JP2004167592A - Manufacturing method of hot-dipped steel tube - Google Patents
Manufacturing method of hot-dipped steel tube Download PDFInfo
- Publication number
- JP2004167592A JP2004167592A JP2002339167A JP2002339167A JP2004167592A JP 2004167592 A JP2004167592 A JP 2004167592A JP 2002339167 A JP2002339167 A JP 2002339167A JP 2002339167 A JP2002339167 A JP 2002339167A JP 2004167592 A JP2004167592 A JP 2004167592A
- Authority
- JP
- Japan
- Prior art keywords
- roll
- rolls
- pipe
- squeeze
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Bending Of Plates, Rods, And Pipes (AREA)
Abstract
Description
【0001】
【産業上の利用分野】
本発明は、溶融めっき鋼板を素材として電縫溶接管を製造する方法に関する。
【0002】
【従来の技術】
溶接鋼管は、所定幅にスリットされた鋼帯を多段配置された成形スタンドで板幅方向に順次折り曲げてオープンパイプにロール成形し、板幅方向両端部を溶接することにより製造されている。
成形スタンド1は、上ロール1U及び下ロール1Dを対として多段配置されており、ペイオフリール2から払い出された鋼帯Sを幅方向に曲げ加工する(図1)。鋼帯Sの曲げ形状がある程度進行した段階では、左右ロール群3で鋼帯Sを左右方向から狭持して更に曲げ加工する。左右ロール群3は、同じ曲率の凹クラウンを付けた右ロール3R及び左ロール3Lを複数対備えている。鋼帯Sは、右ロール3R及び左ロール3Lのロール周面で規制され、オープンパイプP0に順次成形される。
【0003】
オープンパイプP0は、次いでフィンパスロール群4に送り込まれる。フィンパスロール群4は、凹クラウンを付けたロール周面の胴長方向中央部にフィン(図示せず)を付けた上ロール4U及びオープンパイプP0をバックアップする下ロール4Dを複数対備えている。オープンパイプP0に成形された鋼帯Sの幅方向両端部の間に上ロール4Uのフィンを挿し込んで鋼帯Sを送ることにより、エッジ面が所定位置に維持され、オープンパイプP0がセンタリングされる。
高周波誘導加熱コイル5による加熱で鋼帯Sの幅方向両端部が加熱され、スクイズロール6の圧縮力により所定の溶接部が形成される。溶接管P1は、外面ビード及び必要に応じて内面ビードが適宜ビードカットされた後、サイジング(定形)工程、矯正工程を経て製品鋼管となる。
【0004】
ロールフォーミングによる溶接管の成形では、溶接管の外径毎に成形ロールを用意し、板厚,材質等によるスプリングバックの異なる素材を同一外径の溶接管に成形している。したがって、材料毎に最適なロール設計を行うことは経済的でないため、板厚によっては一部のロールは交換するものの、基本的には材料が変わっても同一の成形ロールを使用することから、材料条件毎に異なる曲げ条件及びスプリングバックにより、溶接前の形状は材料によって異なっている。
また、溶接品質の確保に重要なスクイズロールは、作業性及び耐疵付き性のみを考慮し、直径100mm程度以下の溶接管に対しては2方スクイズロール(図2の(a))が、上側フランジにより溶接部近傍に疵が発生しやすい直径100mmを超える中径溶接管に対しては、ロールの周速差が最小となるように溶接部の両側それぞれおおよそ30〜40度ずつを1つまたは2つのトップロールで押える3方または4方タイプのスクイズロール(図2の(b))が使用されている。
【0005】
【発明が解決しようとする課題】
そして、溶融めっき鋼板を素材として電縫鋼管を製造する際にも上記のようなロールフォーミングが行われ、スクイズロールにより溶接が行われる。
スクイズロールではオープンパイプをロール内に充満させた上でさらに圧下をかけることにより、加熱された鋼帯の両端面を圧接・接合する。接合後、鋼管はスクイズロールを出てスクイズロールから遠ざかるにつれてスクイズロールによる拘束から開放される。その際、前述のようなロール成形工程を経た鋼管は、周方向の曲率を減じるようなスプリングバックを生じることとなる。このとき、鋼管の周方向各部分の残留応力及び強度条件が全く均一であれば、溶接され閉鎖断面となった鋼管にはスプリングバックによる断面形状の変形は起こり得ない。
【0006】
しかしながら、実際の鋼管では特に両エッジ部が十分に曲げられておらず、他の部分に比べて大きなスプリングバックを生じる可能性がある。これに加えてさらに溶接直後の溶接部近傍には、高温の接合面から熱影響部を経て母材に亘る急峻な温度分布、言い換えると急峻な強度分布が生じている。この急峻な強度分布に前述のエッジのスプリングバックの影響が重畳して溶接部の両脇の曲りが減じて、その作用により高温・低強度の溶接部が管の外に折れ曲がるように変形して水滴形の断面に変形する。
