【0001】
【発明の属する技術分野】
本発明は、燃料電池等の用途に好適な水素吸蔵材料に関わり、さらにこの水素吸蔵材料を製造する方法及び装置、さらにはこの水素吸蔵材料の特定の性質を専ら利用する物である燃料電池用水素貯蔵容器、この燃料電池を搭載した自動車及び燃料電池発電装置に関する。
【0002】
【従来の技術】
水素吸蔵材料は炭酸ガスによる地球温暖化対策のひとつとして、炭酸ガスを排出しない自動車用燃料電池などへの使用が期待されている。自動車の場合、燃料電池は水素と酸素の直接反応による発電を走行するエネルギーとして利用するものである。そのため、1回当りの水素の補給でなるべく長い距離を走行できることが望ましい。水素の補給時間が短く、補給量が多いほど、つまり、自動車の水素の吸蔵能力が大きいほど走行可能距離が長くなるので、水素吸蔵材料としては、水素吸蔵能力の大きいほど、軽量なほど、自動車には好ましいことになる。水素吸蔵材料は燃料タンクなどの容器に充填して使用するが、水素吸蔵量をより多くするため水素吸蔵金属粒のみを充填すると、水素補充時の発熱で金属粒同士が結合して大きな塊になってしまい、水素の補給時間が長くなったりして、実用上好ましくない現象が発生する。このような問題を避けるために、水素吸蔵物質として金属と炭素の複合材を使用する提案がいくつかなされている。
【0003】
例えば、非晶質炭素とアルカリ金属との反応物で、アルカリ金属に対する非晶質炭素のモル比が1.3以上26以下の水素吸蔵物質及び黒鉛とアルカリ金属との反応物で、アルカリ金属に対する黒鉛のモル比が2.7以上8未満の水素吸蔵物質が開示されている(例えば、特許文献1参照。)。この水素吸蔵物質は、炭素材料のモル比が高いので水素吸蔵量が低いこと、材料の微粒化が粉砕法なので材料の最小粒径が比較的大きく、微細化により到達できる水素吸蔵所要時間の短縮化に限界があるという問題があった。
【0004】
また、六員環炭素網面が積層されて成るカーボンナノファイバーにおいてファイバー軸に対する配向が異なる多数の積層領域を含み、内部にLi又はKが担持されているカーボンナノファイバーから成る水素吸蔵材がある(例えば、特許文献2参照。)。この水素吸蔵材は、まず触媒金属を作製、ついでこの触媒表面上に気相熱分解法によってカーボンナノファイバーを作製したのち触媒金属などを化学的処理で除去し、そのうえでKあるいはLi金属を化学的に含浸するという非常に複雑な工程を経なければならず作成に困難をきわめるという問題があった。
【0005】
また、積層したグラファイトチューブ内壁に粒径10nm以下の8族金属微粒子(Fe、Co、Ni、Ru、Rh、Pd…)からなる触媒を担持した水素吸蔵材料が開示されている(例えば、特許文献3参照。)。この水素吸蔵材料も、まずカーボンナノチューブを製造してから、触媒金属を付着するので、上記特許文献2記載の水素吸蔵材料と同様に工程が複雑であって作成が困難であるという問題があった。
【0006】
さらに、多孔質体の孔の内部に炭素繊維が充填されており、この多孔質体が金属と非金属無機材料の混合体で構成されている水素吸蔵体がある(例えば、特許文献4参照。)。この水素吸蔵体は多孔質体の占有体積が大きく、体積当りの水素吸蔵量が低いという問題があった。
【0007】
このように、従来から水素吸蔵材料として、金属と炭素を複合化したものを使用することが提案されていたが、いずれもその製造が困難であったり、あるいは単位体積あたりの水素吸蔵量が少ない等の問題を有するものでしかなかった。
【0008】
【特許文献1】
特開2002−28483号公報(第2−5頁、図1)
【特許文献2】
特開2001−288624号公報(第2−5頁、図2)
【特許文献3】
特開2001−146408号公報(第2−6頁、図1)
【特許文献4】
特開2000−281303号公報(第2−3頁、図1)
【0009】
【発明が解決しようとする課題】
本発明は、従来の金属・炭素複合系水素吸蔵材料がいずれも有していた製造工程の複雑さや単位体積当たりの水素吸蔵量の少ないという問題を有利に解決することを日的とするものである。
【0010】
【課題を解決するための手段】
上記の課題を解決するためになされたもので、本発明はまず水素吸蔵材料として
(1)平均粒径5nm〜0.5μmのマグネシウム微粒子と平均粒径5nm〜20μmの炭素材からなるマグネシウムと炭素の複合材料であって、マグネシウムの含有率が50〜80質量%であることを特徴とする水素吸蔵材料、及び
(2)平均粒径5nm〜0.5μmのマグネシウム・ニッケル系合金微粒子と平均粒径5nm〜20μmの炭素材からなるマグネシウムとニッケルと炭素の複合材料であって、マグネシウムの含有率が45〜75質量%であり、マグネシウムとニッケルの質量含有率の比が9対1〜30対1であることを特徴とする水素吸蔵材料
を提案するものである。
【0011】
さらに本発明は、上記(1)又は(2)の水素吸蔵材料を好適に製造する方法として、
