JP2004170912A - 電気光学装置及び電子機器 - Google Patents
電気光学装置及び電子機器 Download PDFInfo
- Publication number
- JP2004170912A JP2004170912A JP2003321784A JP2003321784A JP2004170912A JP 2004170912 A JP2004170912 A JP 2004170912A JP 2003321784 A JP2003321784 A JP 2003321784A JP 2003321784 A JP2003321784 A JP 2003321784A JP 2004170912 A JP2004170912 A JP 2004170912A
- Authority
- JP
- Japan
- Prior art keywords
- electro
- light
- optical device
- pixel electrode
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000010410 layer Substances 0.000 claims abstract description 416
- 239000000758 substrate Substances 0.000 claims abstract description 123
- 239000003990 capacitor Substances 0.000 claims abstract description 105
- 239000004065 semiconductor Substances 0.000 claims abstract description 80
- 238000003860 storage Methods 0.000 claims abstract description 68
- 239000011229 interlayer Substances 0.000 claims abstract description 64
- 239000000463 material Substances 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 40
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 31
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 31
- 230000008569 process Effects 0.000 claims abstract description 24
- 239000010408 film Substances 0.000 claims description 369
- 239000010409 thin film Substances 0.000 claims description 55
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 23
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 23
- 238000005530 etching Methods 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 10
- 239000004020 conductor Substances 0.000 claims description 6
- 230000000295 complement effect Effects 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 abstract description 12
- 239000004973 liquid crystal related substance Substances 0.000 description 55
- 230000005684 electric field Effects 0.000 description 53
- 230000000694 effects Effects 0.000 description 33
- 230000006870 function Effects 0.000 description 24
- 229910052782 aluminium Inorganic materials 0.000 description 20
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 20
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 19
- 229920005591 polysilicon Polymers 0.000 description 19
- 230000008878 coupling Effects 0.000 description 18
- 238000010168 coupling process Methods 0.000 description 18
- 238000005859 coupling reaction Methods 0.000 description 18
- 230000000875 corresponding effect Effects 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 238000000059 patterning Methods 0.000 description 9
- 230000031700 light absorption Effects 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 230000003405 preventing effect Effects 0.000 description 7
- 239000005368 silicate glass Substances 0.000 description 7
- 230000002411 adverse Effects 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 150000004767 nitrides Chemical class 0.000 description 6
- 239000003566 sealing material Substances 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000005380 borophosphosilicate glass Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229910021332 silicide Inorganic materials 0.000 description 4
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 239000004988 Nematic liquid crystal Substances 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 229910003070 TaOx Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910008484 TiSi Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- GDFCWFBWQUEQIJ-UHFFFAOYSA-N [B].[P] Chemical compound [B].[P] GDFCWFBWQUEQIJ-UHFFFAOYSA-N 0.000 description 1
- WOIHABYNKOEWFG-UHFFFAOYSA-N [Sr].[Ba] Chemical compound [Sr].[Ba] WOIHABYNKOEWFG-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Landscapes
- Liquid Crystal (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Thin Film Transistor (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
【課題】 総合的な対策を採ることによって、小型化・高精細化を実現しつつ、高周波駆動で高品質な画像を表示することの可能な電気光学装置を提供する。
【解決手段】 基板上に、データ線(6a)、走査線(3a)、画素電極(9a)及びTFT(30)が積層構造の一部をなして備えられている。この基板上には更に、TFT及び画素電極に電気的に接続された蓄積容量(70)と、データ線及び画素電極間に配置されたシールド層(400)と、前記画素電極の下地として配置された層間絶縁膜(43)とが、前記積層構造の一部をなして備えられている。このうち蓄積容量を構成する誘電体膜(75)は、相異なる材料を含む複数の層からなるとともに、そのうちの一の層は窒化シリコン膜を含み、層間絶縁膜の表面は平坦化処理が施されている。その他、TFTの半導体層(1a)に対する光遮蔽手段たる溝12cv等もまた形成されている。
【選択図】 図4
Description
本発明は、液晶装置等の電気光学装置及び電子機器の技術分野に属する。また、本発明は、電子ペーパ等の電気泳動装置やEL(エレクトロルミネッセンス)装置や電子放出素子を用いた装置(Field Emission Display 及び Surface-Conduction Electron-Emitter Display)の技術分野にも属する。
従来、一対の基板間に液晶等の電気光学物質を挟持してなり、これらを貫くように光を透過させることで、画像の表示が可能とされた液晶装置等の電気光学装置が知られている。ここで「画像の表示」とは、例えば、画素毎に、電気光学物質の状態を変化させることで、光の透過率を変化させ、画素毎に階調の異なる光が視認可能とすることにより実現される。
このような電気光学装置としては、前記一対の基板の一方の上に、マトリクス状に配列された画素電極、該画素電極間を縫うように設けられた走査線及びデータ線、加えて、画素スイッチング用素子としてTFT(Thin Film Transistor)等を備えることによって、アクティブマトリクス駆動可能なものが提供されている。このアクティブマトリクス駆動可能な電気光学装置では、前記のTFTは、画素電極及びデータ線間に備えられ両者間の導通を制御する。また、該TFTは、走査線及びデータ線と電気的に接続されている。これによれば、走査線を通じてTFTのON・OFFを制御するとともに、該TFTがONである場合において、データ線を通じて供給されてきた画像信号を画素電極に印加すること、すなわち画素毎に光透過率を変化させることが可能となる。例えば、特許文献1を参照。
以上のような電気光学装置では、上述のような各種構成が一方の基板上に作り込まれることになるが、これらを平面的に展開するとなると、大面積を要することとなり、画素開口率、すなわち、基板全面の領域に対する光が透過すべき領域の割合を低下せしめるおそれがある。したがって、従来においても、前述の各種要素を立体的に構成する手法、すなわち各種構成要素を層間絶縁膜を介することで積層させて構成する手法が採られていた。より具体的には、基板上に、まずTFT及び該TFTのゲート電極膜としての機能を有する走査線を形成し、その上にデータ線、更にその上に画素電極等というようである。このようにすれば、装置の小型化が達成されることに加え、各種要素の配置を適当に設定することにより、画素開口率の向上等を図ることもできる。
ところで、このような電気光学装置においては、高品質な画像を表示するという基本的な要請があることは当然ながら、更なる小型化・高精細化や、高周波駆動が求められている。これらの要求に応えるためには、数々の技術的課題を解決しなければならない。具体的には例えば、前記のTFTを構成する半導体層に対して光が入射すれば、いわゆる光リーク電流が発生するから、高品質な画像表示、高周波駆動にとって障害となる。したがって、該半導体層に対する光遮蔽手段が必要となる。また、前記の電気光学装置においては、画像の高コントラスト化を目的として、TFT及び画素電極の両者に電気的に接続されるコンデンサたる蓄積容量が備えられることがあるが、該蓄積容量は、できるだけ大きい容量値をもつべきとされる。しかし、上述した積層構造の複雑化や画素開口率の問題から、これを実現するにも困難が伴う。更には、電気光学物質の一例たる液晶はその分子の配向状態に無用な外乱が与えられないように注意を払わなければならない。
以上のように、解決すべき問題は多々あるが、最終的に、上述のような課題、すなわち小型化・高精細化・高周波駆動の実現等による高品質画像の表示を達成するためには、これらの事情を総合的に考量し、全面的な対応をとる必要があると考えられる。
本発明は、上記問題点に鑑みてなされたものであり、総合的な対策を採ることによって、小型化・高精細化を実現しつつ、高周波駆動で高品質な画像を表示することの可能な電気光学装置を提供することを課題とする。また、本発明はそのような電気光学装置を具備してなる電子機器を提供することをも課題とする。
本発明の電気光学装置は、上記課題を解決するため、基板上に、第1方向に延在するデータ線及び該データ線に交差する第2方向に延在する走査線、並びに、前記データ線及び前記走査線の交差領域に対応するように配置された画素電極及び薄膜トランジスタが積層構造の一部をなして備えられた電気光学装置であって、前記基板上には更に、前記薄膜トランジスタ及び前記画素電極の下層に形成され、前記画素電極に電気的に接続された蓄積容量と、前記データ線及び前記画素電極間に配置されたシールド層とが、前記積層構造の一部をなして備えられてなり、前記蓄積容量を構成する誘電体膜は、相異なる材料を含む複数の層からなるとともに、そのうちの一の層は他の層に比べて高誘電率材料からなる層を含む積層体を構成している。
本発明の電気光学装置によれば、まず、走査線及びデータ線並びに画素電極及び薄膜トランジスタが備えられていることにより、アクティブマトリクス駆動可能である。また、当該電気光学装置では、前記の各種構成要素が積層構造の一部をなしていることにより、装置全体の小型化等を達成することができ、また、各種構成要素の適当な配置を実現することにより、画素開口率の向上を図ることもできる。
そして、本態様では特に、上述の各種構成要素のほか、積層構造を構成するものとして、蓄積容量、シールド層及び層間絶縁膜が備えられている。
第一に、蓄積容量が備えられていることにより、画素電極における電位保持特性を向上させることができる。これにより、高コントラストの画像を表示することが可能となる。そして特に、本発明では、該蓄積容量を構成する誘電体膜が、相異なる材料を含む複数の層からなるとともに、そのうちの一の層は他の層に比べて高誘電率材料からなる層を含む積層体を構成している。したがって、本発明に係る蓄積容量では、従来に比べて、電荷蓄積特性がより優れており、これにより画素電極における電位保持特性を更に向上させることができ、もってより高品質な画像を表示することが可能となる。また、積層体とすることにより、単層膜でのピンホールによる不良を低減することも可能である。なお、本発明にいう「高誘電率材料」としては、後述するSiN(窒化シリコン)の他、TaOx(酸化タンタル)、BST(チタン酸ストロンチウムバリウム)、PZT(チタン酸ジルコン酸塩)、TiO2(酸化チタン)、ZiO2(酸化ジルコニウム)、HfO2(酸化ハフニウム)及びSiON(酸窒化シリコン)のうち少なくとも一つを含んでなる絶縁材料等を挙げることができる。特に、TaOx、BST、PZT、TiO2、ZiO2及びHfO2といった高誘電率材料を使用すれば、限られた基板上領域で容量値を増大できる。あるいは、SiO2(酸化シリコン)、SiON(酸窒化シリコン)及びSiNといったシリコンを含む材料を使用すれば、層間絶縁膜等におけるストレス発生を低減できる。
第二に、シールド層が、データ線及び画素電極間に備えられていることにより、両者間で容量カップリングが生じることを未然に防止することが可能となる。
すなわち、データ線の通電によって、画素電極における電位変動等が生じる可能性を低減することが可能となり、より高品質な画像を表示することが可能となる。
すなわち、データ線の通電によって、画素電極における電位変動等が生じる可能性を低減することが可能となり、より高品質な画像を表示することが可能となる。
また、本発明は、画素電極下に層間絶縁膜が備えられているとともに、該層間絶縁膜の表面は例えばCMP(Chemical Mechanical Polishing)処理等の平坦化処理が施されているとよい。これにより、液晶等の電気光学物質の配向状態に乱れを生じさせる可能性を低減することができ、もってより高品質な画像を表示することが可能となる。
本発明に係る電気光学装置によれば、以上のような各種作用効果が併せ発揮されることによって、高品質な画像を表示することが可能となる。
なお、以上の本発明のように、層間絶縁膜の表面が平坦化されている構成で、走査線ないし該走査線に連なる画素電極の行ごとに異なる極性による駆動(即ち、「1H反転駆動」。後述参照)を行う場合においては、相隣接する画素電極間で横電界を発生させる可能性があり、液晶の配向状態に乱れを生じさせるおそれがある。この点については、後述するように、層間絶縁膜の表面に凸部を設けること等により、横電界の発生を抑制的にするという手段が好ましく採用されるが、その他に以下のような手段も好ましく採用し得る。
すなわち、極性反転を、走査線ごとに行うのではなく、1フィールド期間(一垂直走査期間)ごとに行う、即ち、「1V反転駆動」を行うのである。これによれば、あるフィールド期間中において、相隣接する画素電極が異なる極性で駆動されるということがないから、原理的に、横電界は発生し得ない。
しかしながら、この1V反転駆動を採用すると、次のような問題が生じる。すなわち、極性が反転されるごと、即ち一垂直走査期間ごとに、画像上にフリッカを発生させるという難点を抱えることになるのである。
そこで、このような場合においては、後の実施の形態で詳述するような倍速フィールド反転駆動を行うと好ましい。ここに、倍速フィールド反転駆動とは、従前に比べて1フィールド期間を半分(例えば、従前が120〔Hz〕で駆動されているとするならば、「半分」とは、好ましくは1/60〔s〕或いはそれ以下とするとよい。)にした駆動方法である。したがって、1V反転駆動を前提とすると、極性反転の周期が従前に比べて半分となることになる。このようにすれば、一垂直走査期間が短縮化される、即ちプラス極性による画面と、マイナス極性による画面とが、より素早く切り換わることとなり、前述のフリッカが目立たなくなるのである。
このように、倍速フィールド反転駆動方法によれば、フリッカのない、より高品質な画像の表示が可能となる。
本発明の電気光学装置の一態様では、前記誘電体膜は、酸化シリコン膜及び窒化シリコン膜からなる。
この態様によれば、誘電体膜には、比較的高誘電率の窒化シリコン膜が含まれることになり、蓄積容量の面積、すなわち該蓄積容量を構成する一対の電極の面積を多少犠牲にしたとしても、高い電荷蓄積特性を享受することが可能となる。
これにより、画素電極における電位保持特性は格段に向上し、より高品質な画像を表示することが可能となる。また、蓄積容量の小面積化が可能となるから、画素開口率の更なる向上を図ることもできる。
これにより、画素電極における電位保持特性は格段に向上し、より高品質な画像を表示することが可能となる。また、蓄積容量の小面積化が可能となるから、画素開口率の更なる向上を図ることもできる。
また、窒化シリコン膜は水分の浸入ないし拡散を、せき止める作用に優れているから、薄膜トランジスタを構成する半導体層に対する水分の浸入を未然に防止することが可能となる。この点、もし半導体層、あるいはゲート絶縁膜等に水分が浸入すると、半導体層及びゲート絶縁膜間の界面に正電荷が発生し、スレッショルド電圧を次第に高めていくという悪影響がでる。本態様では、上述のように、半導体層に対する水分浸入を効果的に防止することが可能であるから、該薄膜トランジスタのスレッショルド電圧が上昇するという不具合の発生を極力防止することが可能となる。
さらに、当該誘電体膜には、前記の窒化シリコン膜に加えて、酸化シリコン膜が含まれていることにより、蓄積容量の耐圧性を低下せしめるようなことがない。
以上のように、本態様に係る誘電体膜によれば、複合的な作用効果を同時に享受することが可能となる。
なお、本態様は、誘電体膜が、酸化シリコン膜及び窒化シリコン膜の二層構造となる場合を含むのは勿論、場合によっては、例えば、酸化シリコン膜、窒化シリコン膜及び酸化シリコン膜というような三層構造となるような場合、あるいはそれ以上の積層構造をとるような場合を含む。
本発明の電気光学装置の他の態様では、前記データ線は、前記蓄積容量を構成する一対の電極の一方と同一膜として形成されている。
この態様によれば、前記データ線と前記蓄積容量を構成する一対の電極の一方とは、同一膜として、換言すれば、同一層に、あるいは製造工程段階で同時に形成されている。これにより、例えば、両者を別々の層に形成し且つ両者間を層間絶縁膜で隔てるという手段をとる必要がなく、積層構造の高層化を防止することが可能となる。この点、本発明においては、積層構造中にデータ線及び画素電極間に前記したシールド層が形成され、その分の高層化が予定されていることを鑑みると、非常に有益である。なぜなら、余りに多層化した積層構造では製造容易性や製造歩留まり率を害するからである。なお、本態様のように、データ線及び前記一対の電極のうちの一方を同時に形成したとしても、該膜に対して適当なパターニング処理を実施すれば、両者間の絶縁を図ることはでき、この点について特に問題となるようなことはない。
なお、本態様の記載から逆に明らかとなるように、本発明においては、データ線と蓄積容量を構成する一対の電極の一方とを同一膜として形成する必要は必ずしもない。すなわち、両者を別々の層として形成してよい。
また、本発明の電気光学装置では、前記データ線は、アルミニウム膜及び導電性のポリシリコン膜の積層体を構成するとよい。
この態様によれば、データ線と薄膜トランジスタとの電気的接続を、該データ線を構成する導電性のポリシリコン膜と、薄膜トランジスタを構成する半導体層との接触をもって実現することができ、両者間の電気的接続を良好にすることができる。
本発明の電気光学装置の他の態様では、前記蓄積容量を構成する一対の電極の一方と前記画素電極を電気的に接続する中継層が前記積層構造の一部として更に備えられている。
この態様によれば、前記積層構造の一部をそれぞれ構成する、画素電極と蓄積容量の一対の電極の一方とは、同じく積層構造の一部を構成する中継層によって電気的に接続されることになる。具体的には、コンタクトホールの形成等によればよい。これにより、例えば、本態様に係る中継層を二層構造とするとともに、その上層は画素電極の材料として通常使用される透明導電性材料の一例たるITO(Indium Tin Oxide)と相性のよい材料で構成し、その下層は蓄積容量を構成する一対の電極の一方と相性のよい材料で構成する等の柔軟な構成を採ることが可能となり、画素電極に対する電圧の印加、あるいは該画素電極おける電位の保持をより好適に実現することができる。
この態様では特に、前記中継層は、アルミニウム膜及び窒化膜からなるようにするとよい。
このような構成によれば、例えば、画素電極がITOからなる場合において、これとアルミニウムとを直接に接触させると、両者間において電蝕が生じてしまい、アルミニウムの断線、あるいはアルミナの形成による絶縁等が発生するため、好ましくないことに鑑みるに、本態様では、ITOとアルミニウムとを直接に接触させるのではなく、ITOと窒化膜、例えば窒化チタン膜とを接触させることにより、画素電極及び中継層、ひいては蓄積容量との電気的接続を実現することができる。このように、本構成は、上述にいう「相性のよい材料」の一例を提供している。
また、窒化物は、前述の蓄積容量を構成する誘電体膜に関して述べたように、水分の浸入ないし拡散をせき止める作用に優れているから、薄膜トランジスタの半導体層に対する水分浸入を未然に防止することが可能となる。本態様では、中継層が窒化膜を含んでいることにより、上述の作用を得ることができ、これにより、薄膜トランジスタのスレッショルド電圧が上昇するという不具合の発生を極力防止することが可能となる。
また、中継層を備える態様では更に、前記シールド層は、前記中継層と同一膜として形成されているようにするとよい。
このような構成によれば、中継層と前記シールド層とが同一膜として形成されていることにより、両構成を同時に形成することが可能となり、その分の製造工程の簡略化、あるいは製造コストの低廉化等を図ることができる。
また、本態様に係る構成と、前述したデータ線及び蓄積容量を構成する一対の電極の一方を同一膜として形成する態様とを併せもつ態様では、データ線、蓄積容量、中継層及び画素電極の配置態様、とりわけ積層順序等が好適となり、上述の作用効果はより効果的に享受される。
さらに特に、本態様に係る構成と、上述の中継層が窒化膜を含む構成と併せもつ態様によれば、シールド層もまた、窒化膜を含むこととなる。したがって、前述したような薄膜トランジスタの半導体層に対する水分浸入作用を、基板の面についてより広範に得ることが可能となる。したがって、薄膜トランジスタの長期運用という作用効果を、より効果的に享受することが可能となる。
なお、本態様の記載から逆に明らかとなるように、本発明においては、シールド層と中継層とを同一膜として形成する必要は必ずしもない。すなわち、両者を別々の層として形成してよい。
本発明の電気光学装置の他の態様では、前記シールド層は、透明導電性材料からなるとともに、前記基板の全面に関してベタ状に形成されている。
この態様によれば、シールド層が基板の全面に関してベタ状に形成されていることにより、より確実に、データ線及び画素電極間に生じる容量カップリングの影響を排除することが可能となる。また、このようにシールド層をベタ状に形成したとしても、該シールド層は、例えばITOやIZO(Indium Zinc Oxide)等の透明導電性材料からなるから、電気光学装置における光透過について特段に支障を生じさせるわけではない。
更に、本態様によれば、該シールド層と画素電極とは、蓄積容量を形成するため、その蓄積容量の増大によって、表示品質の向上を図ることも可能である。
なお、本態様のように、シールド層をベタ状に形成する場合においては、前記画素電極及び前記薄膜トランジスタ等の間を電気的に接続するコンタクトホールの形成に対応すべく、前記シールド層には、前記コンタクトホールが形成される位置に応じた孔が形成されているようにするとよい。このようにすれば、コンタクトホールの形成を無理なく行うことができるから、本発明に係る電気光学装置を構成する、上述した各種構成間の電気的な接続を無理なく実現することができる。なお、ここにいう「孔」は、特に精度高く形成される必要はない。すなわち、当該孔は、前記コンタクトホールを貫通させるに足りるに十分な孔であればよく、製造上、特段の注意を要しないのである。ただし、本態様のように基板全面に関してベタ状にシールド層を形成する場合であっても、該シールド層と同一膜として形成される前述の「中継層」を併せもたせるようにしてよいから、この場合においては、コンタクトホールを貫通させるべき「孔」は必要ない。ただ、該シールド層(固定電位)と中継層(画素電極の電位)との間では電気的絶縁を図る必要があるから、「孔」を形成するためのパターニングは必要ないが、「中継層」を形成するためのパターニングは必要となる。本態様にいう「ベタ状」とは、このような場合を含む。
また、本態様のように、シールド層を全面に関してベタ状に形成される場合にあっては、該シールド層の厚さを、50〜500nm程度とすることが好ましい。このようにすれば、シールド層の厚さが、容量カップリングの影響を排除するに十分であって、かつ、電気光学装置全体の透明性の維持にとって、好適な範囲内に限定されることになるからである。
また、本発明の電気光学装置では、前記シールド層は、前記データ線に沿い、かつ、前記データ線よりも幅広に形成されているとよい。
この態様によれば、シールド層が沿うように形成されたデータ線と画素電極との間について、容量カップリングの影響を排除することが可能となる。すなわち、少なくとも、当該データ線と画素電極との間については、背景技術の項で述べたような不具合が発生しないのである。したがって、本態様によれば、シールド層による透過率の低下を最小限に抑えつつ、上述したような作用効果を、効率的に享受することが可能となる。
本発明の電気光学装置の他の態様では、前記シールド層が沿って形成されるデータ線は、一時に画像信号の供給対象とされるデータ線の組のうち、当該組の両端に位置するデータ線を含む。
このような構成によれば、データ線を幾つかのグループに分け、該グループ毎に同時に画像信号を供給する態様において、容量カップリングの影響が最も生じてほしくないデータ線についてシールド層が形成されていることになるから、より効果的に画像の品質向上を見込むことができる。換言すれば、上述のような場合、画像信号の供給を現に受けているグループ(以下、「供給グループ」という。)と、それに隣接するグループ(以下、「非供給グループ」という。)との間において、その端境に位置に延在するデータ線にほぼ沿った表示ムラの発生を抑制することができる。これは、前記供給グループと前記非供給グループとのちょうど端境に存在する画素電極においては、画像信号に正確に対応した電界が結果的に印加されない場合が多いことによる。より詳しくは、この場合、当該画素電極の一方の端には、画像信号が供給されるデータ線が存在し、他方の端には画像信号が供給されないデータ線が存在するということになるから、当該画素電極に対して、画像信号に対応した正確な電界を印加したとしても、当該画素電極と前記画像信号が供給されないデータ線との間における容量カップリングの影響で、その電位に変動が生じるのである。
なお、「一時に画像信号の供給対象とされるデータ線の組」、すなわち、1グループを構成するデータ線の組とは、当該画像信号が幾つのパラレル信号からなるかに応じて決まる。例えば、この画像信号が、シリアル信号を6つのパラレル信号にシリアル-パラレル変換されたものと想定するならば、前記データ線の組とは、相隣接する6本のデータ線からなる組である、というような想定が可能である。そして、この場合、「当該組の両端に位置するデータ線」とは、最初の1本目と最後の6本目のデータ線が該当することになる。
本発明の電気光学装置の他の態様では、前記薄膜トランジスタは、長手方向に延びるチャネル領域と該チャネル領域から更に長手方向に延びるチャネル隣接領域とを含む半導体層を有しており、前記走査線は、前記長手方向に交わる方向に延びるとともに平面的に見て前記チャネル領域に重なる前記薄膜トランジスタのゲート電極を含む本体部と、平面的に見て前記チャネル隣接領域の脇において前記本体部から前記長手方向に突出する水平的突出部とを有する。
この態様によれば、走査線は、平面的にみて薄膜トランジスタのゲート電極を含む本体部から、チャネル隣接領域の脇において、チャネル隣接領域に沿って突出する水平的突出部を有する。したがって、基板面に対して斜めに進行する入射光及び戻り光、並びにこれらに基づく内面反射光及び多重反射光などの斜めの光が、チャネル領域及びチャネル隣接領域に入射するのを、走査線のうちゲート電極を含む本体部だけでなく、特に水平的突出部による光吸収あるいは光反射により、少なくとも部分的に阻止できる。この際特に、チャネル隣接領域からの層間距離が非常に小さい位置、すなわち、一般にゲート絶縁膜の厚みだけ離れた層間位置に配置される水平的突出部により遮光を行うことで、非常に効果的に当該遮光を行える。
例えば、基板上において、薄膜トランジスタの下側に下側遮光膜を設けた場合には、比較的層間距離の小さい下側遮光膜と遮光膜として機能する走査線の水平的突出部や本体部との間に、チャネル隣接領域やチャネル領域を挟持する構成が得られるため、斜めの光に対して非常に高い遮光性能が得られる。
この結果、本態様によれば、耐光性を高めることが可能となり、強力な入射光や戻り光が入射するような過酷な条件下にあっても光リーク電流の低減された薄膜トランジスタにより画素電極を良好にスイッチング制御でき、最終的には、明るく高コントラストの画像を表示可能となる。
この態様では特に、前記本体部と前記水平的突出部とは、同一膜から一体的になるようにするとよい。
この態様によれば、当該電気光学装置を製造する際に、遮光用の突出部は、本体部と共に走査線を形成する工程で形成できるため、当該突出部を形成するために追加的な工程は不要である。従って、基板上における積層構造及び製造プロセスの簡略化を図れるようにするとよい。
また、水平的突出部を備える態様では更に、前記水平的突出部は、平面的に見て前記チャネル領域毎に、そのソース側及びドレイン側に夫々位置する前記チャネル隣接領域の両脇において夫々突出しているとよい。
この態様によれば、薄膜トランジスタ毎に、そのソース側及びドレイン側並びにそれらの両脇に合計4つの突出部が設けられることになる。従って、これらの突出部により、3次元的に各種の方向から入射する斜めの光に対する遮光性能を向上できる。
本発明の電気光学装置の他の態様では、前記薄膜トランジスタは、長手方向に延びるチャネル領域を含む半導体層を有しており、前記薄膜トランジスタの前記チャネル領域を上側から少なくとも覆う上側遮光膜を備えており、前記上側遮光膜は少なくとも部分的に、前記チャネル領域の長手方向に直交する断面上で前記チャネル領域側から見て凹状に形成されている。
この態様によれば、チャネル領域を上側から少なくとも覆う上側遮光膜を備えており、前記上側遮光膜は少なくとも部分的に、前記チャネル領域の長手方向に直交する断面上で前記チャネル領域側から見て凹状に形成されている。すなわち、下側が凹状に形成されている。このため、上側遮光膜が平坦である場合と比較して、基板面に対して斜めに進行する入射光並びに入射光及び戻り光に基づく内面反射光及び多重反射光などの斜めの光が、最終的に斜め上側からチャネル領域に入射するのを、当該上側遮光膜によって、より効果的に阻止できる。
例えば、基板上において、薄膜トランジスタの下側に下側遮光膜を設けた場合には、下側遮光膜と上側遮光膜との間に、チャネル領域を挟持する構成が得られるため、斜めに光に対して非常に高い遮光性能が得られる。この際、下側遮光膜は少なくとも部分的に、上述した上側遮光膜の凹凸とは上下反対に、チャネル領域の長手方向に直交する断面上でチャネル領域側からみて凹状に形成されていてもよい。
この結果、本態様によれば、耐光性を高めることが可能となり、強力な入射光や戻り光が入射するような過酷な条件下にあっても光リーク電流の低減された薄膜トランジスタにより画素電極を良好にスイッチング制御でき、最終的には、明るく高コントラストの画像を表示可能となる。
本発明の電気光学装置の他の態様では、前記薄膜トランジスタは、前記第1方向に延びるチャネル領域を含む半導体層を有しており、前記走査線は、前記チャネル領域にゲート絶縁膜を介して対向配置された前記薄膜トランジスタのゲート電極を含むとともに平面的に見て前記第1方向と交差する第2方向に延びる本線部を有し、平面的に見て前記チャネル領域から前記第2方向に所定距離だけ外れた箇所における前記本線部から前記半導体層を包囲するように延設された包囲部を有する。
この態様によれば、走査線は、平面的に見てチャネル領域から第2方向に所定距離だけ外れた箇所における本線部から半導体層を包囲するように延設された包囲部を有する。したがって、基板面に対して進行する入射光及び戻り光、並びにこれらに基づく内面反射光及び多重反射光などの斜めの光が、チャネル領域及びチャネル隣接領域に入射するのを、走査線のうちゲート電極を含む本体部だけでなく、特に包囲部による光吸収あるいは光反射により、少なくとも部分的に阻止できる。この際特に、チャネル領域やチャネル隣接領域からの層間距離が非常に小さい位置、すなわち、一般にゲート絶縁膜の厚みだけ離れた層間位置に配置される包囲部により遮光を行うことで、且つ包囲部によりいずれの方向に傾斜した光に対しても遮光を行うことで、非常に効果的に当該遮光を行える。
この結果、本態様によれば、耐光性を高めることが可能となり、強力な入射光や戻り光が入射するような過酷な条件化にあっても光リーク電流の低減された薄膜トランジスタにより画素電極を良好にスイッチング制御でき、最終的には本発明により、明るく高コントラストの画像を表示可能となる。
なお、このような技術的効果に鑑み、本発明において「平面的にみて半導体層を包囲する」とは、平面的に見て半導体層の周囲に途切れなく延びるように包囲部を形成する意味の他、平面的にみて半導体層の周囲においてチャネル領域の下側周囲に若干の途切れをもって包囲部を形成するとか、若しくは断続的に包囲部を形成するという場合を含むほか、島状に点在する包囲部を形成する場合等をも含む広い概念である。
これら水平的突出部、凹状を含む上側遮光膜包囲部の態様では特に、前記走査線は、前記チャネル領域から前記第2方向に所定距離だけ外れた個所における前記本線部から、前記基板の垂直方向に突出した垂直的突出部を更に有するようにするとよい。
この態様によれば、本線部は、基板の垂直方向に突出した垂直的突出部を含むので、チャネル領域を、垂直的突出部を含む本線部により立体的に覆うことが可能となり、遮光性能を一層高められる。特に走査線がチャネル領域の上側に位置する所謂トップゲート型の場合には、垂直的突出部を含む本線部によりチャネル領域を上側から立体的に覆う構成が得られる。尚、前述の包囲部に係る所定距離と、垂直的突出部に所定距離とは、同じでもよいし、異なってもよい。
なお、前述の包囲部を備える態様では更に、前記走査線は、前記包囲部から、前記基板の垂直方向に突出した垂直的突出部を更に有するようにするとよい。
この態様によれば、本線部の垂直的突出部及び/又は包囲部の垂直的突出部により、チャネル領域を立体的に覆うことが可能となり、遮光性能を一層高められる。特に走査線がチャネル領域の上側に位置する所謂トップゲート型の場合には、垂直的突出部を夫々含む本線部及び包囲部によりチャネル領域を上側から立体的に覆う構成が得られる。尚、これらの垂直的突出部は、連続的に突出していてもよいし、別々に突出していてもよい。
本発明の電気光学装置の他の態様では、前記薄膜トランジスタは、前記第1方向に延びるチャネル領域を含む半導体層を有しており、前記走査線は、前記チャネル領域にゲート絶縁膜を介して対向配置された前記薄膜トランジスタのゲート電極を含むとともに平面的に見て前記第1方向と交差する第2方向に延びる本線部を有し、平面的に見て前記チャネル領域から前記第2方向に所定距離だけ外れた箇所における前記本線部から下方に突出した垂直的突出部を有する。
この態様によれば、走査線は、平面的に見て前記チャネル領域から前記第2方向に所定距離だけ外れた箇所における前記本線部から下方に突出した垂直的突出部を有する。したがって、基板面に対して進行する入射光及び戻り光、並びにこれらに基づく内面反射光及び多重反射光などの斜めの光が、チャネル領域及びチャネル隣接領域に入射するのを、走査線のうちゲート電極を含む本体部だけでなく、特に突出部により、当該チャネル領域やチャネル隣接領域に近接した位置において本線部及び突出部により、当該チャネル領域及びチャネル隣接領域を立体的に遮光するので、非常に効果的に当該遮光を行える。
この結果、本態様によれば、耐光性を高めることが可能となり、強力な入射光や戻り光が入射するような過酷な条件下にあっても光リーク電流の低減された薄膜トランジスタにより画素電極を良好にスイッチング制御でき、最終的には本発明により、明るく高コントラストの画像を表示可能となる。
上述の垂直的突出部を含む態様では特に、前記基板上に、少なくとも前記チャネル領域を下側から覆う下側遮光膜を更に備えており、前記垂直的突出部は、その先端側において前記下側遮光膜に接触しているようにするとよい。
このような構成によれば、比較的層間距離の小さい下側遮光膜と遮光膜として機能する走査線の包囲部や本体部との間に、チャネル隣接領域やチャネル領域を挟持する構成が得られる。しかも、チャネル隣接領域やチャネル領域が存在する、下側遮光膜と走査線の包囲部及び本体部との間の空間は、突出部により少なくとも部分的に閉じられた空間とされている。このため、いずれかの方向に傾斜する斜めの光に対して非常に高い遮光性能が得られる。
また、本態様によれば、例えば、薄膜トランジスタのゲート電極と走査線とを同一層に形成するのではなく、ゲート電極と走査線とを別々の層として形成するとともに、このうちの走査線として、本態様の下側遮光膜を利用することが可能である。すなわち、この場合、下側遮光膜は、走査線としての機能も兼ね備えるということになる。さらには、ゲート電極と走査線とが同一層に形成されつつも、下側遮光膜に走査線としての機能をもたせるような形態としてもよい。この場合、ある一つの薄膜トランジスタにつき二本の走査線が並列して設けられていることになり、該走査線について、冗長構造がとられることになる。これにより、一方の走査線に断線等の何らかの障害があったとしても、他方の走査線を使用することが可能であるから、より信頼性が高くなるという利点が得られる。
なお、以上のように下側遮光膜が走査線の機能をも兼ね備える場合においては、マトリクス状に配列された薄膜トランジスタの各行に対応するように、該下側遮光膜はストライプ状に形成されている必要がある。
あるいは、前記基板上に、少なくとも前記チャネル領域を下側から覆う下側遮光膜を更に備えており、前記垂直的突出部は、前記下側遮光膜に接触していないようにするとよい。
このような構成によれば、比較的層間距離の小さい下側遮光膜と遮光膜として機能する走査線の包囲部や本体部との間に、チャネル隣接領域やチャネル領域を挟持する構成が得られる。しかも、チャネル隣接領域やチャネル領域が存在する、下側遮光膜と走査線の包囲部及び本体部との間の空間は、突出部により部分的に閉じられた空間とされている。このため、いずれかの方向に傾斜する斜めの光に対して非常に高い遮光性能が得られる。
尚、このように下側遮光膜と走査線とを接触させない構成を採用する場合には、下側遮光膜の導電性によらずに、下側遮光膜の電位変動による悪影響、例えば、薄膜トランジスタに対する悪影響を未然防止できる。
本発明の電気光学装置の他の態様では、前記薄膜トランジスタは、前記第1方向に延びるチャネル領域を含む半導体層を有しており、前記走査線は、前記チャネル領域にゲート絶縁膜を介して対向配置された前記薄膜トランジスタのゲート電極を含むと共に平面的に見て前記第1方向と交差する第2方向に延びる本線部を有し、該本線部は、前記基板上に掘られた溝内に配置されると共に前記チャネル領域を側方から少なくとも部分的に覆う溝内部分を含んでなる。
この態様によれば、走査線は、平面的に見て第2方向に延びる本線部を有する。ここで特に、この本線部のうち溝内に配置された溝内部分が、チャネル領域を側方から少なくとも部分的に覆う。従って、基板面に対して斜めに進行する入射光及び特に裏面に対して斜めに進行する戻り光、並びにこれらに基づく内面反射光及び多重反射光などの斜めの光が、チャネル領域及びチャネル隣接領域に入射するのを、この溝内部分による光吸収或いは光反射により、少なくとも部分的に阻止できる。このように耐光性を高めることにより、強力な入射光や戻り光が入射するような過酷な条件下にあっても光リーク電流の低減された薄膜トランジスタにより画素電極を良好にスイッチング制御でき、明るく高コントラストの画像を表示可能となる。
加えて、この走査線の本線部が、溝内部分を含んでなるので、第2方向に垂直な断面における溝内部分の断面積及び溝外に位置する溝外部分の断面積を増加させることにより、走査線の配線抵抗を低めることも可能となる。このように走査線の配線抵抗を低めれば、走査信号の信号遅延によるクロストーク、フリッカ等の発生を低減でき、最終的には、電気光学装置の高精細化或いは画素ピッチの微細化を図りつつ高品位の画像を表示可能となる。以上の結果、本発明により、明るく高品位の画像表示が可能となる。
なお、本発明では、このように走査線の本線部が少なくとも部分的に配置される溝は、基板に直接掘ってもよいし、基板上に積層された下地絶縁膜に掘ってもよい。
本発明の電気光学装置の他の態様では、前記薄膜トランジスタは、前記第1方向に延びるチャネル領域を含む半導体層を有しており、前記走査線は、前記チャネル領域にゲート絶縁膜を介して対向配置された前記薄膜トランジスタのゲート電極を含むと共に平面的に見て前記第1方向と交差する第2方向に延びる本線部を有し、該本線部は、前記第2方向に延びると共に前記基板上に掘られた溝内に配置された溝内部分及び前記第2方向に延びると共に前記溝外に配置された溝外部分を含んでなる。
この態様によれば、走査線は、平面的に見て第2方向に延びる本線部を有する。ここで特に、この本線部が、第2方向に夫々延びる溝内部分及び溝外部分を含んでなるので、第2方向に垂直な断面における溝内部分及び溝外部分の合計断面積に応じて走査線の配線抵抗を低められる。例えば、液晶の配向不良等の電気光学物質の動作不良との関係から、液晶等の電気光学物質の層厚を規定する基板表面において許容される段差に一定限界があることに鑑みれば、平坦面上に成膜される伝統的な走査線や、溝内に完全に埋め込まれる走査線と比較して、基板上の積層構造における合計膜厚に対して走査線の断面積を増加させることが可能な本発明の如き構造は、実用上大変有利である。
このように走査線の配線抵抗を低めることにより、走査信号の信号遅延によるクロストーク、フリッカ等の発生を低減でき、最終的には、電気光学装置の高精細化或いは画素ピッチの微細化を図りつつ高品位の画像を表示可能となる。
なお、本発明では、このように走査線の本線部が部分的に配置される溝は、基板に直接掘ってもよいし、基板上に積層された下地絶縁膜に掘ってもよい。
以上述べたように、走査線に特別な要素、例えば、水平的突出部、包囲部等を備えることで、半導体層に対する遮光を行いえる態様では特に、前記走査線は、金属又は合金を含む遮光膜からなるようにするとよい。
この態様によれば、走査線は、金属又は合金を含む遮光膜からなり、より具体的には、例えばTi(チタン)、Cr(クロム)、W(タングステン)、Ta(タンタル)、Mo(モリブデン)、Pb(鉛)等の高融点金属のうち少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したもの等からなる。従って、このような遮光膜からなる走査線の本体部及び突出部により、斜めの光に対するチャネル領域やチャネル隣接領域における遮光性能をより向上できる。
但し、走査線を、このような遮光膜ではなく、ポリシリコン膜等から形成しても、その光吸収特性に応じた遮光性能が得られる。
本発明の電気光学装置の他の態様では、前記画素電極は、その複数が平面配列されているとともに、第1の周期で反転駆動されるための第1の画素電極群及び該第1の周期と相補の第2の周期で反転駆動されるための第2の画素電極群を含み、前記データ線は、前記走査線の上側を該走査線に交差して延びる本線部及び該本線部から前記走査線に沿って張り出した張り出し部を含み、前記基板に対向配置される対向基板上に前記複数の画素電極に対向する対向電極を備え、前記基板上における前記画素電極の下地表面には、前記張り出し部の存在に応じて平面的に見て前記走査線を挟んで相隣接する画素電極の間隙となる領域に凸部が形成されている。
この態様によれば、第1の周期で反転駆動されるための第1の画素電極群と、第1の周期と相補の第2の周期で反転駆動されるための第2の画素電極群とを含む複数の画素電極が第1基板上に平面配列されており、(i)反転駆動時に各時刻において相互に逆極性の駆動電圧で駆動される相隣接する画素電極と(ii)反転駆動時に各時刻において相互に同一極性の駆動電圧で駆動される相隣接する画素電極との両者が存在している。このような両者は、例えば前述の1H反転駆動方式などの反転駆動方式を採るマトリクス駆動型の液晶装置等の電気光学装置であれば存在する。従って、異なる画素電極群に属する相隣接する画素電極、即ち、逆極性の電位が印加される相隣接する画素電極の間には、横電界が生じる。
ここで本発明では特に、データ線は、走査線の上側を走査線に交差して延びる本線部から走査線に沿って張り出した張り出し部を含む。そして、画素電極の下地表面には、この張り出し部の存在に応じて平面的に見て走査線を挟んで相隣接する画素電極の間隙となる領域に凸部が形成されている。即ち、画素電極の下地表面は、積極的に所定高さ且つ所定形状の凸部が形成された表面となる。
この結果、第1に、各画素電極の縁部がこの凸部上に位置するように形成すれば、各画素電極と対向電極との間に生じる縦電界を、相隣接する画素電極、特に、異なる画素電極群に属する画素電極の間に生じる横電界と比べて、相対的に強められる。即ち、一般に電界は電極間の距離が短くなるにつれて強くなるので、凸部の高さの分だけ、画素電極の縁部が対向電極に近づき、両者間に生じる縦電界が強められるのである。第2に、各画素電極の縁部がこの凸部上に位置するか否かに拘わらず、相隣接する画素電極、特に、異なる画素電極群に属する画素電極の間に生じる横電界が凸部の存在により凸部の誘電率に応じて弱められると共に横電界が通過する電気光学物質の体積を、凸部で部分的に置き換えることにより減ずることによっても、当該横電界の電気光学物質に対する作用を低減できる。従って、反転駆動方式に伴う横電界による液晶の配向不良等の電気光学物質の動作不良を低減できる。この際、上述のように画素電極の縁部は、凸部上に位置してもよいし位置していなくてもよく、更に凸部の傾斜した或いは略垂直な側面の途中に位置していてもよい。
また、データ線の下方に位置する他の配線や素子の存在を利用して、画素電極の縁の高さを調節する技術と比べて、凸部の高さや形状を遥かに精度良く制御可能である。先の技術では、多数存在する各膜における若干のパターンずれが組み合わされるので、最終的に形成される最上層における凹凸の高さや形状を設計通りにすることが基本的に困難である。このため、最終的に横電界による液晶の配向不良等の電気光学物質の動作不良を確実に低減でき、装置信頼性を向上できる。
加えて、電気光学物質の動作不良個所を隠すための遮光膜も小さくできるので、光抜け等の画像不良を起こさずに各画素の開口率を高めることも可能となる。
以上の結果、液晶等の電気光学物質における横電界による動作不良を、データ線の張り出し部に応じた凸部の形成によって確実に低減可能であり、高コントラストで明るい高品位の画像表示を行う液晶装置等の電気光学装置を比較的容易に製造できる。
尚、本発明は、透過型及び反射型等の他、各種形式の電気光学装置に適用可能である。
本発明の電気光学装置の他の態様では、前記画素電極は、その複数が平面配列されているとともに、第1の周期で反転駆動されるための第1の画素電極群及び該第1の周期と相補の第2の周期で反転駆動されるための第2の画素電極群を含み、前記基板に対向配置される対向基板上に前記複数の画素電極に対向する対向電極と、平面的に見て相隣接する画素電極の間隙となる領域に形成された凸部とを更に備えてなり、前記凸部は、エッチングによって前記凸部上に一旦形成された平坦化膜を除去し且つその除去後に露出する前記凸部の表面を後退させてなる、表面段差が緩やかな凸部からなる。
この態様によれば、異なる画素電極群に属する相隣接する画素電極、即ち、逆極性の電位が印加される相隣接する画素電極の間には、横電界が生じるが、各画素の非開口領域に位置する或いは隣接する画素電極の縁部については、エッチングにより積極的に凸部が形成されているので、第1に、各画素電極の縁部がこの凸部上に位置するように形成すれば、各画素電極と対向電極との間に生じる縦電界を、相隣接する画素電極の間に生じる横電界と比べて、相対的に強められる。第2に、各画素電極の縁部がこの凸部上に位置するか否かに拘わらず、相隣接する画素電極の間に生じる横電界が凸部の存在により凸部の誘電率に応じて弱められると共に横電界が通過する電気光学物質の体積を減ずることによっても、当該横電界の電気光学物質に対する作用を低減できる。従って、反転駆動方式に伴う横電界による液晶の配向不良等の電気光学物質の動作不良を低減できる。この際、上述のように画素電極の縁部は、凸部上に位置してもよいし位置していなくてもよく、更に凸部の傾斜した或いは略垂直な側面の途中に位置していてもよい。
加えて、電気光学物質の動作不良個所を隠すための遮光膜も小さくできるので、光抜け等の画像不良を起こさずに各画素の開口率を高めることも可能となる。
そして本発明では特に、緩やかな段差の凸部が形成されているので、凸部の付近における当該段差に起因する、液晶の配向不良等の電気光学装置の動作不良が発生することを効果的に未然防止できる。特に画素電極上に形成された配向膜にラビング処理を施すような場合、凸部の段差が緩やかであれば、当該ラビングを比較的容易にしてムラ無く良好に施すことができ、液晶の配向不良等の電気光学物質の動作不良を極めて有効に未然防止できる。
以上の結果、液晶等の電気光学物質における横電界による動作不良を凸部の形成によって確実に低減可能であり、しかもこの凸部の形成によって液晶等の電気光学物質で段差による動作不良が発生するのを緩やかな段差によって抑制でき、高コントラストで明るい高品位の画像表示を行う液晶装置等の電気光学装置を実現できる。
なお、上述の本発明の各種態様においては、一の態様と別の態様とを自由に組合せることが基本的に可能である。ただし、事柄の性質上、相容れない場合もありえる。例えば、誘電体膜が酸化シリコン膜及び窒化シリコン膜からなる態様に対して、シールド層が基板の全面に関して形成される態様を組合せたり、あるいは薄膜トランジスタの半導体層を遮光すべく走査線に「水平的突出部」が設けられる態様に対して、画素電極の下地として配置された層間絶縁膜に「凸部」を設ける態様を組合わせたりする等である。むろん三つ以上の態様を併せもつ電気光学装置を構成することも可能である。
本発明の電子機器は、上記課題を解決するために、上述の本発明の電気光学装置を具備してなる。ただし、その各種態様を含む。
本発明の電子機器によれば、上述の本発明の電気光学装置を具備してなるから、高品質な画像を表示可能な、投射型表示装置、液晶テレビ、携帯電話、電子手帳、ワードプロセッサ、ビューファインダ型又はモニタ直視型のビデオテープレコーダ、ワークステーション、テレビ電話、POS端末、タッチパネルなどの各種電子機器を実現できる。
本発明のこのような作用及び他の利得は次に説明する実施の形態から明らかにされる。
以下では、本発明の実施の形態について図を参照しつつ説明する。以下の実施形態は、本発明の電気光学装置を液晶装置に適用したものである。
(画素部における構成)
まず、本発明の実施形態における電気光学装置の画素部における構成について、図1から図4を参照して説明する。ここに図1は、電気光学装置の画像表示領域を構成するマトリクス状に形成された複数の画素における各種素子、配線等の等価回路である。図2は、データ線、走査線、画素電極等が形成されたTFTアレイ基板の相隣接する複数の画素群の平面図である。なお、図3は、図2のうち要部、具体的には、データ線、シールド層及び画素電極間の配置関係を示すために、主にこれらのみを抜き出した平面図である。図4は、図2のA−A´断面図である。なお、図4においては、各層・各部材を図面上で認識可能な程度の大きさとするため、該各層・各部材ごとに縮尺を異ならしめてある。
まず、本発明の実施形態における電気光学装置の画素部における構成について、図1から図4を参照して説明する。ここに図1は、電気光学装置の画像表示領域を構成するマトリクス状に形成された複数の画素における各種素子、配線等の等価回路である。図2は、データ線、走査線、画素電極等が形成されたTFTアレイ基板の相隣接する複数の画素群の平面図である。なお、図3は、図2のうち要部、具体的には、データ線、シールド層及び画素電極間の配置関係を示すために、主にこれらのみを抜き出した平面図である。図4は、図2のA−A´断面図である。なお、図4においては、各層・各部材を図面上で認識可能な程度の大きさとするため、該各層・各部材ごとに縮尺を異ならしめてある。
図1において、本実施形態における電気光学装置の画像表示領域を構成するマトリクス状に形成された複数の画素には、それぞれ、画素電極9aと当該画素電極9aをスイッチング制御するためのTFT30とが形成されており、画像信号が供給されるデータ線6aが当該TFT30のソースに電気的に接続されている。データ線6aに書き込む画像信号S1、S2、…、Snは、この順に線順次に供給しても構わないし、相隣接する複数のデータ線6a同士に対して、グループ毎に供給するようにしてもよい。
また、TFT30のゲートに走査線3aが電気的に接続されており、所定のタイミングで、走査線3aにパルス的に走査信号G1、G2、…、Gmを、この順に線順次で印加するように構成されている。画素電極9aは、TFT30のドレインに電気的に接続されており、スイッチング素子であるTFT30を一定期間だけそのスイッチを閉じることにより、データ線6aから供給される画像信号S1、S2、…、Snを所定のタイミングで書き込む。
画素電極9aを介して電気光学物質の一例としての液晶に書き込まれた所定レベルの画像信号S1、S2、…、Snは、対向基板に形成された対向電極との間で一定期間保持される。液晶は、印加される電圧レベルにより分子集合の配向や秩序が変化することにより、光を変調し、階調表示を可能とする。ノーマリーホワイトモードであれば、各画素の単位で印加された電圧に応じて入射光に対する透過率が減少し、ノーマリーブラックモードであれば、各画素の単位で印加された電圧に応じて入射光に対する透過率が増加され、全体として電気光学装置からは画像信号に応じたコントラストをもつ光が出射する。
ここで保持された画像信号がリークするのを防ぐために、画素電極9aと対向電極との間に形成される液晶容量と並列に蓄積容量70を付加する。この蓄積容量70は、走査線3aに並んで設けられ、固定電位側容量電極を含むとともに定電位に固定された容量電極300を含んでいる。
以下では、上記データ線6a、走査線3a、TFT30等による、上述のような回路動作が実現される電気光学装置の、実際の構成について、図2から図4を参照して説明する。
まず、図2において、画素電極9aは、TFTアレイ基板10上に、マトリクス状に複数設けられており(点線部9a´により輪郭が示されている)、画素電極9aの縦横の境界に各々沿ってデータ線6a及び走査線3aが設けられている。データ線6aは、後述するようにアルミニウム膜等を含む積層構造からなり、走査線3aは、例えば導電性のポリシリコン膜等からなる。また、走査線3aは、半導体層1aのうち図中右上がりの斜線領域で示したチャネル領域1a´に対向するように配置されており、該走査線3aはゲート電極として機能する。すなわち、走査線3aとデータ線6aとの交差する箇所にはそれぞれ、チャネル領域1a´に走査線3aの本線部がゲート電極として対向配置された画素スイッチング用のTFT30が設けられている。
次に、電気光学装置は、図2のA−A´線断面図たる図4に示すように、例えば、石英基板、ガラス基板、シリコン基板からなるTFTアレイ基板10と、これに対向配置される、例えばガラス基板や石英基板からなる対向基板20とを備えている。
TFTアレイ基板10の側には、図4に示すように、前記の画素電極9aが設けられており、その上側には、ラビング処理等の所定の配向処理が施された配向膜16が設けられている。画素電極9aは、例えばITO膜等の透明導電性膜からなる。他方、対向基板20の側には、その全面に渡って対向電極21が設けられており、その下側には、ラビング処理等の所定の配向処理が施された配向膜22が設けられている。このうち対向電極21は、上述の画素電極9aと同様に、例えばITO膜等の透明導電性膜からなり、前記の配向膜16及び22は、例えば、ポリイミド膜等の透明な有機膜からなる。このように対向配置されたTFTアレイ基板10及び対向基板20間には、後述のシール材(図27及び図28参照)により囲まれた空間に液晶等の電気光学物質が封入され、液晶層50が形成される。液晶層50は、画素電極9aからの電界が印加されていない状態で配向膜16及び22により所定の配向状態をとる。液晶層50は、例えば一種又は数種類のネマティック液晶を混合した電気光学物質からなる。シール材は、TFT基板10及び対向基板20をそれらの周辺で貼り合わせるための、例えば光硬化性樹脂や熱硬化性樹脂からなる接着剤であり、両基板間の距離を所定値とするためのグラスファイバー或いはガラスビーズ等のスペーサが混入されている。
一方、TFTアレイ基板10上には、前記の画素電極9a及び配向膜16の他、これらを含む各種の構成が積層構造をなして備えられている。この積層構造は、図4に示すように、下から順に、下側遮光膜11aを含む第1層、TFT30及び走査線3a等を含む第2層、蓄積容量70及びデータ線6a等を含む第3層、シールド層400等を含む第4層、前記の画素電極9a及び配向膜16等を含む第5層(最上層)からなる。また、第1層及び第2層間には下地絶縁膜12が、第2層及び第3層間には第1層間絶縁膜41が、第3層及び第4層間には第2層間絶縁膜42が、第4層及び第5層間には第3層間絶縁膜43が、それぞれ設けられており、前述の各要素間が短絡することを防止している。また、これら各種の絶縁膜12、41、42及び43には、例えば、TFT30の半導体層1a中の高濃度ソース領域1dとデータ線6aとを電気的に接続するコンタクトホール等もまた設けられている。以下では、これらの各要素について、下から順に説明を行う。
まず、第1層には、例えば、Ti(チタン)、Cr(クロム)、W(タングステン)、Ta(タンタル)、Mo(モリブデン)等の高融点金属のうちの少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したもの等からなる下側遮光膜11aが設けられている。この下側遮光膜11aは、平面的にみて格子状にパターニングされており、これにより各画素の開口領域を規定している(図2参照)。下側遮光膜11aの走査線3aとデータ線6aが交差する領域では、画素電極9aの角を角取りするように突出した領域が形成されている。そして、下側遮光膜11aは、TFT30、走査線3a、データ線6a、蓄積容量70、後述する第3中継層402を、下側から見て覆うように形成されている。また、この下側遮光膜11aについては、その電位変動がTFT30に対して悪影響を及ぼすことを避けるために、画像表示領域からその周囲に延設して定電位源に接続するとよい。
次に、第2層として、TFT30及び走査線3aが設けられている。TFT30は、図4に示すように、LDD(Lightly Doped Drain)構造を有しており、その構成要素としては、上述したようにゲート電極として機能する走査線3a、例えばポリシリコン膜からなり走査線3aからの電界によりチャネルが形成される半導体層1aのチャネル領域1a´、走査線3aと半導体層1aとを絶縁するゲート絶縁膜を含む絶縁膜2、半導体層1aにおける低濃度ソース領域1b及び低濃度ドレイン領域1c並びに高濃度ソース領域1d及び高濃度ドレイン領域1eを備えている。
なお、TFT30は、好ましくは図4に示したようにLDD構造をもつが、低濃度ソース領域1b及び低濃度ドレイン領域1cに不純物の打ち込みを行わないオフセット構造をもってよいし、走査線3aの一部からなるゲート電極をマスクとして高濃度で不純物を打ち込み、自己整合的に高濃度ソース領域及び高濃度ドレイン領域を形成するセルフアライン型のTFTであってもよい。また、本実施形態では、画素スイッチング用TFT30のゲート電極を、高濃度ソース領域1d及び高濃度ドレイン領域1e間に1個のみ配置したシングルゲート構造としたが、これらの間に2個以上のゲート電極を配置してもよい。このようにデュアルゲート、あるいはトリプルゲート以上でTFTを構成すれば、チャネルとソース及びドレイン領域との接合部のリーク電流を防止でき、オフ時の電流を低減することができる。さらに、TFT30を構成する半導体層1aは非単結晶層でも単結晶層でも構わない。単結晶層の形成には、貼り合わせ法等の公知の方法を用いることができる。半導体層1aを単結晶層とすることで、特に周辺回路の高性能化を図ることができる。
以上説明した下側遮光膜11aの上、かつ、TFT30の下には、例えばシリコン酸化膜等からなる下地絶縁膜12が設けられている。下地絶縁膜12は、下側遮光膜11aからTFT30を層間絶縁する機能のほか、TFTアレイ基板10の全面に形成されることにより、TFTアレイ基板10の表面研磨時における荒れや、洗浄後に残る汚れ等で画素スイッチング用のTFT30の特性変化を防止する機能を有する。
そして、本実施形態においては特に、この下地絶縁膜12には、平面的にみて半導体層1aの両脇に、後述するデータ線6aに沿って延びる半導体層1aのチャネル長と同じ幅、もしくはチャネル長より長い溝(コンタクトホール状に形成された溝)12cvが掘られており、この溝12cvに対応して、その上方に積層される走査線3aは下側に凹状に形成された部分を含んでいる(図2では、複雑化を避けるため不図示とした。図5参照。)。また、この溝12cv全体を埋めるようにして、走査線3aが形成されていることにより、該走査線3aには、これと一体的に形成された水平的突出部3b(本発明にいう「垂直的突出部」を含む。)が延設されるようになっている。これにより、TFT30の半導体層1aは、図2によく示されているように、平面的に見て側方から覆われるようになっており、少なくともこの部分からの光の入射が抑制されるようになっている。なお、水平的突出部3bは、半導体層1aの片側だけでもよい。なお、この溝12cv並びにこの上に積層される走査線3a及び水平的突出部3bについては、後に図5以降を参照しながら、改めて詳しく触れることとする。
さて、前述の第2層に続けて第3層には、蓄積容量70及びデータ線6aが設けられている。蓄積容量70は、TFT30の高濃度ドレイン領域1e及び画素電極9aに電気的に接続された画素電位側容量電極としての第1中継層71と、固定電位側容量電極としての容量電極300とが、誘電体膜75を介して対向配置されることにより形成されている。この蓄積容量70によれば、画素電極9aにおける電位保持特性を顕著に高めることが可能となる。また、本実施形態に係る蓄積容量70は、図2の平面図を見るとわかるように、画素電極9aの形成領域にほぼ対応する光透過領域には至らないように形成されているため、換言すれば、遮光領域内に収まるように形成されている。すなわち、蓄積容量70は、隣接するデータ線6a間の走査線3aに重なる領域と、走査線3aとデータ線6aが交差する角部で下側遮光膜11が画素電極9aの角を角取りする領域に形成されている。これにより、電気光学装置全体の画素開口率は比較的大きく維持され、より明るい画像を表示することが可能となる。
より詳細には、第1中継層71は、例えば光吸収性の導電性のポリシリコン膜からなり画素電位側容量電極として機能する。ただし、第1中継層71は、金属又は合金を含む単一層膜又は多層膜から構成してもよい。多層膜の場合は、下層を光吸収性の導電性のポリシリコン膜、上層を光反射性の金属又は合金にするとよい。また、この第1中継層71は、画素電位側容量電極としての機能のほか、コンタクトホール83、85及び89を介して、画素電極9aとTFT30の高濃度ドレイン領域1eとを中継接続する機能をもつ。この第1中継層71は、図2に示すように、後述する容量電極300の平面形状と略同一の形状を有するように形成されている。
容量電極300は、蓄積容量70の固定電位側容量電極として機能する。第1実施形態において、容量電極300を固定電位とするためには、固定電位とされたシールド層400とコンタクトホール87を介して電気的接続が図られることによりなされている。
ただし、後述するように、容量電極300とデータ線6aとを別々の層として形成する形態では、好ましくは例えば、該容量電極300を、画素電極9aが配置された画像表示領域10aからその周囲に延設し、定電位源と電気的に接続する等という手段をとることにより、該容量電極300を固定電位に維持するようにしてもよい。ちなみに、ここに述べた「定電位源」としては、データ線駆動回路101に供給される正電源や負電源の定電位源でもよいし、対向基板20の対向電極21に供給される定電位源でも構わない。
そして、本実施形態では特に、この容量電極300と同一膜として、データ線6aが形成されている。ここに「同一膜」とは、同一層として、あるいは製造工程段階において同時に形成されていることを意味している。ただし、容量電極300及びデータ線6a間は平面形状的に連続して形成さているのではなく、両者間はパターニング上分断されている。
具体的には、図2に示すように、容量電極300は、走査線3aの形成領域に重なるように、すなわち図中X方向に沿って分断されつつ形成されており、データ線6aは、半導体層1aの長手方向に重なるように、すなわち図中Y方向に延在するように形成されている。より詳しくは、容量電極300は、走査線3aに沿って延びる本線部と、図2中、半導体層1aに隣接する領域において該半導体層1aに沿って図中上方に突出した突出部(図中略台形状のように見える部分)と、後述するコンタクトホール85に対応する個所が僅かに括れた括れ部とを備えている。このうち突出部は、蓄積容量70の形成領域の増大に貢献する。
他方、データ線6aは、図2中Y方向に沿って直線的に延びる本線部を有している。なお、半導体層1aの図2中上端にある高濃度ドレイン領域1eは、蓄積容量70の突出部の領域に重なるように、右方に90度直角に折り曲がるような形状を有しているが、これはデータ線6aを避けて、該半導体層1aと蓄積容量70との電気的接続を図るためである(図4参照)。なお、半導体層1aと蓄積容量70の第1中継層71とを電気的に接続するコンタクトホール83の形成領域にも下側遮光膜11が存在している。
本実施形態では、以上のような形状が呈されるようにパターニング等が実施されて、容量電極300及びデータ線6aが同時に形成されることになる。
本実施形態では、以上のような形状が呈されるようにパターニング等が実施されて、容量電極300及びデータ線6aが同時に形成されることになる。
また、これら容量電極300及びデータ線6aは、図4に示すように、下層に導電性のポリシリコンからなる層、上層にアルミニウムからなる層の二層構造を有する膜として形成されている。このうちデータ線6aについては、後述する誘電体膜75の開口部を貫通するコンタクトホール81を介して、TFT30の半導体層1aと電気的に接続されることとなるが、該データ線6aが上述のような二層構造をとり、また前述の第1中継層71が導電性のポリシリコン膜からなることにより、該データ線6a及び半導体層1a間の電気的接続は、直接には、導電性のポリシリコン膜によって実現されることになる。すなわち、下から順に、第1中継層のポリシリコン膜、データ線6aの下層のポリシリコン膜及びその上層のアルミニウム膜ということになる。したがって、両者間の電気的接続を良好に保つことが可能となる。
また、容量電極300及びデータ線6aは、光反射性能に比較的優れたアルミニウムを含み、且つ、光吸収性能に比較的優れたポリシリコンを含むことから、遮光層として機能し得る。すなわち、これらによれば、TFT30の半導体層1aに対する入射光(図4参照)の進行を、その上側で遮ることが可能である。
誘電体膜75は、図4に示すように、例えば膜厚5〜200nm程度の比較的薄いHTO(High Temperature Oxide)膜、LTO(Low Temperature Oxide)膜等の酸化シリコン膜、あるいは窒化シリコン膜等から構成される。蓄積容量70を増大させる観点からは、膜の信頼性が十分に得られる限りにおいて、誘電体膜75は薄いほどよい。そして、本実施形態においては特に、この誘電体膜75は、図4に示すように、下層に酸化シリコン膜75a、上層に窒化シリコン膜75bというように二層構造を有し、TFTアレイ基板10の全面に渡って形成されている。なお、誘電体膜75の他の例として、下層の酸化シリコン膜75aは、TFTアレイ基板10の全面に渡って形成し、上層の窒化シリコン膜75bは、遮光領域(非開口領域)内で収まるようにパターンニングして、着色性のある窒化シリコン膜の存在により透過率が低くなることを防止するように構成してもよい。これにより、比較的誘電率の大きい窒化シリコン膜75bが存在することにより、蓄積容量70の容量値を増大させることが可能となる他、それにもかかわらず、酸化シリコン膜75aが存在することにより、蓄積容量70の耐圧性を低下せしめることがない。このように、誘電体膜75を二層構造とすることにより、相反する二つの作用効果を享受することが可能となる。また、窒化シリコン膜75bが存在することにより、TFT30に対する水の浸入を未然に防止することが可能となっている。これにより、本実施形態では、TFT30におけるスレッショルド電圧の上昇という事態を招来することがなく、比較的長期の装置運用が可能となる。なお、本実施形態では、誘電体膜75は、二層構造を有するものとなっているが、場合によっては、例えば酸化シリコン膜、窒化シリコン膜及び酸化シリコン膜等というような三層構造や、あるいはそれ以上の積層構造を有するように構成してもよい。
また、本実施形態では、データ線6a及び容量電極300は、二層構造としたが、下層より、ポリシリコン膜、アルミニウム膜、窒化チタン膜の三層構造にし、窒化チタン膜をコンタクトホール87の開口時のバリアメタルとして形成しても良い。
以上説明したTFT30ないし走査線3aの上、かつ、蓄積容量70ないしデータ線6aの下には、例えば、NSG(ノンシリケートガラス)、PSG(リンシリケートガラス)、BSG(ボロンシリケートガラス)、BPSG(ボロンリンシリケートガラス)等のシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等、あるいは好ましくはNSGからなる第1層間絶縁膜41が形成されている。そして、この第1層間絶縁膜41には、TFT30の高濃度ソース領域1dとデータ線6aとを電気的に接続するコンタクトホール81が開孔されている。また、第1層間絶縁膜41には、TFT30の高濃度ドレイン領域1eと蓄積容量70を構成する第1中継層71とを電気的に接続するコンタクトホール83が開孔されている。
なお、これら二つのコンタクトホールのうち、コンタクトホール81の形成部分では、前述の誘電体膜75が形成されないように、換言すれば、該誘電体膜75に開口部が形成されるようになっている。これは、該コンタクトホール81においては、第1中継層71を介して、高濃度ソース領域1b及びデータ線6a間の電気的導通を図る必要があるためである。ちなみに、このような開口部が誘電体膜75に設けられていれば、TFT30の半導体層1aに対する水素化処理を行うような場合において、該処理に用いる水素を、該開口部を通じて半導体層1aにまで容易に到達させることが可能となるという作用効果を得ることも可能となる。
また、本実施形態では、第1層間絶縁膜41に対しては、約1000℃の焼成を行うことにより、半導体層1aや走査線3aを構成するポリシリコン膜に注入したイオンの活性化を図ってもよい。
さて、前述の第3層に続けて第4層には、遮光性のシールド層400が形成されている。このシールド層400は、平面的にみると、図2及び図3に示すように、図2中X方向及びY方向それぞれに延在するように格子状に形成されている。該シールド層400のうち図2中Y方向に延在する部分については特に、データ線6aを覆うように、且つ、該データ線6aよりも幅広に形成されている。また、図2中X方向に延在する部分については、後述の第3中継電極402を形成する領域を確保するために、各画素電極9aの一辺の中央付近に切り欠き部を有している。さらには、図2中XY方向それぞれに延在するシールド層400の交差部分の角部においては、前述の容量電極300の略台形状の突出部に対応するように、略三角形状の部分が設けられている。遮光性のシールド層400は、下側遮光膜11aと同じ幅でもよいし、下側遮光膜11aより幅が広くても、あるいは幅が狭くてもよい。ただし、第3中継層402を除いて、TFT30、走査線3a、データ線6a、蓄積容量70を上側から見て覆うように形成されている。そして、シールド層400と下側遮光膜11とで、画素開口領域の角部、すなわち4つの角部、画素開口領域の各辺を規定することになる。
このシールド層400は、画素電極9aが配置された画像表示領域10aからその周囲に延設され、定電位源と電気的に接続されることで、固定電位とされている。なお、ここに述べた「定電位源」としては、データ線駆動回路101に供給される正電源や負電源の定電位源でもよいし、対向基板20の対向電極21に供給される定電位源でも構わない。
このように、データ線6aの全体を覆うように形成されているとともに(図3参照)、固定電位とされたシールド層400の存在によれば、該データ線6a及び画素電極9a間に生じる容量カップリングの影響を排除することが可能となる。すなわち、データ線6aへの通電に応じて、画素電極9aの電位が変動するという事態を未然に回避することが可能となり、画像上に該データ線6aに沿った表示ムラ等を発生させる可能性を低減することができる。本実施形態においてはまた、シールド層400は格子状に形成されているから、走査線3aが延在する部分についても無用な容量カップリングが生じないように、これを抑制することが可能となっている。また、シールド層400における上述の三角形状の部分は、容量電極300と画素電極9aとの間に生じる容量カップリングの影響を排除することが可能であり、これによっても、上述と略同様な作用効果が得られることになる。
また、第4層には、このようなシールド層400と同一膜として、本発明にいう「中継層」の一例たる第2中継層402が形成されている。この第2中継層402は、後述のコンタクトホール89を介して、蓄積容量70を構成する第1中継層71及び画素電極9a間の電気的接続を中継する機能を有する。なお、これらシールド層400及び第2中継層402間は、前述の容量電極300及びデータ線6aと同様に、平面形状的に連続して形成されているのではなく、両者間はパターニング上分断されるように形成されている。
他方、上述のシールド層400及び第2中継層402は、下層にアルミニウムからなる層、上層に窒化チタンからなる層の二層構造を有している。これにより、まず、窒化チタンによる水分防止作用の発揮が期待される。また、第2中継層402において、下層のアルミニウムからなる層は、蓄積容量70を構成する第1中継層71と接続され、上層の窒化チタンからなる層は、ITO等からなる画素電極9aと接続されるようになっている。この場合、とりわけ後者の接続は良好に行われることになる。この点、仮に、アルミニウムとITOとを直接に接続してしまう形態をとると、両者間において電蝕が生じてしまい、アルミニウムの断線、あるいはアルミナの形成による絶縁等のため、好ましい電気的接続が実現されないこととは対照的である。また、窒化チタンは、コンタクトホール89の開口時の突きぬけ防止のためのバリアメタルとして機能する。このように、本実施形態では、第2中継層402と画素電極9aとの電気的接続を良好に実現することができることにより、該画素電極9aに対する電圧印加、あるいは該画素電極9aにおける電位保持特性を良好に維持することが可能となる。
さらには、シールド層400及び第2中継層402は、光反射性能に比較的優れたアルミニウムを含み、且つ、光吸収性能に比較的優れた窒化チタンを含むことから、遮光層として機能し得る。すなわち、これらによれば、TFT30の半導体層1aに対する入射光(図2参照)の進行を、その上側でさえぎることが可能である。なお、このようなことについては、既に述べたように、上述の容量電極300及びデータ線6aについても同様にいえる。本実施形態においては、これらシールド層400、第2中継層402、容量電極300及びデータ線6aが、TFTアレイ基板10上に構築される積層構造の一部をなしつつ、TFT30に対する上側からの光入射を遮る上側遮光膜、あるいは、「積層構造の一部」を構成しているという点に着目すれば「内蔵遮光膜」として機能しうる。なお、この「上側遮光膜」ないし「内蔵遮光膜」なる概念によれば、上述の構成のほか、走査線3aや第1中継層71等もまた、それに含まれるものとして考えることができる。要は、最も広義に解する前提の下、TFTアレイ基板10上に構築される不透明な材料からなる構成であれば、「上側遮光膜」ないし「内蔵遮光膜」と呼びうる。
以上説明した前述のデータ線6aの上、かつ、シールド層400の下には、NSG、PSG、BSG、BPSG等のシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等、あるいは好ましくはNSGからなる第2層間絶縁膜42が形成されている。この第2層間絶縁膜42には、前記のシールド層400と容量電極300とを電気的に接続するためのコンタクトホール87、及び、第2中継層402と第1中継層71とを電気的に接続するためのコンタクトホール85がそれぞれ開孔されている。
なお、第2層間絶縁膜42に対しては、第1層間絶縁膜41に関して前述したような焼成を行わないことにより、容量電極300の界面付近に生じるストレスの緩和を図るようにしてもよい。
最後に、第5層には、上述したように画素電極9aがマトリクス状に形成され、該画素電極9a上に配向膜16が形成されている。この画素電極9aは、角部がカットされた形状でもよい。そして、この画素電極9a下には、NSG、PSG、BSG、BPSG等のシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等、あるいは好ましくはBPSGからなる第3層間絶縁膜43が形成されている。この第3層間絶縁膜43には、画素電極9a及び前記の第2中継層402間を電気的に接続するためのコンタクトホール89が開孔されている。また、本実施形態では特に、第3層間絶縁膜43の表面は、CMP(Chemical Mechanical Polishing)処理等により平坦化されており、その下方に存在する各種配線や素子等による段差に起因する液晶層50の配向不良を低減する。ただし、このように第3層間絶縁膜43に平坦化処理を施すだけでなく、TFTアレイ基板10、下地絶縁膜12、第1層間絶縁膜41及び第2層間絶縁膜42のうち少なくとも一つに溝を掘って、データ線6a等の配線やTFT30等を埋め込むことにより、平坦化処理を行ってもよい。または、第3層間絶縁膜43の平坦化処理をせずに、上述した溝だけで平坦化処理を行ってもよい。
(TFTに対する光遮蔽に関する構成)
以下では、上述のTFT30に対する光遮蔽に関する構成、より詳しくは、該TFT30のゲート電極を含む走査線3a、あるいは下地絶縁膜12の溝12cv等が関連する構造について説明する。
以下では、上述のTFT30に対する光遮蔽に関する構成、より詳しくは、該TFT30のゲート電極を含む走査線3a、あるいは下地絶縁膜12の溝12cv等が関連する構造について説明する。
(その1:下地絶縁膜12に形成された溝12cvと走査線3aから延設された水平的突出部3bが設けられた例による光遮蔽)
まず第一に、走査線3a及び水平的突出部3bの構成及び作用効果並びに下地絶縁膜12に掘られた溝12cvに係る構成及び作用効果について、図5から図8を参照しながら詳述する。ここに図5は、図2のうち走査線3aの水平的突出部3b及び下地絶縁膜12に掘られる溝12cvを、半導体層1aとともに抜粋して示す平面図であり、図6は、図5のB−B´断面図であり、図7は、図5のC−C´断面図である。さらに、図8は、図5のD−D´断面図である。
まず第一に、走査線3a及び水平的突出部3bの構成及び作用効果並びに下地絶縁膜12に掘られた溝12cvに係る構成及び作用効果について、図5から図8を参照しながら詳述する。ここに図5は、図2のうち走査線3aの水平的突出部3b及び下地絶縁膜12に掘られる溝12cvを、半導体層1aとともに抜粋して示す平面図であり、図6は、図5のB−B´断面図であり、図7は、図5のC−C´断面図である。さらに、図8は、図5のD−D´断面図である。
図5から図8に示すように、下地絶縁膜12には、半導体層1aの両脇にデータ線6aに沿って溝12cvが掘られている。溝12cv内には、走査線3aの水平的突出部3bが部分的に埋め込まれており、更に、第1層間絶縁膜41を介して、第1中継層71及び容量電極300が溝12cvに対応して部分的に窪まれている。これにより、図6から図8に示す各断面図上で、走査線3aの水平的突出部3b、容量電極300等は、溝12cvに対応して下側に凹状に形成された部分を含んでいる。なお、この態様においては、水平的突出部3bが溝12cv内に埋め込まれていることにより、該水平的突出部3bは溝12cvの深さ方向の垂直的突出部としての性格をも併せもつ。
このような態様によれば、第1に、ポリシリコンでなる走査線3aに水平的突出部3bが設けられているので、TFTアレイ基板10の基板面に対して斜めに進行する入射光及び戻り光、並びにこれらに基づく内面反射光及び多重反射光などの斜めの光が、チャネル領域1a及びその隣接領域、すなわち、低濃度ソース領域1b及び低濃度ドレイン領域1cに入射するのを、走査線3aのうちゲート電極として機能する本体部だけでなく、特に水平的突出部3bにより、主に光を吸収し、一部光を反射することにより、少なくとも部分的に阻止できる。この際、半導体層1aに近接した水平的突出部3b及び走査線3aの本体部により遮光を行うので、非常に効果的に当該遮光を行える。
また第2に、半導体層1aを上側から覆う上側遮光膜として機能する走査線3a(水平的突出部3bを含む)、第1中継層71及び容量電極300はそれぞれ、溝12cvに対応して下側に凹状に形成された部分を含んでいるので、上側遮光膜が平坦である場合と比較して、基板面に対して斜めに進行する入射光、並びに入射光及び戻り光に基づく内面反射光及び多重反射光などの斜めの光が、最終的に斜め上側からチャネル領域1a及びその隣接す領域に入射するのを、当該上側遮光膜によって、より効果的に阻止できる。すなわち、下側に凹状(あるいは、上側に凸状)である上側遮光膜の上面部分により、上側からの斜めの光を拡散させる傾向が溝12cvに応じて強まるので、最終的に斜め上側からチャネル領域1a及びその隣接領域に入射する光量を低減できるのである。なお、同様の理由から、下側遮光膜11aを少なくとも部分的に、上述した上側遮光膜の凹凸とは上下反対に、上側に凹状に、すなわち、下側に凸状に形成してもよい。
ここで本実施形態では、図2及び図4に示した如く各種遮光膜によりTFT30に対する遮光を上下から行っている。すなわち、電気光学装置における上側、すなわち、入射光の入射側から入射する入射光に対しては、容量電極300及びシールド層400等が、上側遮光膜として機能する。他方、当該電気光学装置の下側、すなわち、入射光の出射側から入射する戻り光に対しては、下側遮光膜11aが文字通り下側遮光膜として機能する。したがって、走査線3aに水平的突出部3bを設ける必要性や、溝12cvにより上側遮光膜たる容量電極300等に特別な形状を与える必要性はないようにも考えられる。しかしながら、入射光は、基板10に対して斜め方向から入射する斜め光を含んでいる。このため、斜め光が、基板10の上面や下側遮光膜11aの上面等で反射されて、あるいは上側遮光膜の下面で反射されて、更にこれらが当該電気光学装置内の他の界面で反射されて、内面反射光・多重反射光が生成される。したがって、TFT30の上下に各種遮光膜を備えていても、両者間の隙間を介して進入する斜めの光は存在し得るので、本実施形態の如く、半導体層1aの脇で遮光を行う水平的突出部3bや、溝12cvに対応する凹状部分による遮光の効果は大きい。
以上のように、本実施形態の電気光学装置によれば、水平的突出部3b及び溝12cvを設けることにより、耐光性を高められ、強力な入射光や戻り光が入射するような過酷な条件化にあっても光リーク電流の低減されたTFT30により画素電極9aを良好にスイッチング制御でき、最終的には、明るく高コントラストの画像を表示できる。
加えて、本実施形態では、上側遮光膜は、水平的突出部3bを含む走査線3a、容量電極300、シールド層400等の一部からなるため、全体としてTFTアレイ基板10における積層構造及び製造工程の簡略化を図れる。更に、本実施形態では、水平的突出部3bは、走査線3aと同一膜から一体的になるので、水平的突出部3bを形成するために、追加的な工程は不要である。
さらに加えて、本態様では、溝12cvが下側遮光膜11aまでは到達しておらず、したがって、該溝12cvの底面を覆うように形成された水平的突出部3b及び深さ方向の垂直的突出部を含む走査線3aは、下側遮光膜11aに接触していない。このため、下側遮光膜11aが導電膜であっても、その電位変動が走査線3aに及ぼす悪影響を未然防止できる。
以上説明した態様では、走査線3aを、下側遮光膜11aの場合と同様に、金属又は合金を含む遮光膜(Ti、Cr、W、Ta、Mo等の高融点金属のうちの少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したもの等)から構成してもよい。このように構成すれば、走査線3a及び水平的突出部3bにより、反射性能を高めて斜めの光に対するチャネル領域1a´やチャネル隣接領域における遮光性能をより向上できる。
なお、水平的突出部3bは、各チャネル領域1a´に対し4つ形成しているが、チャネル領域1a´の片脇のみに形成しても、あるいは図2でチャネル領域1a´の上側のみ又は下側のみに形成しても、ある程度の類似効果が得られる。例えば、半導体層1aの周囲における配線や素子等の配置に鑑み、チャネル領域1a´の両脇あるいは上下両方に水平的突出部3bを合計4つ形成することが困難である場合等には、レイアウトに無理を加えることなく、片脇のみにあるいは上側又は下側にのみ、チャネル領域ごとに3つ以下の水平的突出部3bを設ければよい。
(その2:前記の水平的突出部3bが包囲部3cに置換された例による光遮蔽)
第二に、走査線3aに対して、半導体層1aを包囲する包囲部3cが形成される態様について、図9から図11を参照しながら説明する。ここに図9は、図5と同趣旨の図であって、該図における水平的突出部3bが包囲部3cに置換された場合の態様を示す平面図であり、図10は、図9のE−E´断面図であり、図11は、図9のF−F´断面図である。また、図12は、変形形態たる図9のE−E´断面図である。
第二に、走査線3aに対して、半導体層1aを包囲する包囲部3cが形成される態様について、図9から図11を参照しながら説明する。ここに図9は、図5と同趣旨の図であって、該図における水平的突出部3bが包囲部3cに置換された場合の態様を示す平面図であり、図10は、図9のE−E´断面図であり、図11は、図9のF−F´断面図である。また、図12は、変形形態たる図9のE−E´断面図である。
図9から図11に示すように、本態様では、上述の水平的突出部3bに代えて、平面的にみてチャネル領域1a´から走査線3aに沿って所定距離だけ外れた箇所における走査線3aの本線部から、チャネル領域1a及びコンタクトホール開孔領域、すなわち、コンタクトホール83及び81がそれぞれ開孔された領域等を含む半導体層1a全体を包囲するように包囲部3cが延設されている。その他の構成、例えば、この包囲部3cも、溝12cv内に埋め込まれていることにより、溝12cvの深さ方向の垂直的突出部としての性格を併せもつこと等については、上述のその1に係る構成と略同様である。
そして、このような態様によっても、比較的層間距離の小さい下側遮光膜11aと上側遮光膜との間に半導体層1aを挟持する構成が得られるので、基板面に垂直な光に対しては基本的に非常に高い遮光性能が得られる。そして特に、図10及び図11に示すように、基板面に対して斜めに進行する入射光及び戻り光、並びにこれらに基づく内面反射光及び多重反射光などの斜めの光L1及びL3が発生した場合にも、その一部は、半導体層1aに到達する前段階で、走査線3aの本線部だけでなく、特に包囲部3cによる光吸収あるいは光反射により低光強度の光L2及びL4にまで減衰可能となる。この際、半導体層1aからの層間距離が非常に小さい位置に配置される包囲部3cにより遮光を行うことで、かつ包囲部3cによりいずれの方向に傾斜した光L1及びL3に対しても遮光を行うことで、非常に効果的に当該遮光を行える。
また、この態様では特に、コンタクトホール81及び83が開孔されたコンタクトホール開孔領域を含めて半導体層1aを包囲するので、一般に光が漏れやすいコンタクトホール81及び83付近における遮光性能を向上させうる。
なお、本態様においては、上述の図10のような構成に代えて、図12に示すように、垂直的突出部が、下側遮光膜11aと接触する形態としてもよい。このような形態とすれば、半導体層1aは閉じられた空間内に配置されるような形となり、該半導体層1aに対する遮光をよりよく実現することができる。ちなみに、このように、下側遮光膜11aと走査線3aとを接触させる形態は、上述の図5から図8においても同様に実現することができる。
ただし、これらの場合においては、下側遮光膜11aの電位変動による悪影響を受ける場合があることは、既に述べたとおりである。このようなことから、走査線3aを、下側遮光膜11aに接触させるか又はさせないかは、半導体層1aに対する遮光の必要性と、下側遮光膜11aの電位変動により受け得る悪影響とを比較考量した上で、場面場面に応じて適宜決められることとなる。
また、本態様において、走査線3aの包囲部3cの全てに沿って溝12cvを掘って、包囲部3cの全てに渡って下方に突出する突出部、すなわち垂直的突出部を形成してもよい。さらに、本態様のように包囲部3cを設ける場合にあっては、半導体層1aのコンタクトホール開孔領域における幅と、そのチャネル領域1aにおける幅とを同一に形成すれば、平面的にみて半導体層1aに比較的近接した位置において、平面形状が矩形の包囲部3cにより半導体層1aの周囲を覆うことができる。したがって、より高い光遮蔽効果を得ることができるものと考えられる。
さらに加えて、上述においては、包囲部3cは、溝12cv内に埋め込まれるように形成されていることにより、垂直的突出部としての性格を併せもつようなものとされていたが、本態様では、単に、半導体層1aの周囲を巡るように水平的な部分のみを持つ包囲部を設けるのであっても、それ相応の作用効果の発揮は期待できる。本発明は、そのような形態もその範囲内に収める。
(その3:走査線3aに沿って延在する溝12cvaが設けられた例による光遮蔽)
第三に、走査線3aに沿って延在する溝12cvaが設けられ、且つ、該溝12cva内には該走査線3aの本線部が一部埋め込まれる態様について、図13乃至図16を参照しながら説明する。ここに図13は、図2と同趣旨の図であって、該図とは走査線3aに沿った溝12cvaが下地絶縁膜12に設けられている点につき異なる態様を示す平面図であり、図14は、図13のG−G´断面図である。また、図15及び図16は、図14に対する変形形態に係る図13のG−G´断面図である。
第三に、走査線3aに沿って延在する溝12cvaが設けられ、且つ、該溝12cva内には該走査線3aの本線部が一部埋め込まれる態様について、図13乃至図16を参照しながら説明する。ここに図13は、図2と同趣旨の図であって、該図とは走査線3aに沿った溝12cvaが下地絶縁膜12に設けられている点につき異なる態様を示す平面図であり、図14は、図13のG−G´断面図である。また、図15及び図16は、図14に対する変形形態に係る図13のG−G´断面図である。
走査線3aは、走査線3aに沿って延在する溝12cva内に配置されると共にチャネル領域1a’及びその隣接領域を側方から部分的に覆う溝内部分を含んでなる。従って、このような態様によっても、基板面に対して斜めに進行する入射光及び特に裏面に対して斜めに進行する戻り光、並びにこれらに基づく内面反射光及び多重反射光などの斜めの光が、チャネル領域1a’及びその隣接領域に入射するのを、この溝内部分による光吸収或いは光反射により、部分的に阻止できる。このように耐光性を高めることにより、強力な入射光や戻り光が入射するような過酷な条件下にあっても光リーク電流の低減されたTFT30により画素電極9aを良好にスイッチング制御できる。
なお、この態様においては、図15に示すように、上述の図14では走査線3aが一層構造であったことに代えて、遮光性材料からなる第1層311及び光吸収性材料からなる第2層312を含む積層体からなる走査線3a’を形成してもよい。この場合、第1層311は、例えば、WSi、TiSi等からなる。第2層312は、例えばSiGe、或いは半導体層1aと同一層たるポリシリコン膜等からなる。このように走査線3a’を形成しても、走査線3a’のうち溝401内に配置された溝内部分に応じて、チャネル領域1a’及びその隣接領域に対する遮光性能を高められると共に走査線の配線抵抗を低められる。また、SiGe等からなる第2層312は、TFT30においてゲート酸化膜に対向配置されるゲート電極としても良好に機能し得る。尚、第1層311と第2層312との積層順は、上下逆でもよい。
或いは、図16に示すように、溝12cvaを完全に埋めないように走査線3a”を形成してもよい。このように走査線3a”を形成しても、走査線3a”のうち溝12cva内に配置された溝内部分に応じて、チャネル領域1a’及びその隣接領域に対する遮光性能を高められると共に走査線の配線抵抗を低められる。
以上述べたような各種の光遮蔽に関する構成及び作用効果では、要するに、TFT30に対する上側又は下側からの光入射、あるいは側方からの光入射、さらには斜めからの光入射を効果的に防止可能となることにより、TFT30における光リーク電流の発生を極力防止することが可能となるのである。その結果、本実施形態によれば、TFT30のスイッチング動作は正確に行われうることをはじめ、その半導体層1aにおいては、光リーク電流が流れることによっていわば常にバイアスがかかっているような状態を回避することができるから、高周波駆動を実現することも可能となる。また、TFT30に対する光遮蔽が効果的に行えるのであれば、電気光学装置の小型化を実現しようとする際にも、特段の障害が生じるわけではない。すなわち、一定の明るさの画像を表示しなければならない関係上、電気光学装置を小型化したとしても、それに応じた一定の画素開口率が必要であり、とすると、「小型化」には、TFT30に対する光入射の危険性を高めるという側面があることになるが、本実施形態においては、その危険性について心配をする必要が殆どない。
以上により、結局、本実施形態の電気光学装置によれば、画素電極に印加される電圧を可能な限り一定に維持するとともに、小型化・高精細化を実現しつつ、高周波駆動で高品質な画像を表示することが可能となる。
(シールド層に関する構成)
以下では、上述のシールド層400に関する構成、より詳しくは、該シールド層400それ自体についての各種の変形形態、あるいはデータ線6a及び画素電極9a間における配置態様等に関連する事項ついて、図17及び図18を参照しながら説明する。ここに図17は、図4と同趣旨の図であって、シールド層の変形形態を示すものである。また、図18は、複数のデータ線のうち、供給グループの端境に位置するデータ線にシールド層を設ける形態を示す要部斜視図であり、図19は、図18と同趣旨の図であって、該供給グループの端境に位置するデータ線と画素電極との間で生じる容量カップリングの様子を概念的に示す図である。
以下では、上述のシールド層400に関する構成、より詳しくは、該シールド層400それ自体についての各種の変形形態、あるいはデータ線6a及び画素電極9a間における配置態様等に関連する事項ついて、図17及び図18を参照しながら説明する。ここに図17は、図4と同趣旨の図であって、シールド層の変形形態を示すものである。また、図18は、複数のデータ線のうち、供給グループの端境に位置するデータ線にシールド層を設ける形態を示す要部斜視図であり、図19は、図18と同趣旨の図であって、該供給グループの端境に位置するデータ線と画素電極との間で生じる容量カップリングの様子を概念的に示す図である。
(その1:基板の全面に関してシールド層を設ける態様)
上述においては、シールド層400は、上層にアルミニウム膜、下層に窒化チタン膜を含むとともに、データ線6aに沿うように設けられていたが、本発明は、このような形態に限定されるものではない。例えば、図17に示すように、TFTアレイ基板10の全面に関して、ITO、IZO等の透明導電性材料からなるシールド層400´を形成するような形態としてもよい。
上述においては、シールド層400は、上層にアルミニウム膜、下層に窒化チタン膜を含むとともに、データ線6aに沿うように設けられていたが、本発明は、このような形態に限定されるものではない。例えば、図17に示すように、TFTアレイ基板10の全面に関して、ITO、IZO等の透明導電性材料からなるシールド層400´を形成するような形態としてもよい。
このような形態によれば、データ線6aと画素電極9aとの間は、ほぼ完全に遮蔽されているということができ、より確実に、両者間に生じる容量カップリングの影響を排除し得る。また、このようにシールド層400´がベタ状に形成されているとしても、これはITO等からなるから、電気光学装置における光透過について特段の支障が生じるわけではない。更に、基板全面にシールド層を設けることにより、画素電極との間に蓄積容量を形成する事ができるため、その蓄積容量の増大によって、表示品質の向上を図ることも可能である。
なお、このようなシールド層400´に関しては、以下のような処置が施されていると好ましい。すなわち、第一に、該シールド層400´と同一膜として、コンタクトホール89の形成箇所については、パターニング上分断された第2中継層402´を形成しておく。これにより、固定電位たるシールド層400´と第2中継層402´の絶縁が図られる。また、場合によっては、該コンタクトホール89の形成箇所に、基板全面に関して形成されたシールド層の下層として、第2中継層を設け、該シールド層それ自体には、前記コンタクトホール89の形成箇所に適当な径となる孔を設けておく、といった形態をとってもよい(この形態に関しては不図示)。このようにすれば、コンタクトホール89等の形成を無理なく行うことができる。ちなみに、この「孔」は、コンタクトホールの貫通を実現すればよいだけだから、精度高く形成される必要はない(いわゆる「ばか孔」でよい。)。また、第二に、該シールド層400´の厚さは、50〜500nm程度とすることが好ましい。このようにすれば、容量カップリングの影響を排除するに十分であって、かつ、電気光学装置全体の透明性の維持にとって、該シールド層400´が障害になるという事態を極力回避することが可能となる。
(その2:データ線に関し選択的にシールド層を形成する態様)
本発明において、シールド層は、既に述べたように、データ線6aに沿うように、かつ、前記データ線6aを覆うようにこれよりも幅広に形成するとよいが、これに加えて、シールド層を形成すべきデータ線6aを好適に選択することができる。すなわち、図18に示すように、複数のデータ線の中から、一時に画像信号の供給対象とされるデータ線の組のうち、当該組の両端に位置するデータ線に対して、シールド層400´´を形成するという態様とすることができる。
本発明において、シールド層は、既に述べたように、データ線6aに沿うように、かつ、前記データ線6aを覆うようにこれよりも幅広に形成するとよいが、これに加えて、シールド層を形成すべきデータ線6aを好適に選択することができる。すなわち、図18に示すように、複数のデータ線の中から、一時に画像信号の供給対象とされるデータ線の組のうち、当該組の両端に位置するデータ線に対して、シールド層400´´を形成するという態様とすることができる。
このような構成によれば、データ線6aを幾つかのグループに分け、該グループ毎に同時に画像信号を供給する態様において、容量カップリングの影響が最も生じてほしくないデータ線についてシールド層400´´が形成されていることになるから、より効果的に画像の品質向上を見込むことができる。
すなわち、一般に、データ線6aに対する画像信号の供給は、複数本のデータ線6aの一まとまりに対して、同時に行われる場合がある。このような場合においては、画像信号の供給を現に受けているグループ(以下、「供給グループ」という。)601Gと、それに隣接するグループ(以下、「非供給グループ」という。)602Gとの間において、その端境に位置に延在するデータ線6a1及び6a2に沿って、画像上に表示ムラを発生させることがある。
これは、前記供給グループ601Gと前記非供給グループ602Gとのちょうど端境に存在する画素電極9aにおいては、画像信号に正確に対応した電界が結果的に印加されない場合があることによる。より詳しくは、この場合、図19に示すように、当該画素電極9a(図19における破線91内の画素電極9a参照)の一方の端には、画像信号が供給されるデータ線6a1及び6a2が存在し、他方の端には画像信号が供給されないデータ線6a(図19では、データ線6a1の左隣のデータ線6a又はデータ線6a2の右隣のデータ線6a)が存在するということになるから、当該画素電極9aに対して、画像信号に対応した正確な電界を印加したとしても、当該画素電極9aと前記画像信号が供給されないデータ線6aとの間における容量カップリングの影響で、その電位に変動が生じるのである。なお、図19においては、これを視覚的に表すため、当該画素電極9aと当該データ線との間に、白抜き両矢印を示した。
そこで、本態様では、このような供給グループ601Gの端境に位置するデータ線6aに対して、図18に示すように、シールド層400´´を設けることにより、当該位置に延在するデータ線6a1及び6a2にほぼ沿った表示ムラの発生を抑制することができるのである。
なお、供給グループ601Gを構成するデータ線の数は、上述の図18等では6本とされていたが、基本的には、当該画像信号が幾つのパラレル信号からなるかに応じて決まる。例えば、この画像信号が、シリアル信号を6つのパラレル信号にシリアル-パラレル変換されたものと想定するならば、前記データ線の組とは、相隣接する6本のデータ線からなる組である、ということになるのである。
(その3:シールド層とデータ線とを別の層に形成する態様)
上記実施形態では、容量電極300とデータ線6aとを同一膜として形成していたが、本発明においては、両構成を別々の層に形成する態様としてもよい。そのようなものとしては、例えば、図20及び図21のような構造となる積層構造を採用することができる。ここに図20及び図21は、図2及び図4と同趣旨の図であって、蓄積容量70を構成する一方の電極とデータ線とを別々の層として形成した態様にかかるものである。
上記実施形態では、容量電極300とデータ線6aとを同一膜として形成していたが、本発明においては、両構成を別々の層に形成する態様としてもよい。そのようなものとしては、例えば、図20及び図21のような構造となる積層構造を採用することができる。ここに図20及び図21は、図2及び図4と同趣旨の図であって、蓄積容量70を構成する一方の電極とデータ線とを別々の層として形成した態様にかかるものである。
この図20及び図21においては、図2及び図4と比べて、蓄積容量70を構成する上部電極たる容量電極300とデータ線6aとが同一膜として構成されていない点、また、それに伴って、層間絶縁膜が増加されている。すなわち、新たにもう一層、「第4層間絶縁膜44」が設けられている点、そしてゲート電極3aaと同一膜として中継電極719が形成されている点に大きな相違がある。これにより、TFTアレイ基板10上から順に、走査線を兼ねる下側遮光膜11aを含む第1層、ゲート電極3aaを有するTFT30を含む第2層、蓄積容量70を含む第3層、データ線6a等を含む第4層、シールド層404が形成される第5層、前記の画素電極9a及び配向膜16等を含む第6層(最上層)からなる。また、第1層及び第2層間には下地絶縁膜12が、第2層及び第3層間には第1層間絶縁膜41が、第3層及び第4層間には第2層間絶縁膜42が、第4層及び第5層間には第3層間絶縁膜43が、第5層及び第6層間には第4層間絶縁膜44が、それぞれ設けられており、前述の各要素間が短絡することを防止している。本例では、走査線3aに代わるゲート電極3aaが形成されるとともに、これと同一膜として中継電極719が新たに形成されている。
また、前記の第3層及び第4層間に位置する第2層間絶縁膜42には、コンタクトホール801が形成されるとともに、第4層には、これらのコンタクトホール801に対応するようにシールド層用中継層6a1が形成されており、前記の第4層及び第5層間に位置する第3層間絶縁膜43には、コンタクトホール803が形成されている。これにより、シールド層404と容量電極300との間は、コンタクトホール801ないしシールド層用中継層6a1及びコンタクトホール803により電気的に接続されている。
そして、図21においては、ゲート電極3aaと同一膜として中継電極719が形成されているとともに、該中継電極719には、画素電極9a及び第1中継層71が電気的に接続されている。
より詳しくは、まず、画素電極9aとの電気的接続は、第2中継層6a2及び第3中継層406を介して行われている。このうち第2中継層6a2は、データ線6aと同一膜として、且つ、第1及び第2層間絶縁膜41及び42に中継電極719へと至るように開孔されたコンタクトホール882を埋めるようにして形成されている。また、第3中継層406は、シールド層404と同一膜として、且つ、第3層間絶縁膜43に前記第2中継層6a2へと至るように開孔されたコンタクトホール804を埋めるようにして形成されている。
なお、この場合、画素電極9aのITOと電蝕のおそれがあるのは、第3中継層406ということになるから、該第3中継層406に関して、上述のようにアルミニウム膜及び窒化チタン膜からなる構成を採用するようにすればよい。また、場合により、シールド層404及び第3中継層406については、上述の(その1)と同様に、ITOで形成するとともに基板の全面に関してベタ状に形成し、これら要素を構成するITOと電蝕のおそれが生じる第2中継層6a2及びシールド層用中継層6a1等について、同様な二層構造を採用する等としてもよい。
他方、中継電極719と第1中継層71との電気的接続は、第1層間絶縁膜41に開孔されたコンタクトホール881を介して行われている。すなわち、コンタクトホール881を開孔後、これを埋めるように第1中継層71の前駆膜を形成することにより、第1中継層71及び中継電極719の電気的接続が実現されることになる。
以上により、第1中継層71及び画素電極9a間は、中継電極719を介して電気的に接続されることになる。
ちなみに、上述の実施形態においては、ゲート電極を同一平面内で含むように走査線3aが形成されていたが、本形態においては、中継電極719を形成する領域を確保するため、走査線の役割は、上述の実施形態における下側遮光膜11aが担うようになっている。すなわち、本形態における下側遮光膜11aは、平面的に見ると、ストライプ状に形成されるとともに、コンタクトホールを成す溝12cvの底が該下側遮光膜11aに接するように形成されることで、ゲート電極3aaには、該下側遮光膜11aから走査信号が供給されるようになっている。
これにより、本形態における水平的突出部3bは、半導体層1aに対する遮光機能を発揮するとともに、ゲート電極3aaへの信号供給の機能をも発揮することとなる。また、下側遮光膜11aは、データ線6aと交差する領域では、画素電極9aの角を角取りするように突出した領域が形成されている。
これにより、本形態における水平的突出部3bは、半導体層1aに対する遮光機能を発揮するとともに、ゲート電極3aaへの信号供給の機能をも発揮することとなる。また、下側遮光膜11aは、データ線6aと交差する領域では、画素電極9aの角を角取りするように突出した領域が形成されている。
また、中継電極719は、平面的に見て、図20に示すように、各画素電極9aの一辺の略中央に位置するように、島状に形成されている。中継電極719と、ゲート電極3aaとは同一膜として形成されているから、後者が例えば導電性ポリシリコン膜等からなる場合においては、前者もまた、導電性ポリシリコン膜等からなる。
そして、このような形態であっても、シールド層404は、前述と同様に、データ線6a及び画素電極9a間の容量カップリングの影響を排除する機能を発揮することに変わりはない。
また、本形態においては特に、中継電極719が形成されていることにより、次のような作用効果を得ることができる。すなわち、図4等においては、TFT30及び画素電極9a間の電気的接続を図るためには、同図におけるコンタクトホール85のように、蓄積容量70を構成する、より下層の電極たる第1中継層71の図中「上面」において接触を図る必要があった。
しかしながら、このような形態では、容量電極300及び誘電体膜75の形成工程において、それらの前駆膜をエッチングする際には、その直下に位置する第1中継層71を健全に残存させながら、当該前駆膜のエッチングを実行するという非常に困難な製造工程を実施しなければならない。とりわけ本発明のように、誘電体膜75として高誘電率材料を使用する場合においては、一般にそのエッチングが困難であり、また、容量電極300におけるエッチングレートと該高誘電率材料におけるエッチングレートが不揃いになるなどの条件も重なるため、当該製造工程の困難性はより高まることになる。したがって、このような場合においては、第1中継層71において、いわゆる「突き抜け」等を生じさせてしまう可能性が大きい。こうなると、悪い場合には、蓄積容量70を構成する容量電極300及び第1中継層71間に短絡を生じさせるおそれ等も生じてくる。
しかるに、本形態のように、第1中継層71の図中「下面」に電気的接続点を設けることによって、TFT30及び画素電極9a間の電気的接続を実現するようにすれば、上述のような不具合は発生しないのである。なぜなら、図21からも明らかな通り、本形態では、容量電極300及び誘電体膜75の前駆膜をエッチングしつつ、第1中継層71を残存させなければならないという工程は必要ないからである。
尚、誘電体膜75は、図21に示すように、下層に酸化シリコン膜75a、上層に窒化シリコン膜75bというように二層構造を有し、TFTアレイ基板10の全面に渡って形成されている。また、誘電体膜75の他の例として、下層の酸化シリコン膜75aは、TFTアレイ基板10の全面に渡って形成し、上層の窒化シリコン膜75bは、遮光領域(非開口領域)内で収まるようにパターンニングして、着色性のある窒化シリコン膜の存在により透過率が低くなることを防止するように構成してもよい。
以上により、本形態によれば、上述のような困難なエッチング工程を経る必要がないから、第1中継層71及び画素電極9a間の電気的接続を良好に実現することができる。これは、中継電極719を介して両者間の電気的接続を実現しているからに他ならない。更にいえば、同じ理由から、本変形形態によれば、容量電極300及び第1中継層71間で短絡が生じるなどという可能性はきわめて小さい。すなわち、欠陥なき蓄積容量70を好適に形成することが可能なのである。
なお、本態様では、容量電極300とデータ線6aとが別々の層に形成されるため、図2等のように、同一平面内における両者間の電気的絶縁を図る必要はない。したがって、本態様においては、容量電極300は、下側遮光膜11a、即ち、上述の実施形態で該当するところの「走査線3a」の方向に延在する容量線の一部として形成することが可能である。また、これにより、該容量電極300を固定電位とするためには、該容量線を画像表示領域10a外まで延設して定電位源に接続するような形態とすればよい。更に、この場合、容量電極300を含む容量線は、それ自体独自に定電位源に接続することが可能であり、シールド層404もまた、それ自体独自に定電位源に接続することが可能となるため、そのような構成を採用する場合においては、両者間を電気的に接続するコンタクトホール801及び803は必ずしも必要がない。
また、データ線6a、シールド層用中継層6a1、第2中継層6a2は、下層より順に、アルミニウムからなる層、窒化チタンからなる層、窒化シリコン膜からなる層の三層構造を有する膜として形成しても良い。窒化シリコン膜は、その下層のアルミニウム層と窒化チタン層を覆うように少し大きなサイズにパターンニングされていると良い。このうちデータ線6aが、比較的低抵抗な材料たるアルミニウムを含むことにより、TFT30、画素電極9aに対する画像信号の供給を滞りなく実現することができる。他方、データ線6a上に水分の浸入をせき止める作用に比較的優れた窒化シリコン膜が形成されることにより、TFT30の耐湿性向上を図ることができ、その寿命長期化を実現することができる。窒化シリコン膜は、プラズマ窒化シリコン膜が望ましい。
(画素電極下の層間絶縁膜の平坦化に関する構成)
以下では、上述の画素電極9aの下地として配置された第4層間絶縁膜44に関する構成、より詳しくは、該第4層間絶縁膜44に対する平坦化処理についての変形形態等に関連する事項ついて、図22ないし図26を参照しながら説明する。ここに図22は、横電界の発生機構について説明するための説明図である。
また、図23は、図21と同趣旨の図であって、横電界発生防止のための凸部が設けられた形態となるものを示す図であり、図24は、該凸部が設けられた場合における図20のG−G´断面図である。なお、図25及び図26については後に触れる。
以下では、上述の画素電極9aの下地として配置された第4層間絶縁膜44に関する構成、より詳しくは、該第4層間絶縁膜44に対する平坦化処理についての変形形態等に関連する事項ついて、図22ないし図26を参照しながら説明する。ここに図22は、横電界の発生機構について説明するための説明図である。
また、図23は、図21と同趣旨の図であって、横電界発生防止のための凸部が設けられた形態となるものを示す図であり、図24は、該凸部が設けられた場合における図20のG−G´断面図である。なお、図25及び図26については後に触れる。
さて、上述においては、画素電極下の層間絶縁膜は、その表面がほぼ完全に平坦となるように、CMP(Chemical Mechanical Polishing)処理を受けることについて説明したが、本発明は、このような形態に限定されるものではない。以下では、このような形態と同等、あるいはそれ以上の作用効果を収め得る形態について説明する。
上述したような形態であれば、たしかに、画素電極9a及び配向膜16を平坦に形成することが可能となるから、液晶層50の配向状態に乱れを与えないことが可能とはなるものの、以下のような不具合が生じる可能性がある。
すなわち、本実施形態のような電気光学装置では、一般に、直流電圧印加による電気光学物質の劣化防止、表示画像におけるクロストークやフリッカの防止などのために、各画素電極9aに印加される電圧極性を所定規則で反転させる反転駆動方式が採用される場合がある。より具体的に、いわゆる「1H反転駆動方式」について説明すると、次のようである。
まず、図22(a)に示すように、n(但し、nは自然数)番目のフィールド或いはフレームの画像信号を表示する期間中には、画素電極9a毎に+又は−で示す液晶駆動電圧の極性は反転されず、行毎に同一極性で画素電極9aが駆動される。その後図22(b)に示すように、n+1番目のフィールド或いは1フレームの画像信号を表示するに際し、各画素電極9aにおける液晶駆動電圧の電圧極性は反転され、このn+1番目のフィールド或いは1フレームの画像信号を表示する期間中には、画素電極9a毎に+又は−で示す液晶駆動電圧の極性は反転されず、行毎に同一極性で画素電極9aが駆動される。そして、図22(a)及び図22(b)に示した状態が、1フィールド又は1フレームの周期で繰り返される。これが、1H反転駆動方式による駆動である。この結果、直流電圧印加による液晶の劣化を避けつつ、クロストークやフリッカの低減された画像表示を行える。尚、1H反転駆動方式によれば、後述する1S反転駆動方式と比べて、縦方向のクロストークが殆ど無い点で有利である。
ところが、図22(a)及び図22(b)から分かるように、1H反転駆動方式では、図中縦方向(Y方向)に相隣接する画素電極9a間で横電界が発生することになる。これらの図では、横電界の発生領域C1は常時、Y方向に相隣接する画素電極9a間の間隙付近となる。このような横電界が印加されると、相対向する画素電極と対向電極との間の縦電界(即ち、基板面に垂直な方向の電界)の印加が想定されている電気光学物質に対して、液晶の配向不良の如き電気光学物質の動作不良が生じ、この部分における光抜け等が発生してコントラスト比が低下してしまうという問題が生じる。
これに対し、横電界が生じる領域を遮光膜により覆い隠すことは可能であるが、これでは横電界が生じる領域の広さに応じて画素の開口領域が狭くなってしまうという問題点が生じる。特に、画素ピッチの微細化により相隣接する画素電極間の距離が縮まるのに伴って、このような横電界は大きくなるため、これらの問題は電気光学装置の高精細化が進む程深刻化してしまう。
そこで、本態様においては、第4層間絶縁膜44に対して、図22において縦方向に相隣接する画素電極9a、即ち、逆極性の電位が印加される相隣接する画素電極9aの間には、図23及び図24に示すように、横方向にストライプ状に延びる凸部430を形成する。
この凸部430の存在によれば、該凸部430上に配置された画素電極9aの縁付近における縦電界を強めると共に横電界を弱めることが可能となる。より具体的には、図23及び図24に示すように、凸部430上に配置された画素電極9aの縁付近と対向電極21との距離を凸部430の高さの分だけ狭める。従って、図22に示した横電界の発生領域C1において、画素電極9aと対向電極21との間における縦電界を強めることができるのである。そして、図23及び図24において、相隣接する画素電極9a間の間隙は一定であるため、間隙が狭まる程に強まる横電界の大きさも一定である。
よって、図22に示した横電界の発生領域C1において、縦電界をより支配的にすることにより、横電界による液晶の配向不良を防止できるのである。更に、絶縁膜からなる凸部430の存在により、横電界の強度も弱められると共に、横電界が存在する凸部430に置き換えられた分だけ横電界を受ける液晶部分が減るので、当該横電界の液晶層50に対する作用を減ずることができる。
なお、このような凸部430は、具体的には例えば、次のように形成される。
以下では、この凸部430を形成するための具体的態様について、図25乃び図26を参照しながら説明することとする。このうち図25は、図20及び図21に示す形態となる電気光学装置において、データ線及びこれと同一層に形成される要素の斜視図である。図26は、データ線及びこれと同一層に形成される要素の斜視図である。なお、これらの図においては、凸部430を形成するための構成に関してのみ図示しており、それ以外の各種要素についてはすべて図示を省略している。
以下では、この凸部430を形成するための具体的態様について、図25乃び図26を参照しながら説明することとする。このうち図25は、図20及び図21に示す形態となる電気光学装置において、データ線及びこれと同一層に形成される要素の斜視図である。図26は、データ線及びこれと同一層に形成される要素の斜視図である。なお、これらの図においては、凸部430を形成するための構成に関してのみ図示しており、それ以外の各種要素についてはすべて図示を省略している。
さて、凸部430を形成するための具体的態様について、第一には、図25に示すように、上述の電気光学装置において形成されていたデータ線6a、シールド層用中継層6a1及び第2中継層6a2を利用する形態が考えられる。すなわち、データ線6aは、図20を参照して説明したように、図20中Y方向に直線的に延在する本線部を備えており、シールド層用中継層6a1及び第2中継層6a2は、該データ線6aから図20中X方向に張り出すように形成されていた。
このようなデータ線6a、シールド層用中継層6a1及び第2中継層6a2を利用すれば、それらが有する高さに起因して、画素電極9aの下地としての第4層間絶縁膜44の表面に、自然に凸部430を形成することができる(図25参照)。この場合において、本発明にいう「張り出し部」としては、前述のシールド層用中継層6a1及び第2中継層6a2が該当すると考えることができる。
このようなデータ線6a、シールド層用中継層6a1及び第2中継層6a2を利用すれば、それらが有する高さに起因して、画素電極9aの下地としての第4層間絶縁膜44の表面に、自然に凸部430を形成することができる(図25参照)。この場合において、本発明にいう「張り出し部」としては、前述のシールド層用中継層6a1及び第2中継層6a2が該当すると考えることができる。
第二には、図26に示すように、上述の電気光学装置において形成されていたシールド層404及び第3中継層406を利用する形態が考えられる。すなわち、シールド層404は、図5を参照して説明したように、格子状に形成されており、第3中継層406は、このシールド層404と同一層として形成されていた。このようなシールド層404及び第3中継層406を利用すれば、それらが有する高さに起因して、画素電極9aの下地としての第4層間絶縁膜44の表面に、自然に凸部430を形成することができる(図26参照)。この場合において、本発明にいう「張り出し部」としては、図20に示すシールド層404のうちY方向に延在する部分を架橋するように存在する、該シールド層404のX方向に延在する部分が該当すると考えることができる。
なお、以上の各場合においては、データ線6a又はシールド層404の下地として形成される層間絶縁膜の表面について、適当な平坦化処理を施しておくと尚よい。このようにすれば、凸部430の高さを厳密に定めることができるからである。また、これらのように、シールド層又はデータ線を利用して凸部を形成する態様は、上述の第1実施形態においても同様にあてはめることが可能である。
第三に、上述のように画素電極9aの下層の構成に工夫を加えることによって、該画素電極9aの下地としての第4層間絶縁膜44の表面に凸部430を設ける形態のほか、場合によっては、該第4層間絶縁膜44の表面に対して、直接的に凸部430を形成するための膜を新たに形成し、これに対してパターニング処理を実施することで、凸部430を形作るような形態を採用してもよい。
また、このような凸部430については、それにより作られる段差をより緩やかにすると好ましい。この「緩やか」な凸部を形成するためには、例えば、いったん急峻な凸部を形成した後、該凸部及びその周辺に平坦化膜を形成した上で、該平坦化膜を除去すると共に前記平坦化膜の除去後に露出する前記凸部の表面を後退させるエッチバック工程を実施すること等により実現することができる。
このような「緩やか」な凸部を設ければ、配向膜16に対するラビング処理を比較的容易にしてムラ無く良好に施すことができ、液晶の配向不良等の電気光学物質の動作不良を極めて有効に未然防止できる。この点、もし、凸部表面の角度が急峻に変化する場合では、液晶等の電気光学物質に不連続な面が発生し、液晶の配向不良の如き電気光学物質の動作不良が発生してしまうこととは大きく異なる。
また、凸部430は、例えば、前述の1H反転駆動に関して言えば、走査線3aに沿うように形成されればよいから、該凸部430の形成は、該走査線3aの有する高さを、そのまま第3層間絶縁膜43に至るまで反映させるように積層構造を構築していくことで実現することができる。また、場合により、上述のように、第3層間絶縁膜43の表面に対して、CMP処理を実施した上で、改めて走査線3aに沿うように凸部を形成するようにしてもよい。
さらに、上述では、1H反転駆動について説明したが、本発明は、このような駆動方式に限定して適用されるものではない。例えば、同一列の画素電極を同一極性の電位により駆動しつつ、係る電圧極性を列毎にフレーム又はフィールド周期で反転させる1S反転駆動方式も、制御が比較的容易であり高品位の画像表示を可能ならしめる反転駆動方式として用いられているが、本発明は、これに対して適用可能である。更に、列方向及び行方向の両方向に相隣接する画素電極間で、各画素電極に印加される電圧極性を反転させるドット反転駆動方式も開発されているが、本発明は、これに対しても適用することが可能であることは言うまでもない。
以上、各種詳細に述べたように、本実施形態に係る電気光学装置では、シールド層400によるデータ線6a及び画素電極9a間の容量カップリングの影響排除、蓄積容量70の電荷蓄積特性の向上による画像コントラストの向上、第3層間絶縁膜43の平坦化による液晶の配向状態の適正性の維持、又は該平坦化に続く若しくは平坦化を省略した上で行われる凸部430の形成による横電界の発生の抑制、そして、TFT30の半導体層1aに対する光入射を抑制することによる正確なスイッチング動作等々の数々の総合的な対策が施されている。そして、これらの対策は、いずれにしても、電気光学装置の小型化・高精細化を実現するため、あるいは高周波駆動を実現するために大きく資する。結局、本実施形態に係る電気光学装置においては、以上のような総合的な対策が施されていることにより、極めて高品質な画像を表示することが可能となるのである。
(電気光学装置の全体構成)
以上のように構成された各実施形態における電気光学装置の全体構成を図27及び図28を参照して説明する。なお、図27は、TFTアレイ基板をその上に形成された各構成要素とともに対向基板20の側からみた平面図であり、図28は図27のH−H´断面図である。
以上のように構成された各実施形態における電気光学装置の全体構成を図27及び図28を参照して説明する。なお、図27は、TFTアレイ基板をその上に形成された各構成要素とともに対向基板20の側からみた平面図であり、図28は図27のH−H´断面図である。
図27及び図28において、本実施形態に係る電気光学装置では、TFTアレイ基板10と対向基板20とが対向配置されている。TFTアレイ基板10と対向基板20との間には、液晶50が封入されており、TFTアレイ基板10と対向基板20とは、画像表示領域10aの周囲に位置するシール領域に設けられたシール材52により相互に接着されている。
シール材52は、両基板を貼り合わせるため、例えば紫外線硬化樹脂、熱硬化樹脂等からなり、紫外線、加熱等により硬化させられたものである。また、このシール材52中には、本実施形態における液晶装置がプロジェクタ用途のように小型で拡大表示を行う液晶装置であれば、両基板間の距離(基板間ギャップ)を所定値とするためのグラスファイバー、あるいはガラスビーズ等のギャップ材(スペーサ)が散布されている。あるいは、当該液晶装置が液晶ディスプレイや液晶テレビのように大型で等倍表示を行う液晶装置であれば、このようなギャップ材は、液晶層50中に含まれてよい。
シール材52の外側の領域には、データ線6aに画像信号を所定のタイミングで供給することにより該データ線6aを駆動するデータ線駆動回路101及び外部回路接続端子102がTFTアレイ基板10の一辺に沿って設けられており、走査線3aに走査信号を所定のタイミングで供給することにより、走査線3aを駆動する走査線駆動回路104が、この一辺に隣接する二辺に沿って設けられている。
なお、走査線3aに供給される走査信号遅延が問題にならないのならば、走査線駆動回路104は片側だけでもよいことは言うまでもない。また、データ線駆動回路101を画像表示領域10aの辺に沿って両側に配列してもよい。
TFTアレイ基板10の残る一辺には、画像表示領域10aの両側に設けられた走査線駆動回路104間をつなぐための複数の配線105が設けられている。
また、対向基板20のコーナー部の少なくとも一箇所においては、TFTアレイ基板10と対向基板20との間で電気的に導通をとるための導通材106が設けられている。
また、対向基板20のコーナー部の少なくとも一箇所においては、TFTアレイ基板10と対向基板20との間で電気的に導通をとるための導通材106が設けられている。
図28において、TFTアレイ基板10上には、画素スイッチング用のTFTや走査線、データ線等の配線が形成された後の画素電極9a上に、配向膜が形成されている。他方、対向基板20上には、対向電極21のほか、最上層部分に配向膜が形成されている。また、液晶層50は、例えば一種又は数種類のネマテッィク液晶を混合した液晶からなり、これら一対の配向膜間で、所定の配向状態をとる。
なお、TFTアレイ基板10上には、これらのデータ線駆動回路101、走査線駆動回路104等に加えて、複数のデータ線6aに画像信号を所定のタイミングで印加するサンプリング回路、複数のデータ線6aに所定電圧レベルのプリチャージ信号を画像信号に先行して各々供給するプリチャージ回路、製造途中や出荷時の当該電気光学装置の品質、欠陥等を検査するための検査回路等を形成してもよい。
(電子機器)
次に、以上詳細に説明した電気光学装置をライトバルブとして用いた電子機器の一例たる投射型カラー表示装置の実施形態について、その全体構成、特に光学的な構成について説明する。ここに、図29は、投射型カラー表示装置の図式的断面図である。
次に、以上詳細に説明した電気光学装置をライトバルブとして用いた電子機器の一例たる投射型カラー表示装置の実施形態について、その全体構成、特に光学的な構成について説明する。ここに、図29は、投射型カラー表示装置の図式的断面図である。
図29において、本実施形態における投射型カラー表示装置の一例たる液晶プロジェクタ1100は、駆動回路がTFTアレイ基板上に搭載された液晶装置を含む液晶モジュールを3個用意し、それぞれRGB用のライトバルブ100R、100G及び100Bとして用いたプロジェクタとして構成されている。液晶プロジェクタ1100では、メタルハライドランプ等の白色光源のランプユニット1102から投射光が発せられると、3枚のミラー1106及び2枚のダイクロックミラー1108によって、RGBの三原色に対応する光成分R、G及びBに分けられ、各色に対応するライトバルブ100R、100G及び100Bにそれぞれ導かれる。この際特に、B光は、長い光路による光損失を防ぐために、入射レンズ1122、リレーレンズ1123及び出射レンズ1124からなるリレーレンズ系1121を介して導かれる。そして、ライトバルブ100R、100G及び100Bによりそれぞれ変調された三原色に対応する光成分は、ダイクロックプリズム1112により再度合成された後、投射レンズ1114を介してスクリーン1120にカラー画像として投射される。
本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨、あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う電気光学装置及び電子機器もまた、本発明の技術的範囲に含まれるものである。電気光学装置としては、電気泳動装置やEL(エレクトロルミネッセンス)装置や電子放出素子を用いた装置(Field Emission Display 及び Surface-Conduction Electron-Emitter Display等に適用できる。
1a…半導体層
1a´…チャネル領域
2…絶縁膜
3a…走査線
3b…水平的突出部(垂直的突出部を含む)
3c…包囲部(垂直的突出部を含む)
6a、6a1、6a2…データ線
9a…画素電極
10…TFTアレイ基板
11a…下側遮光膜
12…下地絶縁膜
12cv、12cva…溝
16…配向膜
20…対向基板
21…対向電極
22…配向膜
30…TFT
43…第3層間絶縁膜
430…凸部
50…液晶層
70…蓄積容量
75…誘電体膜
75a…酸化シリコン膜
75b…窒化シリコン膜
81、82、83、85、87、89…コンタクトホール
300…容量電極
400、400´、400´´…シールド層
402…第2中継層
601G…供給グループ
602G…非供給グループ
1a´…チャネル領域
2…絶縁膜
3a…走査線
3b…水平的突出部(垂直的突出部を含む)
3c…包囲部(垂直的突出部を含む)
6a、6a1、6a2…データ線
9a…画素電極
10…TFTアレイ基板
11a…下側遮光膜
12…下地絶縁膜
12cv、12cva…溝
16…配向膜
20…対向基板
21…対向電極
22…配向膜
30…TFT
43…第3層間絶縁膜
430…凸部
50…液晶層
70…蓄積容量
75…誘電体膜
75a…酸化シリコン膜
75b…窒化シリコン膜
81、82、83、85、87、89…コンタクトホール
300…容量電極
400、400´、400´´…シールド層
402…第2中継層
601G…供給グループ
602G…非供給グループ
Claims (20)
- 基板上に、第1方向に延在するデータ線及び該データ線に交差する第2方向に延在する走査線、並びに、前記データ線及び前記走査線の交差領域に対応するように配置された画素電極及び薄膜トランジスタが積層構造の一部をなして備えられた電気光学装置であって、
前記基板上には更に、
前記薄膜トランジスタ及び前記画素電極に電気的に接続された蓄積容量と、
前記データ線及び前記画素電極間に配置されたシールド層とが、前記積層構造の一部をなして備えられてなり、
前記蓄積容量を構成する誘電体膜は、相異なる材料を含む複数の層からなるとともに、そのうちの一の層は他の層に比べて高誘電率材料からなる層を含む積層体を構成していることを特徴とする電気光学装置。 - 前記誘電体膜は、酸化シリコン膜及び窒化シリコン膜からなることを特徴とする請求項1に記載の電気光学装置。
- 前記蓄積容量は、前記薄膜トランジスタの半導体層より上層で且つ前記画素電極の下層に形成されることを特徴とする請求項1又は2に記載の電気光学装置。
- 前記層間絶縁膜の表面は平坦化処理が施されていることを特徴とする請求項1乃至3のいずれか一項に記載の電気光学装置。
- 前記データ線は、前記蓄積容量を構成する一対の電極の一方と同一膜として形成されていることを特徴とする請求項1乃至4のいずれか一項に記載の電気光学装置。
- 前記蓄積容量を構成する一対の電極の一方と前記画素電極を電気的に接続する中継層が前記積層構造の一部として更に備えられていることを特徴とする請求項1乃至5のいずれか一項に記載の電気光学装置。
- 前記シールド層は、前記中継層と同一膜として形成されていることを特徴とする請求項6に記載の電気光学装置。
- 前記シールド層は、透明導電性材料からなるとともに、前記基板の全面に関してベタ状に形成されていることを特徴とする請求項1に記載の電気光学装置。
- 前記シールド層は、前記データ線に沿い、かつ、前記データ線よりも幅広に形成されていることを特徴とする請求項1に記載の電気光学装置。
- 前記薄膜トランジスタは、長手方向に延びるチャネル領域と該チャネル領域から更に長手方向に延びるチャネル隣接領域とを含む半導体層を有しており、
前記走査線は、前記長手方向に交わる方向に延びるとともに平面的に見て前記チャネル領域に重なる前記薄膜トランジスタのゲート電極を含む本体部と、
平面的に見て前記チャネル隣接領域の脇において前記本体部から前記長手方向に突出する水平的突出部とを有することを特徴とする請求項1に記載の電気光学装置。 - 前記薄膜トランジスタは、長手方向に延びるチャネル領域を含む半導体層を有しており、
前記薄膜トランジスタの前記チャネル領域を上側から少なくとも覆う上側遮光膜を備えており、
前記上側遮光膜は少なくとも部分的に、前記チャネル領域の長手方向に直交する断面上で前記チャネル領域側から見て凹状に形成されていることを特徴とする請求項1に記載の電気光学装置。 - 前記薄膜トランジスタは、前記第1方向に延びるチャネル領域を含む半導体層を有しており、
前記走査線は、前記チャネル領域にゲート絶縁膜を介して対向配置された前記薄膜トランジスタのゲート電極を含むとともに平面的に見て前記第1方向と交差する第2方向に延びる本線部を有し、平面的に見て前記チャネル領域から前記第2方向に所定距離だけ外れた箇所における前記本線部から前記半導体層を包囲するように延設された包囲部を有することを特徴とする請求項1に記載の電気光学装置。 - 前記薄膜トランジスタは、前記第1方向に延びるチャネル領域を含む半導体層を有しており、
前記走査線は、前記チャネル領域にゲート絶縁膜を介して対向配置された前記薄膜トランジスタのゲート電極を含むとともに平面的に見て前記第1方向と交差する第2方向に延びる本線部を有し、平面的に見て前記チャネル領域から前記第2方向に所定距離だけ外れた箇所における前記本線部から下方に突出した垂直的突出部を有することを特徴とする請求項1に記載の電気光学装置。 - 前記基板上に、少なくとも前記チャネル領域を下側から覆う下側遮光膜を更に備えており、
前記垂直的突出部は、その先端側において前記下側遮光膜に接触していることを特徴とする請求項13に記載の電気光学装置。 - 前記薄膜トランジスタは、前記第1方向に延びるチャネル領域を含む半導体層を有しており、
前記走査線は、前記チャネル領域にゲート絶縁膜を介して対向配置された前記薄膜トランジスタのゲート電極を含むと共に平面的に見て前記第1方向と交差する第2方向に延びる本線部を有し、
該本線部は、前記基板上に掘られた溝内に配置されると共に前記チャネル領域を側方から少なくとも部分的に覆う溝内部分を含んでなることを特徴とする請求項1に記載の電気光学装置。 - 前記薄膜トランジスタは、前記第1方向に延びるチャネル領域を含む半導体層を有しており、
前記走査線は、前記チャネル領域にゲート絶縁膜を介して対向配置された前記薄膜トランジスタのゲート電極を含むと共に平面的に見て前記第1方向と交差する第2方向に延びる本線部を有し、
該本線部は、前記第2方向に延びると共に前記基板上に掘られた溝内に配置された溝内部分及び前記第2方向に延びると共に前記溝外に配置された溝外部分を含んでなることを特徴とする請求項1に記載の電気光学装置。 - 前記画素電極は、その複数が平面配列されているとともに、第1の周期で反転駆動されるための第1の画素電極群及び該第1の周期と相補の第2の周期で反転駆動されるための第2の画素電極群を含み、
前記データ線及び前記シールド層の少なくとも一方は、前記走査線の上側を該走査線に交差して延びる本線部及び該本線部から前記走査線に沿って張り出した張り出し部を含み、
前記基板に対向配置される対向基板上に前記複数の画素電極に対向する対向電極を備え、
前記基板上における前記画素電極の下地表面には、前記張り出し部の存在に応じて平面的に見て前記走査線を挟んで相隣接する画素電極の間隙となる領域に凸部が形成されていることを特徴とする請求項1に記載の電気光学装置。 - 前記画素電極は、その複数が平面配列されているとともに、第1の周期で反転駆動されるための第1の画素電極群及び該第1の周期と相補の第2の周期で反転駆動されるための第2の画素電極群を含み、
前記基板に対向配置される対向基板上に前記複数の画素電極に対向する対向電極と、
平面的に見て相隣接する画素電極の間隙となる領域に形成された凸部とを更に備えてなり、
前記凸部は、エッチングによって前記凸部上に一旦形成された平坦化膜を除去し且つその除去後に露出する前記凸部の表面を後退させてなる、表面段差が緩やかな凸部からなることを特徴とする請求項1に記載の電気光学装置。 - 基板上に、第1方向に延在するデータ線及び該データ線に交差する第2方向に延在する走査線、並びに、前記データ線及び前記走査線の交差領域に対応するように配置された画素電極及び薄膜トランジスタが積層構造の一部をなして備えられた電気光学装置であって、
前記基板上には更に、
前記薄膜トランジスタ及び前記画素電極に電気的に接続された蓄積容量と、
前記データ線及び前記画素電極間に配置された遮光膜とが、前記積層構造の一部をなして備えられてなり、
前記蓄積容量を構成する誘電体膜は、相異なる材料を含む複数の層からなるとともに、そのうちの一の層は他の層に比べて高誘電率材料からなる層を含む積層体を構成していることを特徴とする電気光学装置。 - 請求項1乃至19のいずれか一項に記載の電気光学装置を具備してなることを特徴とする電子機器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003321784A JP2004170912A (ja) | 2002-10-31 | 2003-09-12 | 電気光学装置及び電子機器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002318546 | 2002-10-31 | ||
JP2003321784A JP2004170912A (ja) | 2002-10-31 | 2003-09-12 | 電気光学装置及び電子機器 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004170912A true JP2004170912A (ja) | 2004-06-17 |
Family
ID=32715880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003321784A Withdrawn JP2004170912A (ja) | 2002-10-31 | 2003-09-12 | 電気光学装置及び電子機器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004170912A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7742017B2 (en) | 2005-05-26 | 2010-06-22 | Seiko Epson Corporation | Electro-optical device and electronic apparatus having the same |
CN101729799B (zh) * | 2008-10-10 | 2012-10-10 | 索尼株式会社 | 固态成像设备和信号处理系统 |
JPWO2015114721A1 (ja) * | 2014-01-29 | 2017-03-23 | 株式会社Joled | 画像表示装置 |
CN107479295A (zh) * | 2017-08-21 | 2017-12-15 | 武汉天马微电子有限公司 | 显示面板、制作显示面板的方法及显示装置 |
-
2003
- 2003-09-12 JP JP2003321784A patent/JP2004170912A/ja not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7742017B2 (en) | 2005-05-26 | 2010-06-22 | Seiko Epson Corporation | Electro-optical device and electronic apparatus having the same |
CN101729799B (zh) * | 2008-10-10 | 2012-10-10 | 索尼株式会社 | 固态成像设备和信号处理系统 |
JPWO2015114721A1 (ja) * | 2014-01-29 | 2017-03-23 | 株式会社Joled | 画像表示装置 |
CN107479295A (zh) * | 2017-08-21 | 2017-12-15 | 武汉天马微电子有限公司 | 显示面板、制作显示面板的方法及显示装置 |
CN107479295B (zh) * | 2017-08-21 | 2020-05-15 | 武汉天马微电子有限公司 | 显示面板、制作显示面板的方法及显示装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3858880B2 (ja) | 電気光学装置及び電子機器 | |
JP3870941B2 (ja) | 電気光学装置及び電子機器 | |
JP4021392B2 (ja) | 電気光学装置及び電子機器 | |
JP4095518B2 (ja) | 電気光学装置及び電子機器 | |
JP4045226B2 (ja) | 電気光学装置及び電子機器 | |
JP3767590B2 (ja) | 電気光学装置及びその製造方法並びに電子機器 | |
JP3791517B2 (ja) | 電気光学装置及び電子機器 | |
JP4186767B2 (ja) | 電気光学装置及び電子機器 | |
JP4506133B2 (ja) | 電気光学装置及び電子機器 | |
JP2004170910A (ja) | 電気光学装置及び電子機器 | |
JP4214741B2 (ja) | 電気光学装置及び電子機器 | |
JP4862936B2 (ja) | 電気光学装置及び電子機器 | |
JP4003724B2 (ja) | 電気光学装置及び電子機器 | |
JP2004170912A (ja) | 電気光学装置及び電子機器 | |
JP4730407B2 (ja) | 電気光学装置及び電子機器 | |
JP3925549B2 (ja) | 電気光学装置及び電子機器 | |
JP2004170918A (ja) | 電気光学装置及び電子機器 | |
JP2004170914A (ja) | 電気光学装置及び電子機器 | |
JP2004191930A (ja) | 電気光学装置及びその製造方法並びに電子機器 | |
JP2004170920A (ja) | 電気光学装置及び電子機器 | |
JP2006065356A (ja) | 電気光学装置及び電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20061205 |