このようなスプリングバックによる溶接部の変形により、管の外面において溶接部及びその近傍には周方向の引張り応力が加わることとなる。しかも、溶接熱影響部には、溶接熱によりめっき金属が溶融されている領域があり、前述の引張り応力が溶融しためっき金属の結晶粒界への浸入を促進して、溶接ビードの直近から板厚中央方向に向かった溶融金属脆化割れが発生し易くなる。
【0007】
直径3inchを超える中径溶接管を製造する際に、ロールの周速差が小さくなるように溶接部の両側それぞれ約30〜35度ずつを1つまたは2つのトップロールで押える3方または4方タイプのスクイズロールを使用すると、サイドロールによってパイプが拘束されている領域が極めて短くなって、スクイズロールによる拘束が不十分になるために大きなスプリングバックを生じ、溶融金属脆化に起因した割れが起きやすい。このため、この割れを回避するために、ライン速度を落として造管する必要があった。
スクイズロールによる拘束を十分に行わせるために2方スクイズロールを使用すると、周速差が大きくなりすぎるためにめっき層に疵が付きやすくなる。
本発明は、このような問題を解消すべく案出されたものであり、溶融めっき鋼板を素材としてオープンパイプ状に成形後、板幅方向両端部を突合せて高周波溶接する際、めっき層に疵を付けず、しかも熱影響部に割れ発生の少ない電縫溶接管の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の溶融めっき鋼管の製造方法は、その目的を達成するため、溶融めっき鋼板をオープンパイプ状に成形後、スクイズロールで板幅方向両端部を突合せて高周波溶接する際に、一対のサイドロールと1個のトップロールからなる3方スクイズロールまたは一対のサイドロールと2個のトップロールからなる4方スクイズロールであって、管の溶接部を含む外周の5〜10%の範囲をトップロールの周面とするスクイズロールを使用することを特徴とする。
【0009】
【作用】
本発明者等は、溶融めっき鋼板、特に亜鉛を主成分とした合金を溶融めっきした鋼板を素材として電縫鋼管を製造する際、溶接部近傍に発生する割れの発生要因について検討を続けてきた。
製品鋼管に見合った幅に裁断された鋼帯又は鋼板をオープンパイプ形状に成形し、幅方向両端部を溶接する際、酸化物等の異物を溶接部から押し出して溶接強度を確保するため加熱された幅方向両端部にアプセットが加えられる。そのため、溶接直後にスクイズロールから解放されると、スプリングバックに起因する引張り応力が溶接部に加わる。亜鉛系の合金めっき鋼板を溶接すると、溶接熱で溶融した亜鉛系合金は亜鉛(融点420℃)に比較して液相線温度が低く、比較的長時間にわたって溶融状態を維持する。めっき金属が溶融している間にスプリングバックに起因する引張り応力がある限界を超えると、溶融金属が結晶粒界に浸入し、溶融金属脆化を引き起こす。その結果、溶接ビードの直近から板厚中央方向に向かった結晶粒界割れとなって現れる。
【0010】
溶接部の両側それぞれ約30〜35度ずつを1つまたは2つのトップロールで押え、残りの部分を1組のサイドロールで押える3方または4方タイプのスクイズロールを使用すると、スクイズロールによる拘束が不十分で、ロールフランジの被溶接材との接触領域が狭いため(図3の(b)参照)、溶融金属脆化に起因した割れが起きやすい。そこで、結晶粒界割れを抑えるには、溶接後、スクイズロールによる拘束力を大きくロールフランジの接触領域を広い範囲にわたってとり、ロールから解放されるまでの時間、すなわちスプリングバックに起因する引張り応力がかかるまでの時間を長くして、めっき金属からなる溶融金属を固化させた後に引張り応力がかかるようにすると溶融金属が結晶粒界に浸入することはなく、溶接部近傍の割れの発生は防げると推測した。しかし、スクイズロールによる拘束力を大きくするためにロールフランジの接触領域が広い2方スクイズロールを使用すると(図3の(a)参照)、周速差が大きくなりすぎるために溶接部の両側に疵が付きやすくなる。
【0011】
本発明は、スクイズロール形状を種々変えて検討を重ねることにより、溶融めっき鋼板を素材として、直径が3inch(φ76.2mm)を超える中径溶接管を電縫溶接法で製造する際には、スクイズロールとして、一対のサイドロールと1個のトップロールからなる3方スクイズロール(図4の(b))または一対のサイドロールと2個のトップロールからなる4方スクイズロール(図4の(a))であって、管の溶接部を含む外周の5〜10%の範囲をトップロールの周面とするものを使用すると、パイプの疵の発生を防止しつつ、拘束力とロールフランジの被溶接めっき鋼との接触領域を広く確保することができ、溶接部近傍に割れが発生することのない電縫溶接管が得られることに到達したものである。
【0012】
ところで、スクイズロールは一体で回転する場合、最も外周側が速い速度で回転し、内側は遅い速度で回転する。そしてその速度は半径に比例する。
一方、材料は速度の異なるロールの各部分と接触しながら、ロール回転の最も速い部分と遅い部分の間の或る速度で進んでいく。このとき、材料の速度と一致する速度で回転しているロールの部分をニュートラルポイントと呼ぶ。このニュートラルポイントよりも外側では、ロールは材料よりも早く進み、その方向も材料の進む方向とは異なる。また、ロールの最縁部ではロールのコーナー部が材料と特に強く接触するため、材料とロールの進む方向が異なることによりスリップが発生して疵となる。
【0013】
溶接部近傍のロールと材料の接触領域は、2方スクイズロールの場合が最も前後に長く(図3の(a)参照)、トップロールとサイドロールを組み合わせたロールではエッジ部の拘束距離は極端に短くなる(図3の(b)参照)。すなわち、前記説明での中心からニュートラルポイントまでの角度が大きいほど接触領域は大きくなるが、トップロールを使用する場合、ニュートラルポイントは水平に近い部分にできるため中心からニュートラルポイントまでの角度が極小になって、接触領域は非常に短くなる。
この接触領域が長いと疵が発生するため、スクイズロールを分割して疵の入りやすいエッジ部におけるロールの接触領域を短くすることが、従来行われている方法(図2の(b)参照)である。しかしながら、接触領域は言い換えればロールによる素材の拘束領域でもあるから、拘束距離が短くなるとスクイズロールをでると直ぐにロールによる拘束の影響がなくなり、スプリングバックによる形状変化が発生することになる。
【0014】
本発明は、疵防止と溶接不良防止のための拘束強化という、相反する要求を満足させるために、トップロールの分担する領域は疵が問題となる極エッジ近傍に限定し、サイドロールによってある程度の拘束長さを残すことにより、両方の機能を兼ね備えさせたトップロール角度(幅)の狭い分割ロールを開発したことに基づくものである。
従来のトップロール角度30〜40度を9〜18度に変更したとき、サイドロールによる拘束長さをある程度残すことができ、上記相反する要求を満たすことができた。9〜18度は外周の割合に換算したとき5〜10%であるから、トップロールの幅を管外周の5〜10%にするとき、所期の目的を達成できることになる。
【0015】
【実施例】
Zn−6%Al−3%Mg合金めっき層が形成された各種板厚の400N級溶融めっき鋼板を所定サイズに裁断した後、ブレークダウンロール群,サイドクラスター及びフィンパススタンド群によってオープンパイプ状に成形し、このオープンパイプの開口部に入るフィンを持つシームガイドロールによりその両エッジ位置を規制しながら高周波誘導加熱し、スクイズロールによりアプセットを加えて溶接を行い、引き続いて外面のビードを切削除去した後、切削部を溶射にて被覆し、さらに溶接部の冷却及び所定断面への定形・矯正・切断を行って、外寸法100mm×100mmの構造用角鋼管を製造した。
【0016】
以下、2.3mm材について説明する。比較例としては、従来より用いていた溶接部の両側おおよそ35度ずつの範囲を2つのトップロールで保持し、残りの部分を1組のサイドロールで保持する4方ロール方向のスクイズロールを用いた場合を示す。熱/冷延鋼帯等、溶融金属脆化が懸念されない材料であれば、このスクイズロールを用いて120m/minの速度で確実な溶接のために必要な1.5mm程度のアプセットを取って健全な溶接鋼管を製造することが可能である。ところが、溶融金属脆化の懸念がある上記めっき鋼帯を用いた場合、1.5mmのアプセットを確保すると、造管速度を通常の120m/minから80/minまで低下させないと割れを回避することができなかった。また、120m/minで運転した場合、アプセットが1.0mmを超えると割れが発生した。
スクイズロールとしてより拘束力の強い2方ロールタイプのものに変更したところ、通常の120m/min,アプセット1.5mmでも割れが発生することなく造管することが可能であった。しかしながら、溶接部の両側にロールとフランジとの擦れによる疵を生じた。
【0017】
そこで、4方スクイズロールのトップロールを溶接部の両側15度ずつを保持するように幅を狭め、その分サイドロールの領域を拡大したスクイズロールを使用したところ、120m/minの速度で1.5mmのアプセットで造管しても割れ及び疵を生じることはなかった。
なお、溶接ビードを挟んで2つのトップロールを用いる4方スクイズ方式(図4の(a))と2つのトップロールを一体型とした3方スクイズロール方式(図4の(b))のいずれでも、トップロールの割れ防止に対する効果はほぼ同等であるが、3方ロールの方がロール位置調整は行い易い。
上記結果をまとめて表1に示す。
板厚1.6mm,3.2mm,4.5mm及び6.0mmのめっき鋼帯について同様な造管試験を行った。その結果も併せて表1に示す。
【0018】
【0019】
表1に示す結果からもわかるように、めっき鋼帯を素材として造管する際、疵を生じさせず、しかも溶接不良を発生させないためには、従来の4ロール法では、熱/冷延鋼帯を素材とする場合と同じアプセット量で行おうとすると造管速度を遅くしなければならず生産性が低下する。また熱/冷延鋼帯を素材とする場合と同じライン速度で造管しようとすると、従来よりもアプセット量を少なくしなければならず強度低下につながる。さらに2ロール法では疵が生じやすい。
これに対して、所定の幅を持つトップロールを使用した3方あるいは4方のスクイズロールを使用した本発明法では、熱/冷延鋼帯を素材とする場合と同程度のアプセット量及び同程度のライン速度で、疵を生じさせることなく、しかも溶接不良を発生させることなく造管することができた。
【0020】
【発明の効果】
以上に説明したように、素材の溶融めっき鋼帯を高周波溶接法で造管する際に、スクイズロールとして、一対のサイドロールと1個のトップロールからなる3方スクイズロールまたは一対のサイドロールと2個のトップロールからなる4方スクイズロールであって、管の溶接部を含む外周の5〜10%の範囲をトップロールの周面とするものを使用することにより、鋼帯エッジ部にサイドロールによってある程度の拘束長さを残すことができ、溶接不良を発生させることなく、しかもロール疵を付けずに造管することができたものである。