(3)ガス状金属マグネシウムを水素ガスで反応部に搬送し、別途導入された炭素と水素を含有する化合物のガスと反応部で気相状態で混合し反応させ、ガス状金属マグネシウムからマグネシウム微粒子を生成すると同時に、炭素と水素を含有する化合物のガスから炭素材を析出させて、マグネシウム微粒子と炭素材の複合物を同時に生成させることを特徴とする水素吸蔵材料の製造方法、及び
(4)ガス状金属マグネシウムを水素ガスで反応部に搬送中に、別途導入された塩化ニッケルガスと混合し、気体状態で反応させてマグネシウム・ニッケル合金微粒子をを生成させ、別途導入された炭素と水素を含有する化合物のガスと反応部で反応させて炭素材を析出させマグネシウム・ニッケル合金微粒子と炭素の複合材を生成させることを特徴とする水素吸蔵材料の製造方法
を提案するものである。
【0012】
また、本発明は、上記(1)又は(2)の水素吸蔵材料を好適に製造する装置として、
(5)上部にガス状金属マグネシウム及び水素ガス及び炭素と水素を含有する化合物のガス各導入口を有し、中部にマグネシウム微粒子と炭素材の複合物を生成する反応部を有し、下部にマグネシウム微粒子と炭素材の複合物を回収する容器を備えたことを特徴とする水素吸蔵材料の製造装置、及び
(6)上部に金属マグネシウム及び水素ガス及び塩化ニッケル及び炭素と水素を含有する化合物の各導入口を有し、中部にマグネシウム・ニッケル微粒子と炭素材の複合物を生成する反応部を有し、下部にマグネシウム・ニッケル微粒子と炭素材の複合物を回収する容器を備えたことを特徴とする水素吸蔵材料の製造装置をも提案するものである。
【0013】
加えて、本発明は、上記(1)又は(2)の水素吸蔵材料の特性を専ら利用する物として、
(7)前記(1)及び/又は前記(2)に示した水素吸蔵材料を内部に充填した容器からなることを特徴とする燃料電池用水素貯蔵容器、
(8)かかる燃料電池用水素貯蔵容器を搭載した車輌からなることを特徴とする燃料電池自動車、及び
(9)かかる燃料電池用水素貯蔵容器を固定設置した装置からなることを特徴とする燃料電池発電装置
をも提案するものである。
【0014】
【発明の実施の形態】
本発明の水素吸蔵材料は、水素吸蔵物質としての主物質であるマグネシウムと炭素材からなる複合材であり、マグネシウムを水素吸蔵物質として使用するので水素吸蔵量が比較的高い。また、気相状態から製造するため、生成物の形状は安定する。炭素材との複合作用で経年使用中でもマグネシウム粒同士の結合を抑制して、水素吸蔵量が安定して高く継続できるとともに、水素吸蔵の速度を高く維持することができる。またマグネシウムと炭素材は軽量であり、燃料電池車としては好都合である。
【0015】
ここに本発明の金属と炭素との複合系水素吸蔵材料の概念として、3種類の典型的な形態の複合材を模式的に図2〜図4に示した。図2〜図4は粒子の形状や大きさは平面的に簡略化して図示してある。図2は炭素材11の表面に金属微粒子12が付着した形態を示している。炭素材は立方体状、板体状、コマ状、球体状、多面体状、錐体状など種々の形状を呈している。図3に図2と同様な形状の炭素材11の表面に膜状金属13が生成した形態が示されている。また、図4には図2と同様な形状の炭素材11の微粒子の内部に金属14が存在する形態が示されている。このようないろいろな形態の複合材は、従来法では容易に製造することができなかったものである。本発明の複合材は、特に、気相状態で反応させ、粒子成長させて製造するもので、図2〜図4はその製造方法による特徴を表している。以上の金属と炭素との複合は気相反応による粒子成長時に一気に行われるため、従来法より製造工程が簡略化されるとともに製造コストの低減が可能になる。
【0016】
上記の本発明の水素吸蔵材料は、以下のようにして製造することが好ましい。図1は本発明の複合系水素吸蔵材製造の要領を示す概略説明図である。図1は竪型で図示してあるが原理的には横型でも良い。また、図1は簡易的に図示してあるが、実際の装置は大気から遮断された状態にするのは当然である。装置の温度制御は装置の上方から下方にかけて3箇所以上で行うことが望ましい。これらの温度制御のための熱源は反応管2や内管1の外部から加熱するのが一般的である。A部はガス状金属マグネシウムと水素ガスの混合物の導入部3であり、金属マグネシウムが凝縮しない温度以上で製造装置内に導入される。B部は炭素と水素を含有する化合物のガス(たとえば、炭化水素系ガス)と中性ガス(たとえばアルゴンガス)の混合物の導入部4である。
【0017】
次に説明するC域に到達するまでに炭素と水素を含有する化合物のガスから炭素が析出しないよう、C域までの温度管理が必要である。
【0018】
C域はマグネシウム・炭素複合材生成域5である。気相状態からマグネシウム微粒子と微粒炭素材が生成するため、これらの微粒子は強く結合し、安定した形状の材料を製造することができる。マグネシウムと炭素材の含有率はA部からのマグネシウム導入量とB部からの炭素と水素を含有する化合物による炭素導入量の比率で制御することができる。また、粒径はA部からの導入ガス中のマグネシウムの分圧とB部からの導入ガス中の炭素と水素を含有する化合物の分圧、C域での温度やガス流速などによって制御する。
【0019】
一般的には、マグネシウム分圧を低下させれば生成マグネシウム粒子の粒径は減少し、マグネシウム分圧を増加すれば生成マグネシウム粒子の粒径は大きくなる。炭素材の粒径はマグネシウム粒子の大きさに関連し、マグネシウム粒子を大きくすれば炭素材の粒径も大きくする。また、C域でのガス流速が遅いと生成粒子の滞留時間が長くなるため生成するマグネシウム粒子の粒径は大きくなる傾向にある。A部、B部、C域は加熱装置及び測温装置により、それぞれ適切な温度に管理する。製造装置の大型化により、測温及び温度制御域の数は3箇所とはかぎらず4箇所以上にするのが得策である。
【0020】
D部は製造装置から排出される生成物(粉とガス)の排出部6である。D部の生成物は水素吸蔵材と残留ガスの混合物であり、図示していないが、反応管2の出側に連続して設置された捕集器に導入されてガスと分離され、水素吸蔵材料が回収される。図1に示す製造装置は水素吸蔵材料を連続的に製造するため、A部から原料が連続的に装置内に供給され、B部からも連続的に原料が装置内に供給される。D部からも連続的に生成物が排出されるので、生成物とガスとの分離は捕集器のフィルターなどで行う。生成物の回収は複数台の捕集器を切り替えて使用し、休止中の捕集器から生成物を取り出し回収する。
【0021】
これにより、実施例装置はA部、B部、C域、D部が連続的に運転可能になり、製造される水素吸蔵材料の品質が安定し、また生産性の向上が可能になるなどの好結果が得られる。マグネシウム・ニッケル系合金微粒子を生成する場合は、A部からC域に到達するまでに塩化ニッケルガスを混合し、マグネシウム・ニッケル合金微粒子を生成させる。塩化ニッケルはマグネシウムでも還元されるので、マグネシウムとニッケルが全体によく分布している合金微粒子を生成することができる。
【0022】
回収した試料の炭素、マグネシウム、ニッケルなどの成分の分析については、炭素は赤外吸収法で分析し、マグネシウムとニッケルはICP発光分光分析法で分析した。また、走査型電子顕微鏡SEM及び透過型電子顕微鏡TEMそれぞれの画像解析法で個数基準の平均粒子径を測定した。
【0023】
なお粒子形状が不定形の場合、粒子の長径と短径の平均をその粒子の粒径とした。水素吸蔵速度の比較は、高圧示差熱天秤を使用し温度350℃、水素圧力3MPaでの質量増加率2.8質量%までの所要時間で比較した。水素吸蔵量の測定は、高圧示差熱天秤を使用し、質量増加曲線がほぼ平衡になる時点での質量増加とした。水素解離温度の測定は高圧示差熱天秤を使用し、解離圧0.1MPaにおける温度とした。
【0024】
【実施例】
次に各種複合材の実施例を示す。
実施例1〜12
表1に示す実施例1〜12はマグネシウムと炭素材の複合材で、マグネシウムと炭素材の各種含有率の例である。A部の温度は前段階で発生されたマグネシウムガスが凝縮しないようマグネシウムの沸点以上とした。B部の温度はB部の前段階で供給された炭化水素ガスなどの分解を抑制する低温度とした。C域は反応域及び生成域であり、反応熱を考慮して外部からの加熱を制御し、C域の温度制御を行った。マグネシウムの含有率や平均粒径は、A部の前段階で温度と水素ガス流量により同伴するマグネシウムの分圧や供給量が制御されるとともに、B部への炭化水素の分圧や供給量を調整することにより、制御した。また、C域での滞留時間を長くすることはつまり全体のガス流量を減少することで、複合材の粒子成長を促進し平均粒径を大きくした。温度を低温化することで粒子成長を抑制し微粒化を促進することが可能である。マグネシウムの含有率は50〜80質量%であり、マグネシウムの平均粒径は5nm〜0.5μmであり、炭素材の平均粒径は5nm〜20μmであった。水素吸蔵量は3.7〜5.7質量%であり、通常の水素吸蔵材料よりも比較的高い性能が得られている。炭素材を複合する効果を示す水素吸蔵速度は炭素材を含まない場合より数倍から10倍程度が得られており、より実用的な水素吸蔵材料であることを示している。なお水素吸蔵速度は後述する比較例1の平均粒径5nmのマグネシウム微粒子の場合の水素吸蔵速度を基準とする相対値で示した。
比較例1〜4
比較例1〜4の水素吸蔵材料は炭素材を含まないため、水素吸蔵量は6.9〜7.2質量%であり、実施例より高いが、マグネシウム特有の水素吸蔵速度の遅さを呈し、実施例の数分の1〜10分の1程度であり、水素吸蔵に長い時間がかかり実用的ではない。また、長期使用時にはマグネシウム粒了同士の結合が進行し水素吸蔵速度の長時間化が懸念される。比較例1〜4も表1に併せて示した。
【0025】
なお、表1中のMgはマグネシウム、Niはニッケル、CmHnはC6H6を示す。
【0026】
【表1】
【0027】
実施例13〜24
実施例13〜24は金属分としてマグネシウムにニッケルを添加したものである。マグネシウムの含有率は45〜75質量%であり、マグネシウムとニッケルの含有率の比率は9.2〜28.5であった。マグネシウム・ニッケル金属粒子の平均粒径は5nm〜0.5μmであり、炭素材の平均粒径は5nm〜20nmであった。水素吸蔵量はニッケルを添加した分マグネシウム含有率が低下したため、3.3〜5.5質量%であるが、通常の水素吸蔵材料よりも比較的高い水素吸蔵量が得られている。ニッケルの添加の効果を示す水素吸蔵速度はニッケルを適正量含まない場合より数倍程度速い結果が得られており、より実用的な水素吸蔵材料であることを示している。
【0028】
実施例1〜12と実施例13〜24では実施例13〜24の方がニッケルを添加したことにより、水素吸蔵速度は速いが、工業的にはやや製造コストが高くなるので、実施例1〜12と13〜24の選択はケースバイケースである。
【0029】
本発明の水素吸蔵材料の有効性を確認するため水素貯蔵容器に格納し、燃料電池自動車に搭載して試験走行を実施した。
【0030】
実施例10の水素吸蔵材料約90kgを、冷却装置を有するステンレス製水素貯蔵容器に格納し、全長約4.5m、全幅約1.8m、燃料電池型式は固体高分子PEFC、出力は約85kwで交流同期電動機駆動の燃料電池自動車に搭載し試験走行を実施した。
【0031】
水素ガスの吸蔵時間(補充時間)は約6分と短く、最高速度150km/hr、航続距離360kmを達成し、本吸蔵材料の実用性を発揮した。30回の試験走行後も1回目と同様な使用結果が得られ本吸蔵材料の性能特性が安定していることが把握できた。
【0032】
比較例2の水素吸蔵材料約70kgを、実施例10と同様な水素貯蔵容器に格納し実施例10と同様の燃料電池自動車に搭載し試験走行を実施した。
【0033】
水素ガスの吸蔵時間は約50分と長く、最高速度145km/hr、航続距離340kmを達成したが、30回目の試験走行時には水素吸蔵時間は約85分と長くなり、最高速度は105km/hr、航続距離260kmとなり、1回目よりも使用結果が悪化した。
【0034】
これは、マグネシウム単独の水素吸蔵材料が継続使用中に結合粗大化し性能が劣化した原因によるのに対して、実施例10の本発明品は結合粗大化を防止できて水素吸蔵時の水素の流入が円滑で、また、水素解離−放出時は水素ガスの流出が円滑に保持できたからである。
【0035】
実施例22の水素吸蔵材料約90kgを、実施例10と同様な水素貯蔵容器に格納し実施例10と同様の燃料電池自動車に搭載し試験走行を実施した。
【0036】
水素ガスの吸蔵時間は約5分とさらに短くなり、最高速度155km/hr、航続距離350kmを達成し、本吸蔵材料の実用性を発揮した。30回の試験走行後も1回目と同様な使用結果が得られ実施例10と同様本吸蔵材料の性能特性が安定していることが把握できた。
【0037】
比較例6の水素吸蔵材料約120kgを、実施例10と同様な水素貯蔵容器に格納し実施例10と同様の燃料電池自動車に搭載し試験走行を実施した。
【0038】
水素ガスの吸蔵時間は約25分と長く、最高速度150km/hr、航続距離340kmを達成したが、30回目の試験走行時には水素吸蔵時間は約30分と長くなり、最高速度は125km/hr、航続距離330kmとなり、1回目よりも使用結果がやや低下した。
【0039】
以上の実施例に示すように、本発明の水素吸蔵材料は燃料電池自動車用水素吸蔵材料として実用的な特性を有していることがわかる。
【0040】
【表2】
【0041】
【発明の効果】
本発明のマグネシウム微粒子と炭素の複合材及び、マグネシウム・ニッケル合金微粒子と炭素材の複合材は水素吸蔵量が高く、水素吸蔵速度が速い特徴があり、水素吸蔵材料として実用的に優れた効果が期待できる。
【図面の簡単な説明】
【図1】実施例の複合系水素吸蔵材料の製造プロセスを示すフローシートである。
【図2】実施例の炭素材と金属粒子の複合形態を示す模式図である。
【図3】実施例の炭素材と金属粒子の複合形態を示す模式図である。
【図4】実施例の炭素材と金属粒子の複合形態を示す模式図である。
【符号の説明】
1 内管
2 反応管
3 導入部
4 導入部
5 合成域
6 排出部
11 炭素材
12 金属粒子
13 膜状金属
14 金属
A部:マグネシウム、マグネシウム・ニッケル、水素などの導入部
B部:炭化水素、アルゴンなどの導入部
C域:導入物の反応城及び水素吸蔵材料の生成域
D部:生成物の排出部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen storage material suitable for use in fuel cells and the like, and further relates to a method and an apparatus for producing the hydrogen storage material, and further to a fuel cell which exclusively utilizes specific properties of the hydrogen storage material. The present invention relates to a hydrogen storage container, an automobile equipped with the fuel cell, and a fuel cell power generator.
[0002]
[Prior art]
As one of the measures against global warming caused by carbon dioxide, the hydrogen storage material is expected to be used for fuel cells for automobiles that do not emit carbon dioxide. In the case of an automobile, a fuel cell utilizes power generated by a direct reaction between hydrogen and oxygen as traveling energy. Therefore, it is desirable to be able to travel as long as possible by replenishing hydrogen at one time. The shorter the hydrogen replenishment time and the greater the replenishment amount, that is, the greater the hydrogen storage capacity of the vehicle, the longer the cruising distance. Therefore, as the hydrogen storage material, the larger the hydrogen storage capacity, the lighter the vehicle Will be preferred. The hydrogen storage material is used by filling it into a container such as a fuel tank, but if only hydrogen storage metal particles are filled to increase the hydrogen storage amount, the metal particles are combined by the heat generated during hydrogen replenishment and become large blocks. As a result, the replenishment time of hydrogen becomes longer, and a phenomenon that is not practically preferable occurs. In order to avoid such problems, some proposals have been made to use a composite material of metal and carbon as a hydrogen storage material.
[0003]
For example, a hydrogen storage material having a molar ratio of amorphous carbon to alkali metal of 1.3 to 26 and a reaction product of graphite and alkali metal in a reaction product of amorphous carbon and alkali metal, A hydrogen storage material having a graphite molar ratio of 2.7 or more and less than 8 is disclosed (for example, see Patent Document 1). This hydrogen storage substance has a low hydrogen storage amount due to the high molar ratio of the carbon material, and the material has a relatively small minimum particle size because the material is atomized by pulverization. There was a problem that there was a limit to the conversion.
[0004]
In addition, there is a hydrogen storage material made of a carbon nanofiber including a carbon nanofiber including a large number of lamination regions having different orientations with respect to a fiber axis in a carbon nanofiber formed by laminating six-membered ring carbon net surfaces, and having Li or K supported therein. (For example, see Patent Document 2). This hydrogen storage material first produces a catalytic metal, then produces carbon nanofibers on the surface of the catalyst by vapor phase pyrolysis, then removes the catalytic metal and the like by chemical treatment, and then chemically removes K or Li metal. This involves a very complicated process of impregnating the material, and there is a problem that the production is extremely difficult.
[0005]
Further, a hydrogen storage material is disclosed in which a catalyst made of Group 8 metal fine particles (Fe, Co, Ni, Ru, Rh, Pd,...) Having a particle size of 10 nm or less is supported on the inner wall of a laminated graphite tube (for example, Patent Document 1). 3). This hydrogen-absorbing material also has a problem that the process is complicated and difficult to produce, as in the case of the hydrogen-absorbing material described in Patent Document 2, since a carbon nanotube is first produced and then a catalytic metal is deposited. .
[0006]
Further, there is a hydrogen storage body in which carbon fibers are filled inside the pores of the porous body, and the porous body is composed of a mixture of a metal and a nonmetallic inorganic material (for example, see Patent Document 4). ). This hydrogen storage body has a problem that the volume occupied by the porous body is large, and the hydrogen storage amount per volume is low.
[0007]
As described above, it has been conventionally proposed to use a compound of metal and carbon as a hydrogen storage material, but it is difficult to manufacture any of them, or the hydrogen storage amount per unit volume is small. And so on.
[0008]
[Patent Document 1]
JP-A-2002-28483 (page 2-5, FIG. 1)
[Patent Document 2]
JP 2001-288624 A (page 2-5, FIG. 2)
[Patent Document 3]
JP 2001-146408 A (Page 2-6, FIG. 1)
[Patent Document 4]
JP 2000-281303 A (page 2-3, FIG. 1)
[0009]
[Problems to be solved by the invention]
The present invention is intended to advantageously solve the problems of the complexity of the manufacturing process and the small amount of hydrogen storage per unit volume that all the conventional metal / carbon composite hydrogen storage materials had. is there.
[0010]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-mentioned problems. The present invention firstly provides (1) magnesium and carbon comprising an average particle diameter of 5 nm to 0.5 μm and a carbon material having an average particle diameter of 5 nm to 20 μm as a hydrogen storage material; A hydrogen storage material characterized in that the content of magnesium is 50 to 80% by mass, and (2) magnesium-nickel alloy fine particles having an average particle size of 5 nm to 0.5 μm and average particles A composite material of magnesium, nickel and carbon made of a carbon material having a diameter of 5 nm to 20 μm, wherein the magnesium content is 45 to 75% by mass, and the ratio of the magnesium to nickel mass content is 9: 1 to 30: The present invention proposes a hydrogen storage material characterized by being 1.
[0011]
Further, the present invention provides a method for suitably producing the hydrogen storage material according to the above (1) or (2),
(3) The gaseous metallic magnesium is conveyed to the reaction part by hydrogen gas, mixed with a separately introduced gas of a compound containing carbon and hydrogen in the gaseous phase in the reaction part, and reacted to produce fine particles of magnesium from the gaseous metallic magnesium. Producing a hydrogen storage material, wherein a carbon material is precipitated from a gas of a compound containing carbon and hydrogen at the same time as the compound is produced to simultaneously produce a composite of magnesium fine particles and a carbon material, and (4). While transporting gaseous metallic magnesium to the reaction section with hydrogen gas, it is mixed with nickel chloride gas separately introduced, and reacted in a gaseous state to generate magnesium / nickel alloy fine particles, and the carbon and hydrogen separately introduced are separated. It reacts with the gas of the compound contained in the reaction section to precipitate the carbon material and to form a composite material of magnesium-nickel alloy fine particles and carbon. It proposes a method for producing a hydrogen storage material according to.
[0012]
Further, the present invention provides an apparatus for suitably producing the hydrogen storage material of the above (1) or (2),
(5) Gas gaseous metallic magnesium and hydrogen gas and a gas containing compound gas containing carbon and hydrogen are provided at the upper portion, and a reaction portion for forming a composite of magnesium fine particles and a carbon material is provided at the middle portion. An apparatus for producing a hydrogen storage material, comprising: a container for collecting a composite of magnesium fine particles and a carbon material; and (6) a compound containing metal magnesium and hydrogen gas and nickel chloride and a compound containing carbon and hydrogen at the top. It has inlets, a reaction section for producing a composite of magnesium / nickel fine particles and carbon material in the middle, and a container for collecting a composite of magnesium / nickel fine particles and carbon material in the lower part. The present invention also proposes an apparatus for producing a hydrogen storage material.
[0013]
In addition, the present invention provides a product exclusively utilizing the characteristics of the hydrogen storage material of the above (1) or (2),
(7) A hydrogen storage container for a fuel cell, comprising a container filled with the hydrogen storage material described in (1) and / or (2).
(8) A fuel cell vehicle characterized by comprising a vehicle equipped with such a fuel cell hydrogen storage container, and (9) a fuel cell characterized by comprising a device in which such a fuel cell hydrogen storage container is fixedly installed. It also proposes a power generator.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The hydrogen storage material of the present invention is a composite material comprising magnesium, which is a main substance as a hydrogen storage substance, and a carbon material. Since magnesium is used as the hydrogen storage substance, the hydrogen storage amount is relatively high. In addition, since the product is produced from the gas phase, the shape of the product is stable. Due to the combined action with the carbon material, the bonding between magnesium particles is suppressed even during long-term use, so that the hydrogen storage amount can be stably maintained at a high level, and the speed of hydrogen storage can be maintained at a high level. Magnesium and carbon materials are lightweight, which is convenient for a fuel cell vehicle.
[0015]
Here, as a concept of the composite hydrogen storage material of metal and carbon of the present invention, three typical types of composite materials are schematically shown in FIGS. 2 to 4 schematically show the shapes and sizes of the particles in a planar manner. FIG. 2 shows a form in which metal fine particles 12 adhere to the surface of carbon material 11. The carbon material has various shapes such as a cubic shape, a plate shape, a coma shape, a spherical shape, a polyhedral shape, and a cone shape. FIG. 3 shows a form in which a film-like metal 13 is formed on the surface of a carbon material 11 having the same shape as that of FIG. FIG. 4 shows a form in which the metal 14 exists inside the fine particles of the carbon material 11 having the same shape as that of FIG. Such various forms of composite materials have not been easily manufactured by conventional methods. The composite material of the present invention is manufactured by reacting in a gaseous state and growing particles, and FIGS. 2 to 4 show features of the manufacturing method. Since the above-described composite of metal and carbon is performed at once at the time of particle growth by a gas phase reaction, the production process can be simplified and the production cost can be reduced as compared with the conventional method.
[0016]
The above-mentioned hydrogen storage material of the present invention is preferably produced as follows. FIG. 1 is a schematic explanatory view showing the procedure for producing a composite hydrogen storage material according to the present invention. FIG. 1 shows a vertical type, but a horizontal type may be used in principle. Although FIG. 1 is simply illustrated, it is natural that the actual device is kept in a state of being cut off from the atmosphere. It is desirable to control the temperature of the device at three or more locations from above to below the device. The heat source for controlling the temperature is generally heated from the outside of the reaction tube 2 or the inner tube 1. Part A is an introduction part 3 for a mixture of gaseous metallic magnesium and hydrogen gas, and is introduced into the manufacturing apparatus at a temperature at which metallic magnesium does not condense or higher. Part B is an introduction section 4 for introducing a mixture of a gas of a compound containing carbon and hydrogen (for example, a hydrocarbon-based gas) and a neutral gas (for example, argon gas).
[0017]
It is necessary to control the temperature up to the C region so that carbon does not precipitate from the gas of the compound containing carbon and hydrogen before reaching the C region described below.
[0018]
Area C is a magnesium-carbon composite material formation area 5. Since the magnesium fine particles and the fine carbon material are generated from the gas phase, these fine particles are strongly bonded to each other, and a material having a stable shape can be manufactured. The contents of magnesium and the carbon material can be controlled by the ratio of the amount of magnesium introduced from part A and the amount of carbon introduced by the compound containing carbon and hydrogen from part B. The particle size is controlled by the partial pressure of magnesium in the gas introduced from the part A, the partial pressure of the compound containing carbon and hydrogen in the gas introduced from the part B, the temperature in the C region, the gas flow rate, and the like.
[0019]
In general, the particle size of the produced magnesium particles decreases as the magnesium partial pressure decreases, and the particle size of the produced magnesium particles increases as the magnesium partial pressure increases. The particle size of the carbon material is related to the size of the magnesium particles, and the larger the magnesium particles, the larger the particle size of the carbon material. In addition, when the gas flow rate in the region C is low, the residence time of the generated particles becomes long, and the particle size of the generated magnesium particles tends to increase. Areas A, B, and C are controlled at appropriate temperatures by a heating device and a temperature measuring device. Due to the increase in the size of the manufacturing apparatus, it is advisable that the number of temperature measurement and temperature control areas is not limited to three but four or more.
[0020]
Part D is a discharge part 6 for products (powder and gas) discharged from the manufacturing apparatus. The product in the part D is a mixture of a hydrogen storage material and a residual gas, which is not shown, but is introduced into a collector continuously installed on the outlet side of the reaction tube 2 to be separated from the gas to be separated from the gas. Material is recovered. Since the production apparatus shown in FIG. 1 continuously produces the hydrogen storage material, the raw material is continuously supplied from the part A into the apparatus, and the raw material is continuously supplied from the part B into the apparatus. Since the product is continuously discharged from the part D, the product and the gas are separated by a filter of the collector. To collect the product, a plurality of collectors are switched and used, and the product is taken out from the inactive collector and collected.
[0021]
As a result, in the apparatus of the embodiment, the parts A, B, C, and D can be continuously operated, the quality of the hydrogen storage material to be manufactured is stabilized, and the productivity can be improved. Good results are obtained. When the magnesium / nickel-based alloy fine particles are generated, a nickel chloride gas is mixed until the particles reach the region A from the part A to generate the magnesium / nickel alloy fine particles. Since nickel chloride is also reduced by magnesium, alloy fine particles in which magnesium and nickel are well distributed throughout can be generated.
[0022]
With respect to the analysis of components such as carbon, magnesium, and nickel in the collected sample, carbon was analyzed by an infrared absorption method, and magnesium and nickel were analyzed by ICP emission spectroscopy. The number-based average particle diameter was measured by an image analysis method using a scanning electron microscope (SEM) and a transmission electron microscope (TEM).
[0023]
When the particle shape is irregular, the average of the major axis and minor axis of the particle was defined as the particle diameter of the particle. The comparison of the hydrogen storage rates was performed using a high-pressure differential thermal balance at a temperature of 350 ° C. and a hydrogen pressure of 3 MPa, and the required time up to a mass increase rate of 2.8% by mass. The amount of hydrogen storage was measured using a high-pressure differential thermobalance, and the mass increase at the time when the mass increase curve was almost equilibrium was determined. The hydrogen dissociation temperature was measured using a high-pressure differential thermobalance at a dissociation pressure of 0.1 MPa.
[0024]
【Example】
Next, examples of various composite materials will be described.
Examples 1 to 12
Examples 1 to 12 shown in Table 1 are composite materials of magnesium and a carbon material, and are examples of various contents of magnesium and a carbon material. The temperature of the part A was set to be higher than the boiling point of magnesium so that the magnesium gas generated in the previous stage was not condensed. The temperature of the part B was set to a low temperature for suppressing the decomposition of the hydrocarbon gas and the like supplied in the stage before the part B. The zone C is a reaction zone and a formation zone, and heating from outside was controlled in consideration of the heat of reaction to control the temperature of the zone C. The magnesium content and average particle diameter are controlled by the temperature and the hydrogen gas flow rate at the stage before Part A, while the accompanying partial pressure and supply amount of magnesium are controlled, and the partial pressure and supply amount of hydrocarbon to Part B are controlled. Controlled by adjusting. Increasing the residence time in the C region, that is, reducing the overall gas flow rate, promoted the particle growth of the composite material and increased the average particle size. By lowering the temperature, it is possible to suppress grain growth and promote atomization. The magnesium content was 50 to 80% by mass, the average particle size of magnesium was 5 nm to 0.5 μm, and the average particle size of the carbon material was 5 nm to 20 μm. The hydrogen storage amount is 3.7 to 5.7% by mass, and relatively high performance is obtained as compared with a normal hydrogen storage material. The hydrogen storage rate showing the effect of combining the carbon material is several times to about ten times that obtained when no carbon material is contained, indicating that the material is a more practical hydrogen storage material. Note that the hydrogen storage rate is shown as a relative value based on the hydrogen storage rate in the case of magnesium fine particles having an average particle diameter of 5 nm in Comparative Example 1 described later.
Comparative Examples 1-4
Since the hydrogen storage materials of Comparative Examples 1 to 4 do not contain a carbon material, the hydrogen storage amount is 6.9 to 7.2% by mass, which is higher than that of the examples, but exhibits a slow hydrogen storage rate peculiar to magnesium. The hydrogen absorption is not practical because it takes a long time to absorb hydrogen. In addition, when used for a long period of time, the bonding between magnesium particles progresses, and there is a concern that the hydrogen storage rate may be prolonged. Comparative Examples 1 to 4 are also shown in Table 1.
[0025]
In Table 1, Mg indicates magnesium, Ni indicates nickel, and CmHn indicates C 6 H 6 .
[0026]
[Table 1]
[0027]
Examples 13 to 24
In Examples 13 to 24, nickel was added to magnesium as a metal component. The magnesium content was 45 to 75% by mass, and the ratio between the magnesium and nickel content was 9.2 to 28.5. The average particle size of the magnesium / nickel metal particles was 5 nm to 0.5 μm, and the average particle size of the carbon material was 5 nm to 20 nm. The hydrogen storage amount is 3.3 to 5.5% by mass because the magnesium content is reduced by the addition of nickel, but a relatively higher hydrogen storage amount than that of a normal hydrogen storage material is obtained. The hydrogen storage rate showing the effect of the addition of nickel was several times faster than the case where the nickel was not contained in an appropriate amount, indicating that the material was a more practical hydrogen storage material.
[0028]
In Examples 1 to 12 and Examples 13 to 24, the hydrogen absorption rate was higher in Examples 13 to 24 by adding nickel, but the production cost was slightly higher industrially. The selection of 12 and 13-24 is on a case-by-case basis.
[0029]
In order to confirm the effectiveness of the hydrogen storage material of the present invention, it was stored in a hydrogen storage container and mounted on a fuel cell vehicle for a test run.
[0030]
About 90 kg of the hydrogen storage material of Example 10 was stored in a stainless steel hydrogen storage container having a cooling device, the total length was about 4.5 m, the total width was about 1.8 m, the fuel cell type was solid polymer PEFC, and the output was about 85 kW. The test drive was conducted on a fuel cell vehicle driven by an AC synchronous motor.
[0031]
The hydrogen gas occlusion time (replenishment time) was short, about 6 minutes, and achieved a maximum speed of 150 km / hr and a cruising distance of 360 km, demonstrating the practicality of the present occlusion material. After 30 test runs, the same use results as in the first run were obtained, indicating that the performance characteristics of the present occlusion material were stable.
[0032]
Approximately 70 kg of the hydrogen storage material of Comparative Example 2 was stored in the same hydrogen storage container as in Example 10, mounted on a fuel cell vehicle similar to Example 10, and a test run was performed.
[0033]
The hydrogen gas storage time was as long as about 50 minutes, and achieved a maximum speed of 145 km / hr and a cruising range of 340 km. However, during the 30th test run, the hydrogen storage time was as long as about 85 minutes, and the maximum speed was 105 km / hr. The cruising range was 260 km, and the use result was worse than the first time.
[0034]
This is due to the fact that the hydrogen storage material of magnesium alone was coarsened during continuous use and the performance was deteriorated, whereas the product of the present invention of Example 10 was able to prevent the coarsening of the bond and inflow of hydrogen during hydrogen storage. This is because the outflow of hydrogen gas was able to be maintained smoothly during the dissociation and release of hydrogen.
[0035]
Approximately 90 kg of the hydrogen storage material of Example 22 was stored in the same hydrogen storage container as in Example 10, mounted on a fuel cell vehicle similar to Example 10, and a test run was performed.
[0036]
The hydrogen gas storage time was further shortened to about 5 minutes, the maximum speed was 155 km / hr, the cruising distance was 350 km, and the practical use of the present storage material was demonstrated. After 30 test runs, the same use results as in the first run were obtained, and it was found that the performance characteristics of the present occlusion material were stable as in Example 10.
[0037]
Approximately 120 kg of the hydrogen storage material of Comparative Example 6 was stored in the same hydrogen storage container as in Example 10, mounted on a fuel cell vehicle similar to that of Example 10, and a test run was performed.
[0038]
The hydrogen gas storage time was as long as about 25 minutes, achieving a maximum speed of 150 km / hr and a cruising range of 340 km. The cruising distance was 330 km, and the use result was slightly lower than the first use.
[0039]
As shown in the above examples, it is understood that the hydrogen storage material of the present invention has practical characteristics as a hydrogen storage material for a fuel cell vehicle.
[0040]
[Table 2]
[0041]
【The invention's effect】
The composite material of the magnesium fine particles and carbon and the composite material of the magnesium / nickel alloy fine particles and the carbon material according to the present invention have a feature that the hydrogen storage amount is high and the hydrogen storage speed is high, and the effect excellent as a practical hydrogen storage material is obtained. Can be expected.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing a production process of a composite hydrogen storage material according to an example.
FIG. 2 is a schematic view showing a composite form of a carbon material and metal particles of an example.
FIG. 3 is a schematic diagram showing a composite form of a carbon material and metal particles of an example.
FIG. 4 is a schematic view showing a composite form of a carbon material and metal particles of an example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inner tube 2 Reaction tube 3 Introducing part 4 Introducing part 5 Synthesis area 6 Discharge part 11 Carbon material 12 Metal particle 13 Film metal 14 Metal A part: Introducing part B of magnesium, magnesium / nickel, hydrogen, etc. Part B: hydrocarbon, Area C for introduction of argon or the like: reaction zone for introduced substances and generation area for hydrogen storage material Part D: discharge section for products