1013hPa以下となるようにする。完全充電とは、正極の活物質が100%硫黄となったときの状態のことをいう。また、ナトリウム22の体積が負極容器4の体積に対して96〜98%になるようにする。負極容器4の底面には小孔5を形成しておく。負極金具32の内周側に負極蓋33を溶接し、正極金具31の上部に正極側端子34を、そして負極金具32の上部に負極側端子35をそれぞれ溶接する。
【0030】上述のように作製した、本実施の形態のNAS電池は以下のように放充電される。
【0031】放電時には、負極空間11内のアルゴンガスの圧力により負極容器4内のナトリウム22が小孔5を通じて安全管6内に供給され、供給されたナトリウム22により安全管6が満たされ、さらにオーバーフローしたナトリウム22が、固体電解質管3と安全管6との間の空間に供給される。固体電解質管3と安全管6との間に供給されたナトリウム22のうち、負極空間11において負極側端子35を通じて外部回路に電子を放出してナトリウムイオンとなっているものは、固体電解質管3を透過(経由)し、正極容器2内に入り、硫黄20及び正極側端子34を通じて外部回路から供給される電子と反応して多硫化ナトリウムを生成する。これにより、2V程度の電圧を発生させることができる。
【0032】充電時には、正極側端子34及び負極側端子35を通じて、外部回路から電圧を印加すると、多硫化ナトリウムが正極側端子34を通じて外部回路に電子を放出して硫黄とナトリウムイオンを生成し、生成したナトリウムイオンが固体電解質管3を透過(経由)して固体電解質管3と安全管6との間の空間に移動する。固体電解質管3と安全管6との間の空間に移動したナトリウムイオンは、安全管6の上端部を乗り越えて内側に移動し、小孔5から負極容器4内に移動する。そして負極側端子35を通じて外部回路から供給される電子と反応して電気的に中性化する(ナトリウム22となる)ことにより、電気エネルギーを化学エネルギーに変換する。
【0033】本実施の形態において、例えば、正極容器2内の窒素ガスG1の圧力及び硫黄22の蒸気圧の合計が、完全充電時に400hPa、放電完了時に1050hPaであり、負極容器4内のアルゴンガス(気体G2)の圧力が、完全充電時に800hPa、放電完了時に80hPaであるとすると、正極容器2内の窒素ガスG1の圧力及び硫黄22の蒸気圧の合計は、略単調増加(放電中、一時的に僅かに減少する場合もあるが、完全充電時より低下することはない)であり、負極容器4内のアルゴンガス(気体G2)の圧力は略単調減少であるため、完全充電時から放電完了時までの間において、上記正極容器2内の合計圧力と負極容器4内のアルゴンガスの圧力との差の絶対値は、1000hPaを超えることはない。つまり、完全充電時の圧力差の絶対値が400hPa(800hPa−400hPa)であり、放電完了時の圧力差の絶対値が970hPa(1050hPa−80hPa)であるので、完全充電時から放電完了時までの間における、最大の圧力差の絶対値は970hPaとなる。本実施の形態においては、完全充電時には、正極容器2内の合計圧力の値が、負極容器4内のアルゴンガスの圧力より小さくし、放電完了時には、正極容器2内の合計圧力の値が、負極容器4内のアルゴンガスの圧力より大きくすることにより、それぞれの圧力の変化量が大きいにもかかわらず、それぞれの圧力の差の絶対値を1000hPa以下と小さくすることができる。
【0034】
【実施例】以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
【0035】
(実施例1)
以下のように、図1に示すようなナトリウム−硫黄電池1を作製した。外径88mm、全長500mm、肉厚2mmの有底円筒状のアルミニウム製の正極容器2の上端部の内側面に、α−アルミナ製の絶縁リング30を正極金具31を介して熱圧接合し、絶縁リング30の上面に負極金具32を熱圧接合した。正極容器2内にカーボンマットを挿入し、溶融した硫黄20及びアジ化ナトリウム21を含浸させて、その内側に、外径59mm、全長480mm、肉厚1mmの有底円筒状のβ−アルミナ製の固体電解質管3を挿入し固体電解質管3の上端部の外側面を絶縁リング30の内側面に接合固定した。このとき、硫黄20の体積が正極容器2の体積に対して71%となるようにした。正極空間10内の窒素ガスG1の圧力は、硫黄20の蒸気圧と、発生した窒素ガスG1による圧力の合計(完全充電時の正極側圧力)が400hPa程度になるようにした。固体電解質管3の内側に、外径56mm、全長480mm、肉厚2mmの有底円筒状のアルミニウム製の安全管6を配設し、その内側に、外径51mm、全長470mm、肉厚0.5mmの有蓋かつ有底円筒状のステンレス製の負極容器4を配設した。安全管6は、冷間鍛造(衝撃後方押出し)法により得た。負極容器4にはナトリウム22及びアルゴンガスを挿入した。このときのアルゴンガスの圧力(完全充電時の負極側圧力)は、完全充電時に800hPa程度になるようにした。また、ナトリウム22の体積が負極容器4の体積に対して97%になるようにした。負極容器4の底面には小孔5を形成した。負極金具32の内周側に負極蓋33を溶接し、正極金具31の上部に正極側端子34を、そして負極金具32の上部に負極側端子35をそれぞれ溶接した。以上のようにして、実施例1のナトリウム−硫黄電池(単電池)を30本作製した。
【0036】実施例1のナトリウム−硫黄電池1は、放電完了時には、正極容器2内の窒素ガスG1の圧力及び硫黄22の蒸気圧の合計(放電完了時の正極側圧力)は1050hPaとなり、負極容器4内のアルゴンガス(気体G2)の圧力(放電完了時の負極側圧力)は、80hPaとなった。また、放電容量は750Ahであった。
【0037】
(比較例1,2)
硫黄充填率、ナトリウム充填率、放電容量、負極側圧力(完全充電時、放電完了時)及び正極側圧力(完全充電時、放電完了時)を、それぞれ表1に示す値とする点以外は、実施例1と同様にして、比較例1,2のナトリウム−硫黄電池(単電池)を、それぞれ30本ずつ作製した。
【0038】実施例1及び比較例1,2のナトリウム−硫黄電池について、以下の方法により過充電破壊試験を行い、活物質漏洩の有無について評価を行った。結果を表1に示す。
【0039】
(過充電破壊試験)
電気炉を使用して運転温度域である320℃に加熱した充電完了状態の単電池にさらに充電電流80Aで固体電解質が破損するまで充電を行う。その後24時間、単電池表面温度、電圧を計測し、室温まで冷却する。室温状態の単電池の外観観察から活物質漏洩の有無を調査する。
【0040】
【表1】
【0041】表1に記載のように、比較例1は固体電解質管を過充電破壊により破壊させた場合でも、単電池からの活物質漏洩は試験数30(本)に対してゼロ(本)である。比較例1は、完全充電時の負極側圧力と完全充電時の正極側圧力とが、同じ値であるため、エネルギー密度が大きい場合には、負極圧力と正極圧力との圧力差が大きくなり、問題となるものであるが、硫黄及びナトリウムの充填率が小さいため、活物質が漏洩した単電池はなかった。比較例2は比較例1より活物質の充填率を向上させて電池容量を620Ahから750Ahへと増加させた単電池であるが、これにともない正極側、負極側の圧力変動が大きくなり正負極の圧力差は最大2020hPaとなる。完全充電時の負極側圧力が比較例2で800hPaと比較例1より大きくしたのは、放電完了時の圧力を80hPaとしたためである。これはナトリウムを安定的に負極容器から固体電解質管へ供給するために必要な圧力である。比較例2では、過充電破壊試験において試験数30(本)に対して2(本)の単電池で活物質漏洩が認められた。実施例1では電池容量を比較例2と同様に750Ahとしたが、正負極の圧力差を最大1000hPa以下としたため、過充電破壊試験において試験数30(本)に対して活物質漏洩はゼロ(本)であった。
【0042】
【発明の効果】上述したように、本発明のナトリウム−硫黄電池によれば、完全充電時の、負極側圧力発生源としての気体の圧力が1013hPa以下であるため、負極容器中のナトリウムが外部に漏洩することを抑制することができる。そして、負極側圧力発生源としての気体の圧力が窒素ガスの圧力より大きいため、エネルギー密度が大きくなり、放電時の負極側圧力発生源としての気体の圧力の下降及び窒素ガスの圧力の上昇の程度が大きくなっても、負極側圧力発生源としての気体の圧力が下降し過ぎず、かつ窒素ガスの圧力が上昇し過ぎないようにすることができる。さらに、完全充電時から放電完了時までを通じて、窒素ガスの圧力と負極側圧力発生源としての気体の圧力との差の絶対値が1000hPa以下であるため、固体電解質管が破損した場合等にも硫黄が漏洩することをより確実に防止することができる。
【図面の簡単な説明】
【図1】本発明のナトリウム−硫黄電池(NAS電池)の一の実施の形態を模式的に示す、円筒状の正極容器の軸方向(鉛直方向)を含む平面で切断した断面図である。
【図2】従来のナトリウム−硫黄電池(NAS電池)を模式的に示す、円筒状の正極容器の軸方向(鉛直方向)を含む平面で切断した断面図である。
【符号の説明】
1,101…ナトリウム−硫黄電池(NAS電池)、2,102…正極容器、3,103…固体電解質管、4,104…負極容器、5,105…小孔、6,106…安全管、10,110…正極空間、11,111…負極空間、20,120…硫黄、21,121…アジ化ナトリウム、22,122…ナトリウム、30,130…絶縁リング、31,131…正極金具、32,132…負極金具、33,133…負極蓋、34,134…正極側端子、35,135…負極側端子、40,140…サヤ管、G1,G10…窒素ガス、G2,G20…気体。[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sodium-sulfur battery, and more particularly, to a sodium-sulfur battery capable of more reliably preventing active material from leaking even when energy density is improved.
[0002]
2. Description of the Related Art A sodium-sulfur battery (hereinafter also referred to as a "NAS battery") is a sealed high-temperature secondary battery operated at a high temperature of 300 to 350 ° C., and comprises a negative electrode active material, sodium, and a positive electrode. It has a structure in which sulfur as an active material is isolated and stored via a solid electrolyte (for example, β-alumina, β ″ -alumina, etc.) having a function of selectively transmitting sodium ions.
For example, a NAS battery 101 shown in FIG. 2 has a bottomed cylindrical positive electrode container 102, a bottomed cylindrical solid electrolyte tube 103 provided inside the positive electrode container 102, and a solid electrolyte tube 103. A bottomed cylindrical negative electrode container 104 provided with a small hole 105 at the bottom disposed inside; a positive electrode space 110 (positive electrode space) formed between the positive electrode container 102 and the solid electrolyte tube 103; A sulfur 120 as an active material and a sodium azide 121 as a pressure (positive pressure) generating source for generating nitrogen gas G10 by thermal decomposition are provided, and sodium 122 and a pressure (negative pressure) are generated in the negative electrode container 104. A gas G20 as a source is provided, and molten sodium 122 is supplied to the negative electrode container 104 and the solid electrolyte by the pressure of the gas G20 via a small hole 105 provided at the bottom of the negative electrode container 104. It is supplied to a space (negative electrode space) 111 between the tube 103 and sodium 122 at the time of discharge and becomes sodium ions, moves from the negative electrode container 104 to the positive electrode space 110 via the small holes 105 and the solid electrolyte tube 103, and is charged. Sometimes, sodium ions move from the positive electrode space 110 to the negative electrode container 104 via the solid electrolyte tube 103 and the small holes 105. In FIG. 2, 130 denotes an insulating ring, 131 denotes a positive electrode fitting, 132 denotes a negative electrode fitting, 133 denotes a negative electrode cover, 134 denotes a positive terminal, and 135 denotes a negative terminal.
[0004] That is, during discharge, sodium 122 as a negative electrode active material emits electrons to an external circuit to become sodium ions, and the sodium 122 converted to sodium ions permeates through the solid electrolyte tube 103 and moves to the positive electrode side. In addition, a voltage of about 2 V is generated by reacting with sulfur 120 as a positive electrode active material and electrons supplied from an external circuit to generate sodium polysulfide.
On the other hand, during charging, by applying a voltage from an external circuit, sodium polysulfide emits electrons to the external circuit to generate sulfur and sodium ions, which pass through the solid electrolyte tube 103 and pass through the negative electrode container 104. Reacts with the electrons supplied from the external circuit and neutralizes the ions (to become sodium 122), thereby converting electrical energy into chemical energy.
A NAS battery having such a structure has attracted attention as a power storage battery because it has a capability of storing a large amount of power. In order to increase the amount of stored power of the NAS battery, it is preferable to increase the electric energy density of the NAS battery. As a method, the filling density of sulfur of the positive electrode active material and sodium of the negative electrode active material is reduced. To raise it. The higher the packing density of sulfur and sodium, the greater the amount of material that is converted to electricity, and therefore the greater the amount of power stored. However, in this case, when the amount of the substance to be changed increases, the pressures of the positive electrode gas and the negative electrode gas greatly change accordingly, for example, the pressure of the positive electrode gas increases and the pressure of the positive electrode gas and the pressure of the negative electrode gas increase. When the difference is large, when the solid electrolyte tube is broken, there is a possibility that sulfur, sodium, and sodium polysulfide as active materials may leak out of the battery. In addition, when the pressure of the negative electrode gas is higher than the atmospheric pressure, sodium may leak to the outside of the battery when a failure occurs in the sealing portion of the negative electrode space (for example, Patent Documents 1 and 2). reference).
[0007]
[Patent Document 1]
Japanese Patent Publication No. 7-82877
[Patent Document 2]
JP-A-2-234363
[0008]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art. It is an object of the present invention to provide an active material (sodium and sodium) even if the energy density is improved. An object of the present invention is to provide a sodium-sulfur battery in which leakage of sulfur is more reliably prevented.
[0009]
In order to achieve the above object, the present invention provides the following sodium-sulfur battery.
[1] A bottomed cylindrical positive electrode container, a bottomed cylindrical solid electrolyte tube provided inside the positive electrode container, and a small hole provided in a bottom provided inside the solid electrolyte tube. And a pressure (positive electrode side) for generating sulfur and an inert gas as a positive electrode active material in a space (positive electrode space) formed between the positive electrode container and the solid electrolyte tube. Pressure) a sodium azide or gas as a source, and sodium and a gas as a pressure (negative electrode side) source in the negative electrode container, and the small gas provided at the bottom of the negative electrode container. Via a hole, the molten sodium is supplied to the space between the negative electrode container and the solid electrolyte tube by the pressure of the gas, and at the time of discharge, the sodium becomes sodium ions from the negative electrode container to the small holes and The solid electrolyte A sodium-sulfur battery that moves to the positive electrode space via a tube, and when charged, the sodium ions move from the positive electrode space to the negative electrode container via the solid electrolyte tube and the small holes; The negative pressure is 1013 hPa or less, and the negative pressure is greater than the positive pressure, and the difference between the positive pressure and the negative pressure during the period from the time of complete charge to the time of completion of discharge. A sodium-sulfur battery having an absolute value of 1000 hPa or less.
[2] The sodium-sulfur battery according to [1], further comprising a bottomed tubular safety tube between the negative electrode container and the solid electrolyte tube.
[3] The sodium-sulfur battery according to [1] or [2], wherein the positive electrode container is made of a material containing aluminum.
[4] The sodium-sulfur battery according to any one of [1] to [3], wherein the solid electrolyte tube is made of a material containing β-alumina.
[5] The sodium-sulfur battery according to any one of [1] to [4], wherein the gas as the negative electrode side pressure generation source contains argon.
[6] The sodium-sulfur battery according to any one of [2] to [5], wherein the safety tube is made of a material containing aluminum.
As described above, since the pressure of the gas as the negative electrode side pressure generating source at the time of full charge is 1013 hPa or less, it is possible to suppress the sodium in the negative electrode container from leaking out of the battery. And, since the negative electrode side pressure is larger than the positive electrode side pressure, the energy density is increased, and even if the negative electrode side pressure drop and the positive electrode side pressure increase during discharge increase, the negative electrode side pressure does not drop too much, In addition, the positive electrode side pressure can be prevented from excessively increasing. Further, since the absolute value of the difference between the positive electrode side pressure and the negative electrode side pressure is 1000 hPa or less from the time of complete charge to the time of completion of discharge, active materials such as sulfur, sodium, Leakage of sodium polysulfide to the outside of the battery can be suppressed.
[0011]
Embodiments of the present invention will now be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and does not depart from the spirit of the present invention. It should be understood that design changes, improvements, and the like may be made as appropriate based on the ordinary knowledge of those skilled in the art.
FIG. 1 is a cross-sectional view schematically showing one embodiment of a sodium-sulfur battery (NAS battery) of the present invention, which is cut along a plane including an axial direction (vertical direction) of a cylindrical positive electrode container. It is. As shown in FIG. 1, a NAS battery 1 includes a bottomed (cylindrical) positive electrode container 2, a bottomed (cylindrical) solid electrolyte tube 3 disposed inside the positive electrode container 2, A bottomed (cylindrical) negative electrode container 4 provided with small holes 5 at the bottom disposed inside the electrolyte tube 3, and a space formed between the positive electrode container 2 and the solid electrolyte tube 3 (Positive electrode space) 10 is provided with sulfur 20 as a positive electrode active material and sodium azide 21 as a pressure (positive pressure) generating source for generating nitrogen gas G1 by thermal decomposition (in the space of the positive electrode space 10). The nitrogen gas G1 generated by the thermal decomposition of the sodium azide 21 is present, and the nitrogen gas G1 becomes a gas as a pressure source in the positive electrode space 10). Discharge gas G2 as a source) The molten sodium 22 is supplied to the space (negative electrode space) 11 between the negative electrode container 4 and the solid electrolyte tube 3 by the pressure of the gas G2 via the small holes 5 provided at the bottom of the negative electrode container 4, and discharge is performed. At times, sodium 22 becomes sodium ions and moves from the negative electrode container 4 to the positive electrode space 10 via the small holes 5 and the solid electrolyte tube 3, and at the time of charging, sodium ions pass through the solid electrolyte tubes 3 and the small holes 5 from the positive electrode space 10. It moves to the negative electrode container 4 via the negative electrode.
That is, at the time of discharge, sodium 22, which is a negative electrode active material, emits electrons to an external circuit to become sodium ions, and the sodium ions, which have become sodium ions, pass through the solid electrolyte tube 3 and move to the positive electrode side. Then, a voltage of about 2 V is generated by reacting with sulfur 20 as a positive electrode active material and electrons supplied from an external circuit to generate sodium polysulfide.
On the other hand, during charging, by applying a voltage from an external circuit, sodium polysulfide emits electrons to the external circuit to generate sulfur and sodium ions, which pass through the solid electrolyte tube 3 and pass through the negative electrode container 4. Reacts with the electrons supplied from the external circuit to neutralize electrically (to become sodium 22), thereby converting electric energy into chemical energy.
The positive electrode container 2 and the solid electrolyte tube 3 are connected via an insulating ring 30 and a positive electrode fitting 31. A negative electrode fitting 32 is joined to the upper end surface of the insulating ring 30 by heat and pressure, and a negative electrode lid 33 is fixed to the negative electrode fitting 32 by welding. A positive terminal 34 and a negative terminal 35 are provided on the outer periphery of the positive electrode container 2 and on the upper surface of the negative electrode lid 33, respectively. A bottomed cylindrical safety tube 6 is provided outside the negative electrode container 4 and inside the solid electrolyte tube 3. The NAS battery (unit cell) having the above-described structure is housed in the sheath tube 40.
The NAS battery according to the present embodiment is a NAS battery having the above-described structure, in which the pressure on the negative electrode side is 1013 hPa or less and the pressure on the negative electrode side is larger than the positive electrode side pressure when fully charged. From the time when the discharge is completed, the absolute value of the difference between the pressure of the nitrogen gas G1 and the pressure of the gas G2 as the negative pressure source is 1000 hPa or less. The pressure on the negative electrode side at the time of full charge is preferably 1013 hPa or less, more preferably 900 hPa or less. Note that these pressure conditions are those when the NAS battery is used, and it is sufficient that the pressure conditions of the present embodiment are satisfied at any temperature in the range of 300 to 350 ° C.
As described above, since the pressure of the gas G2 as the negative electrode side pressure generating source at the time of full charge is 1013 hPa or less, it is possible to prevent the sodium 22 in the negative electrode container 4 from leaking out of the battery. . By making the pressure of the gas G2 as the negative pressure source greater than the pressure of the nitrogen gas G1, the energy density is high, and the pressure of the gas G2 as the negative pressure source during discharge decreases and the nitrogen gas G1 is discharged. , The pressure of the gas G2 as the negative pressure source does not drop too much and the pressure of the nitrogen gas G1 does not rise too much. Further, since the absolute value of the difference between the pressure of the nitrogen gas G1 and the pressure G2 of the gas as the negative electrode side pressure generation source is 1000 hPa or less from the time of complete charge to the time of completion of discharge, the solid electrolyte tube 3 is damaged. In addition, it is possible to suppress the leakage of the active material sulfur 20, sodium polysulfide, and sodium 22 to the outside of the battery.
In the NAS battery of this embodiment, the ratio of the volume of sulfur 20 to the volume of the positive electrode space 2 (filling ratio) is set to 69 to 73%, and the ratio of the volume of sodium 22 to the volume of the negative electrode container 4 (filling ratio). ) Of 96 to 98% is suitably used when the energy density is increased. When the ratio of the volume of sulfur 20 to the volume of the positive electrode space 2 (filling rate) is less than 69%, the energy density may be low. When the ratio is more than 73%, the positive electrode side pressure at the time of completion of discharge may increase. The difference between the negative pressure and the absolute pressure may be 1000 hPa or more. When the ratio of the volume of sodium 22 to the volume of the negative electrode container 4 (filling rate) is less than 96%, the energy density may be low. In the vacuum degassing step of the mixed gas in sodium, the sodium level rises during the vacuum degassing step, so that sodium 22 adheres to the vacuum degassing device, and the device may be soiled.
In the NAS battery of the present embodiment, the material constituting the positive electrode container 2 is not particularly limited, but is preferably made of aluminum or an aluminum alloy.
The solid electrolyte tube 3 is preferably made of β-alumina, β ″ -alumina, or the like, which has a function of selectively transmitting sodium ions.
The material constituting the safety tube 6 is not particularly limited, but aluminum is preferable. The safety pipe 6 is formed by cold forging (impact rearward extrusion) from a piece of aluminum on a disk into a cylindrical aluminum pipe with a bottom or spinning a cylindrical (bottom) aluminum pipe. It is preferable to work into a bottom cylindrical shape.
The material constituting the negative electrode container 4 is not particularly limited, but is preferably stainless steel (SUS304 or the like), an aluminum alloy, or SPCC (cold rolled steel sheet).
The gas G2 as the negative pressure source is preferably an inert gas, more preferably argon or a mixed gas of an inert gas containing argon. The gas G2 is sealed in a metal container (the material is the same as that of the negative electrode container 4), and the UV-curable resin is ruptured during heating from a gas outlet sealed with the ultraviolet-curable resin attached to the container, so that the gas G2 enters the negative electrode container. Come out.
As the positive electrode side pressure generating source, sodium azide which generates nitrogen gas by thermal decomposition, or an inert gas such as nitrogen or argon is preferable. More preferably, sodium azide is used, because the hermetic opening welding of the positive electrode container can be performed in a vacuum by highly reliable electron beam welding. In the case of using a gas of nitrogen or argon, it is necessary to perform the hermetic sealing welding in a gas atmosphere of nitrogen or argon, and it is difficult to apply a highly reliable welding method.
The sulfur 20 and sodium azide 21 are preferably impregnated in a conductive material such as carbon mat.
The gap (difference in radius) between the solid electrolyte tube 3 and the safety tube 6 is preferably 30 to 100 μm, more preferably 50 to 80 μm. If it is smaller than 30 μm, the pressure loss increases, so that it may be difficult for sodium to move. The thickness is preferably 100 μm or less from the viewpoint of safety.
The material constituting the insulating ring 30 is not particularly limited, but α-alumina is preferred.
The NAS battery of the present embodiment can be manufactured as follows.
An α-alumina insulating ring 30 is hot-press bonded to the inner surface of the upper end of the bottomed cylindrical aluminum positive electrode container 2 via a positive electrode fitting 31, and a negative electrode fitting is attached to the upper surface of the insulating ring 30. 32 are joined by heat and pressure. A carbon mat is inserted into the positive electrode container 2 and impregnated with molten sulfur 20 and sodium azide 21, and a bottomed cylindrical solid electrolyte tube 3 made of β-alumina is inserted into the inside thereof to form a solid electrolyte tube 3. The outer surface of the upper end is joined and fixed to the inner surface of the insulating ring 30. At this time, the volume of the sulfur 20 is set to be 69 to 73% with respect to the volume of the positive electrode container 2. The pressure of the nitrogen gas G1 in the positive electrode space 10 is adjusted by the addition amount of the sodium azide 21 so as to be lower than the pressure of the gas (gas G2) as the negative electrode side pressure generation source. Here, the pressure of the nitrogen gas G1 refers to the total pressure in the positive electrode space 10, and refers to the sum of the vapor pressure of the sulfur 20 and the pressure of the nitrogen gas. A bottomed cylindrical safety tube 6 made of aluminum is disposed inside the solid electrolyte tube 3, and a closed-bottomed cylindrical negative electrode container 4 made of stainless steel is disposed inside. The safety pipe 6 is obtained by a cold forging (impact backward extrusion) method. Sodium 22 and argon gas (gas G2: gas as a negative electrode side pressure generation source) are inserted into the negative electrode container 4. At this time, the pressure of the argon gas is set to be 1013 hPa or less when fully charged. Full charge refers to a state when the active material of the positive electrode has become 100% sulfur. Further, the volume of sodium 22 is set to 96 to 98% of the volume of negative electrode container 4. A small hole 5 is formed on the bottom surface of the negative electrode container 4. The negative electrode lid 33 is welded to the inner peripheral side of the negative electrode fitting 32, the positive terminal 34 is welded to the upper part of the positive electrode fitting 31, and the negative terminal 35 is welded to the upper part of the negative electrode fitting 32.
The NAS battery of the present embodiment produced as described above is discharged and charged as follows.
At the time of discharge, the sodium 22 in the negative electrode container 4 is supplied into the safety tube 6 through the small hole 5 by the pressure of the argon gas in the negative electrode space 11, and the safety tube 6 is filled with the supplied sodium 22. The overflowed sodium 22 is supplied to the space between the solid electrolyte tube 3 and the safety tube 6. Of the sodium 22 supplied between the solid electrolyte tube 3 and the safety tube 6, the one that emits electrons to an external circuit through the negative terminal 35 in the negative electrode space 11 to become sodium ions is the solid electrolyte tube 3. To enter the positive electrode container 2 and react with sulfur 20 and electrons supplied from an external circuit through the positive electrode side terminal 34 to generate sodium polysulfide. As a result, a voltage of about 2 V can be generated.
At the time of charging, when a voltage is applied from an external circuit through the positive terminal 34 and the negative terminal 35, sodium polysulfide releases electrons to the external circuit through the positive terminal 34 to generate sulfur and sodium ions. The generated sodium ions permeate (pass) through the solid electrolyte tube 3 and move to the space between the solid electrolyte tube 3 and the safety tube 6. The sodium ions that have moved into the space between the solid electrolyte tube 3 and the safety tube 6 move inward beyond the upper end of the safety tube 6 and move from the small hole 5 into the negative electrode container 4. Then, it reacts with electrons supplied from an external circuit through the negative electrode side terminal 35 to be electrically neutralized (to become sodium 22), thereby converting electric energy into chemical energy.
In the present embodiment, for example, the sum of the pressure of the nitrogen gas G1 and the vapor pressure of the sulfur 22 in the positive electrode container 2 is 400 hPa when fully charged, 1050 hPa when the discharge is completed, and the argon gas in the negative electrode container 4 Assuming that the pressure of (gas G2) is 800 hPa when fully charged and 80 hPa when discharge is completed, the sum of the pressure of nitrogen gas G1 in the positive electrode container 2 and the vapor pressure of sulfur 22 increases substantially monotonically (during discharge, temporarily The pressure of the argon gas (gas G2) in the negative electrode container 4 is substantially monotonically decreased, but the discharge is started from the time of full charge. Until completion, the absolute value of the difference between the total pressure in the positive electrode container 2 and the pressure of the argon gas in the negative electrode container 4 does not exceed 1000 hPa. That is, since the absolute value of the pressure difference at the time of complete charge is 400 hPa (800 hPa-400 hPa) and the absolute value of the pressure difference at the time of discharge completion is 970 hPa (1050 hPa-80 hPa), The absolute value of the maximum pressure difference between them is 970 hPa. In the present embodiment, the value of the total pressure in the positive electrode container 2 is smaller than the pressure of the argon gas in the negative electrode container 4 at the time of complete charging, and the value of the total pressure in the positive electrode container 2 is By making the pressure greater than the pressure of the argon gas in the negative electrode container 4, the absolute value of the difference between the respective pressures can be reduced to 1000 hPa or less even though the amount of change in each pressure is large.
[0034]
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
[0035]
(Example 1)
A sodium-sulfur battery 1 as shown in FIG. 1 was produced as follows. An insulating ring 30 made of α-alumina is hot-press bonded to the inner surface of the upper end of a cylindrical positive electrode container 2 made of aluminum having an outer diameter of 88 mm, a total length of 500 mm, and a thickness of 2 mm via a positive electrode fitting 31. A negative electrode fitting 32 was hot-press bonded to the upper surface of the insulating ring 30. A carbon mat is inserted into the positive electrode container 2 and impregnated with molten sulfur 20 and sodium azide 21. Inside thereof, a bottomed cylindrical β-alumina having an outer diameter of 59 mm, a total length of 480 mm, and a wall thickness of 1 mm is formed. The solid electrolyte tube 3 was inserted, and the outer surface of the upper end of the solid electrolyte tube 3 was joined and fixed to the inner surface of the insulating ring 30. At this time, the volume of the sulfur 20 was set to be 71% with respect to the volume of the positive electrode container 2. The pressure of the nitrogen gas G1 in the positive electrode space 10 was set so that the sum of the vapor pressure of the sulfur 20 and the pressure of the generated nitrogen gas G1 (positive pressure on full charge) was about 400 hPa. Inside the solid electrolyte tube 3, a bottomed cylindrical aluminum safety tube 6 having an outer diameter of 56 mm, a total length of 480 mm, and a wall thickness of 2 mm is disposed, and an outer diameter of 51 mm, a total length of 470 mm and a wall thickness of 0. A stainless steel negative electrode container 4 with a 5 mm lid and a bottom was formed. The safety pipe 6 was obtained by a cold forging (impact backward extrusion) method. Sodium 22 and argon gas were inserted into the negative electrode container 4. At this time, the pressure of the argon gas (the pressure on the negative electrode side during full charge) was set to about 800 hPa during full charge. Further, the volume of sodium 22 was 97% with respect to the volume of negative electrode container 4. Small holes 5 were formed in the bottom surface of the negative electrode container 4. The negative electrode lid 33 was welded to the inner peripheral side of the negative electrode fitting 32, the positive electrode side terminal 34 was welded to the upper part of the positive electrode fitting 31, and the negative electrode side terminal 35 was welded to the upper part of the negative electrode fitting 32. As described above, 30 sodium-sulfur batteries (cells) of Example 1 were produced.
In the sodium-sulfur battery 1 of the first embodiment, when the discharge is completed, the sum of the pressure of the nitrogen gas G1 in the positive electrode container 2 and the vapor pressure of the sulfur 22 (the positive pressure at the time of completion of the discharge) becomes 1050 hPa. The pressure of the argon gas (gas G2) in the container 4 (the pressure on the negative electrode side when the discharge was completed) was 80 hPa. The discharge capacity was 750 Ah.
[0037]
(Comparative Examples 1 and 2)
Except that the sulfur filling rate, sodium filling rate, discharge capacity, negative pressure (when fully charged, when discharging is completed) and positive pressure (when fully charged, when discharging is completed) are as shown in Table 1, respectively, In the same manner as in Example 1, 30 sodium-sulfur batteries (unit cells) of Comparative Examples 1 and 2 were produced.
The sodium-sulfur batteries of Example 1 and Comparative Examples 1 and 2 were subjected to an overcharge destruction test according to the following method, and the presence or absence of active material leakage was evaluated. Table 1 shows the results.
[0039]
(Overcharge destruction test)
The charged single cell heated to 320 ° C., which is the operating temperature range, using an electric furnace is further charged at a charging current of 80 A until the solid electrolyte is damaged. Then, the cell surface temperature and voltage are measured for 24 hours and cooled to room temperature. The presence or absence of active material leakage is investigated by observing the appearance of the unit cell at room temperature.
[0040]
[Table 1]
As shown in Table 1, in Comparative Example 1, even when the solid electrolyte tube was broken by overcharge destruction, the leakage of the active material from the cell was zero (test) compared to the test number (test) of 30 (test). It is. In Comparative Example 1, since the negative pressure on the full charge and the positive pressure on the full charge have the same value, when the energy density is high, the pressure difference between the negative pressure and the positive pressure increases, Although a problem, there was no unit cell in which the active material leaked due to the small filling ratio of sulfur and sodium. Comparative Example 2 is a unit cell in which the filling rate of the active material is increased from Comparative Example 1 to increase the battery capacity from 620 Ah to 750 Ah. Is 2020 hPa at maximum. The reason why the pressure on the negative electrode side at the time of complete charging was 800 hPa in Comparative Example 2 which was higher than that in Comparative Example 1 is that the pressure at the time of completion of discharge was 80 hPa. This is the pressure required to stably supply sodium from the negative electrode container to the solid electrolyte tube. In Comparative Example 2, in the overcharge destruction test, leakage of the active material was observed in 2 (cells) of the unit cells for 30 (cells) in the test. In Example 1, the battery capacity was set to 750 Ah as in Comparative Example 2. However, since the pressure difference between the positive and negative electrodes was set to 1000 hPa or less at maximum, the leakage of the active material was zero (30) in the overcharge destruction test. Book).
[0042]
As described above, according to the sodium-sulfur battery of the present invention, since the pressure of the gas as the negative pressure source at the time of full charge is 1013 hPa or less, the sodium in the negative electrode container is externally charged. Leakage can be suppressed. Since the pressure of the gas as the negative pressure source is higher than the pressure of the nitrogen gas, the energy density is increased, and the pressure of the gas as the negative pressure source during discharge and the pressure of the nitrogen gas increase. Even if the degree becomes large, it is possible to prevent the pressure of the gas as the negative electrode side pressure generation source from dropping too much and the pressure of the nitrogen gas from rising too much. Furthermore, since the absolute value of the difference between the pressure of the nitrogen gas and the pressure of the gas as the negative pressure source is 1000 hPa or less from the time of complete charge to the time of completion of discharge, even when the solid electrolyte tube is damaged, Leakage of sulfur can be more reliably prevented.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing one embodiment of a sodium-sulfur battery (NAS battery) of the present invention, cut along a plane including an axial direction (vertical direction) of a cylindrical positive electrode container.
FIG. 2 is a cross-sectional view schematically showing a conventional sodium-sulfur battery (NAS battery) cut along a plane including an axial direction (vertical direction) of a cylindrical positive electrode container.
[Explanation of symbols]
1,101: sodium-sulfur battery (NAS battery), 2,102: positive electrode container, 3,103: solid electrolyte tube, 4,104: negative electrode container, 5,105: small hole, 6,106: safety tube, 10 110, positive electrode space, 11, 111 negative electrode space, 20, 120 sulfur, 21, 121 sodium azide, 22, 122 sodium, 30, 130 insulating ring, 31, 131 positive electrode fitting, 32, 132 ... Negative metal fittings, 33, 133. Negative electrode lid, 34, 134. Positive terminal, 35, 135. Negative terminal, 40, 140. Sheath tube, G1, G10. Nitrogen gas, G2, G20.