本発明により、生産性を低下させることなく良質のめっき鋼管を得ることができた。
【図面の簡単な説明】
【図1】造管ラインの概略図
【図2】従来のスクイズロールの断面形状を説明する図、(a)は2方ロールで(b)は4方ロール
【図3】スクイズロールと被溶接材料との接触領域(図中の網部)と拘束力の大きさを模式的に説明する図で、(a)は2方ロールを、(b)は従来の4方ロールを用いた場合
【図4】本発明で使用するスクイズロールの断面形状を説明する図、(a)は4方ロールで(b)は3方ロール[0001]
[Industrial applications]
The present invention relates to a method for manufacturing an ERW pipe using a hot-dip coated steel sheet as a raw material.
[0002]
[Prior art]
The welded steel pipe is manufactured by sequentially bending a steel strip slit to a predetermined width in a plate width direction with a multi-stage forming stand, forming a roll into an open pipe, and welding both ends in the plate width direction.
The forming
[0003]
Open pipes P 0 is then fed into the fin-
Both ends in the width direction of the steel strip S are heated by the high-frequency induction heating coil 5, and a predetermined weld is formed by the compressive force of the squeeze roll 6. Welded pipe P 1 is, after the inner surface bead is appropriately bead cut according to the outer surface beads and required, the product steel pipe through sizing (shaped) step, the straightening process.
[0004]
In forming a welded pipe by roll forming, forming rolls are prepared for each outer diameter of the welded pipe, and materials having different springbacks due to plate thickness, material, and the like are formed into a welded pipe having the same outer diameter. Therefore, since it is not economical to design an optimal roll for each material, some rolls are replaced depending on the sheet thickness, but basically the same forming roll is used even if the material changes, Due to different bending conditions and springbacks for each material condition, the shape before welding differs depending on the material.
In addition, squeeze rolls, which are important for ensuring welding quality, take into account only workability and scratch resistance, and two-way squeeze rolls (FIG. 2A) are used for welded pipes having a diameter of about 100 mm or less. For medium-diameter welded pipes exceeding 100 mm in diameter, where flaws are likely to occur near the weld due to the upper flange, approximately 30 to 40 degrees on each side of the weld to minimize the difference in peripheral speed of the roll. Alternatively, a three-sided or four-sided squeeze roll (FIG. 2B) which is pressed by two top rolls is used.
[0005]
[Problems to be solved by the invention]
The roll forming as described above is also performed when manufacturing an electric resistance welded steel pipe using a hot-dip coated steel sheet as a raw material, and welding is performed by a squeeze roll.
In a squeeze roll, both ends of a heated steel strip are pressed and joined by applying further pressure after filling the open pipe in the roll. After joining, the steel pipe exits the squeeze roll and is released from the restraint by the squeeze roll as it goes away from the squeeze roll. At that time, the steel pipe that has gone through the roll forming process as described above will generate springback that reduces the curvature in the circumferential direction. At this time, if the residual stress and strength conditions of each part in the circumferential direction of the steel pipe are quite uniform, the cross-sectional shape of the welded closed steel pipe cannot be deformed by springback.
[0006]
However, in the actual steel pipe, particularly, both edges are not sufficiently bent, and there is a possibility that a large springback may occur as compared with other portions. In addition, near the weld immediately after welding, a steep temperature distribution from the high-temperature joint surface to the base metal via the heat-affected zone, in other words, a steep strength distribution is generated. The effect of the aforementioned springback of the edge is superimposed on this steep strength distribution, and the bends on both sides of the weld are reduced, and the effect is such that the high-temperature, low-strength weld is bent out of the pipe. Deforms into a drop-shaped cross section.
Due to such deformation of the welded portion due to the springback, a circumferential tensile stress is applied to the welded portion and its vicinity on the outer surface of the pipe. In addition, there is a region in the weld heat affected zone where the plated metal is melted by the welding heat, and the aforementioned tensile stress promotes the penetration of the molten plated metal into the crystal grain boundaries, so that the sheet metal can be brought into close proximity to the weld bead. Molten metal embrittlement cracks tend to occur in the thickness center direction.
[0007]
When manufacturing a medium-diameter welded pipe exceeding 3 inches in diameter, a three- or four-sided press of one or two top rolls at about 30 to 35 degrees each on both sides of the welded portion so as to reduce the peripheral speed difference of the rolls When using a squeeze roll of the type, the area where the pipe is constrained by the side rolls is extremely short, and the squeeze rolls are insufficiently constrained, causing large springback and cracking due to the embrittlement of the molten metal. Easy to get up. For this reason, in order to avoid this cracking, it was necessary to reduce the line speed to form a pipe.
If a two-way squeeze roll is used to sufficiently constrain the squeeze roll, the difference in peripheral speed becomes too large, and the plating layer is likely to be scratched.
The present invention has been devised to solve such a problem. After forming into an open pipe shape using a hot-dip coated steel sheet as a raw material, when the both ends in the sheet width direction are butt-bonded with each other and subjected to high-frequency welding, the plating layer is damaged. It is an object of the present invention to provide a method for manufacturing an electric resistance welded pipe in which a heat-affected zone is less likely to be cracked without adding a crack.
[0008]
[Means for Solving the Problems]
The method for producing a hot-dip coated steel pipe according to the present invention includes a pair of side rolls when forming a hot-dip coated steel sheet into an open pipe shape and then performing high-frequency welding by butt-pushing both ends in the width direction of the plate with a squeeze roll. And a three-way squeeze roll consisting of one top roll or a four-way squeeze roll consisting of a pair of side rolls and two top rolls. Characterized in that a squeeze roll having a peripheral surface of is used.
[0009]
[Action]
The present inventors have continued to study the causes of cracks occurring near the weld when manufacturing ERW pipes using hot-dip coated steel sheets, particularly steel sheets hot-dip coated with an alloy containing zinc as a main component. .
When a steel strip or steel sheet cut to a width suitable for the product steel pipe is formed into an open pipe shape, and when welding both ends in the width direction, foreign materials such as oxides are extruded from the welded part and heated to ensure welding strength. Upsets are added to both ends in the width direction. Therefore, when released from the squeeze roll immediately after welding, tensile stress due to springback is applied to the weld. When a zinc-based alloy plated steel sheet is welded, the zinc-based alloy melted by welding heat has a lower liquidus temperature than zinc (melting point 420 ° C.), and maintains a molten state for a relatively long time. If the tensile stress due to springback exceeds a certain limit while the plated metal is being melted, the molten metal penetrates the crystal grain boundaries, causing the molten metal to become embrittled. As a result, crystal grain boundary cracks appear from the vicinity of the weld bead toward the center of the sheet thickness.
[0010]
When using a three- or four-way squeeze roll that holds down about 30 to 35 degrees on both sides of the weld with one or two top rolls and the remaining part with one set of side rolls, the squeeze roll restraint Is insufficient, and the contact area of the roll flange with the material to be welded is narrow (see FIG. 3B), so that cracks due to the embrittlement of the molten metal are likely to occur. Therefore, in order to suppress grain boundary cracking, after welding, the restraining force of the squeeze roll is large, the contact area of the roll flange is widened, and the time required for release from the roll, that is, the tensile stress caused by springback, is reduced. If the time until this is extended and tensile stress is applied after solidifying the molten metal composed of the plated metal, the molten metal does not enter the crystal grain boundaries and the occurrence of cracks near the weld can be prevented. I guessed. However, if a two-way squeeze roll having a wide contact area with the roll flange is used to increase the restraining force of the squeeze roll (see FIG. 3A), the difference in peripheral speed becomes too large, so that both sides of the welded portion become large. It becomes easy to be scratched.
[0011]
In the present invention, by repeatedly examining various shapes of squeeze rolls, when manufacturing a medium-diameter welded pipe having a diameter exceeding 3 inch (φ76.2 mm) by hot-dip welding using a hot-dip coated steel sheet as a material, As the squeeze roll, a three-way squeeze roll composed of a pair of side rolls and one top roll ((b) in FIG. 4) or a four-way squeeze roll composed of a pair of side rolls and two top rolls (( a)), in which a range of 5 to 10% of the outer periphery including the welded portion of the pipe is used as the peripheral surface of the top roll, it is possible to prevent the occurrence of flaws in the pipe and to reduce the binding force and the roll flange. It has been achieved that an electric resistance welded pipe can be obtained in which a wide contact area with the steel to be welded can be secured and cracks do not occur near the welded portion.
[0012]
By the way, when the squeeze rolls rotate integrally, the outermost side rotates at a fast speed and the inner side rotates at a slow speed. And its speed is proportional to the radius.
On the other hand, the material travels at a certain speed between the fastest and slowest portions of the roll while contacting the portions of the roll at different speeds. At this time, the portion of the roll that is rotating at a speed that matches the speed of the material is called a neutral point. Outside this neutral point, the roll advances faster than the material, and its direction is also different from the direction in which the material advances. In addition, since the corner of the roll is in particularly strong contact with the material at the edge of the roll, slipping occurs due to a difference in the direction in which the material and the roll travel, resulting in a flaw.
[0013]
The contact area between the roll and the material in the vicinity of the weld is the longest in the case of a two-way squeeze roll (see FIG. 3A), and the constraint distance of the edge portion is extremely large in a roll combining a top roll and a side roll. (See FIG. 3B). In other words, the larger the angle from the center to the neutral point in the above description, the larger the contact area becomes.However, when using a top roll, the neutral point can be made nearly horizontal, so the angle from the center to the neutral point is minimized. The contact area becomes very short.
If the contact area is long, a flaw is generated. Therefore, it is a conventional method to divide the squeeze roll to shorten the contact area of the roll at the edge where the flaw easily enters (see FIG. 2B). It is. However, since the contact area is, in other words, an area where the material is constrained by the rolls, when the constrained distance is short, the influence of the constraining by the rolls is eliminated immediately when the squeeze roll is released, and a shape change due to springback occurs.
[0014]
The present invention, in order to satisfy the conflicting requirements of strengthening the restraint for the prevention of flaws and welding defects, in order to satisfy the conflicting requirements, the area shared by the top roll is limited to the vicinity of the extreme edge where flaws are a problem, and to some extent by side rolls This is based on the development of a split roll with a narrow top roll angle (width) that combines both functions by leaving the constraint length.
When the conventional top roll angle of 30 to 40 degrees was changed to 9 to 18 degrees, the length restricted by the side rolls could be left to some extent, and the above conflicting requirements could be satisfied. Since the angle of 9 to 18 degrees is 5 to 10% when converted to the ratio of the outer circumference, the intended purpose can be achieved when the width of the top roll is set to 5 to 10% of the outer circumference of the pipe.
[0015]
【Example】
After cutting a 400 N class hot-dip coated steel sheet of various thicknesses on which a Zn-6% Al-3% Mg alloy plating layer is formed into a predetermined size, it is formed into an open pipe shape by a breakdown roll group, a side cluster and a fin pass stand group. Formed, high-frequency induction heating with seam guide rolls having fins that enter the opening of this open pipe while regulating the position of both edges, adding upsets with squeeze rolls, welding, and subsequently cutting off bead on the outer surface After that, the cut portion was coated by thermal spraying, and then the welded portion was cooled and shaped, straightened, and cut into a predetermined cross section to produce a structural square steel pipe having an outer dimension of 100 mm x 100 mm.
[0016]
Hereinafter, the 2.3 mm material will be described. As a comparative example, a squeeze roll in a four-way roll direction in which a range of approximately 35 degrees on both sides of a welded portion conventionally used is held by two top rolls and the remaining portion is held by a pair of side rolls. Indicates the case where If a material such as a hot / cold rolled steel strip is not concerned about the embrittlement of molten metal, use this squeeze roll to take an upset of about 1.5 mm necessary for reliable welding at a speed of 120 m / min and sound. It is possible to manufacture a simple welded steel pipe. However, in the case of using the above-mentioned plated steel strip having a concern of molten metal embrittlement, if a 1.5 mm upset is secured, cracking is avoided unless the pipe forming speed is reduced from the normal 120 m / min to 80 / min. Could not. In addition, when operated at 120 m / min, cracks occurred when the upset exceeded 1.0 mm.
When the squeeze roll was changed to a two-way roll type having a stronger binding force, it was possible to form a pipe without cracking even at a normal 120 m / min and 1.5 mm upset. However, flaws were generated on both sides of the weld due to friction between the roll and the flange.
[0017]
Therefore, the width of the top roll of the four-sided squeeze roll was reduced so as to maintain 15 degrees on both sides of the welded portion, and a squeeze roll in which the area of the side roll was enlarged by that amount was used. Cracking and flaws did not occur even when pipe was formed with a 5 mm upset.
It should be noted that either a four-way squeeze method using two top rolls with a weld bead interposed therebetween (FIG. 4A) or a three-way squeeze roll method integrating two top rolls (FIG. 4B). However, the effect of preventing the top roll from cracking is almost the same, but the roll position adjustment is easier with the three-way roll.
The results are shown in Table 1.
The same tube-forming test was performed on plated steel strips having plate thicknesses of 1.6 mm, 3.2 mm, 4.5 mm, and 6.0 mm. Table 1 also shows the results.
[0018]
[0019]
As can be seen from the results shown in Table 1, when forming a tube from a plated steel strip as a material, in order to prevent flaws and poor welding, the conventional four-roll method requires a hot / cold rolled steel. If an attempt is made to use the same upset amount as in the case of using a band as a material, the pipe-forming speed must be reduced, and the productivity is reduced. Further, if it is attempted to form a tube at the same line speed as when a hot / cold rolled steel strip is used as a material, the upset amount must be reduced as compared with the conventional case, leading to a reduction in strength. Further, the two-roll method tends to cause flaws.
On the other hand, in the method of the present invention using a three- or four-sided squeeze roll using a top roll having a predetermined width, the upset amount and the same amount as in the case of using a hot / cold rolled steel strip as a material are used. At about the line speed, the pipe could be formed without generating flaws and without causing welding defects.
[0020]
【The invention's effect】
As described above, when forming a hot-dip steel strip of a material by high-frequency welding, as a squeeze roll, a three-way squeeze roll including a pair of side rolls and one top roll or a pair of side rolls is used. By using a four-sided squeeze roll composed of two top rolls and having a range of 5 to 10% of the outer circumference including the welded portion of the pipe as the peripheral surface of the top roll, side edges are formed on the steel strip edge. The roll can leave a certain restrained length, and the pipe can be formed without causing welding defects and without forming roll flaws.
According to the present invention, a high-quality plated steel pipe can be obtained without lowering the productivity.
[Brief description of the drawings]
FIG. 1 is a schematic view of a pipe making line. FIG. 2 is a view for explaining a cross-sectional shape of a conventional squeeze roll. FIG. 3A is a two-way roll, and FIG. FIGS. 4A and 4B schematically illustrate a contact area with a material (a net portion in the figure) and a magnitude of a binding force. FIG. 4A illustrates a case where a two-way roll is used, and FIG. FIG. 4 is a view for explaining a cross-sectional shape of a squeeze roll used in the present invention, wherein (a) is a four-way roll and (b) is a three-way roll.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002339167A JP4723163B2 (en) | 2002-11-22 | 2002-11-22 | Manufacturing method of hot dipped steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002339167A JP4723163B2 (en) | 2002-11-22 | 2002-11-22 | Manufacturing method of hot dipped steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004167592A true JP2004167592A (en) | 2004-06-17 |
JP4723163B2 JP4723163B2 (en) | 2011-07-13 |
Family
ID=32702186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002339167A Expired - Lifetime JP4723163B2 (en) | 2002-11-22 | 2002-11-22 | Manufacturing method of hot dipped steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4723163B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110711782A (en) * | 2018-07-14 | 2020-01-21 | 大连冶金工具厂有限公司 | Extrusion roller hole pattern of high-frequency welded pipe rolling mill |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5530327A (en) * | 1978-08-24 | 1980-03-04 | Toyota Motor Corp | Pipe making method |
JPH06190568A (en) * | 1992-12-24 | 1994-07-12 | Kawasaki Steel Corp | Production of electric resistance welded steel tube |
JPH08103815A (en) * | 1994-09-30 | 1996-04-23 | Ngk Spark Plug Co Ltd | Ceramic squeeze roll |
JPH10225717A (en) * | 1997-02-13 | 1998-08-25 | Sumikin Kozai Kogyo Kk | Manufacture and manufacturing device for thin-walled tube |
JPH11156432A (en) * | 1997-11-25 | 1999-06-15 | Kawasaki Steel Corp | Squeezing device |
JP2002192223A (en) * | 2000-12-26 | 2002-07-10 | Nisshin Steel Co Ltd | Manufacturing method for welded metal pipe |
-
2002
- 2002-11-22 JP JP2002339167A patent/JP4723163B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5530327A (en) * | 1978-08-24 | 1980-03-04 | Toyota Motor Corp | Pipe making method |
JPH06190568A (en) * | 1992-12-24 | 1994-07-12 | Kawasaki Steel Corp | Production of electric resistance welded steel tube |
JPH08103815A (en) * | 1994-09-30 | 1996-04-23 | Ngk Spark Plug Co Ltd | Ceramic squeeze roll |
JPH10225717A (en) * | 1997-02-13 | 1998-08-25 | Sumikin Kozai Kogyo Kk | Manufacture and manufacturing device for thin-walled tube |
JPH11156432A (en) * | 1997-11-25 | 1999-06-15 | Kawasaki Steel Corp | Squeezing device |
JP2002192223A (en) * | 2000-12-26 | 2002-07-10 | Nisshin Steel Co Ltd | Manufacturing method for welded metal pipe |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110711782A (en) * | 2018-07-14 | 2020-01-21 | 大连冶金工具厂有限公司 | Extrusion roller hole pattern of high-frequency welded pipe rolling mill |
Also Published As
Publication number | Publication date |
---|---|
JP4723163B2 (en) | 2011-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4610070A (en) | Process for manufacturing clad strips | |
JP2004167592A (en) | Manufacturing method of hot-dipped steel tube | |
JP2000190020A (en) | Manufacture of plate and bar and manufacture of welded groove tube | |
JP2008184686A (en) | Method for manufacturing low yr square steel tube for building | |
JPH02307686A (en) | Production of stainless electric welded steel tube | |
JP2001239315A (en) | Method of manufacturing electric-seam welded steel pipe and equipment line | |
JP2002192223A (en) | Manufacturing method for welded metal pipe | |
JP2001239313A (en) | Method of manufacturing electric-seam welded steel pipe and equipment line | |
JPH08243646A (en) | Manufacture of square steel tube | |
JPH0910829A (en) | Manufacture of welded pipe | |
JP3258223B2 (en) | Manufacturing method and equipment for continuous hot-rolled steel sheet | |
JP4236918B2 (en) | Manufacturing method of plated steel pipe | |
JP3256162B2 (en) | Manufacturing method of welded steel pipe | |
JPH0788545A (en) | Manufacture of large diameter square steel tube to improve corner r part material | |
JP3342953B2 (en) | Manufacturing method of ERW steel pipe | |
JP2852313B2 (en) | Method and apparatus for manufacturing large diameter square steel pipe including hot forming | |
JPS5942102A (en) | Production of alpha+beta type hot rolled titanium alloy sheet having good suitability to cold rolling | |
JPH07314048A (en) | Production of square steel tube | |
JPH0938722A (en) | Production of square steel tube | |
JP6127709B2 (en) | Electrocutting tube for press cutting and manufacturing method thereof | |
JP4114667B2 (en) | Manufacturing method and manufacturing apparatus for welded steel pipe | |
JPH07314047A (en) | Production of square steel tube | |
JP6252454B2 (en) | Manufacturing method of high-strength thick-walled ERW steel pipe | |
JP2002219512A (en) | Material for metallic welded tube and method for manufacturing material for metallic welded tube and method for manufacturing metallic welded tube | |
JP2000246332A (en) | Welded steel pipe for pipe expansion and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070416 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070416 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070416 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070509 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071016 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071217 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20071217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091013 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100330 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110407 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140415 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4723163 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |