[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004170010A - Gas turbine combustor and method of supplying fuel to the same - Google Patents

Gas turbine combustor and method of supplying fuel to the same Download PDF

Info

Publication number
JP2004170010A
JP2004170010A JP2002337356A JP2002337356A JP2004170010A JP 2004170010 A JP2004170010 A JP 2004170010A JP 2002337356 A JP2002337356 A JP 2002337356A JP 2002337356 A JP2002337356 A JP 2002337356A JP 2004170010 A JP2004170010 A JP 2004170010A
Authority
JP
Japan
Prior art keywords
fuel
combustion
combustion air
air hole
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002337356A
Other languages
Japanese (ja)
Inventor
Hiroshi Inoue
洋 井上
Tomoki Koganezawa
知己 小金沢
Shigeyoshi Kobayashi
成嘉 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002337356A priority Critical patent/JP2004170010A/en
Publication of JP2004170010A publication Critical patent/JP2004170010A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion system less in NOx and superior in combustion stability by solving problems with high level NOx in the case of a diffusion combustion system and with combustion stability due to backfire in the case of a premixture combustion system, at the same time. <P>SOLUTION: A combustion air flow path is arranged coaxially with a fuel flow on the wall face of a combustion chamber to form a coaxial jet with the fuel flow embraced by an air flow, as a porous coaxial jet with these diffused in number. Herein, a circular collar member is provided at the end of a fuel nozzle to form the air flow path perpendicular to the axis of the fuel flow. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガスタービン燃焼器及びガスタービン燃焼器の燃料供給方法に関する。
【0002】
【従来の技術】
ガスタービン燃焼器においては、拡散燃焼方式,予混合燃焼方式がある。拡散燃焼方式は、起動から定格負荷条件までのターンダウン比が大きく広範囲の燃焼安定性を確保するため、燃料を燃焼室に直接噴射する。一方、予混合燃焼方式は、窒素酸化物を低減するための燃焼方式である。しかし、予混合燃焼方式の場合、予混合器内に火炎が入り込んで構造物を焼損する逆火現象が発生するなど特有の不安定な要素を含んでいる。
【0003】
この課題に対して、燃焼室に対向配置された燃料ノズルの燃料孔と空気ノズルの空気孔を同軸上に配置し、燃料と空気を同軸流として燃焼室に供給することが提案されている(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2001−263093号公報
【0005】
【発明が解決しようとする課題】
拡散燃焼方式の場合には、高レベルのNOx,予混合燃焼方式の場合には逆火などの燃焼安定性の問題と起動,部分負荷時の火炎安定化の課題があった。実際の運用においてはこれらの問題を同時に解決することが望ましい。一方、特許文献1記載のガスタービン燃焼器では、燃料と空気を同軸流として該燃焼室に供給しているが、空気流について配慮されていないため、燃料ノズルの製作過程で発生する製作公差や燃焼器の組み立て段階で発生する組み立て公差などによる各同軸流の芯ズレの場合に、燃料と空気が偏在することで生じる燃焼性能への影響を考慮していない。
【0006】
本発明の目的は、ガスタービン燃焼器の燃焼安定性を向上することにある。
【0007】
【課題を解決するための手段】
燃料供給孔と燃焼空気孔とを備え、該燃料ノズルからの燃料を該燃焼空気孔を介して燃焼室に供給するガスタービン燃焼器であって、前記燃焼空気孔を通過する燃料流が該燃焼空気孔のほぼ軸中心に位置するために足る軸中心方向の空気流速を得ることが可能な空気流路を備える。
【0008】
【発明の実施の形態】
燃料流を空気流が包み込むような同軸流とすることにより、燃料は燃焼室に流入した後、実際に高温ガスに接触して燃焼を開始する前に周囲の同軸空気流と混合し、適度な混合比の予混合気となったあと燃焼する。このため、希薄予混合燃焼と同等の低NOx燃焼が可能となる。このとき、従来の予混合燃焼器の予混合管に相当する部分が極めて短く、また空気孔内壁面近傍で燃料濃度がほぼゼロとなるため逆火による焼損のポテンシャルも極めて低い。一方、燃料ノズル先端に円形のツバ状部材を設けて、燃料流軸と直行する空気流路を形成するように構成することにより、各空気流路の軸中心へ向かう空気流が形成され、燃料流の軸中心と空気流路中心にズレがある場合にも、その影響を緩和する作用が期待できる。即ち、燃料ノズルの製作過程で発生する製作公差や燃焼器の組み立て段階で発生する組み立て公差などによる各同軸流の芯ズレによる燃焼性能への影響を緩和することができる。
【0009】
(第1の実施例)
以下、本発明の第1の実施例を図面により説明する。本実施形態によるガスタービン燃焼器の全体断面図を表す図を図1に示す。図1において、このガスタービン燃焼器は、主に燃焼用の空気を圧縮する圧縮機10と燃焼ガスによりタービン軸を駆動するタービン18と燃焼器とで構成される。
【0010】
圧縮機10は、外部から供給された空気を圧縮し、その圧縮された空気を燃焼器に送る。
【0011】
タービン18は、燃焼器から発生する高温燃焼ガスを使ってタービン軸を回転駆動し、電力を起こす。
【0012】
燃焼器は、主に燃料,空気を供給する部位と燃焼器ライナ3,外筒2とを備えている。燃焼器の外筒2内には図示のように燃料54を燃焼器ライナ3の中の燃焼室1に送る燃料ヘッダー60があり、燃料は燃料ヘッダー60から突き出た燃料ノズル55より供給される。また、燃料ノズル55前方にはそれぞれのノズルに対応して燃焼空気孔52が同軸上に設けられている。
【0013】
圧縮機10から送られる空気50は、外筒2と燃焼器ライナ3の間を通り、一部は燃焼器ライナ3の冷却空気31として燃焼室1へ、また残りは同軸空気51として燃焼空気孔52を通り燃焼室1へ供給される。燃料ノズル55は、燃焼空気孔52とほぼ同軸となるように配置されており、燃料54は燃料ヘッダー60で圧力回復・整流した後、多数の燃料ノズル55から供給され、燃焼空気とともに同軸流として燃焼室1に流入・混合し均質で安定な火炎を形成する。発生した高温燃焼ガスはタービン18へ入り仕事をして排気される。
【0014】
図2にノズル部の詳細を示す。燃焼空気孔52は燃料ノズル55から供給された燃料と燃焼用空気が同軸流を形成するように配置されており、燃料流を空気環状流で包んだような多数の同軸流が燃焼空気孔52の端面から噴出する。燃料と空気が多数の小径の同軸流として構成されており、これらの燃料と空気は比較的短距離で十分に混合し、燃料の偏在もなく逆火の防止が可能となる。本実施例では、燃料ノズル55の内径より大径の燃焼空気孔52が設けられている。つまり、燃料流を空気環状流で包んだような多数の同軸流が燃焼空気孔52の端面から噴出するので、短い予混合距離で燃料と空気が充分に混合し、低NOx化を図るとともに、逆火も抑制できる。但し、燃料ノズル55の内径が燃焼空気孔52の内径より大きくても燃料流を空気環状流で包んだような同軸流が形成できれば、逆火防止につながる。
【0015】
また、本実施例の構成では燃料が燃焼空気孔壁53の内面から流出するまでに一部混合が進むとともに、同軸流として噴出した部分での急拡大に伴う撹拌効果により、一層短い距離での燃料と空気の混合が期待できる。さらに、空気孔の流路長さを調節することにより、ほとんど流路内で混合しない状態からほぼ完全予混合の状態にまで設定することも可能である。
【0016】
さらに、本実施例のガスタービン燃焼器は、燃料ノズル55の燃料供給孔と、その下流側で所望の間隙を介し、燃料供給孔とほぼ同軸に配置された燃焼空気孔52とを備え、燃料ノズル55からの燃料を燃焼空気孔52を介して燃焼室に供給するものであって、燃焼空気孔52を通過する燃料流が燃焼空気孔52のほぼ軸中心に位置するために足る軸中心方向の空気流速を得ることが可能な空気流路を備えている。このような構成により、低NOx化を図りつつ、且つ燃焼の安定化が図れる。
【0017】
本実施例では、燃焼空気孔52を通過する燃料流が燃焼空気孔52のほぼ軸中心に位置するために足る軸中心方向の空気流速を得ることが可能な空気流路を形成する一例として、燃料ノズル55の先端に環状のツバ状部材56を設けている。このツバ状部材56は燃焼空気孔52があけられている壁53の内面と平行になるように設置されている。但し、次の効果が得られる範囲で若干傾いていても良いが、このツバ状部材56の最外周部は燃焼空気孔52より外側に形成される。燃料流がほぼ中心に位置するために足る中心方向空気流速を得ることが可能で、燃料流に対し直行する空気流であるクロスフローが生じる。そして、クロスフローにより燃料流が別の燃焼空気孔52に流されないよう構成している。このことより、燃料流軸とほぼ直行する空気流路を形成することで図3(a)に示すように各空気流路の軸中心へ向かう空気流が起きる。このように、燃料ノズル55の先端に環状のツバ状部材56を設けることで、簡易な構造で、低NOx化を図りつつ、且つ燃焼の安定化が図れる。
【0018】
以上のような構成とすることで、図3(b)に示すような組み立て公差や製作公差による燃料流の軸中心と空気流路中心軸にズレが生じた場合にも、この軸中心へ向かう空気流により、芯ズレの影響が緩和され燃料と空気の同軸性が保たれる作用が期待できる。このように構成する場合には、燃焼空気孔壁53の内面とツバ状部材56との距離は必要に応じてクロスフローにより燃料流が別の燃焼空気孔52に流されない程度に適正化することが望ましい。また、燃料流と空気流においては流速の大小関係による違いが考えられるが、いずれの場合でも所望の効果が得られるものと期待できる。
【0019】
(第2の実施例)
図4(a),(b)に第2の実施例のノズル先端部詳細を示す。本実施例では、燃料ノズル55先端のツバ状部材56の前面に半径方向に伸びるガイドベーン57を設置した例である。この例の場合には、中心に向かう空気流の流れをガイドベーン57により積極的に燃料孔中心に向けることができ、組み立て公差や製作公差のために生じた芯ズレに対していっそうの緩和効果が期待できる。また、ガイドベーン57の高さ寸法を管理して、ガイドベーン57先端を燃焼空気孔壁53の内面に密着させるようにすることにより燃料孔と燃焼空気孔間の流入軸方向の寸法管理をするように構成することもできる。ガイドベーン57を燃焼空気孔壁53の内面に設置することも考えられる。この場合も同様の効果が期待できるが、空気の向かう方向が空気孔の中心であって、必ずしも燃料孔の中心とはならないため緩和効果はやや小さいものと考えられる。
【0020】
本実施例によると、組み立て公差や製作公差のために生じた芯ズレに対していっそうの緩和効果が期待でき、低NOx化を図りつつ、且つ更なる燃焼の安定化が図れる。
【0021】
(第3の実施例)
図5(a),(b)に第3の実施例を示す。本実施例では図4(a),(b)に示した第2の実施例のガイドベーン57を周方向に傾斜させて中心に向かう空気流に旋回成分を持たせるように構成したものである。このような構成とすることで、第2の実施例で説明した効果の他、傾斜したガイドベーンにより発生する旋回流による燃料と空気の混合促進効果も期待でき、より一層短い距離での十分な混合が可能となる。
【0022】
本実施例によると、組み立て公差や製作公差のために生じた芯ズレに対していっそうの緩和効果や更なる逆火抑制効果が期待でき、低NOx化を図りつつ、且つ更なる燃焼の安定化が図れる。
【0023】
(第4の実施例)
図6,図7に第4の実施例を示す。図6(a)において、燃焼空気孔52は燃料ノズル55から供給された燃料と燃焼用空気が同軸噴流を形成するように配置されており、燃料流を空気環状流で包んだような多数の同軸噴流が燃焼空気孔52の端面から供給される。燃料と空気が多数の小径の同軸流として構成されており、これらの燃料と空気は比較的短距離で十分に混合し、燃料の偏在もなく逆火も抑制できる。また、本実施例の構成では燃料が燃焼空気孔壁53の内面から流出するまでに一部混合が進むとともに、同軸流として流出した部分での急拡大に伴う撹拌効果により、一層短い距離での燃料と空気の混合が期待できる。さらに、空気孔の流路長さを調節することにより、ほとんど流路内で混合しない状態からほぼ完全予混合の状態にまで設定することも可能である。
【0024】
ここで、本実施例では燃料ノズル先端にツバ状部材を設置するのではなく、燃料ノズル55自体を厚肉の管状部材として構成したものである。燃料ノズル55の内径は、燃焼空気孔52より小さく、燃料ノズル55の最外周部は燃焼空気孔52より外周側に形成される。図7(a)に示すように燃料ノズル55の先端面と燃焼空気孔壁53の内面とで燃料孔中心へ向かう空気流を形成する点では第1の実施例と同じで、図7(b)に示すとおり組み立て公差や製作公差のために生じた芯ズレに対する緩和作用が期待できる。
【0025】
一方、第1の実施例に比べて、燃料ノズル55の機械的な強度が増してノズル周りの信頼性が向上すると考えられる。しかし隣接する燃料ノズル55間の空間が狭くなってしまうため、図6(b)において多数ある燃焼空気孔52のうち燃焼器軸中心に近い側の燃焼空気孔52Aへの空気流路が狭くなる傾向にあり各燃焼空気孔52を通過する燃焼空気量のバランスを考慮することが望ましい。
【0026】
(第5の実施例)
図8,図9に第5の実施例を示す。図8(a)において、燃焼空気孔52は燃料ノズルに代わる燃料孔55aから供給された燃料と燃焼用空気が同軸流を形成するように配置されており、燃料流を空気環状流で包んだような多数の同軸流が空気孔52の端面から供給される。燃料と空気が多数の小径の同軸流として構成されており、これらの燃料と空気は比較的短距離で十分に混合し、攪拌効果が増加する。また、本実施例の構成では燃料が燃焼空気孔壁53の内面から流出するまでに一部混合が進むとともに、同軸流として流出した部分での急拡大に伴う撹拌効果により、一層短い距離での燃料と空気の混合促進が期待できる。さらに、空気孔の流路長さを調節することにより、ほとんど流路内で混合しない状態からほぼ完全予混合の状態にまで設定することも可能である。
【0027】
さらに、本実施例では燃料ノズルを個別に突き出すのではなく、燃料ヘッダー60に燃料孔を明けた形の燃料ノズルとし、空気孔側の壁面に空気ガイド58を設置したものである。図9(a)に示すように燃料孔55aの端面と燃焼空気ガイド58の端面で燃料孔中心へ向かう空気流を形成する点では第1の実施例と同じで、図9(b)に示すとおり組み立て公差や製作公差のために生じた芯ズレに対する緩和作用が期待できる。一方、隣接する空気ガイド間の空間が狭くなりがちで、図8(b)のように多数ある燃焼空気孔52のうち燃焼器軸中心に近い側の燃焼空気孔52Aへの空気流路が狭くなる傾向にあり各燃焼空気孔52を通過する燃焼空気量のバランスに注意する必要がある。これらの実施例では、燃料を空気流が包み込むような多数の同軸流としている。そして、燃料が燃焼室に流入した後、実際に高温ガスに接触して燃焼を開始する前に周囲の同軸空気流と混合し、適度な混合比の予混合気となったあと燃焼する。燃料ヘッダーと燃焼空気孔壁内面との空間が大きい場合には、燃焼器軸中心に近い側の燃焼空気孔では燃料流路が空気流路にもなっているため、外周側の燃料流に対して直行する空気流が生じる。この空気流が生じることで極端な場合には燃料流が別の空気孔に流れる可能性もある。本発明では燃料流が別の燃焼空気孔52に流れることを最小限に抑えることができる。したがって、希薄予混合燃焼と同等の低NOx燃焼が可能となる。
【0028】
本実施例では、従来の予混合燃焼器の予混合管に相当する予混合流路の部分が極めて短く、また壁面近傍で燃料濃度がほぼゼロとなるため逆火による焼損のポテンシャルも極めて低い信頼性の高い燃焼器を提供できる。また、燃料ノズル先端に環状のツバ状部材を設けるなどして、燃料流とほぼ直行する空気流路を形成することにより、各空気流路の軸中心へ向かう空気流が生じ、燃料流の軸中心と空気流路中心にズレがある場合にも、芯ズレの影響を緩和する作用が期待できる。即ち、燃料ノズルの製作過程で発生する製作公差や燃焼器の組み立て段階で発生する組み立て公差などによる各同軸流の芯ズレの影響を緩和することができ、したがって燃焼安定性を向上させることもできる。
【0029】
【発明の効果】
本発明によれば、ガスタービン燃焼器の燃焼安定性を向上することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例の全体断面図を含む説明図。
【図2】本発明の第1の実施例のノズル部詳細説明図。
【図3】本発明の第1の実施例の作用説明図。
【図4】本発明の第2の実施例のノズル部詳細説明図。
【図5】本発明の第3の実施例のノズル部詳細説明図。
【図6】本発明の第4の実施例のノズル部詳細説明図。
【図7】本発明の第4の実施例の作用説明図。
【図8】本発明の第5の実施例のノズル部詳細説明図。
【図9】本発明の第5の実施例の作用説明図。
【符号の説明】
2…燃焼器外筒、3…燃焼器ライナー、52…燃焼空気孔、55…燃料ノズル、56…ツバ状部材、57…ガイドベーン、58…空気ガイド、60…燃料ヘッダー。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gas turbine combustor and a fuel supply method for the gas turbine combustor.
[0002]
[Prior art]
Gas turbine combustors include a diffusion combustion system and a premix combustion system. In the diffusion combustion method, a fuel is directly injected into a combustion chamber in order to secure a large combustion stability over a wide range from a start to a rated load condition. On the other hand, the premixed combustion method is a combustion method for reducing nitrogen oxides. However, in the case of the premixed combustion system, a specific unstable element such as a flashback phenomenon in which a flame enters the premixer and burns out the structure occurs.
[0003]
To cope with this problem, it has been proposed to arrange the fuel holes of the fuel nozzles opposed to the combustion chamber and the air holes of the air nozzles coaxially, and to supply the fuel and air to the combustion chamber as a coaxial flow ( For example, see Patent Document 1.)
[0004]
[Patent Document 1]
JP-A-2001-263093
[Problems to be solved by the invention]
In the case of the diffusion combustion system, there is a problem of high-level NOx, and in the case of the premix combustion system, there are problems of combustion stability such as flashback, and problems of flame stabilization at startup and partial load. In actual operation, it is desirable to solve these problems at the same time. On the other hand, in the gas turbine combustor described in Patent Document 1, fuel and air are supplied to the combustion chamber as a coaxial flow. However, since the air flow is not taken into consideration, manufacturing tolerances generated during the manufacturing process of the fuel nozzle and In the case of misalignment of each coaxial flow due to assembling tolerance generated in the assembling stage of the combustor, the influence on combustion performance caused by uneven distribution of fuel and air is not considered.
[0006]
An object of the present invention is to improve the combustion stability of a gas turbine combustor.
[0007]
[Means for Solving the Problems]
A gas turbine combustor comprising a fuel supply hole and a combustion air hole, and supplying fuel from the fuel nozzle to the combustion chamber through the combustion air hole, wherein a fuel flow passing through the combustion air hole is An air flow path capable of obtaining an air flow velocity in the axial center direction sufficient to be located substantially at the axial center of the air hole is provided.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
By making the fuel flow coaxial so that the air flow wraps around it, the fuel flows into the combustion chamber and then mixes with the surrounding coaxial air flow before actually contacting the hot gas and starting combustion, and It burns after it becomes a premixed mixture at a mixing ratio. For this reason, low NOx combustion equivalent to lean premixed combustion becomes possible. At this time, the portion corresponding to the premixing tube of the conventional premixed combustor is extremely short, and the fuel concentration near the inner wall surface of the air hole becomes almost zero, so that the potential for burnout due to flashback is extremely low. On the other hand, by providing a circular brim-shaped member at the tip of the fuel nozzle to form an air flow path orthogonal to the fuel flow axis, an air flow directed toward the axial center of each air flow path is formed. Even when there is a deviation between the center of the flow axis and the center of the air flow path, an effect of reducing the influence can be expected. That is, it is possible to reduce the influence on the combustion performance due to the misalignment of each coaxial flow due to the manufacturing tolerance generated during the manufacturing process of the fuel nozzle or the assembly tolerance generated at the stage of assembling the combustor.
[0009]
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating an overall cross-sectional view of a gas turbine combustor according to the present embodiment. In FIG. 1, this gas turbine combustor is mainly composed of a compressor 10 for compressing air for combustion, a turbine 18 for driving a turbine shaft by combustion gas, and a combustor.
[0010]
The compressor 10 compresses air supplied from the outside, and sends the compressed air to the combustor.
[0011]
The turbine 18 uses a high-temperature combustion gas generated from a combustor to rotationally drive a turbine shaft to generate electric power.
[0012]
The combustor includes a portion for supplying mainly fuel and air, a combustor liner 3, and an outer cylinder 2. Inside the outer cylinder 2 of the combustor, there is a fuel header 60 for sending the fuel 54 to the combustion chamber 1 in the combustor liner 3 as shown, and the fuel is supplied from a fuel nozzle 55 protruding from the fuel header 60. Further, in front of the fuel nozzles 55, combustion air holes 52 are provided coaxially corresponding to the respective nozzles.
[0013]
The air 50 sent from the compressor 10 passes between the outer cylinder 2 and the combustor liner 3, a part of which flows into the combustion chamber 1 as the cooling air 31 of the combustor liner 3, and the rest as combustion air holes as coaxial air 51. It is supplied to the combustion chamber 1 through 52. The fuel nozzle 55 is disposed so as to be substantially coaxial with the combustion air hole 52. After the fuel 54 has been pressure-recovered and rectified by the fuel header 60, the fuel 54 is supplied from a number of fuel nozzles 55 and coaxially flows with the combustion air. It flows into and mixes with the combustion chamber 1 to form a homogeneous and stable flame. The generated high-temperature combustion gas enters the turbine 18 and performs work to be exhausted.
[0014]
FIG. 2 shows the details of the nozzle section. The combustion air holes 52 are arranged so that the fuel supplied from the fuel nozzle 55 and the combustion air form a coaxial flow. Erupts from the end face of. The fuel and the air are configured as a large number of small-diameter coaxial flows, and the fuel and the air are sufficiently mixed over a relatively short distance to prevent flashback without uneven distribution of the fuel. In this embodiment, the combustion air holes 52 having a diameter larger than the inner diameter of the fuel nozzle 55 are provided. That is, since a large number of coaxial flows, which wrap the fuel flow in an annular air flow, are ejected from the end face of the combustion air hole 52, the fuel and the air are sufficiently mixed with a short premixing distance, and the NOx is reduced. Flashback can also be suppressed. However, even if the inner diameter of the fuel nozzle 55 is larger than the inner diameter of the combustion air hole 52, if a coaxial flow that wraps the fuel flow in the annular air flow can be formed, it will lead to the prevention of flashback.
[0015]
In addition, in the configuration of the present embodiment, the mixing proceeds partially before the fuel flows out from the inner surface of the combustion air hole wall 53, and the stirring effect due to the rapid expansion at the portion ejected as a coaxial flow causes a shorter distance. Mixing of fuel and air can be expected. Further, by adjusting the length of the flow path of the air hole, it is possible to set the state from a state where mixing is hardly performed in the flow path to a state where the mixing is almost completely premixed.
[0016]
Further, the gas turbine combustor of the present embodiment includes a fuel supply hole of the fuel nozzle 55, and a combustion air hole 52 disposed substantially coaxially with the fuel supply hole with a desired gap downstream thereof. The fuel supplied from the nozzle 55 is supplied to the combustion chamber through the combustion air hole 52, and the axial direction sufficient for the fuel flow passing through the combustion air hole 52 to be located substantially at the axial center of the combustion air hole 52 is sufficient. The air flow path which can obtain the air flow velocity of is provided. With such a configuration, combustion can be stabilized while reducing NOx.
[0017]
In the present embodiment, as an example of forming an air flow path capable of obtaining an air flow velocity in the axial center direction sufficient for the fuel flow passing through the combustion air hole 52 to be located substantially at the axial center of the combustion air hole 52, An annular collar 56 is provided at the tip of the fuel nozzle 55. This brim-shaped member 56 is installed so as to be parallel to the inner surface of the wall 53 where the combustion air hole 52 is formed. However, it may be slightly inclined as long as the following effects can be obtained, but the outermost peripheral portion of the collar member 56 is formed outside the combustion air hole 52. Since the fuel flow is located substantially in the center, it is possible to obtain a sufficient central air flow velocity, and a cross flow that is an air flow that is orthogonal to the fuel flow is generated. The fuel flow is prevented from flowing to another combustion air hole 52 by the cross flow. Thus, by forming an air flow path substantially perpendicular to the fuel flow axis, an air flow is generated toward the axial center of each air flow path as shown in FIG. As described above, by providing the annular brim-shaped member 56 at the tip of the fuel nozzle 55, it is possible to achieve low NOx and stable combustion with a simple structure.
[0018]
With the above-described configuration, even when a deviation occurs between the axial center of the fuel flow and the central axis of the air flow path due to an assembly tolerance or a manufacturing tolerance as shown in FIG. The effect of the air flow is expected to reduce the influence of the misalignment and maintain the coaxiality between the fuel and the air. In the case of such a configuration, the distance between the inner surface of the combustion air hole wall 53 and the brim-shaped member 56 is appropriately adjusted so that the fuel flow is not flown to another combustion air hole 52 by a cross flow as necessary. Is desirable. Further, a difference between the fuel flow and the air flow due to the magnitude relation of the flow velocity is conceivable, but it can be expected that a desired effect can be obtained in any case.
[0019]
(Second embodiment)
FIGS. 4A and 4B show details of the nozzle tip portion of the second embodiment. The present embodiment is an example in which a guide vane 57 extending in the radial direction is provided on the front surface of the brim member 56 at the tip of the fuel nozzle 55. In the case of this example, the flow of the air flow toward the center can be positively directed to the center of the fuel hole by the guide vanes 57, and the effect of further reducing the misalignment caused by assembly tolerance or manufacturing tolerance can be improved. Can be expected. In addition, the height dimension of the guide vane 57 is controlled so that the tip of the guide vane 57 is brought into close contact with the inner surface of the combustion air hole wall 53 to control the dimension in the inflow axial direction between the fuel hole and the combustion air hole. It can also be configured as follows. It is also conceivable to install the guide vanes 57 on the inner surface of the combustion air hole wall 53. In this case, a similar effect can be expected, but the direction of the air is the center of the air hole, and is not necessarily the center of the fuel hole.
[0020]
According to the present embodiment, a further mitigation effect can be expected with respect to misalignment caused by assembly tolerance or manufacturing tolerance, and further stabilization of combustion can be achieved while reducing NOx.
[0021]
(Third embodiment)
5A and 5B show a third embodiment. In this embodiment, the guide vanes 57 of the second embodiment shown in FIGS. 4A and 4B are configured to be inclined in the circumferential direction so that the airflow toward the center has a swirl component. . With such a configuration, in addition to the effects described in the second embodiment, an effect of promoting the mixing of fuel and air by the swirling flow generated by the inclined guide vanes can be expected, and a sufficient effect can be obtained over a shorter distance. Mixing becomes possible.
[0022]
According to the present embodiment, it is possible to expect a further mitigation effect and a further flashback suppression effect on the misalignment caused by assembly tolerance and manufacturing tolerance, thereby achieving low NOx and further stabilizing combustion. Can be achieved.
[0023]
(Fourth embodiment)
6 and 7 show a fourth embodiment. In FIG. 6A, the combustion air holes 52 are arranged so that the fuel supplied from the fuel nozzle 55 and the combustion air form a coaxial jet. A coaxial jet is supplied from the end face of the combustion air hole 52. The fuel and air are configured as a large number of small-diameter coaxial flows, and the fuel and air are sufficiently mixed over a relatively short distance, so that non-uniform distribution of fuel and flashback can be suppressed. Further, in the configuration of the present embodiment, the mixing proceeds partially before the fuel flows out from the inner surface of the combustion air hole wall 53, and the stirring effect accompanying the rapid expansion at the portion flowing out as a coaxial flow causes the fuel to be mixed at a shorter distance. Mixing of fuel and air can be expected. Further, by adjusting the length of the flow path of the air hole, it is possible to set the state from a state where mixing is hardly performed in the flow path to a state where the mixing is almost completely premixed.
[0024]
Here, in the present embodiment, the fuel nozzle 55 itself is configured as a thick tubular member instead of installing a brim-shaped member at the tip of the fuel nozzle. The inner diameter of the fuel nozzle 55 is smaller than the combustion air hole 52, and the outermost peripheral portion of the fuel nozzle 55 is formed on the outer peripheral side of the combustion air hole 52. As shown in FIG. 7 (a), the point that the air flow toward the center of the fuel hole is formed between the tip end surface of the fuel nozzle 55 and the inner surface of the combustion air hole wall 53 is the same as in the first embodiment. As shown in ()), it is possible to expect an action of mitigating misalignment caused by assembly tolerance or manufacturing tolerance.
[0025]
On the other hand, compared to the first embodiment, it is considered that the mechanical strength of the fuel nozzle 55 is increased and the reliability around the nozzle is improved. However, since the space between the adjacent fuel nozzles 55 becomes narrow, the air flow path to the combustion air hole 52A closer to the center of the combustor axis among the many combustion air holes 52 in FIG. There is a tendency, and it is desirable to consider the balance of the amount of combustion air passing through each combustion air hole 52.
[0026]
(Fifth embodiment)
8 and 9 show a fifth embodiment. In FIG. 8A, the combustion air hole 52 is arranged so that the fuel supplied from the fuel hole 55a instead of the fuel nozzle and the combustion air form a coaxial flow, and the fuel flow is wrapped by the annular air flow. Such a large number of coaxial flows are supplied from the end face of the air hole 52. The fuel and air are configured as a number of small diameter coaxial flows, and these fuels and air mix well over a relatively short distance, increasing the stirring effect. Further, in the configuration of the present embodiment, the mixing proceeds partially before the fuel flows out from the inner surface of the combustion air hole wall 53, and the stirring effect accompanying the rapid expansion at the portion flowing out as a coaxial flow causes the fuel to be mixed at a shorter distance. It can be expected to promote mixing of fuel and air. Further, by adjusting the length of the flow path of the air hole, it is possible to set the state from a state where mixing is hardly performed in the flow path to a state where the mixing is almost completely premixed.
[0027]
Further, in this embodiment, the fuel nozzles are not individually protruded, but are formed as fuel nozzles having fuel holes formed in the fuel header 60, and the air guide 58 is provided on the wall surface on the air hole side. As shown in FIG. 9A, the end face of the fuel hole 55a and the end face of the combustion air guide 58 form an airflow toward the center of the fuel hole as shown in FIG. As described above, it is possible to expect an action of mitigating misalignment caused by assembly tolerance or manufacturing tolerance. On the other hand, the space between the adjacent air guides tends to be narrow, and the air flow path to the combustion air hole 52A on the side closer to the center of the combustor axis among the many combustion air holes 52 as shown in FIG. It is necessary to pay attention to the balance of the amount of combustion air passing through each combustion air hole 52. In these embodiments, the fuel has a number of coaxial flows such that the air flow envelops it. Then, after the fuel flows into the combustion chamber, the fuel is mixed with the surrounding coaxial air flow before actually coming into contact with the high-temperature gas and starting the combustion, and after a premixed gas having an appropriate mixture ratio is burned. When the space between the fuel header and the inner surface of the combustion air hole wall is large, the fuel flow path also serves as an air flow path in the combustion air hole near the center of the combustor axis. A direct airflow is created. In an extreme case, this air flow may cause the fuel flow to flow to another air hole. According to the present invention, it is possible to minimize the flow of the fuel flow to another combustion air hole 52. Therefore, low NOx combustion equivalent to lean premixed combustion is possible.
[0028]
In this embodiment, the portion of the premixing passage corresponding to the premixing tube of the conventional premixed combustor is extremely short, and the fuel concentration near the wall surface is almost zero, so that the potential for burnout due to flashback is extremely low. A highly efficient combustor can be provided. In addition, by forming an air flow path substantially perpendicular to the fuel flow, such as by providing an annular collar member at the tip of the fuel nozzle, an air flow toward the axial center of each air flow path is generated, and the fuel flow Even when the center and the center of the air flow path are misaligned, an effect of reducing the influence of the misalignment can be expected. That is, it is possible to reduce the influence of the misalignment of each coaxial flow due to the manufacturing tolerance generated in the manufacturing process of the fuel nozzle or the assembly tolerance generated in the assembling stage of the combustor, and thus it is possible to improve the combustion stability. .
[0029]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the combustion stability of a gas turbine combustor can be improved.
[Brief description of the drawings]
FIG. 1 is an explanatory view including an overall sectional view of a first embodiment of the present invention.
FIG. 2 is a detailed explanatory view of a nozzle portion according to the first embodiment of the present invention.
FIG. 3 is an operation explanatory view of the first embodiment of the present invention.
FIG. 4 is a detailed explanatory view of a nozzle portion according to a second embodiment of the present invention.
FIG. 5 is a detailed explanatory view of a nozzle portion according to a third embodiment of the present invention.
FIG. 6 is a detailed explanatory view of a nozzle portion according to a fourth embodiment of the present invention.
FIG. 7 is an operation explanatory view of a fourth embodiment of the present invention.
FIG. 8 is a detailed explanatory view of a nozzle portion according to a fifth embodiment of the present invention.
FIG. 9 is an operation explanatory view of a fifth embodiment of the present invention.
[Explanation of symbols]
Reference numeral 2 denotes a combustor outer cylinder, 3 denotes a combustor liner, 52 denotes a combustion air hole, 55 denotes a fuel nozzle, 56 denotes a brim-like member, 57 denotes a guide vane, 58 denotes an air guide, and 60 denotes a fuel header.

Claims (6)

燃料ノズルの燃料供給孔と、該燃料ノズルの下流側で所望の間隙を介し、前記燃料供給孔とほぼ同軸に配置された燃焼空気孔とを備え、該燃料ノズルからの燃料を該燃焼空気孔を介して燃焼室に供給するガスタービン燃焼器であって、
前記燃焼空気孔を通過する燃料流が該燃焼空気孔のほぼ軸中心に位置するために足る軸中心方向の空気流速を得ることが可能な空気流路を備えたガスタービン燃焼器。
A fuel supply hole for the fuel nozzle; and a combustion air hole disposed substantially coaxially with the fuel supply hole with a desired gap downstream of the fuel nozzle. Fuel from the fuel nozzle is supplied to the combustion air hole. A gas turbine combustor for supplying to the combustion chamber via
A gas turbine combustor having an air flow path capable of obtaining an axial flow velocity sufficient for the fuel flow passing through the combustion air hole to be located substantially at the axial center of the combustion air hole.
燃料ノズルの燃料供給孔と、該燃料ノズルの下流側で所望の間隙を介し、前記燃料供給孔とほぼ同軸に配置された燃焼空気孔とを備え、該燃料ノズルからの燃料を該燃焼空気孔を介して燃焼室に供給するガスタービン燃焼器であって、
前記燃料ノズルの先端面と、
前記燃焼空気孔を形成した部材の該燃料ノズル側の壁面とにより空気流路を形成し、
該空気流路から供給される空気を前記燃焼空気孔に供給するよう配置し、
前記燃焼空気孔を通過する燃料流がほぼ軸中心に位置するよう配置したガスタービン燃焼器。
A fuel supply hole for the fuel nozzle; and a combustion air hole disposed substantially coaxially with the fuel supply hole with a desired gap downstream of the fuel nozzle. Fuel from the fuel nozzle is supplied to the combustion air hole. A gas turbine combustor for supplying to the combustion chamber via
A tip surface of the fuel nozzle,
Forming an air flow path with the fuel nozzle side wall surface of the member having the combustion air holes formed therein,
Arranged to supply air supplied from the air flow path to the combustion air holes,
A gas turbine combustor arranged such that a fuel flow passing through the combustion air hole is located substantially at the center of the axis.
請求項2記載のガスタービン燃焼器において、前記燃料ノズル先端に円形のツバ状部材を、前記燃焼空気孔が存在する壁面とほぼ平行に備えたガスタービン燃焼器。3. The gas turbine combustor according to claim 2, wherein a circular brim-shaped member is provided at a tip of the fuel nozzle substantially in parallel with a wall surface on which the combustion air hole exists. 請求項2記載のガスタービン燃焼器において、前記燃料ノズルを肉厚の部材で形成し、前記燃料ノズルの先端面と前記燃焼空気孔が存在する壁面とで各空気流路の軸中心へ向かう空気流を形成するようにしたことを特徴とするガスタービン燃焼器。3. The gas turbine combustor according to claim 2, wherein the fuel nozzle is formed of a thick member, and air directed toward the axial center of each air passage is formed by a front end surface of the fuel nozzle and a wall surface on which the combustion air hole exists. 4. A gas turbine combustor characterized by forming a flow. 燃料ノズルの燃料供給孔と、該燃料ノズルの下流側で所望の間隙を介し、前記燃料供給孔とほぼ同軸に配置された燃焼空気孔とを備え、該燃料ノズルからの燃料を該燃焼空気孔を介して燃焼室に供給するガスタービン燃焼器の燃料供給方法であって、
前記燃焼空気孔を通過する燃料流が該燃焼空気孔のほぼ軸中心に位置するように、該燃焼空気孔で該燃料流に沿って、その外周側に空気を供給することを特徴とする燃料供給方法。
A fuel supply hole for the fuel nozzle; and a combustion air hole disposed substantially coaxially with the fuel supply hole with a desired gap downstream of the fuel nozzle. Fuel from the fuel nozzle is supplied to the combustion air hole. A fuel supply method for a gas turbine combustor supplying to a combustion chamber through
Fuel is supplied to the outer peripheral side of the combustion air hole along the fuel flow so that the fuel flow passing through the combustion air hole is located substantially at the axial center of the combustion air hole. Supply method.
燃料ノズルの燃料供給孔と、該燃料ノズルの下流側で所望の間隙を介し、前記燃料供給孔とほぼ同軸に配置された燃焼空気孔とを備え、該燃料ノズルからの燃料を該燃焼空気孔を介して燃焼室に供給するガスタービン燃焼用ノズルであって、
前記燃焼空気孔を通過する燃料流が該燃焼空気孔のほぼ軸中心に位置するために足る軸中心方向の空気流速を得ることが可能な空気流路を備えたガスタービン燃焼用ノズル。
A fuel supply hole for the fuel nozzle; and a combustion air hole disposed substantially coaxially with the fuel supply hole with a desired gap downstream of the fuel nozzle. Fuel from the fuel nozzle is supplied to the combustion air hole. A gas turbine combustion nozzle to be supplied to the combustion chamber via
A gas turbine combustion nozzle having an air flow path capable of obtaining an axial flow velocity sufficient for the fuel flow passing through the combustion air hole to be located substantially at the axial center of the combustion air hole.
JP2002337356A 2002-11-21 2002-11-21 Gas turbine combustor and method of supplying fuel to the same Pending JP2004170010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002337356A JP2004170010A (en) 2002-11-21 2002-11-21 Gas turbine combustor and method of supplying fuel to the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002337356A JP2004170010A (en) 2002-11-21 2002-11-21 Gas turbine combustor and method of supplying fuel to the same

Publications (1)

Publication Number Publication Date
JP2004170010A true JP2004170010A (en) 2004-06-17

Family

ID=32700889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002337356A Pending JP2004170010A (en) 2002-11-21 2002-11-21 Gas turbine combustor and method of supplying fuel to the same

Country Status (1)

Country Link
JP (1) JP2004170010A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1826485A2 (en) * 2006-02-28 2007-08-29 Hitachi, Ltd. Burner, method of combustion with the burner, and method of modifying the burner
JP2008111651A (en) * 2006-10-02 2008-05-15 Hitachi Ltd Gas turbine combustor and method for supplying fuel to gas turbine combustor
JP2008185254A (en) * 2007-01-30 2008-08-14 General Electric Co <Ge> Reverse-flow injection mechanism having coaxial fuel-air passage
JP2008292139A (en) * 2007-04-26 2008-12-04 Hitachi Ltd Combustor and fuel supply method of combustor
JP2010216668A (en) * 2009-03-13 2010-09-30 Kawasaki Heavy Ind Ltd Gas turbine combustor
JP2012520984A (en) * 2009-03-17 2012-09-10 シーメンス アクチエンゲゼルシヤフト Burner operating method and burner, especially for gas turbines
US8789375B2 (en) 2006-01-03 2014-07-29 General Electric Company Gas turbine combustor having counterflow injection mechanism and method of use
JP5940227B2 (en) * 2013-11-05 2016-06-29 三菱日立パワーシステムズ株式会社 Gas turbine combustor
WO2020158528A1 (en) * 2019-01-31 2020-08-06 三菱日立パワーシステムズ株式会社 Burner, combustor comprising same, and gas turbine
US20210095849A1 (en) * 2019-10-01 2021-04-01 Mitsubishi Power, Ltd. Gas Turbine Combustor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8789375B2 (en) 2006-01-03 2014-07-29 General Electric Company Gas turbine combustor having counterflow injection mechanism and method of use
EP1826485A3 (en) * 2006-02-28 2012-08-15 Hitachi, Ltd. Burner, method of combustion with the burner, and method of modifying the burner
JP2007232234A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Combustion device, combustion method of combustion device, and remodeling method of combustion device
EP1826485A2 (en) * 2006-02-28 2007-08-29 Hitachi, Ltd. Burner, method of combustion with the burner, and method of modifying the burner
JP2008111651A (en) * 2006-10-02 2008-05-15 Hitachi Ltd Gas turbine combustor and method for supplying fuel to gas turbine combustor
JP2008185254A (en) * 2007-01-30 2008-08-14 General Electric Co <Ge> Reverse-flow injection mechanism having coaxial fuel-air passage
US8607573B2 (en) 2007-04-26 2013-12-17 Hitachi, Ltd. Combustor having a first plurality of fuel nozzles having a first cross-sectional shape and a second plurality of fuel nozzles having a second cross-sectional shape different than the first cross-sectional shape
JP2008292139A (en) * 2007-04-26 2008-12-04 Hitachi Ltd Combustor and fuel supply method of combustor
JP2010216668A (en) * 2009-03-13 2010-09-30 Kawasaki Heavy Ind Ltd Gas turbine combustor
JP2012520984A (en) * 2009-03-17 2012-09-10 シーメンス アクチエンゲゼルシヤフト Burner operating method and burner, especially for gas turbines
US9032736B2 (en) 2009-03-17 2015-05-19 Siemens Aktiengesellschaft Method for operating a burner and burner, in particular for a gas turbine
JP5940227B2 (en) * 2013-11-05 2016-06-29 三菱日立パワーシステムズ株式会社 Gas turbine combustor
WO2020158528A1 (en) * 2019-01-31 2020-08-06 三菱日立パワーシステムズ株式会社 Burner, combustor comprising same, and gas turbine
JP2020122629A (en) * 2019-01-31 2020-08-13 三菱日立パワーシステムズ株式会社 Burner, and combustor and gas turbine with the same
JP7254540B2 (en) 2019-01-31 2023-04-10 三菱重工業株式会社 Burner, combustor and gas turbine equipped with the same
US11692710B2 (en) 2019-01-31 2023-07-04 Mitsubishi Heavy Industries, Ltd. Burner, combustor including same, and gas turbine
US20210095849A1 (en) * 2019-10-01 2021-04-01 Mitsubishi Power, Ltd. Gas Turbine Combustor
JP2021055971A (en) * 2019-10-01 2021-04-08 三菱パワー株式会社 Gas turbine combustor

Similar Documents

Publication Publication Date Title
CA2393863C (en) Pilot burner, premixing combustor, and gas turbine
KR0149059B1 (en) Gas turbine combustor including a diffusion nozzle assembly with a double cylindrical structure
EP2551596B1 (en) Combustor, burner, and gas turbine
EP2481986B1 (en) Gas turbine combustor
US7426833B2 (en) Gas turbine combustor and fuel supply method for same
JP3960166B2 (en) Gas turbine combustor and operation method of gas turbine combustor
KR20150065782A (en) Combustor with radially staged premixed pilot for improved operability
JP2001254946A (en) Gas turbine combustor
CN115127123B (en) Radial staged combustor, gas turbine power generation system and method of combustion regulation
JP2000130757A (en) Gas turbine combustor for gasification power plant
EP1710502B1 (en) Gas burner assembly for a gas turbine
JP2006170605A (en) Gas turbine engine and fuel feeder
JPH04103916A (en) Combustor and gas turbine device
JP3192055B2 (en) Gas turbine combustor
KR20160069805A (en) Fuel nozzle for combustor
JP4400314B2 (en) Gas turbine combustor and fuel supply method for gas turbine combustor
JP2004170010A (en) Gas turbine combustor and method of supplying fuel to the same
JP2011226723A (en) LOW NOx COMBUSTOR
US7905093B2 (en) Apparatus to facilitate decreasing combustor acoustics
JP5372814B2 (en) Gas turbine combustor and operation method
JPH0791661A (en) Burner and operation thereof
JP2005233574A (en) Combustor
JP3959632B2 (en) Diffusion combustion type low NOx combustor
JP3709671B2 (en) Gas turbine combustor
JP2004340416A (en) QUICK AIR-FUEL MIXTURE INJECTION VALVE AND LOW NOx COMBUSTOR