[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004176612A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2004176612A
JP2004176612A JP2002342932A JP2002342932A JP2004176612A JP 2004176612 A JP2004176612 A JP 2004176612A JP 2002342932 A JP2002342932 A JP 2002342932A JP 2002342932 A JP2002342932 A JP 2002342932A JP 2004176612 A JP2004176612 A JP 2004176612A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
amount
atmospheric pressure
oxygen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002342932A
Other languages
English (en)
Other versions
JP4422398B2 (ja
Inventor
Takahiro Uchida
孝宏 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002342932A priority Critical patent/JP4422398B2/ja
Publication of JP2004176612A publication Critical patent/JP2004176612A/ja
Application granted granted Critical
Publication of JP4422398B2 publication Critical patent/JP4422398B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】気圧などの環境条件に変化が生じた場合、または吸入空気量に変化が生じた場合であっても、最適な制御を行う。
【解決手段】内燃機関の排気を浄化する触媒32と、触媒32の上流又は下流における空燃比を検出する空燃比センサ35,36と、大気圧を検出する大気圧センサ44と、空燃比センサ35,36の出力値に基づいて、触媒32の酸素吸蔵量を算出する手段と、大気圧に基づいて酸素吸蔵量を補正する補正手段と、を備える。
【選択図】 図5

Description

【0001】
【発明の属する技術分野】
この発明は内燃機関の排気浄化装置に関し、特に、触媒の酸素吸蔵量に応じて制御を行う装置に適用して好適である。
【0002】
【従来の技術】
従来から、排気浄化触媒の酸素吸蔵量を検出し、酸素吸蔵量に基づいて制御を行う方法が知られている。例えば特開2001−329832号公報には、触媒上流の空燃比を強制的にリーン/リッチに変動させる制御(以下、アクティブA/F制御という)を行って、最大酸素吸蔵量を検出し、これに基づいて触媒の劣化状態を判別する方法が記載されている。
【0003】
アクティブA/F制御による触媒劣化判定方法は、空燃比を強制的にリーン/リッチに変動させた際に、理論空燃比が維持されている時間に触媒に流入するガス量と、触媒上流の排気空燃比の理論空燃比に対するずれ量(ΔA/F)とから最大酸素吸蔵量を算出するものである。そして、算出した最大酸素吸蔵量に基づいて触媒劣化の状態を判定する。
【0004】
【特許文献1】
特開2001−329832号公報
【特許文献2】
特開平5−133264号公報
【特許文献3】
特開平5−195842号公報
【0005】
【発明が解決しようとする課題】
しかしながら、酸素吸蔵量を検出する際には排気通路などに設けられた空燃比センサ(A/Fセンサ)の出力を用いるが、高地など気圧の低い環境下では、空気密度の低下により空燃比センサの出力が変動するという問題がある。空燃比センサは大気中と排気中の相対的な酸素濃度差に応じて出力を発生させており、気圧の低い環境下では基準となる大気中の酸素濃度が変動するためである。このため、気圧の低い環境下では実際の空燃比とは異なる空燃比が検出され、空燃比センサの検出値に基づいて最適な制御を行うことが困難となる。
【0006】
上述したアクティブA/F制御による触媒劣化判定においても、空燃比センサの出力が低下すると、触媒上流で検出された排気空燃比と理論空燃比との差(ΔA/F)が変動してしまう。このため、(ΔA/F)に基づいて算出した最大酸素吸蔵量は誤差を含むものとなり、精度の高い触媒劣化判定が困難となっていた。
【0007】
更に、気圧以外の条件、例えば機関運転条件によっても空燃比センサの出力が変動するという問題がある。このため、機関運転条件が変動した場合は空燃比センサの検出値に基づいて最適な制御を行うことが困難となっていた。
【0008】
この発明は、上述のような問題を解決するためになされたものであり、気圧などの環境条件、機関運転条件などの各種条件に変化が生じた場合であっても、最適な制御を行うことを目的とする。
【0009】
【課題を解決するための手段】
第1の発明は、上記の目的を達成するため、内燃機関の排気を浄化する排気浄化触媒と、前記排気浄化触媒の上流又は下流における空燃比を検出する空燃比センサと、大気圧を取得する大気圧取得手段と、前記空燃比センサの出力値に基づいて、前記排気浄化触媒の酸素吸蔵量を算出する酸素吸蔵量算出手段と、前記大気圧に基づいて前記酸素吸蔵量を補正する補正手段と、を備えたことを特徴とする。
【0010】
第2の発明は、上記の目的を達成するため、内燃機関の排気を浄化する排気浄化触媒と、前記排気浄化触媒の上流又は下流における空燃比を検出する空燃比センサと、内燃機関の吸入空気量を取得する吸入空気量取得手段と、前記空燃比センサの出力値に基づいて、前記排気浄化触媒の酸素吸蔵量を算出する酸素吸蔵量算出手段と、前記吸入空気量に基づいて前記酸素吸蔵量を補正する補正手段と、を備えたことを特徴とする。
【0011】
第3の発明は、上記の目的を達成するため、内燃機関の排気を浄化する排気浄化触媒と、前記排気浄化触媒の上流又は下流における空燃比を検出する空燃比センサと、大気圧を取得する大気圧取得手段と、内燃機関の吸入空気量を取得する吸入空気量取得手段と、前記空燃比センサの出力値に基づいて、前記排気浄化触媒の酸素吸蔵量を算出する酸素吸蔵量算出手段と、前記大気圧及び前記吸入空気量に基づいて前記酸素吸蔵量を補正する補正手段と、を備えたことを特徴とする。
【0012】
第4の発明は、第1〜第3の発明のいずれかにおいて、前記酸素吸蔵量算出手段は、微小時間毎の前記酸素吸蔵量を積算する積算手段を含み、前記補正手段は、前記微小時間毎の前記酸素吸蔵量のそれぞれを補正することを特徴とする。
【0013】
【発明の実施の形態】
以下、図面に基づいてこの発明のいくつかの実施形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。なお、以下の実施の形態によりこの発明が限定されるものではない。
【0014】
実施の形態1.
図1は、本発明の実施の形態1にかかる内燃機関の排気浄化装置及びその周辺の構造を説明するための図である。図1に示すように、内燃機関10には吸気通路12および排気通路14が連通している。吸気通路12は、上流側の端部にエアフィルタ16を備えている。エアフィルタ16には、吸気温THA(すなわち外気温)を検出する吸気温センサ18が組みつけられている。
【0015】
エアフィルタ16の下流には、エアフロメータ20が配置されている。エアフロメータ20は、吸気通路12を流れる空気流入量(Ga)を検出するセンサである。エアフロメータ20の下流には、スロットルバルブ22が設けられている。スロットルバルブ22の近傍には、スロットル開度TAを検出するスロットルセンサ24と、スロットルバルブ22が全閉となることでオンとなるアイドルスイッチ26とが配置されている。
【0016】
スロットルバルブ22の下流には、サージタンク28が設けられている。また、サージタンク28の更に下流には、内燃機関10の吸気ポートに燃料を噴射するための燃料噴射弁30が配置されている。
【0017】
排気通路14には、排気浄化触媒32が設けられている。排気浄化触媒32は流入する排気空燃比がリーンのときに排気中の酸素を吸着、吸収またはその両方にて選択的に保持(吸蔵)し、流入する排気の空燃比が理論空燃比またはリッチ空燃比となったときに、吸蔵している酸素を排気中の還元成分(HC,CO)を用いて還元浄化するものである。
【0018】
排気通路14には、排気浄化触媒32の上流に第1の空燃比センサ35が、下流に第2の空燃比センサ36がそれぞれ配置されている。第1の空燃比センサ35、第2の空燃比センサ36は、ともに排気ガス中の酸素濃度を検出するセンサである。第1の空燃比センサ35、第2の空燃比センサ36によれば、排気ガス中の酸素濃度に基づいて触媒32の上流及び下流における空燃比を検出することができる。
【0019】
図1に示すように、本実施形態の排気浄化装置はECU(Electronic ControlUnit)40を備えている。ECU40には、上述した各種センサおよび燃料噴射弁30に加えて、内燃機関10の冷却水温を検出する水温センサ42、大気圧センサ44などが接続されている。大気圧センサ44は高度などの環境に起因して変動する大気圧を検出するものである。
【0020】
図1に示すシステムにおいて、本実施形態の内燃機関の排気浄化装置は、アクティブA/F制御により触媒32の最大酸素吸蔵量(Cmax)を検出し、大気圧、吸入空気量(Ga)に基づいてCmax値を補正し、補正したCmax値に基づいて排気浄化を行う。
【0021】
先ず、アクティブA/F制御によるCmaxの検出方法を説明する。図2は、Cmaxの検出方法を示す模式図である。図2において、実線は第1の空燃比センサ35により検出された空燃比を示しており、破線は第2の空燃比センサ36により検出された空燃比を示している。また、図2は時刻tにおいて機関シリンダ内に供給される混合気の空燃比をリーン空燃比(A/F)からリッチ空燃比(A/F)に強制的に切換え、時刻tにおいて機関シリンダ内に供給される混合気の空燃比をリッチ空燃比(A/F)からリーン空燃比(A/F)に強制的に切換えた場合を示している。
【0022】
図2に示すように、時刻tにおいて機関シリンダ内に供給される空燃比がリーン空燃比(A/F)からリッチ空燃比(A/F)に切換えられると、第1の空燃比センサ35により検出される空燃比もリーン空燃比(A/F)からリッチ空燃比(A/F)に変化する。また、機関シリンダ内に供給される空燃比がリッチ空燃比(A/F)からリーン空燃比(A/F)に切換えられると、第1の空燃比センサ35により検出される空燃比もリッチ空燃比(A/F)からリーン空燃比(A/F)に変化する。
【0023】
第2の空燃比センサ36により検出される空燃比は、図2に破線で示すように第1の空燃比センサ35とは異なるパターンで変化する。すなわち、時刻tにおいて機関シリンダ内に供給される空燃比がリーン空燃比(A/F)からリッチ空燃比(A/F)に変化したときに、第2の空燃比センサ36により検出される空燃比はリーン空燃比(A/F)から理論空燃比まで変化し、T時間の間、理論空燃比に維持された後にリッチ空燃比(A/F)まで変化する。一方、時刻tにおいて機関シリンダ内に供給される空燃比がリッチ空燃比(A/F)からリーン空燃比(A/F)に変化したときに、第2の空燃比センサ36により検出される空燃比はリッチ空燃比(A/F)から理論空燃比まで変化し、T時間の間、理論空燃比に維持された後にリーン空燃比(A/F)まで変化する。
【0024】
第2の空燃比センサ36により検出された空燃比が、T時間またはT時間の間で理論空燃比に維持されるのは、触媒32の持つOストレージ機能による。すなわち、時刻t以前において機関シリンダ内に供給される空燃比がリーンのときには排気ガス中に過剰の酸素が存在し、この過剰な酸素が触媒32に吸着保持される。時刻tにおいて機関シリンダ内に供給される混合気の空燃比がリーン空燃比(A/F)からリッチ空燃比(A/F)に変化すると、排気ガス中には空燃比に応じた量のCO,HC,H等の未燃成分が存在することになり、触媒32に吸着された酸素がこれら未燃成分を酸化するために使用される。触媒32に吸着保持された酸素がこれら未燃成分を酸化している間、すなわち、図2のT時間の間、第2の空燃比センサ36により検出される空燃比は理論空燃比に維持される。そして、触媒32に吸着保持された酸素がなくなると未燃成分の酸化作用は行われなくなるので、第2の空燃比センサ36により検出される空燃比はリッチ空燃比(A/F)となる。
【0025】
時刻tにおいて機関シリンダ内に供給される混合気の空燃比がリッチ空燃比(A/F)からリーン空燃比(A/F)に変化すると、触媒32による酸素の吸着作用が開始される。酸素の吸着作用が行われている間、すなわち図2のT時間の間、第2の空燃比センサ36により検出される空燃比は理論空燃比に維持される。その後、触媒32による酸素の吸着能力が飽和すると、酸素が触媒32に吸着されなくなるので、第2の空燃比センサ36により検出される空燃比はリーン空燃比(A/F)となる。酸素の吸着作用が行われている間は、排気ガス中の酸素が触媒32に奪われ、排気ガス中に含まれるHC,CO,H等の未燃成分はNOxから酸素を奪ってNOxが還元される。触媒32による酸素の吸着能力が飽和すると、排気ガス中の未燃成分は排気ガス中に含まれる酸素によって酸化されるためにNOxの還元作用が行われなくなり、NOxが排出される。
【0026】
触媒32が吸着保持しうる最大酸素吸蔵量(Cmax)には上限があり、触媒32の諸元からCmaxの絶対量が定まる。Cmaxの絶対量が多くなれば酸化し得るCO,HC,H等の未燃成分の量が増大し、還元しうるNOxの量が増大するので排気ガスの浄化率が高くなる。Cmaxの絶対量が減少すれば酸化しうる未燃成分の量および還元しうるNOxの量が低下して排気ガス浄化率が低下する。従って、Cmaxは触媒32の劣化の度合いを表す特性値となる。図3はCmaxと触媒32の劣化度との関係を示している。このように、触媒32のCmaxを検出すれば触媒32の劣化度を正確に検出することが可能となる。
【0027】
図2においてTで示される間、機関シリンダ内にリッチ空燃比(A/F)の混合気が供給され、この間に機関シリンダ内に供給された燃料量をFとすると、シリンダ内に供給された混合気のうちの空気量は(A/F)・Fで表され、燃焼に必要な空気量は(理論空燃比)・Fで表される。従って、機関シリンダ内では、(理論空燃比−(A/F))・Fだけ空気量が不足することとなり、不足する空気のうちで酸素の占める割合を0.23とすると、不足する酸素量は0.23・(理論空燃比−(A/F))・Fとなる。機関シリンダ内に供給された燃料のうちの未燃分は、触媒32に吸着保持されている酸素によって酸化され、T時間の間に触媒32から放出されるので、結局、不足分の酸素量0.23・(理論空燃比−(A/F))・Fは触媒32に吸着保持されている酸素の絶対量となる。時刻t以前に第2の空燃比センサ36の出力が(A/F)となっているため、時刻tの時点で触媒32の酸素吸蔵能力は飽和している。従って、酸素量0.23・(理論空燃比−(A/F))・Fは、触媒32の最大酸素吸蔵量(Cmax)となる。ここで、T時間内に機関シリンダへ供給された混合気の空燃比(A/F)は、第1の空燃比センサ35の出力値から検出できる。従って、空燃比(A/F)と、T時間の間に機関シリンダ内に供給された燃料量Fとから、触媒32の最大酸素吸蔵量(Cmax)がわかることになる。
【0028】
同様に、図2においてTで示される間は、機関シリンダ内にリーン空燃比(A/F)の混合気が供給され、この間に機関シリンダ内に供給された燃料量をFとすると、シリンダ内に供給された混合気のうちの空気量は(A/F)・Fで表され、燃焼に必要な空気量は(理論空燃比)・Fで表される。従って、機関シリンダ内では、((A/F)−理論空燃比)・Fだけ空気量が過剰となり、過剰な空気のうちで酸素の占める割合を0.23とすると、過剰な酸素量は0.23・((A/F)−理論空燃比)・Fとなる。この過剰となる酸素量は、T時間の間に触媒32に吸着されるので、過剰となる酸素量0.23・(A/F)−理論空燃比)・Fは、触媒32に吸着保持される酸素の絶対量となる。T時間の経過後に第2の空燃比センサ36の出力が(A/F)となっているため、時刻tの時点では触媒32が吸蔵していた酸素は全て排出されている。従って、酸素量0.23・((A/F)−理論空燃比)・Fは、触媒32の最大酸素吸蔵量(Cmax)となる。ここで、T時間内に機関シリンダへ供給された混合気の空燃比(A/F)は、第1の空燃比センサ35の出力値から検出できる。従って、空燃比(A/F)と、T時間の間に機関シリンダ内に供給された燃料量Fとから、触媒32の最大酸素吸蔵量(Cmax)がわかることになる。なお、燃料量F,Fは、T時間またはT時間の間にECU40が燃料噴射弁30へ指示した燃料噴射量(噴射弁の開度)から求めることができる。
【0029】
時間またはT時間に第1の空燃比センサ35で検出される空燃比((A/F)または(A/F))に変動が生じる場合は、T時間、T時間を更に細かく区分したΔT時間、ΔT時間毎に酸素吸蔵量ΔOSAを求め、T時間またはT時間内でΔOSAを積算することで、より正確にCmax値を求めることができる。この場合、ΔT時間またはΔT時間におけるΔOSAの算出式は以下の通りとなる。
ΔOSA=0.23・(理論空燃比−(A/F))・F
ΔOSA=0.23・((A/F)−理論空燃比)・F
【0030】
これらのΔOSA算出式において、(A/F),(A/F)はΔT時間またはΔT時間毎における第1の空燃比センサ35の出力値である。また、F,Fは、ΔT時間またはΔT時間毎において機関シリンダ内に供給された燃料量である。このように、微小時間ΔT,ΔT毎の第1の空燃比センサ35の出力値に基づいてΔOSAを算出し、T時間またはT時間におけるΔOSAの合計を求めることで、触媒32の上流における空燃比の変動を考慮した上でCmax値を求めることができ、精度の高いCmax算出が可能となる。
【0031】
次に、大気圧、吸入空気量(Ga)に基づいてCmax値を補正する方法を説明する。先ず、大気圧に基づいてCmax値を補正する方法を説明する。アクティブA/F制御でCmax値を求める際には、上述したように第1の空燃比センサ35、第2の空燃比センサ36の出力値を用いるが、これらの空燃比センサの出力値は大気圧に応じて変動する。具体的には、高地など気圧の低い環境下では、センサの出力値が理論空燃比側へ変動し、(理論空燃比−(A/F))、または((A/F)−理論空燃比)の値が縮小する傾向にある。このため、異なる大気圧下で算出されたCmax値は誤差を含むものとなる。
【0032】
本実施形態では、標準気圧(例えば760mmHg)で算出されるCmax値を基準として、大気圧に応じてCmax値を補正する。ECU40は大気圧に応じた補正係数を予め記憶しており、アクティブA/F制御により算出したCmax値に補正係数を乗じることでCmax値を補正する。補正係数は下式に基づいて予め算出した値を用いる。
補正係数=(標準気圧におけるCmax値)/(低気圧下におけるCmax値)
【0033】
ここで、(標準気圧におけるCmax値)は、図1のシステムを用いて標準気圧下で算出したCmax値である。また、(低気圧下におけるCmax値)は、図1のシステムを用いて気圧の低い環境下で算出したCmax値である。(低気圧下におけるCmax値)は異なる複数の大気圧下で算出し、各大気圧下における補正係数を予め算出しておく。これにより、機関が置かれた環境の大気圧に応じてCmax値を補正することができる。ECU40は、大気圧センサ44の出力値に基づいて補正係数を選択し、Cmax値を補正する。これにより、大気圧による影響を排除してCmax値を正確に求めることができ、アクティブA/F制御による触媒劣化判定を高い精度で行うことができる。
【0034】
次に、吸入空気量(Ga)に基づいてCmax値を補正する方法を説明する。大気圧などの環境条件が同一であっても、吸入空気量(Ga)に応じて第1の空燃比センサ35、第2の空燃比センサ36の出力値は変動する。これは、吸入空気量(Ga)が増加すると、排気ガス中の酸素がこれらの空燃比センサへ到達する確率(到達確率)が増加する等の要因による。このため、異なる吸入空気量(Ga)下で算出されたCmax値は誤差を含むものとなる。
【0035】
本実施形態では、吸入空気量(Ga)に応じた補正を行い、正確にCmax値を求める。吸入空気量(Ga)に応じた補正係数の算出は、上記の大気圧による補正係数の算出と同様に行うことができ、例えば下式に基づいて算出する。
補正係数=(標準吸入空気量におけるCmax値)/(各吸入空気量におけるCmax値)
【0036】
ここで、(標準吸入空気量におけるCmax値)は吸入空気量(Ga)を基準となる標準値に設定した場合に算出されたCmax値である。また、(各吸入空気量におけるCmax値)は、吸入空気量(Ga)を複数の所定値に設定し、各吸入空気量毎に算出したCmax値である。このように、吸入空気量毎に補正係数を予め実験等から算出しておくことで、吸入空気量(Ga)に応じてCmax値を補正することができる。なお、吸入空気量(Ga)に応じて触媒温度が変動し、触媒温度に応じてCmax値が変動するため、各吸入空気量毎の補正係数を求める際には触媒温度が一定となる条件下で実験等を行うことが望ましい。
【0037】
このようにして算出された吸入空気量(Ga)毎の補正係数もECU40が記憶している。ECU40は、エアフロメータ20の出力値に基づいて、記憶している補正係数の中から吸入空気量(Ga)に応じた最適な補正係数を選び、Cmax値を補正する。これにより、Cmax値を正確に求めることができ、アクティブA/F制御による触媒劣化判定を高い精度で行うことができる。
【0038】
Cmax値を補正する場合は、大気圧のみ、または吸入空気量(Ga)のみに基づいて補正しても良いし、大気圧と吸入空気量(Ga)の双方に基づいて補正を行っても良い。大気圧と吸入空気量(Ga)の双方に基づいて補正を行う場合、ECU40には、大気圧及び吸入空気量と、補正係数との関係を定めた2次元マップを記憶させる。
【0039】
図4は、ECU40が記憶している2次元マップの一例を示す模式図である。図4において、横軸は吸入空気量(Ga)を、縦軸は補正係数をそれぞれ示している。また、特性50は大気圧が625mmHgの場合の特性を、特性52は大気圧が570mmHgの場合の特性を、それぞれ示している。このように、大気圧と吸入空気量(Ga)の双方をパラメータとして、実験等から予め補正係数を求めておくことで、大気圧と吸入空気量(Ga)の双方に基づいて補正を行うことができる。
【0040】
図4に示すように、吸入空気量(Ga)が増加するほど補正係数の値は減少する。また、大気圧が大きくなるほど補正係数の値は減少する。ECU40は、大気圧センサ44及びエアフロメータ20の出力値を図4のマップに当てはめて、最適な補正係数を求める。なお、図4においては、大気圧が625mmHg及び570mmHgの場合の特性50,52のみを例示しているが、他の気圧についても同様に特性を求め、更に補間等を行うことで、様々な気圧に対応した補正係数を求めることができる。図4のマップに基づいて大気圧補正のみを行う場合は、アクティブA/F制御により吸入空気量(Ga)は5g/sec〜25g/sec程度の範囲で変動するため、変動範囲の中間である15g/sec程度の吸入空気量(Ga)における各気圧の補正係数を用いることが望ましい。また、図4のマップに基づいて吸入空気量補正のみを行う場合は、標準気圧(760mmHg)における各吸入空気量の補正係数を用いることが望ましい。
【0041】
次に、図5のフローチャートに基づいて、本実施形態の排気浄化装置における処理の手順について説明する。先ず、ステップS1では、アクティブA/F制御による触媒劣化判定のための算出条件が成立したか否かを判定する。次のステップS2では、アクティブA/F制御を実行し、Cmax値を算出する。上述したように、Cmax値は、図2のT時間またはT時間における、機関シリンダ内への供給燃料量F,Fと、第1の空燃比センサ35の出力値とから算出される。次のステップS3では、大気圧センサ44、エアフロメータ20の出力値に基づいて、大気圧及び吸入空気量(Ga)を求める。
【0042】
次のステップS4では、図4のマップを参照して、大気圧及び吸入空気量(Ga)に応じた補正係数Kを求める。次のステップS5では、補正係数Kに基づいてCmax値を補正する。ここでは、以下の演算によりCmax値を補正する。
Cmax(補正後)=K・Cmax(補正前)
ここで、Cmax(補正前)の値はステップS2で算出した値である。
【0043】
次のステップS6では、ステップS5で得られた補正後のCmax値に基づいて触媒劣化判定を行う。ここでは、所定のしきい値と補正後のCmax値とを比較し、補正後のCmax値がしきい値以上である場合は触媒32の劣化度合いが少ないものとして正常判定をする。補正後のCmax値がしきい値より小さい場合は触媒32が劣化しているとして異常判定をする。
【0044】
次に図6のフローチャートに基づいて、本実施形態の排気浄化装置における他の処理手順について説明する。上述したように、図1のT時間、T時間を更に細かく区分したΔT時間、ΔT時間毎の酸素吸蔵量ΔOSAを積算することで、より正確にCmax値を求めることができる。図6のフローチャートにおける処理は、ΔOSAを算出する毎に大気圧、吸入空気量(Ga)に応じて補正を行い、補正したΔOSAをT時間、T時間内で積算してCmax値を算出するものである。
【0045】
先ず、ステップS11では、アクティブA/F制御による触媒劣化判定のための算出条件が成立したか否かを判定する。次のステップS12では、アクティブA/F制御を実行し、ΔT時間、またはΔT時間における酸素吸蔵量ΔOSAを算出する。次のステップS13では、大気圧センサ44、エアフロメータ20の出力値に基づいて、ΔT時間、またはΔT時間における大気圧及び吸入空気量(Ga)を求める。次のステップS14では、図4のマップに大気圧及び吸入空気量(Ga)を当てはめて、ΔT時間、またはΔT時間毎の補正係数Kを求める。
【0046】
次のステップS15では、補正係数Kに基づいて補正を実行する。ステップS15の処理では、ΔOSAに補正係数Kを乗じて補正し、これまでに算出されたΔOSAの和を求める。現段階でΔOSAがn回算出されており、n個のΔOSAの和をCmax(n)とすると、Cmax(n)は下式で表される。
Cmax(n)=Cmax(n−1)+K・ΔOSA
【0047】
次のステップS16では、ΔOSAの算出回数nがT時間、またはT時間におけるΔT時間、ΔT時間の区分数Nに達したか否かを判定する。すなわち、ここではn=Nであるか否かが判定される。n=Nの場合はステップS17へ進み、図5の場合と同様に触媒劣化判定を行う。ステップS16でn≠Nの場合は引き続きステップS12〜S15の処理を行い、Cmax(n)を算出する。
【0048】
図6の処理では、ΔOSAを算出する毎に大気圧、吸入空気量(Ga)から補正係数Kを求めて補正を行うため、T時間、またはT時間の間に大気圧、吸入空気量(Ga)が変動した場合であっても、微小時間ΔT,T毎に求めた各ΔOSAを補正することができる。従って、図6の処理によれば、より高精度にCmax値を補正することが可能となる。
【0049】
以上説明したように実施の形態1によれば、大気圧、吸入空気量(Ga)のいずれか、または大気圧及び吸入空気量(Ga)の双方に基づいてCmax値を補正するようにしたため、大気圧、吸入空気量(Ga)による影響を排除して正確にCmax値を求めることが可能となる。従って、アクティブA/F制御による触媒劣化判定を高精度に行うことが可能となる。
【0050】
実施の形態2.
次にこの発明の実施の形態2について説明する。実施の形態1ではアクティブA/F制御による触媒劣化判定にこの発明を適用した例を示したが、実施の形態2では、触媒の吸蔵酸素量OSAを一定量にフィードバック制御する排気浄化装置に本発明を適用した例を示す。なお、実施の形態2における排気浄化装置の構成は図1と同様であるため、以下の説明では主として排気浄化装置で行われる処理について説明する。
【0051】
図7は、実施の形態2にかかる内燃機関の排気浄化装置における処理の手順を示すフローチャートである。先ず、ステップS21では、酸素吸蔵量OSAの算出条件が成立したか否かを判定する。次のステップS22では、触媒32の酸素吸蔵量OSAを算出する。ここで、酸素吸蔵量OSAは、機関シリンダ内への供給燃料量、吸入空気量(Ga)、第1の空燃比センサ35、第2の空燃比センサ35の出力値などから算出するが、例えば図1のT時間のみにおける第1の空燃比センサ35の出力値、及びその間の供給燃料量から算出しても良い。次のステップS23では、大気圧センサ44、エアフロメータ20の出力値に基づいて、大気圧及び吸入空気量(Ga)を求める。
【0052】
次のステップS24では、図4のマップを参照して、大気圧及び吸入空気量(Ga)に応じた補正係数Kを求める。次のステップS25では、補正係数Kに基づいて酸素吸蔵量OSAを補正する。ここでは、以下の演算により酸素吸蔵量を補正する。
OSA(補正後)=K・OSA(補正前)
ここで、OSA(補正前)の値はステップS22で算出した値である。
【0053】
次のステップS26では、ステップS25で得られた補正後の酸素吸蔵量OSAに基づいて空燃比のフィードバック制御を行う。ここでは、所定のしきい値と補正後の酸素吸蔵量OSAとを比較し、補正後のOSAがしきい値以上である場合は触媒32の酸素吸蔵量OSAが少なくなるように空燃比をリッチ側へ変更する。また、補正後のOSAがしきい値より小さい場合は触媒32が酸素吸蔵量OSAが多くなるように空燃比をリーン側へ変更する。
【0054】
以上説明したように実施の形態2によれば、触媒32の酸素吸蔵量OSAを一定に保つことができるため、触媒32の酸素吸蔵能力が飽和してしまうことを抑止できる。従って、触媒32による排気浄化機能を最大限に発揮させることが可能となる。
【0055】
なお、上述した各実施形態では、大気圧または吸入空気量(Ga)に応じてCmax値、OSA値を補正する方法を例示したが、大気圧または吸入空気量(Ga)に応じて第1の空燃比センサ35、または第2の空燃比センサ36の出力値を直接補正しても良い。この場合は、大気圧、吸入空気量(Ga)によるセンサ出力の変動特性に基づいて、大気圧、吸入空気量(Ga)とセンサ出力の関係を定めたマップをECU40に記憶させておくことにより、センサ出力値を直接的に補正することができる。
【0056】
また、上述した各実施形態では、吸入空気量(Ga)をエアフロメータ20から直接検出しているが、吸気通路12に吸気圧センサを設け、吸気圧センサの出力値から吸入空気量(Ga)を推定しても良い。また、上述した各実施形態では、大気圧を大気圧センサ44から直接検出しているが、エアフロメータ20から検出される吸入空気量(Ga)とスロットル開度から予測される吸入空気量との差分から大気圧を推定しても良い。
【0057】
また、上述した実施の形態では、アクティブA/F制御による触媒劣化判定、または空燃比のフィードバック制御に本発明を適用した例を示したが、本発明はこれに限定されるものではない。本発明は触媒の酸素吸蔵量を求める場合に広く適用することができ、大気圧、吸入空気量に応じて触媒の酸素吸蔵量を補正する概念は本発明の範疇に属する。
【0058】
【発明の効果】
この発明は、以上説明したように構成されているので、以下に示すような効果を奏する。
【0059】
第1の発明によれば、大気圧に基づいて酸素吸蔵量を補正することができるため、触媒の酸素吸蔵量を高い精度で算出することができる。従って、酸素吸蔵量に応じた最適な制御を行うことが可能となる。
【0060】
第2の発明によれば、吸入空気量に基づいて酸素吸蔵量を補正することができるため、触媒の酸素吸蔵量を高い精度で算出することができる。従って、酸素吸蔵量に応じた最適な制御を行うことが可能となる。
【0061】
第3の発明によれば、大気圧及び吸入空気量に基づいて酸素吸蔵量を補正することができるため、触媒の酸素吸蔵量を非常に高い精度で算出することができる。従って、酸素吸蔵量に応じた最適な制御を行うことが可能となる。
【0062】
第4の発明によれば、微小時間毎の酸素吸蔵量のそれぞれを補正するようにしたため、微小時間毎に最適な補正を行うことができる。従って、触媒の酸素吸蔵量をより高精度に算出することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1にかかる触媒劣化判別装置及びその周辺の構造を示す模式図である。
【図2】アクティブA/F制御による最大酸素吸蔵量(Cmax)の検出方法を示す模式図である。
【図3】最大酸素吸蔵量(Cmax)と触媒の劣化度との関係を示す特性図である。
【図4】大気圧及び吸入空気量と、補正係数との関係を定めた2次元マップを示す模式図である。
【図5】本発明の実施の形態1にかかる排気浄化装置における処理手順を示すフローチャートである。
【図6】本発明の実施の形態1にかかる排気浄化装置における他の処理手順を示すフローチャートである。
【図7】本発明の実施の形態2にかかる排気浄化装置における処理手順を示すフローチャートである。
【符号の説明】
20 エアフロメータ
32 触媒
35 第1の空燃比センサ
36 第2の空燃比センサ
40 ECU
44 大気圧センサ

Claims (4)

  1. 内燃機関の排気を浄化する排気浄化触媒と、
    前記排気浄化触媒の上流又は下流における空燃比を検出する空燃比センサと、
    大気圧を取得する大気圧取得手段と、
    前記空燃比センサの出力値に基づいて、前記排気浄化触媒の酸素吸蔵量を算出する酸素吸蔵量算出手段と、
    前記大気圧に基づいて前記酸素吸蔵量を補正する補正手段と、
    を備えたことを特徴とする内燃機関の排気浄化装置。
  2. 内燃機関の排気を浄化する排気浄化触媒と、
    前記排気浄化触媒の上流又は下流における空燃比を検出する空燃比センサと、
    内燃機関の吸入空気量を取得する吸入空気量取得手段と、
    前記空燃比センサの出力値に基づいて、前記排気浄化触媒の酸素吸蔵量を算出する酸素吸蔵量算出手段と、
    前記吸入空気量に基づいて前記酸素吸蔵量を補正する補正手段と、
    を備えたことを特徴とする内燃機関の排気浄化装置。
  3. 内燃機関の排気を浄化する排気浄化触媒と、
    前記排気浄化触媒の上流又は下流における空燃比を検出する空燃比センサと、
    大気圧を取得する大気圧取得手段と、
    内燃機関の吸入空気量を取得する吸入空気量取得手段と、
    前記空燃比センサの出力値に基づいて、前記排気浄化触媒の酸素吸蔵量を算出する酸素吸蔵量算出手段と、
    前記大気圧及び前記吸入空気量に基づいて前記酸素吸蔵量を補正する補正手段と、
    を備えたことを特徴とする内燃機関の排気浄化装置。
  4. 前記酸素吸蔵量算出手段は、微小時間毎の前記酸素吸蔵量を積算する積算手段を含み、
    前記補正手段は、前記微小時間毎の前記酸素吸蔵量のそれぞれを補正することを特徴とする請求項1〜3のいずれかに記載の内燃機関の排気浄化装置。
JP2002342932A 2002-11-26 2002-11-26 内燃機関の排気浄化装置 Expired - Fee Related JP4422398B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002342932A JP4422398B2 (ja) 2002-11-26 2002-11-26 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002342932A JP4422398B2 (ja) 2002-11-26 2002-11-26 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JP2004176612A true JP2004176612A (ja) 2004-06-24
JP4422398B2 JP4422398B2 (ja) 2010-02-24

Family

ID=32704853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002342932A Expired - Fee Related JP4422398B2 (ja) 2002-11-26 2002-11-26 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP4422398B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025488A (ja) * 2006-07-21 2008-02-07 Toyota Motor Corp 内燃機関の触媒劣化検出装置
US7797097B2 (en) * 2007-06-15 2010-09-14 Denso Corporation Exhaust purification device for internal combustion engine
US10066534B2 (en) 2015-08-31 2018-09-04 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025488A (ja) * 2006-07-21 2008-02-07 Toyota Motor Corp 内燃機関の触媒劣化検出装置
JP4665858B2 (ja) * 2006-07-21 2011-04-06 トヨタ自動車株式会社 内燃機関の触媒劣化検出装置
US7797097B2 (en) * 2007-06-15 2010-09-14 Denso Corporation Exhaust purification device for internal combustion engine
US10066534B2 (en) 2015-08-31 2018-09-04 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Also Published As

Publication number Publication date
JP4422398B2 (ja) 2010-02-24

Similar Documents

Publication Publication Date Title
KR100899313B1 (ko) 내연 기관의 공연비 제어 장치
JP4877246B2 (ja) 内燃機関の空燃比制御装置
JP3528739B2 (ja) エンジンの排気浄化装置
US20070017212A1 (en) Catalyst diagnosis apparatus for internal combustion engine
US6539707B2 (en) Exhaust emission control system for internal combustion engine
WO2010032481A1 (ja) NOxセンサの出力較正装置及び出力較正方法
US10316716B2 (en) Exhaust purification system and method for restoring NOx purification capacity
JP4314636B2 (ja) 内燃機関の空燃比制御装置
US7243487B2 (en) Control apparatus for internal combustion engine
JP3868693B2 (ja) 内燃機関の空燃比制御装置
JP3759567B2 (ja) 触媒劣化状態検出装置
JP5515967B2 (ja) 診断装置
JP5407971B2 (ja) 異常診断装置
US10100765B2 (en) Control apparatus for internal combustion engine
JP4422398B2 (ja) 内燃機関の排気浄化装置
JP4389141B2 (ja) 内燃機関の排気浄化装置
JP4032840B2 (ja) 内燃機関の排出ガス浄化装置
JP2004308574A (ja) 排気ガスセンサの異常検出装置
JP4636214B2 (ja) 内燃機関の空燃比制御装置
JP4072412B2 (ja) 内燃機関の空燃比制御装置
JP2009293510A (ja) 触媒診断装置
JP2007224750A (ja) 硫黄被毒回復制御装置
JP3864455B2 (ja) 内燃機関の空燃比制御装置
JP3998949B2 (ja) エンジンの空燃比制御装置
JP4362835B2 (ja) 内燃機関の排出ガス浄化制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080714

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4422398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees