JP2004175621A - Method and apparatus for reforming liquid fuel - Google Patents
Method and apparatus for reforming liquid fuel Download PDFInfo
- Publication number
- JP2004175621A JP2004175621A JP2002343935A JP2002343935A JP2004175621A JP 2004175621 A JP2004175621 A JP 2004175621A JP 2002343935 A JP2002343935 A JP 2002343935A JP 2002343935 A JP2002343935 A JP 2002343935A JP 2004175621 A JP2004175621 A JP 2004175621A
- Authority
- JP
- Japan
- Prior art keywords
- reformer
- fuel
- reforming
- mixture
- kerosene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
この発明は、燃料電池発電装置などにおいて使用される、灯油やガソリン等の難気化性液体原燃料を水蒸気改質する改質方法および装置に関する。
【0002】
【従来の技術】
燃料電池発電装置は、燃料の有する化学エネルギーを、機械エネルギーや熱エネルギーを経由することなく直接電気エネルギーに変換する装置であり、高いエネルギー効率が実現可能である。良く知られた燃料電池の形態としては、電解質層を挟んで一対の電極を配置し、一方の電極(アノード側)に水素を含有する燃料ガスを供給するとともに他方の電極(カソード側)に酸素を含有する酸化剤ガスを供給するものであり、両極間で起きる電気化学反応を利用して起電力を得る。
【0003】
以下に、燃料電池で起きる電気化学反応を表す式を示す。(1)はアノード側に於ける反応、(2)はカソード側に於ける反応を表し、燃料電池全体では(3)式に表す反応が進行する。
【0004】
H2→2H++2e− (1)
1/2O2+2H++2e−→H2O (2)
H2+1/2O2→H2O (3)
燃料電池は、使用する電解質の種類により分類されるが、これらの燃料電池の中で、固体高分子型燃料電池、リン酸型燃料電池、溶融炭酸塩型燃料電池等では、その電解質の性質から、二酸化炭素を含んだ酸化剤ガスや炭酸ガスを使用することが可能である。そこで通常これらの燃料電池では、空気を酸化剤ガスとして用い、天然ガスや都市ガス等の炭化水素系の原燃料ガスを水蒸気改質して生成した水素リッチなガスを燃料ガスとして用いている。
【0005】
そのため、この様な燃料電池を備える燃料電池発電装置においては、改質器および一酸化炭素変成器が設けられており、この改質器および一酸化炭素変成器において原燃料の改質を行ない燃料ガスを生成している。下記の式(4)は、改質器におけるメタンの改質反応について示す。
【0006】
CH4+H2O→3H2+CO (+206.14 KJ/mol:吸熱反応) (4)
上記式(4)に示されるとおり、メタンの改質反応は吸熱反応であるため、メタンに水蒸気を添加したうえで、燃料電池からの燃料オフガスを燃焼させた燃焼排ガスにより、粒状改質触媒を600〜700℃に保つことにより、水素に富む改質ガスを生成する。
【0007】
改質器を出たこの改質ガスは、改質ガス中の一酸化炭素を低減するために一酸化炭素変成器に供給され、ここで一酸化炭素は1%以下に低減され、リン酸形燃料電池(PAFC)であれば、このガスを燃料電池へ導入して発電を行なうことができる。下記式(5)は、一酸化炭素変成器に於ける一酸化炭素の変成反応について示す。
【0008】
CO+H2O→H2+CO2 (−41.17 KJ/mol:発熱反応) (5)
式(5)に示されるとおり、一酸化炭素の変成反応は発熱反応であるため、変成反応温度である160〜250℃に保つためには冷却が必要となる。
【0009】
一方、固体高分子形燃料電池(PEFC)は、その動作温度が60〜80℃と低いために、改質ガス中に一酸化炭素が存在すると、これが触媒毒となって性能が劣化することから、一酸化炭素をさらに低減する必要があり、そのために改質ガスは一酸化炭素除去器に供給され、ここで一酸化炭素を10ppm以下に低減する。下記の式(6)は一酸化炭素除去器に於ける一酸化炭素の選択酸化反応について示す。
【0010】
CO+1/2O2→CO2 (−257.2 KJ/mol:発熱反応) (6)
式(6)に示されるとおり、一酸化炭素の選択酸化反応は発熱反応であるため、選択酸化反応温度である160〜230℃に保つためには冷却が必要となる。
【0011】
なお、前述の通り固体高分子形燃料電池(PEFC)は、反応温度が低いため、リン酸形燃料電池(PAFC)(反応温度約180℃)と異なり、その発熱量で改質用の水蒸気を発生させることができないことから、改質系機器の中でこれを発生させる必要がある。この蒸気発生のための熱量は、通常、改質器を出た後の燃焼排ガスとの熱交換で得ている。
【0012】
ところで、炭化水素系の原燃料としては、前記天然ガスや都市ガスのような気体燃料以外に、ブタン,プロパン,ナフサ,メタノール等の液体燃料も用いられている。これら液体燃料は、比較的容易に気化するので、ガス化して水蒸気改質するのが一般的である。
【0013】
特許文献1には、58重量%のメタノールと42重量%の水を含む液体燃料を、ガス化して水蒸気改質する装置の一例が開示されている。この装置の場合には、液体燃料の蒸発器と改質器とが一体化され、蒸発器と改質器の双方に、バーナの燃焼排ガスの熱が供給される構成を採用している。
【0014】
また、液体燃料としては上記以外に、最近では、運搬の容易さ及び低価格であることから、灯油やガソリン等の液体原燃料を水蒸気改質して生成した水素を含むガスを燃料ガスとして用いる方法も検討されている。
【0015】
【特許文献1】
特開昭61−153957号公報(第2〜5頁、第1,5,6図)
【0016】
【発明が解決しようとする課題】
ところで、前述の灯油やガソリン等の液体原燃料は、比較的高沸点の成分を含み、前記ブタン,プロパン,ナフサ,メタノール等の液体燃料に比較すると、難気化性であるという問題がある。例えば、灯油は、石油から精製され、留分が150℃〜270℃の常温で液体の炭化水素系燃料である。
【0017】
灯油を水蒸気改質するためには、灯油に予め含まれている80wtppm以下の硫黄分を除去した後、改質蒸気用水と混合して、270℃以上、好ましくは300℃以上に加熱して気化させるか、または350℃以上に過熱した水蒸気と混ぜて水蒸気のエンタルピーを用いて気化させた後に、改質器にて水素と一酸化炭素へと改質する必要がある。
【0018】
また、灯油の改質反応は吸熱反応であるため、改質器バーナで燃料電池からの燃料オフガスを燃焼させた燃焼排ガスにより、粒状改質触媒を改質ガス出口付近において600〜700℃に保つことにより、水蒸気改質反応を継続させる。なお、改質触媒層における改質原燃料の入口付近の温度は、約300℃である。
【0019】
図3は、この種の灯油を原燃料とする従来検討中の燃料電池発電装置の概略構成の一例を示す。図3において、脱硫器1にて硫黄分を取りかれた原燃料は、改質蒸気用水と混合した後、改質原燃料として気化器2に供給され、気化された後に改質器3の触媒反応層3aに供給される。触媒反応層3aにおいて、水蒸気改質反応によって水素リッチな改質ガスにされた後に、一酸化炭素変成器4に供給されて一酸化炭素変成反応によって水素濃度が高められ、さらにその後、図示しない一定量の空気とともに一酸化炭素除去器5に供給されて、一酸化炭素選択酸化反応によって一酸化炭素が10ppm以下に低減された後、燃料電池6へと供給される。
【0020】
ところで、図3において、気化器2で水を含む改質原燃料の気化に供する熱源は、改質器3が備えるバーナ7で、燃料電池6からの燃料オフガスを、燃焼空気ブロワ8による空気によって燃焼させ、その燃焼熱を吸熱反応であるメタンの水蒸気反応のために与えた後の燃焼排ガス(温度は約300℃)であるので、改質原燃料の混合気の温度は、最大で250℃程度までしか昇温できない。
【0021】
原燃料が都市ガスのような気体の場合には、改質触媒層における都市ガスの入口付近の温度は、この程度でも十分であるが、原燃料が、難気化性液体原燃料、例えば灯油の場合には、灯油中に含まれる沸点の高い成分が凝縮して触媒表面を覆ったり、その炭素成分が付着するなどして反応面積を低減させることによって改質反応に悪影響を与えるので、灯油と水蒸気の混合気は、少なくとも300℃程度まで昇温させてから改質器ヘ供給する必要があり、そのため、気化器2の出口には、図3のように、電気ヒータ9を設けて加熱する。この場合には、電気ヒータ9において消費される電力分、発電効率が低下するという問題があった。
【0022】
この発明は、上記問題点を解消するためになされたもので、この発明の課題は、灯油等の難気化性液体原燃料と改質用蒸気の混合気を、電気ヒータを用いることなく、少なくとも300℃程度に昇温することができ、高効率で、高性能な液体燃料の改質方法および装置を提供することにある。
【0023】
【課題を解決するための手段】
前述の課題を解決するために、この発明は、灯油やガソリン等の難気化性液体原燃料を、改質器の触媒反応層において水蒸気改質する改質方法において、
前記難気化性液体原燃料と水との混合物を、前記改質器の加熱用バーナの燃焼排ガスによって一次加熱して混合気とし、さらに、この混合気を、少なくとも前記難気化性液体原燃料中に含まれる高沸点成分の凝縮を防止するための所定温度以上に、前記改質器からの伝熱により二次加熱した後、前記改質器の触媒反応層に供給することにより改質する(請求項1の発明)。
【0024】
また、請求項1の発明の実施態様としては下記請求項2の発明が好ましい。即ち、請求項1記載の改質方法において、前記難気化性液体原燃料は灯油とし、前記所定温度は300℃とする。
【0025】
上記改質方法によれば、一次加熱した混合気を、電気ヒータを用いることなく、300℃以上に昇温することができ、高効率で、高性能な液体燃料の改質方法が提供できる。なお、前記特許文献1に開示されたように、蒸発器と改質器の双方に、バーナの燃焼排ガスの熱を供給し、前記一次加熱と二次加熱とを蒸発器において、同時に達成する方法も可能ではある。しかしながら、この場合には、燃焼排ガスの熱を温度レベルに応じて段階的に有効利用することができないので、総合熱効率が低下する。従って、本件発明の対象とする灯油などの改質方法としては、難がある。
【0026】
さらに、前記改質方法を実施するための装置としては、下記請求項3の発明が好ましい。即ち、請求項1または2に記載の改質方法を実施するための改質装置であって、触媒反応層と加熱用バーナを有する改質器と、前記加熱用バーナの燃焼排ガスによって、難気化性液体原燃料と水との混合物を一次加熱して混合気を生成する気化器とを備え、さらに、前記改質器は、前記混合気を二次加熱する伝熱手段を備えるものとする(請求項3の発明)。
【0027】
また、前記請求項3の発明の実施態様としては下記請求項4ないし6の発明が好ましい。即ち、請求項3に記載の改質装置において、前記伝熱手段は、加熱用バーナ壁面に設けた熱交換器とする(請求項4の発明)。さらに、請求項3に記載の改質装置において、前記伝熱手段は、前記触媒反応層における改質後のガス流路に設けた熱交換器とする(請求項5の発明)。さらにまた、請求項4または5に記載の改質装置において、前記熱交換器は、前記混合気または改質後のガスを通流するらせん状パイプを備えるものとする(請求項6の発明)。
【0028】
上記実施態様の構成によれば、バーナを含む改質器の表面からの放熱量が低下して、熱効率がさらに向上する効果も得られる。
【0029】
【発明の実施の形態】
図面に基づき、本発明の実施例について以下にのべる。
【0030】
図1は、この発明の実施例に関わる灯油用改質器を含む燃料電池発電装置の概略構成を示す。図3と同じ機能を有する部材には同一番号を付して詳細説明を省略する。
【0031】
図1に示す実施例においては、改質器バーナ7の壁面にらせん状パイプ11を巻き、ここに気化器2から出た灯油と改質用蒸気の混合気を通流して、二次加熱した後に、改質器3へと供給する。通常の運転において、改質器バーナの外壁は約500℃に保たれているので、上記構成によれば、灯油と改質用蒸気の混合気は、400℃程度に加熱され、完全に気体の状態で改質器へと供給されるため、未気化の成分が凝縮して改質性能に悪影響を及ぼすことはなく、良好に改質反応を行うことができる。また、このような構成によれば、改質器バーナの表面からの放熱量が低下して熱効率が向上するという効果も得られる。
【0032】
なお、図1においては、改質器バーナの壁面にらせん状にパイプを巻きつける構成を示したが、改質器バーナの壁面を2層のジャケット状にして、内外ジャケットの間に、灯油と改質用蒸気の混合気を通流させる構成としても、同様の効果が得られる。
【0033】
次に図2の実施例について述べる。図3と同じ機能を有する部材には同一番号を付して詳細説明を省略する。
【0034】
図2の実施例においては、改質後ガス流路の壁面にらせん状パイプ12を巻き、ここに気化器2から出た灯油と改質用蒸気の混合気を通流後に改質器へと供給する。通常の運転において、改質後ガスは、改質触媒層を600〜700℃程度で出た後、改質触媒層を加熱しながら冷却され、約350℃で導出して一酸化炭素変成器4に導入される。
【0035】
従って、改質後ガス流路のガス入口部の壁面は、500℃以上に保たれているので、上記構成によれば、灯油と改質用蒸気の混合気は、400℃程度に加熱され、完全に気体の状態で改質器へと供給されるため、図1の実施例と同様に良好に改質反応を行うことができる。また、このような構成によれば、改質器の表面からの放熱量が低下して熱効率が向上するという効果も得られる。なお、図2において、改質後ガス流路の壁面にらせん状パイプを巻きつける構成を示したが、改質後ガス流路の壁面を2層のジャケット状にして、内外ジャケットの間に、灯油と改質用蒸気の混合気を通流させる構成とすることもできる。
【0036】
【発明の効果】
上記のとおり、この発明によれば、灯油やガソリン等の難気化性液体原燃料を、改質器の触媒反応層において水蒸気改質する改質方法において、前記難気化性液体原燃料と水との混合物を、前記改質器の加熱用バーナの燃焼排ガスによって一次加熱して混合気とし、さらに、この混合気を、少なくとも前記難気化性液体原燃料中に含まれる高沸点成分の凝縮を防止するための所定温度以上に、前記改質器からの伝熱により二次加熱した後、前記改質器の触媒反応層に供給することにより改質することとし、
前記方法を実施するための装置として、触媒反応層と加熱用バーナを有する改質器と、加熱用バーナの燃焼排ガスによって、難気化性液体原燃料と水との混合物を一次加熱して混合気を生成する気化器とを備え、さらに、前記改質器は、前記混合気を二次加熱する伝熱手段を備えるものとしたことにより、
灯油等の難気化性液体原燃料と改質用蒸気の混合気を、電気ヒータを用いることなく、少なくとも300℃程度に昇温することができ、高効率で、高性能な液体燃料の改質方法および装置が提供できる。
【図面の簡単な説明】
【図1】この発明の実施例に関わる灯油用改質器を含む燃料電池発電装置の概略構成図
【図2】この発明の図1とは異なる実施例に関わる燃料電池発電装置の概略構成図
【図3】従来の燃料電池発電装置の概略構成図
【符号の説明】
1:脱硫器、2:気化器、3:改質器、3a:触媒反応層、4:一酸化炭素変成器、5:一酸化炭素除去器、6:燃料電池、7:バーナ、11,12:らせん状パイプ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reforming method and a device for steam reforming a difficult-to-vaporize liquid raw fuel such as kerosene or gasoline used in a fuel cell power generator or the like.
[0002]
[Prior art]
A fuel cell power generation device is a device that directly converts chemical energy of a fuel into electric energy without passing through mechanical energy or heat energy, and can realize high energy efficiency. As a well-known form of a fuel cell, a pair of electrodes are arranged with an electrolyte layer interposed therebetween, and a fuel gas containing hydrogen is supplied to one electrode (anode side) and oxygen gas is supplied to the other electrode (cathode side). Is supplied, and an electromotive force is obtained by utilizing an electrochemical reaction occurring between the two electrodes.
[0003]
The following shows an equation representing an electrochemical reaction occurring in a fuel cell. (1) shows the reaction on the anode side, (2) shows the reaction on the cathode side, and the reaction expressed by the formula (3) proceeds in the whole fuel cell.
[0004]
H 2 → 2H ++ 2e- (1)
1 / 2O 2 + 2H ++ 2e- → H 2 O (2)
H 2 + 1 / 2O 2 → H 2 O (3)
Fuel cells are classified according to the type of electrolyte used. Among these fuel cells, polymer electrolyte fuel cells, phosphoric acid type fuel cells, molten carbonate type fuel cells, etc. are based on the properties of the electrolyte. It is possible to use an oxidizing gas or a carbon dioxide gas containing carbon dioxide. Therefore, these fuel cells usually use air as an oxidant gas, and use a hydrogen-rich gas generated by steam reforming of a hydrocarbon-based raw fuel gas such as natural gas or city gas as a fuel gas.
[0005]
Therefore, in a fuel cell power generation apparatus including such a fuel cell, a reformer and a carbon monoxide converter are provided. Generating gas. The following equation (4) shows the methane reforming reaction in the reformer.
[0006]
CH 4 + H 2 O → 3H 2 + CO (+206.14 KJ / mol: endothermic reaction) (4)
As shown in the above equation (4), since the reforming reaction of methane is an endothermic reaction, after adding steam to methane, the particulate reforming catalyst is formed by the combustion exhaust gas obtained by burning the fuel off-gas from the fuel cell. By maintaining the temperature at 600 to 700 ° C., a hydrogen-rich reformed gas is generated.
[0007]
The reformed gas exiting the reformer is supplied to a carbon monoxide converter to reduce carbon monoxide in the reformed gas, where the carbon monoxide is reduced to 1% or less, and In the case of a fuel cell (PAFC), this gas can be introduced into the fuel cell to generate power. The following equation (5) shows the conversion reaction of carbon monoxide in the carbon monoxide converter.
[0008]
CO + H 2 O → H 2 + CO 2 (−41.17 KJ / mol: exothermic reaction) (5)
As shown in the formula (5), the conversion reaction of carbon monoxide is an exothermic reaction, so that cooling is required to maintain the conversion reaction temperature of 160 to 250 ° C.
[0009]
On the other hand, the polymer electrolyte fuel cell (PEFC) has a low operating temperature of 60 to 80 ° C., and if carbon monoxide is present in the reformed gas, it becomes a catalyst poison and deteriorates in performance. , It is necessary to further reduce the carbon monoxide, for which the reformed gas is fed to a carbon monoxide remover, where the carbon monoxide is reduced to below 10 ppm. The following equation (6) shows a selective oxidation reaction of carbon monoxide in the carbon monoxide remover.
[0010]
CO + 1 / 2O 2 → CO 2 (−257.2 KJ / mol: exothermic reaction) (6)
As shown in the formula (6), since the selective oxidation reaction of carbon monoxide is an exothermic reaction, cooling is required to maintain the temperature at the selective oxidation reaction temperature of 160 to 230 ° C.
[0011]
As described above, the polymer electrolyte fuel cell (PEFC) has a low reaction temperature, and therefore differs from the phosphoric acid fuel cell (PAFC) (reaction temperature of about 180 ° C.) in that the steam for reforming is generated by its calorific value. Since it cannot be generated, it must be generated in the reforming system equipment. The amount of heat for generating the steam is usually obtained by heat exchange with the flue gas after leaving the reformer.
[0012]
By the way, as the hydrocarbon-based raw fuel, liquid fuels such as butane, propane, naphtha, methanol and the like are used in addition to gaseous fuels such as the natural gas and city gas. Since these liquid fuels vaporize relatively easily, they are generally gasified and steam reformed.
[0013]
Patent Literature 1 discloses an example of a device for gasifying a liquid fuel containing 58% by weight of methanol and 42% by weight of water to perform steam reforming. This device employs a configuration in which the evaporator and the reformer for the liquid fuel are integrated, and the heat of the combustion exhaust gas from the burner is supplied to both the evaporator and the reformer.
[0014]
In addition, other than the above, a gas containing hydrogen produced by steam reforming a liquid raw fuel such as kerosene or gasoline has recently been used as a fuel gas because of its ease of transportation and low price. Methods are also being considered.
[0015]
[Patent Document 1]
JP-A-61-153957 (pages 2 to 5, FIGS. 1, 5, and 6)
[0016]
[Problems to be solved by the invention]
By the way, the above-mentioned liquid raw fuel such as kerosene and gasoline contains a component having a relatively high boiling point, and has a problem that it is difficult to vaporize as compared with the liquid fuel such as butane, propane, naphtha and methanol. For example, kerosene is a hydrocarbon-based fuel that is refined from petroleum and has a fraction of 150 ° C. to 270 ° C. and is liquid at room temperature.
[0017]
In order to reform kerosene with steam, after removing 80 wtppm or less of sulfur contained in kerosene in advance, the kerosene is mixed with water for reforming steam and heated to 270 ° C or more, preferably 300 ° C or more to vaporize. After that, or after mixing with steam heated to 350 ° C. or more and vaporizing using steam enthalpy, it is necessary to reform into hydrogen and carbon monoxide in a reformer.
[0018]
In addition, since the reforming reaction of kerosene is an endothermic reaction, the particulate reforming catalyst is maintained at 600 to 700 ° C. in the vicinity of the reformed gas outlet by the combustion exhaust gas obtained by burning the fuel off-gas from the fuel cell with the reformer burner. Thereby, the steam reforming reaction is continued. The temperature near the inlet of the raw reforming fuel in the reforming catalyst layer is about 300 ° C.
[0019]
FIG. 3 shows an example of a schematic configuration of a fuel cell power generation apparatus which has been studied conventionally using kerosene of this kind as a raw fuel. In FIG. 3, the raw fuel from which the sulfur content has been removed in the desulfurizer 1 is mixed with the reforming steam water, and then supplied to the vaporizer 2 as the reforming raw fuel. It is supplied to the reaction layer 3a. In the catalytic reaction layer 3a, after being converted into a hydrogen-rich reformed gas by a steam reforming reaction, the reformed gas is supplied to a carbon monoxide converter 4 to increase the hydrogen concentration by the carbon monoxide converting reaction. After being supplied to the carbon monoxide remover 5 together with the amount of air, the carbon monoxide is reduced to 10 ppm or less by the carbon monoxide selective oxidation reaction, and then supplied to the fuel cell 6.
[0020]
Meanwhile, in FIG. 3, a heat source for vaporizing the reformed raw fuel containing water in the vaporizer 2 is a burner 7 provided in the reformer 3, and the fuel off-gas from the fuel cell 6 is supplied by air from a combustion air blower 8. Since it is the combustion exhaust gas (the temperature is about 300 ° C.) after being burned and giving the combustion heat for the steam reaction of methane as an endothermic reaction, the temperature of the mixture of the reforming raw fuel is 250 ° C. at the maximum. The temperature can be raised only to the extent.
[0021]
When the raw fuel is a gas such as city gas, the temperature near the inlet of the city gas in the reforming catalyst layer is sufficient at this level, but the raw fuel is a non-vaporizable liquid raw fuel such as kerosene. In such a case, components having a high boiling point contained in kerosene are condensed and cover the catalyst surface, or the carbon component adheres to the reaction area, thereby adversely affecting the reforming reaction. It is necessary to raise the temperature of the mixture of steam to at least about 300 ° C. and then supply the mixture to the reformer. For this reason, an electric heater 9 is provided at the outlet of the vaporizer 2 as shown in FIG. . In this case, there is a problem that power generation efficiency is reduced by the amount of power consumed in the electric heater 9.
[0022]
The present invention has been made in order to solve the above problems, and an object of the present invention is to convert a mixture of a non-vaporizable liquid raw fuel such as kerosene and reforming steam at least without using an electric heater. It is an object of the present invention to provide a highly efficient and high-performance liquid fuel reforming method and apparatus capable of raising the temperature to about 300 ° C.
[0023]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a reforming method for steam-reforming a non-vaporizable liquid raw fuel such as kerosene or gasoline in a catalytic reaction layer of a reformer.
The mixture of the vaporizable liquid raw fuel and water is primarily heated by the combustion exhaust gas of the heating burner of the reformer to form a mixture, and the mixture is further mixed with at least the vaporizable liquid raw fuel. After secondary heating by heat transfer from the reformer to a predetermined temperature or higher for preventing the condensation of high boiling components contained in the reformer, the reformer is supplied to the catalytic reaction layer of the reformer to reform ( The invention of claim 1).
[0024]
As an embodiment of the first aspect of the invention, the following second aspect of the invention is preferable. That is, in the reforming method according to the first aspect, the raw material fuel that is difficult to vaporize is kerosene, and the predetermined temperature is 300 ° C.
[0025]
According to the above-described reforming method, the primary-heated air-fuel mixture can be heated to 300 ° C. or higher without using an electric heater, and a highly efficient and high-performance liquid fuel reforming method can be provided. In addition, as disclosed in Patent Document 1, a method of supplying the heat of the combustion exhaust gas of the burner to both the evaporator and the reformer and simultaneously achieving the primary heating and the secondary heating in the evaporator. Is also possible. However, in this case, since the heat of the combustion exhaust gas cannot be effectively used in a stepwise manner according to the temperature level, the overall thermal efficiency is reduced. Therefore, there is a difficulty as a method for reforming kerosene or the like, which is the object of the present invention.
[0026]
Further, as an apparatus for performing the reforming method, the invention of the following claim 3 is preferable. That is, it is a reformer for carrying out the reforming method according to claim 1 or 2, wherein the reformer having a catalytic reaction layer and a heating burner, and a combustion exhaust gas from the heating burner are used for gasification. And a vaporizer for generating a mixture by primary heating a mixture of the ionic liquid raw fuel and water, and further comprising a heat transfer means for secondary heating the mixture. The invention of claim 3).
[0027]
Further, as an embodiment of the invention of claim 3, the following inventions of claims 4 to 6 are preferable. That is, in the reformer according to the third aspect, the heat transfer means is a heat exchanger provided on a wall surface of the heating burner (the invention of the fourth aspect). Further, in the reformer according to claim 3, the heat transfer means is a heat exchanger provided in the reformed gas flow path in the catalytic reaction layer (the invention of claim 5). Furthermore, in the reformer according to claim 4 or 5, the heat exchanger includes a helical pipe through which the mixture or the reformed gas flows (the invention according to claim 6). .
[0028]
According to the configuration of the above embodiment, the amount of heat radiation from the surface of the reformer including the burner is reduced, and the effect of further improving the thermal efficiency is obtained.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0030]
FIG. 1 shows a schematic configuration of a fuel cell power generator including a kerosene reformer according to an embodiment of the present invention. Members having the same functions as those in FIG. 3 are denoted by the same reference numerals, and detailed description is omitted.
[0031]
In the embodiment shown in FIG. 1, a helical pipe 11 is wound around the wall of the reformer burner 7, and a mixture of kerosene and reforming steam flowing out of the vaporizer 2 is passed therethrough to perform secondary heating. Later, it is supplied to the reformer 3. In normal operation, the outer wall of the reformer burner is kept at about 500 ° C., and thus, according to the above configuration, the mixture of kerosene and reforming steam is heated to about 400 ° C. Since it is supplied to the reformer in a state, the unvaporized components do not condense and do not adversely affect the reforming performance, and the reforming reaction can be performed well. Further, according to such a configuration, an effect is obtained that the amount of heat radiated from the surface of the reformer burner is reduced and the thermal efficiency is improved.
[0032]
In FIG. 1, a configuration is shown in which a pipe is wound spirally around the wall surface of the reformer burner. However, the wall surface of the reformer burner is formed into a two-layer jacket shape, and kerosene and The same effect can be obtained by a configuration in which a mixture of reforming steam is passed.
[0033]
Next, the embodiment of FIG. 2 will be described. Members having the same functions as those in FIG. 3 are denoted by the same reference numerals, and detailed description is omitted.
[0034]
In the embodiment of FIG. 2, a helical pipe 12 is wound around the wall of the reformed gas flow path, and a mixture of kerosene and reforming steam flowing out of the vaporizer 2 flows through the spiral pipe 12 to the reformer. Supply. In normal operation, the reformed gas exits the reforming catalyst layer at about 600 to 700 ° C., is cooled while heating the reforming catalyst layer, and is discharged at about 350 ° C. Will be introduced.
[0035]
Therefore, since the wall surface of the gas inlet portion of the reformed gas flow path is maintained at 500 ° C. or higher, according to the above configuration, the mixture of kerosene and reforming steam is heated to about 400 ° C. Since the gas is supplied to the reformer in a completely gaseous state, the reforming reaction can be favorably performed as in the embodiment of FIG. Further, according to such a configuration, an effect is obtained that the amount of heat radiation from the surface of the reformer is reduced and the thermal efficiency is improved. In FIG. 2, a configuration in which a helical pipe is wound around the wall surface of the reformed gas flow channel is shown. However, the wall surface of the reformed gas flow channel is formed into a two-layer jacket, and between the inner and outer jackets, It is also possible to adopt a configuration in which a mixture of kerosene and reforming steam flows.
[0036]
【The invention's effect】
As described above, according to the present invention, in a reforming method for steam-reforming a non-vaporizable liquid raw fuel such as kerosene or gasoline in a catalytic reaction layer of a reformer, the non-vaporizable liquid raw fuel and water Is primarily heated by the combustion exhaust gas of the heating burner of the reformer to form an air-fuel mixture, and this air-fuel mixture is prevented from condensing at least the high-boiling components contained in the difficult-to-evaporate liquid raw fuel. To a predetermined temperature or more, after secondary heating by heat transfer from the reformer, to reform by supplying to the catalytic reaction layer of the reformer,
As a device for carrying out the method, a reformer having a catalytic reaction layer and a heating burner, and a mixture of a non-vaporizable liquid raw fuel and water are primarily heated by a combustion exhaust gas of the heating burner to form an air-fuel mixture. And further comprising a heat transfer means for secondary heating the air-fuel mixture,
A mixture of a non-vaporizable liquid raw fuel such as kerosene and a reforming vapor can be heated to at least about 300 ° C. without using an electric heater. A method and apparatus can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a fuel cell power generation device including a kerosene reformer according to an embodiment of the present invention. FIG. 2 is a schematic configuration diagram of a fuel cell power generation device according to an embodiment different from FIG. 1 of the present invention. FIG. 3 is a schematic configuration diagram of a conventional fuel cell power generator.
1: desulfurizer, 2: vaporizer, 3: reformer, 3a: catalytic reaction layer, 4: carbon monoxide converter, 5: carbon monoxide remover, 6: fuel cell, 7: burner, 11, 12 : Spiral pipe.
Claims (6)
前記難気化性液体原燃料と水との混合物を、前記改質器の加熱用バーナの燃焼排ガスによって一次加熱して混合気とし、さらに、この混合気を、少なくとも前記難気化性液体原燃料中に含まれる高沸点成分の凝縮を防止するための所定温度以上に、前記改質器からの伝熱により二次加熱した後、前記改質器の触媒反応層に供給することにより改質することを特徴とする液体燃料の改質方法。In a reforming method of steam reforming a non-vaporizable liquid raw fuel such as kerosene or gasoline in a catalytic reaction layer of a reformer,
The mixture of the vaporizable liquid raw fuel and water is primarily heated by the combustion exhaust gas of the heating burner of the reformer to form a mixture, and the mixture is further mixed with at least the vaporizable liquid raw fuel. After secondary heating by heat transfer from the reformer to a predetermined temperature or higher to prevent condensation of high boiling components contained in, reforming by supplying to the catalytic reaction layer of the reformer A method for reforming a liquid fuel, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002343935A JP4136624B2 (en) | 2002-11-27 | 2002-11-27 | Liquid fuel reforming method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002343935A JP4136624B2 (en) | 2002-11-27 | 2002-11-27 | Liquid fuel reforming method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004175621A true JP2004175621A (en) | 2004-06-24 |
JP4136624B2 JP4136624B2 (en) | 2008-08-20 |
Family
ID=32705603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002343935A Expired - Fee Related JP4136624B2 (en) | 2002-11-27 | 2002-11-27 | Liquid fuel reforming method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4136624B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006117468A (en) * | 2004-10-21 | 2006-05-11 | Toshiba Fuel Cell Power Systems Corp | System and method for reforming liquid fuel |
JP2007109590A (en) * | 2005-10-17 | 2007-04-26 | Corona Corp | Reforming device for fuel cell, and fuel cell system equipped with the reforming device for fuel cell |
JP2008270194A (en) * | 2007-03-28 | 2008-11-06 | Showa Shell Sekiyu Kk | Manufacturing method of hydrogen for fuel cell |
JP2009091188A (en) * | 2007-10-05 | 2009-04-30 | Nippon Oil Corp | Hydrogen producing apparatus |
JP2009091187A (en) * | 2007-10-05 | 2009-04-30 | Nippon Oil Corp | Hydrogen producing apparatus |
JP2010030801A (en) * | 2008-07-25 | 2010-02-12 | Toshiba Fuel Cell Power Systems Corp | Reformer for fuel cell |
JP2010202447A (en) * | 2009-03-03 | 2010-09-16 | Jx Nippon Oil & Energy Corp | Hydrogen production apparatus and fuel cell system |
JP2010202446A (en) * | 2009-03-03 | 2010-09-16 | Jx Nippon Oil & Energy Corp | Hydrogen production apparatus and fuel cell system |
-
2002
- 2002-11-27 JP JP2002343935A patent/JP4136624B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006117468A (en) * | 2004-10-21 | 2006-05-11 | Toshiba Fuel Cell Power Systems Corp | System and method for reforming liquid fuel |
JP2007109590A (en) * | 2005-10-17 | 2007-04-26 | Corona Corp | Reforming device for fuel cell, and fuel cell system equipped with the reforming device for fuel cell |
JP2008270194A (en) * | 2007-03-28 | 2008-11-06 | Showa Shell Sekiyu Kk | Manufacturing method of hydrogen for fuel cell |
JP2009091188A (en) * | 2007-10-05 | 2009-04-30 | Nippon Oil Corp | Hydrogen producing apparatus |
JP2009091187A (en) * | 2007-10-05 | 2009-04-30 | Nippon Oil Corp | Hydrogen producing apparatus |
JP2010030801A (en) * | 2008-07-25 | 2010-02-12 | Toshiba Fuel Cell Power Systems Corp | Reformer for fuel cell |
JP2010202447A (en) * | 2009-03-03 | 2010-09-16 | Jx Nippon Oil & Energy Corp | Hydrogen production apparatus and fuel cell system |
JP2010202446A (en) * | 2009-03-03 | 2010-09-16 | Jx Nippon Oil & Energy Corp | Hydrogen production apparatus and fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
JP4136624B2 (en) | 2008-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101102804B1 (en) | Method of starting solid oxide fuel cell system | |
CN101888969A (en) | Fuel cell system and method for starting the same | |
JP5078696B2 (en) | Load following operation method of fuel cell system | |
JP2009176660A (en) | Shutdown method of indirect internal reforming solid oxide fuel cell | |
JP4136624B2 (en) | Liquid fuel reforming method and apparatus | |
JP2009238599A (en) | Method of load following operation of fuel cell system | |
JP2001080904A (en) | Fuel reformer | |
JP5078697B2 (en) | Load following operation method of fuel cell system | |
JP4210912B2 (en) | Fuel reformer and fuel cell power generator | |
JP2003187849A (en) | Solid polymer fuel cell power generator | |
JP2003086210A (en) | Solid high-polymer type fuel cell power generator and its operation method | |
JP3473900B2 (en) | Hydrogen generator | |
JP4847117B2 (en) | Fuel reforming system | |
JP4902165B2 (en) | Fuel cell reformer and fuel cell system comprising the fuel cell reformer | |
KR101295237B1 (en) | Fuel cell system | |
JP3997476B2 (en) | Fuel cell power generator | |
JP5369327B2 (en) | Fuel reformer and its pretreatment method, fuel cell power generation system and its operation pretreatment method | |
JP2001080905A (en) | Operation of fuel reformer | |
JP2003183008A (en) | Hydrogen generating apparatus | |
JP2002241108A (en) | Fuel reforming apparatus and fuel cell power generation apparatus | |
JP2003288933A (en) | Fuel cell power generating system | |
JP2001146405A (en) | Apparatus for reforming fuel and method for operating the same | |
JP2006294464A (en) | Fuel cell power generation system | |
JP2001089106A (en) | Method for starting fuel reformer | |
JP2005166580A (en) | Fuel reformer, fuel cell system and operation control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050415 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080508 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080603 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |