[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004166401A - Dc brushless motor and dc pump equipped therewith - Google Patents

Dc brushless motor and dc pump equipped therewith Download PDF

Info

Publication number
JP2004166401A
JP2004166401A JP2002329436A JP2002329436A JP2004166401A JP 2004166401 A JP2004166401 A JP 2004166401A JP 2002329436 A JP2002329436 A JP 2002329436A JP 2002329436 A JP2002329436 A JP 2002329436A JP 2004166401 A JP2004166401 A JP 2004166401A
Authority
JP
Japan
Prior art keywords
magnetic pole
brushless motor
magnet rotor
position sensor
pole position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002329436A
Other languages
Japanese (ja)
Other versions
JP4186593B2 (en
Inventor
Yoichi Shukuri
陽一 宿里
Shinya Koga
愼弥 古賀
Yasushi Niwatsukino
恭 庭月野
Seiji Urano
誠二 浦野
Toshisuke Sakai
敏輔 酒井
Shigeru Narakino
滋 楢木野
Toshihiko Matsuda
利彦 松田
Ayanori Hirakawa
文徳 平川
Masamitsu Aizono
譲光 相園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002329436A priority Critical patent/JP4186593B2/en
Publication of JP2004166401A publication Critical patent/JP2004166401A/en
Application granted granted Critical
Publication of JP4186593B2 publication Critical patent/JP4186593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Brushless Motors (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin-typed DC brushless motor, which can surely detect the position of a magnetic pole of a magnet rotor and has stable motor performance, and a DC pump. <P>SOLUTION: The DC brushless motor is provided with a stator core 1 that has salient poles 1a at tips of a plurality of teeth 2, the magnet rotor 4 that rotates at the external peripheral side of the salient pole, and a magnetic pole position sensor 7 that is arranged at a position surrounded by the winding coil 3 wound around the teeth 2 and the salient poles 1a and detects the position of the magnetic pole of the magnet rotor 4, and a drive IC 8 that controls a current flowing to the winding coil 3, and the DC brushless motor is characterized in that an FPC (flexible printed circuit) substrate 9 mounting at least the magnetic position sensor 7 and the drive IC 8, is attached to the stator core 1 at a position where the winding coil 3 is not wound, and an FPC lead 9a is drawn to the outside along a motor side-face shape in a freely bendable manner. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、磁極位置センサの感度を向上させ、薄型で長寿命、高効率のDCブラシレスモータ及びそれを備えたDCポンプに関する。
【0002】
【従来の技術】
電機子は固定子鉄心に巻線を巻いて使用されるため、どうしても物理的にスペースが必要で機構上大型化する傾向があり、最近では小型化、さらに薄型化に対する要求が高まりつつある。
【0003】
以下に薄型化を目的とした従来のDCブラシレスモータについて、図4を用いて説明する。図4は従来のDCブラシレスモータの構成図である。図4において、電機子108の中央付近にドライバIC113が位置するように基板112上にドライバIC113を配し、シ−ルド板114を基板112の下に配設した後、この基板112にコイル110が巻装された電機子108を固定し、ロ−タフレ−ム107に保持されたマグネットロータ106に対向するように電機子108を配し、直流ブラシレスモ−タを構成している。また、この基板112上には、マグネットロータ106の磁極位置を検出する磁極位置センサ115も配置され、この磁極位置センサ115の出力信号を受けて、ドライバIC113は電機子108の巻線110に流す電流を制御する。これによって電機子108が電磁石となり、マグネットロータ106の磁極との吸引と反発が発生し、マグネットロータ106に回転トルクが発生する。
【0004】
この構成により、ドライバIC113からのパタ−ン配線が容易にでき、基板112に対するパタ−ン配線の面積を小さくすることができるため、基板112の外形を小さくすることができ直流ブラシレスモ−タの小型化ができる。また、電機子108に巻装されているコイルからの制約がなくなり、より薄型な直流ブラシレスモ−タを実現することができるものである(例えば特許文献1参照)。
【0005】
【特許文献1】
特許第3106582号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来のDCブラシレスモータの構成では、磁極位置センサ115とドライバIC113実装用の基板112を、固定子鉄心のコイルエンドから適当なギャップを設けて配置するため、コイルエンドと基板側の厚みによりモータの厚みが決定されるという制約を受け、しかも基板112へ電気を供給するためにリード線111を必要とし、そのリード線111の外径寸法も無視できずモータの薄型化が図れない課題を有していた。なお、116はコネクタである。
【0007】
また、この従来のDCブラシレスモータは、薄型化を図る必要からマグネットロータの長さが固定子鉄心の長さより充分でなく、このため漏れ磁束から磁極位置を確実に検出できず、安定したモータ性能が得られないという課題を有していた。
【0008】
さらに、従来のDCポンプは薄型でなく、しかも安定したポンプ性能を得ることが難しいものであった。
【0009】
そこで本発明は、薄型で、マグネットロータの磁極位置を確実に検出して安定したモータ性能のDCブラシレスモータを提供することを目的としている。
【0010】
また、本発明は、薄型で、マグネットロータの磁極位置を確実に検出して安定した出力のDCポンプを提供することを目的としている。
【0011】
【課題を解決するための手段】
上記課題を解決するために本発明は、複数のティースの先端にそれぞれ突極を有する固定子鉄心と、突極の外周側で回転するマグネットロータと、ティースに巻かれた巻線コイルと突極とに囲まれた位置に配置されて、マグネットロータの磁極位置を検出する磁極位置センサと、磁極位置センサからの出力信号によって巻線コイルに流す電流を制御するドライバICとを備えたDCブラシレスモータであって、少なくとも磁極位置センサとドライバICを実装したフレキシブル基板が、巻線コイルが巻かれていない位置で固定子鉄心に取り付けられるとともに、そのリード部がモータ側面形状に沿って屈曲自在に外部に引き出されたことを特徴とする。
【0012】
これにより、薄型で、マグネットロータの磁極位置を確実に検出して安定したモータ性能にすることができる。
【0013】
【発明の実施の形態】
上記課題を解決するためになされた請求項1の発明は、複数のティースの先端にそれぞれ突極を有する固定子鉄心と、突極の外周側で回転するマグネットロータと、ティースに巻かれた巻線コイルと突極とに囲まれた位置に配置されて、マグネットロータの磁極位置を検出する磁極位置センサと、磁極位置センサからの出力信号によって巻線コイルに流す電流を制御するドライバICとを備えたDCブラシレスモータであって、少なくとも磁極位置センサとドライバICを実装したフレキシブル基板が、巻線コイルが巻かれていない位置で固定子鉄心に取り付けられるとともに、そのリード部がモータ側面形状に沿って屈曲自在に外部に引き出されたことを特徴とするDCブラシレスモータであり、フレキシブル基板のリード部を使うのでドライバICに電気を給電するためのリード線が不要となり、薄いフレキシブル基板が屈曲できるので巻線コイルを避けた位置で固定子鉄心に取り付けることが可能であり、DCブラシレスモータの薄型化が飛躍的に図れるとともに、薄いため機器に組込む際の自由度が向上するという作用を有する。
【0014】
請求項2の発明は、フレキシブル基板が突極側面からマグネットロータと対向する面に屈曲されたことを特徴とする請求項1記載のDCブラシレスモータであり、DCブラシレスモータの薄型化を図るとき、マグネットロータの漏れ磁束で磁極位置を検出するのではなく、主磁束で検出するため磁極位置の検出感度が向上し、モータ性能の安定化が図れる。
【0015】
請求項3の発明は、請求項1または2記載のDCブラシレスモータを駆動部とし、マグネットロータを水封したケーシングを備えたDCポンプであって、電機子の形成する磁界によってマグネットロータがケーシング内で回転されることを特徴とするDCポンプであり、DCポンプを薄型化できるとともに長寿命を実現でき、磁極位置センサの感度も向上し、ポンプ性能が安定する。
【0016】
以下、以下、本発明の実施の形態1について図1を用いて説明する。
【0017】
(実施の形態1)
図1(a)は本発明の実施の形態1における4極4スロットのDCブラシレスモータの構成図、図1(b)は(a)のDCブラシレスモータのA−A断面図である。図1(a),(b)において、1は固定子鉄心、1aは固定子鉄心1の突極、2はティース、3は巻線コイル、4はマグネットロータ、5は電機子、6は磁極位置(磁極の切れ目)、7は磁極位置センサ、8はドライバIC、9はFPC基板(本発明のフレキシブル基板)、9aはFPCリード部、10は補強板、11は屈曲部、12はコイルエンド長である。
【0018】
この固定子鉄心1の素材としては、鉄損を低減しモータ効率を向上するために、透磁率が大きく、厚さがt=0.2〜0.5mm程度の珪素鋼鈑が好適である。固定子鉄心1はこの鋼鈑を複数枚積層されて構成される。この固定子鉄心1の中心から放射状にのびる腕の部分がティース2であり、ティース2の部分に巻線が施され、巻線コイル3が形成される。巻線コイル3の巻線材は一般的に銅線に薄い絶縁皮膜を施したものが使用される。
【0019】
ところで、マグネットロータ4と対向する突極1aは、できるだけマグネットロータ4のマグネットからの磁束を固定子鉄心1内に取り込むと同時に、巻線コイル3の巻線可能な部分を確保するため、ティース2と比較して幅広い形状となっている。電機子5はこのような固定子鉄心1とそれに巻かれた巻線コイル3とから構成される。また、マグネットロータ4のマグネットは永久磁石となりうるフェライトや金属系磁性体(SmCo等)等がよい。
【0020】
マグネットロータ4は、巻線コイル3に電流を流すことで各ティース2に順に形成される電磁石の磁力によって吸引または反発され、磁界の方向にトルクが発生し、電機子5周りに回転を始める。このときトルクを効率よく発生させるには、巻線コイル3に流す電流の向きをタイミングよく切り替える必要がある。そこで、この切り替えのタイミングを正確にするため、磁極位置センサ7が設けられ、これがマグネットロータ4の磁極位置(磁極の切れ目)6を検出し、タイミング信号として出力する。この磁極位置センサ7が発生したタイミング信号は、ドライバIC8に入力され、ドライバIC8はこのタイミング信号に基づいて巻線コイル3に流す電流方向を切り替える。これにより4つの突極1aに発生する電磁石の磁極の極性がそれぞれ切り替わる。
【0021】
ところで、磁極位置センサ7とドライバIC8は、屈曲可能なFPC基板9に実装されている。このFPC基板9の材質としては耐熱性のあるポリイミド(厚さt=0.1mm程度)等が適当である。また、磁極位置センサ7とドライバIC8等の電子部品が実装される部分には、FPC基板9の実装面と反対側に補強板10を貼り合わすのが好適である。この補強板10の材質は一般的に耐熱性を持つガラス繊維入りのエポキシ基板(通称ガラエポ基板)、もしくはFPC基板9と同じポリイミドを使うのがよく、厚さは0.2〜0.3mm程度が適当である。
【0022】
本発明の実施の形態1でDCブラシレスモータで最も特徴的な部分はこのFPC基板9の形状と電機子5上のレイアウトにある。図1(a)に示すように、FPC基板9の形状は徳利形である。磁極位置センサ7は、磁極位置6を検出するために、漏れ磁束を検出するため可能な限りマグネットロータ4に近づける必要があり、徳利の口側部分の上に配置される。またドライバIC8は磁極位置センサ7より数倍の実装面積を必要とするため、固定子鉄心1の中心部分に実装される。また、モータの薄型化するため、コイルエンド長12に影響しないように巻線コイル3の位置を避け、FPC基板9の形状も徳利形で、これがベルト状のFPCリード部9aに繋がった形状となっている。すなわち、FPC基板9でドライバIC8に電気を給電するため、従来必要だったリード線を実装する必要がなく、リード線の外径寸法よりはるかに薄いFPC基板9を使い、しかも巻線コイル3を避けて固定子鉄心1(補強板10を含む)上にFPC基板9を配設するために、屈曲部11で巻線コイル3等のモータ側面形状に沿って屈曲(90°程度まで屈曲可能)させてFPCリード部9aを引き出すことができ、モータの薄型化が図れる。
【0023】
このように本実施の形態1においては、ドライバIC8や磁極位置センサ7等が実装されたFPC基板9を電機子5上にレイアウトすることで、従来の技術のように、コイルエンド長とギャップ、さらに基板の厚みと、補強板の厚み、実装部品の高さ、これに加えてドライバIC8に給電するためのリード線の外径寸法とを加算した寸法をDCブラシレスモータの厚みとする必要はない。すなわち、本実施の形態1では、固定子鉄心1の厚みにFPC基板9と補強板10を含めた厚みと、実装部品の高さを加算した寸法が、DCブラシレスモータの厚みを決定することになる。これにより、電源電圧5V、最大出力200mWのDCブラシレスモータを外径20mmの固定子鉄心で4mmの厚みとすることができた。なお、この厚み4mmというのは、従来の技術では7.5mm必要であったものであり、本実施の形態1のDCブラシレスモータはこれをほぼ半分の厚みとし、大幅な薄型化を実現するものである。
【0024】
(実施の形態2)
次に図2,図3を用いて本発明の実施の形態2について説明する。実施の形態2は、実施の形態1のDCブラシレスモータにおいて、マグネットロータ4の磁極位置検出の感度を向上させるものである。図2(a)は本発明の実施の形態2における4極4スロットのDCブラシレスモータの構成図、図2(b)は(a)のDCブラシレスモータのA−A断面図である。なお、図1と同一符号の構成に関しては同一内容であるから、説明を割愛する。
【0025】
実施の形態2のDCブラシレスモータは、実施の形態1と同様、第1の屈曲部11で巻線コイル3に沿って屈曲させてFPC基板9のFPCリード部9aを引き出すとともに、磁極位置センサ7とドライバIC8との間に更に第2の屈曲部11を設けている。すなわち、FPC基板9は、第2の屈曲部11で屈曲され、この部分に磁極位置センサ7の検出面がマグネットロータ4に対向させた状態で取り付けられる。当然ながら、部品を実装した部分の補強板10は第2の屈曲部11の部分では除かれる。これにより第2の屈曲部11を設け易くしている。そして、この磁極位置センサ7の検出面をマグネットロータ4に対向することで、磁極位置センサ7の感度が格段に向上する。この感度向上を(表1)を用いて説明する。(表1)は、磁界解析を用いて磁極位置センサの位置での磁束密度Bのベクトル値を解析したものである。この磁界解析の条件は、コア形状が外径20mm、厚さ0.5mmの4枚積層、6スロットコアであり、マグネットが内径22mm、コア積層方向の寸法3mm、表面磁束密度のピーク170mTである。
【0026】
【表1】

Figure 2004166401
解析した結果は、各位置での磁極位置センサ7の出力信号の大きさから算出された磁束密度値とほぼ一致する。(表1)によれば、ポイントxとポイントyのどちらのポイントにおいても、磁束密度はコア軸方向(スラスト方向)よりもコアラジアル方向が5〜6倍向上していることが分かる。また、マグネットからの距離が小さくなる(コア中心からの距離が大きい)ほどセンサ位置での磁束密度が大きくなる。
【0027】
ところで、ドライバIC8と磁極位置センサ7から規定されるモータ性能に関し、このバラツキをなくすための最低限の磁束密度は3mT以上である。従ってコア軸方向での検出、すなわち実施の形態1の構成ではモータ性能にかなりバラツキが生じることとなる。これに対し、実施の形態2の構成ではかなりマグネットから距離がはなれても、充分な磁極位置検出ができる磁束密度が存在する。例えば、マグネットから3.3mm(=22/2mm−7.7mm)離れても、4.15mTの磁束密度が存在することになり、モータ性能のバラツキがほとんど発生しなくなる。
【0028】
(実施の形態3)
実施の形態3は、実施の形態2のDCブラシレスモータをシールレスポンプの駆動部として使用した場合である。図3(a)は本発明の実施の形態3における4極4スロットのDCブラシレスモータを駆動部とするDCポンプの構成図、図3(b)は(a)のDCポンプのA−A断面図である。
【0029】
実施の形態3のDCポンプについて図3に基づいて説明する。実施の形態3のDCポンプは渦流ポンプもしくは摩擦ポンプであって、羽根車と一体のマグネットロータ4を水封し同時に固定子鉄心1を防水するための隔壁、すなわちキャンとなる分離板(後述する)を有し、マグネットロータ4が直接駆動され軸シールをもたないシールレスポンプである。図1,2と同一符号の構成に関しては同一内容であるから、説明を割愛する。
【0030】
図3(a),(b)において、13はシールレスポンプ内の循環水と電気部(電機子5とFPC基板9の実装部品)とを隔離するための分離板であり、14は固定子鉄心1をポンプ下方から分離板13に圧入して組み立てるとき、突極1aの上面と接触し、圧入位置を決定するコア圧入ストッパー、15はFPC基板9の厚み分だけコア圧入ストッパー14より上部に位置する基板固定用ストッパーである。なお、分離板13はマグネットロータ4を内部に収容したポンプケーシングということができる。
【0031】
実施の形態3のDCポンプは、組み立て時に分離板13の内周面と突極1aの外周面を接触させながら圧入固定する。マグネットロータ4と突極1aの位置が、コア圧入ストッパー14によってモータ性能を最大にする位置に確実に圧入される。このとき同時にポンプ性能も向上する。また、FPC基板9は基板固定用ストッパー15と突極1aに挟まれ簡単且つ確実に固定される。
【0032】
【発明の効果】
以上のように本発明のDCブラシレスモータによれば、モータの薄型化を飛躍的に実現できるとともに、個々のモータのモータ性能を安定化することができる。
【0033】
また、本発明のDCポンプは、DCブラシレスモータのモータ性能の安定性によってポンプ性能の安定化を実現できる。
【図面の簡単な説明】
【図1】(a)本発明の実施の形態1における4極4スロットのDCブラシレスモータの構成図
(b)(a)のDCブラシレスモータのA−A断面図
【図2】(a)本発明の実施の形態2における4極4スロットのDCブラシレスモータの構成図
(b)(a)のDCブラシレスモータのA−A断面図
【図3】(a)本発明の実施の形態3における4極4スロットのDCブラシレスモータを駆動部とするDCポンプの構成図
(b)(a)のDCポンプのA−A断面図
【図4】従来のDCブラシレスモータの構成図
【符号の説明】
1 固定子鉄心
1a 突極
2 ティース
3 巻線コイル
4,106 マグネットロータ
5,108 電機子
6 磁極位置
7,115 磁極位置センサ
8,113 ドライバIC
9 FPC基板
9a FPCリード部
10 補強板
11 屈曲部
12 コイルエンド長
13 分離板
14 コア圧入ストッパー
15 基板固定用ストッパー
107 ロータフレーム
108 電機子
110 巻線
111 リード線
112 基板
114 シールド板
116 コネクタ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thin, long-life, high-efficiency DC brushless motor that improves the sensitivity of a magnetic pole position sensor and a DC pump including the same.
[0002]
[Prior art]
Since an armature is used by winding a winding around a stator iron core, it is inevitably required to have physical space and tends to be mechanically large. Recently, demands for miniaturization and further reduction in thickness have been increasing.
[0003]
Hereinafter, a conventional DC brushless motor for thinning will be described with reference to FIG. FIG. 4 is a configuration diagram of a conventional DC brushless motor. In FIG. 4, the driver IC 113 is disposed on the substrate 112 so that the driver IC 113 is located near the center of the armature 108, and the shield plate 114 is disposed below the substrate 112. Is fixed, and the armature 108 is disposed so as to face the magnet rotor 106 held by the rotor frame 107, thereby constituting a DC brushless motor. A magnetic pole position sensor 115 for detecting the magnetic pole position of the magnet rotor 106 is also provided on the substrate 112. Upon receiving an output signal of the magnetic pole position sensor 115, the driver IC 113 flows through the winding 110 of the armature 108. Control the current. As a result, the armature 108 becomes an electromagnet, attracts and repels the magnetic poles of the magnet rotor 106, and generates a rotating torque on the magnet rotor 106.
[0004]
With this configuration, the pattern wiring from the driver IC 113 can be easily performed, and the area of the pattern wiring with respect to the substrate 112 can be reduced. Therefore, the outer shape of the substrate 112 can be reduced and the DC brushless motor can be used. Can be downsized. Further, there is no restriction from the coil wound around the armature 108, and a thinner DC brushless motor can be realized (for example, see Patent Document 1).
[0005]
[Patent Document 1]
Japanese Patent No. 3,106,582
[Problems to be solved by the invention]
However, in the configuration of the above-described conventional DC brushless motor, since the magnetic pole position sensor 115 and the board 112 for mounting the driver IC 113 are arranged with an appropriate gap provided from the coil end of the stator core, the thickness of the coil end and the board side are reduced. And the thickness of the motor is determined by the above, and the lead wire 111 is required to supply electricity to the substrate 112, and the outer diameter of the lead wire 111 cannot be neglected and the motor cannot be made thinner. Had. In addition, 116 is a connector.
[0007]
Also, in this conventional DC brushless motor, the length of the magnet rotor is not enough than the length of the stator core because of the need to reduce the thickness, so that the magnetic pole position cannot be reliably detected from the leakage magnetic flux, and stable motor performance is obtained. However, there was a problem that it could not be obtained.
[0008]
Further, the conventional DC pump is not thin and it is difficult to obtain stable pump performance.
[0009]
Therefore, an object of the present invention is to provide a thin DC brushless motor having a stable motor performance by reliably detecting the magnetic pole position of a magnet rotor.
[0010]
Another object of the present invention is to provide a thin DC pump having a stable output by reliably detecting the magnetic pole position of the magnet rotor.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a stator core having salient poles at the tips of a plurality of teeth, a magnet rotor rotating on the outer peripheral side of the salient poles, a winding coil wound around the teeth, and a salient pole. DC brushless motor including a magnetic pole position sensor for detecting a magnetic pole position of a magnet rotor, and a driver IC for controlling a current flowing through a winding coil in accordance with an output signal from the magnetic pole position sensor. And a flexible substrate on which at least the magnetic pole position sensor and the driver IC are mounted is mounted on the stator core at a position where the winding coil is not wound, and the lead portion of the flexible substrate is bent freely along the side surface shape of the motor. It is characterized by being drawn to.
[0012]
This makes it possible to reliably detect the magnetic pole position of the magnet rotor and achieve stable motor performance.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to solve the above-mentioned problems, the invention according to claim 1 includes a stator core having salient poles at the tips of a plurality of teeth, a magnet rotor rotating on the outer peripheral side of the salient poles, and a winding wound on the teeth. A magnetic pole position sensor that is disposed at a position surrounded by the wire coil and the salient poles and detects a magnetic pole position of the magnet rotor, and a driver IC that controls a current flowing through the winding coil based on an output signal from the magnetic pole position sensor. A DC brushless motor provided with a flexible substrate on which at least a magnetic pole position sensor and a driver IC are mounted is attached to a stator core at a position where a winding coil is not wound, and a lead portion of the motor extends along a side surface of the motor. DC brushless motor characterized by being drawn out to the outside so that it can be bent freely. A lead wire for supplying electricity to the Iva IC is not required, and a thin flexible substrate can be bent, so it can be attached to the stator core at a position avoiding the winding coil, and the thinning of the DC brushless motor has been dramatically reduced. In addition, it has the effect of improving the degree of freedom in assembling into equipment because it is thin.
[0014]
According to a second aspect of the present invention, there is provided the DC brushless motor according to the first aspect, wherein the flexible substrate is bent from a salient pole side surface to a surface facing the magnet rotor. Instead of detecting the magnetic pole position with the leakage magnetic flux of the magnet rotor, the detection is performed with the main magnetic flux, so that the detection sensitivity of the magnetic pole position is improved and the motor performance can be stabilized.
[0015]
According to a third aspect of the present invention, there is provided a DC pump including a casing in which the DC brushless motor according to the first or second aspect is used as a drive unit and a magnet rotor is water-sealed. The DC pump is characterized in that the DC pump can be thinned and a long life can be realized, the sensitivity of the magnetic pole position sensor is improved, and the pump performance is stabilized.
[0016]
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIG.
[0017]
(Embodiment 1)
FIG. 1A is a configuration diagram of a 4-pole, 4-slot DC brushless motor according to Embodiment 1 of the present invention, and FIG. 1B is an AA cross-sectional view of the DC brushless motor of FIG. 1 (a) and 1 (b), 1 is a stator core, 1a is a salient pole of the stator core 1, 2 is a tooth, 3 is a winding coil, 4 is a magnet rotor, 5 is an armature, and 6 is a magnetic pole. Position (break of magnetic pole), 7 is a magnetic pole position sensor, 8 is a driver IC, 9 is an FPC board (flexible board of the present invention), 9a is an FPC lead portion, 10 is a reinforcing plate, 11 is a bent portion, and 12 is a coil end. Long.
[0018]
As a material of the stator core 1, a silicon steel sheet having a large magnetic permeability and a thickness of about t = 0.2 to 0.5 mm is preferable in order to reduce iron loss and improve motor efficiency. The stator core 1 is formed by laminating a plurality of these steel plates. A portion of the arm extending radially from the center of the stator core 1 is a tooth 2, and a winding is applied to the portion of the tooth 2 to form a wound coil 3. The winding material of the winding coil 3 is generally a copper wire provided with a thin insulating film.
[0019]
By the way, the salient pole 1a facing the magnet rotor 4 takes in the magnetic flux from the magnet of the magnet rotor 4 into the stator core 1 as much as possible, and at the same time, secures a part where the winding coil 3 can be wound. It has a wider shape compared to. The armature 5 includes such a stator core 1 and a winding coil 3 wound therearound. Further, the magnet of the magnet rotor 4 is preferably a ferrite or a metal-based magnetic material (SmCo or the like) which can be a permanent magnet.
[0020]
The magnet rotor 4 is attracted or repelled by the magnetic force of the electromagnet formed in each of the teeth 2 in turn by passing a current through the winding coil 3, generating a torque in the direction of the magnetic field and starting to rotate around the armature 5. At this time, in order to efficiently generate the torque, it is necessary to switch the direction of the current flowing through the winding coil 3 with good timing. In order to make the switching timing accurate, a magnetic pole position sensor 7 is provided, which detects the magnetic pole position (magnetic pole break) 6 of the magnet rotor 4 and outputs it as a timing signal. The timing signal generated by the magnetic pole position sensor 7 is input to the driver IC 8, and the driver IC 8 switches the direction of the current flowing through the winding coil 3 based on the timing signal. As a result, the polarities of the magnetic poles of the electromagnet generated at the four salient poles 1a are switched.
[0021]
Incidentally, the magnetic pole position sensor 7 and the driver IC 8 are mounted on a bendable FPC board 9. As a material of the FPC board 9, polyimide having heat resistance (thickness t = about 0.1 mm) or the like is appropriate. In addition, it is preferable to attach a reinforcing plate 10 to a portion where the electronic components such as the magnetic pole position sensor 7 and the driver IC 8 are mounted, on the side opposite to the mounting surface of the FPC board 9. Generally, the reinforcing plate 10 is preferably made of a heat-resistant glass fiber-containing epoxy substrate (commonly called glass epoxy substrate) or the same polyimide as the FPC substrate 9, and has a thickness of about 0.2 to 0.3 mm. Is appropriate.
[0022]
The most characteristic parts of the DC brushless motor according to the first embodiment of the present invention are the shape of the FPC board 9 and the layout on the armature 5. As shown in FIG. 1A, the shape of the FPC board 9 is a smart shape. The magnetic pole position sensor 7 needs to be as close as possible to the magnet rotor 4 in order to detect the magnetic flux leakage in order to detect the magnetic pole position 6, and is disposed on the mouth portion of the bottle. The driver IC 8 requires a mounting area several times larger than that of the magnetic pole position sensor 7, and is therefore mounted at the center of the stator core 1. In order to make the motor thinner, the position of the winding coil 3 is avoided so as not to affect the coil end length 12, and the shape of the FPC board 9 is also a profitable shape, which is different from the shape connected to the belt-shaped FPC lead portion 9a. Has become. That is, since power is supplied to the driver IC 8 by the FPC board 9, it is not necessary to mount a lead wire which has been required conventionally, and the FPC board 9 which is much thinner than the outer diameter of the lead wire is used. In order to avoid disposing the FPC board 9 on the stator core 1 (including the reinforcing plate 10), it is bent along the side surface of the motor such as the winding coil 3 at the bending portion 11 (it can be bent to about 90 °). Thus, the FPC lead portion 9a can be pulled out, and the motor can be made thinner.
[0023]
As described above, in the first embodiment, by laying out the FPC board 9 on which the driver IC 8 and the magnetic pole position sensor 7 are mounted on the armature 5, the coil end length and the gap can be reduced as in the related art. Further, it is not necessary to make the thickness of the DC brushless motor the sum of the thickness of the substrate, the thickness of the reinforcing plate, the height of the mounted component, and the outer diameter of the lead wire for supplying power to the driver IC 8. . That is, in the first embodiment, the dimension obtained by adding the thickness of the stator core 1 including the FPC board 9 and the reinforcing plate 10 and the height of the mounted component determines the thickness of the DC brushless motor. Become. As a result, a DC brushless motor having a power supply voltage of 5 V and a maximum output of 200 mW was able to have a stator core having an outer diameter of 20 mm and a thickness of 4 mm. The thickness of 4 mm is required to be 7.5 mm in the prior art, and the DC brushless motor according to the first embodiment has a thickness almost half that of the DC brushless motor of the first embodiment, thereby realizing a significant reduction in thickness. It is.
[0024]
(Embodiment 2)
Next, a second embodiment of the present invention will be described with reference to FIGS. The second embodiment is to improve the sensitivity of detecting the magnetic pole position of the magnet rotor 4 in the DC brushless motor of the first embodiment. FIG. 2A is a configuration diagram of a 4-pole, 4-slot DC brushless motor according to Embodiment 2 of the present invention, and FIG. 2B is an AA cross-sectional view of the DC brushless motor of FIG. Note that the configuration of the same reference numerals as those in FIG.
[0025]
As in the first embodiment, the DC brushless motor according to the second embodiment bends along the winding coil 3 at the first bending portion 11 to pull out the FPC lead portion 9 a of the FPC board 9, and the magnetic pole position sensor 7. A second bent portion 11 is further provided between the second bent portion 11 and the driver IC 8. That is, the FPC board 9 is bent at the second bent portion 11, and is attached to this portion with the detection surface of the magnetic pole position sensor 7 facing the magnet rotor 4. As a matter of course, the reinforcing plate 10 where the component is mounted is removed at the portion of the second bent portion 11. This facilitates the provision of the second bent portion 11. Then, by making the detection surface of the magnetic pole position sensor 7 face the magnet rotor 4, the sensitivity of the magnetic pole position sensor 7 is remarkably improved. This sensitivity improvement will be described with reference to (Table 1). Table 1 shows the analysis of the vector value of the magnetic flux density B at the position of the magnetic pole position sensor using the magnetic field analysis. The conditions of the magnetic field analysis are as follows: a four-layer, six-slot core having a core shape of 20 mm in outer diameter and 0.5 mm in thickness, a magnet of 22 mm in inner diameter, a dimension of 3 mm in the core lamination direction, and a peak of surface magnetic flux density of 170 mT. .
[0026]
[Table 1]
Figure 2004166401
The result of the analysis substantially matches the magnetic flux density value calculated from the magnitude of the output signal of the magnetic pole position sensor 7 at each position. According to Table 1, at both points x and y, the magnetic flux density is improved 5 to 6 times in the core radial direction than in the core axial direction (thrust direction). Further, the smaller the distance from the magnet (the larger the distance from the center of the core), the larger the magnetic flux density at the sensor position.
[0027]
By the way, with respect to the motor performance defined by the driver IC 8 and the magnetic pole position sensor 7, the minimum magnetic flux density for eliminating this variation is 3 mT or more. Accordingly, in the detection in the core axis direction, that is, in the configuration of the first embodiment, there is considerable variation in motor performance. On the other hand, in the configuration of the second embodiment, there is a magnetic flux density that can sufficiently detect the magnetic pole position even if the distance from the magnet is considerably large. For example, even if the magnet is separated by 3.3 mm (= 22/2 mm-7.7 mm), a magnetic flux density of 4.15 mT is present, and variation in motor performance hardly occurs.
[0028]
(Embodiment 3)
Embodiment 3 is a case where the DC brushless motor of Embodiment 2 is used as a drive unit of a sealless pump. FIG. 3A is a configuration diagram of a DC pump using a 4-pole, 4-slot DC brushless motor as a driving unit according to Embodiment 3 of the present invention, and FIG. 3B is a cross-sectional view of the DC pump taken along line AA of FIG. FIG.
[0029]
Third Embodiment A DC pump according to a third embodiment will be described with reference to FIG. The DC pump according to the third embodiment is a vortex pump or a friction pump, and is a partition wall for water-sealing the magnet rotor 4 integrated with the impeller and simultaneously waterproofing the stator core 1, that is, a separation plate serving as a can (described later). ), Wherein the magnet rotor 4 is directly driven and has no shaft seal. 1 and 2 have the same contents and will not be described.
[0030]
3 (a) and 3 (b), reference numeral 13 denotes a separation plate for separating the circulating water in the sealless pump from the electric part (the mounting parts of the armature 5 and the FPC board 9), and reference numeral 14 denotes a stator. When the iron core 1 is press-fitted into the separating plate 13 from below the pump, the core press-in stopper 15 that comes into contact with the upper surface of the salient pole 1a and determines the press-in position is positioned above the core press-in stopper 14 by the thickness of the FPC board 9. This is a stopper for fixing the substrate. The separation plate 13 can be called a pump casing in which the magnet rotor 4 is housed.
[0031]
The DC pump according to the third embodiment is press-fitted and fixed while assembling the inner peripheral surface of the separation plate 13 and the outer peripheral surface of the salient pole 1a during assembly. The positions of the magnet rotor 4 and the salient poles 1a are reliably press-fitted by the core press-in stopper 14 to a position where the motor performance is maximized. At this time, the pump performance is also improved. Further, the FPC board 9 is easily and securely fixed between the board fixing stopper 15 and the salient pole 1a.
[0032]
【The invention's effect】
As described above, according to the DC brushless motor of the present invention, it is possible to dramatically reduce the thickness of the motor and to stabilize the motor performance of each motor.
[0033]
In addition, the DC pump of the present invention can realize the stability of the pump performance by the stability of the motor performance of the DC brushless motor.
[Brief description of the drawings]
1A is a configuration diagram of a DC brushless motor having four poles and four slots according to the first embodiment of the present invention; FIG. 2B is a cross-sectional view of the DC brushless motor taken along line AA of FIG. FIG. 3A is a cross-sectional view of the DC brushless motor having four poles and four slots according to the second embodiment of the present invention. FIG. FIG. 4B is a configuration diagram of a DC pump using a DC brushless motor having four poles as a drive unit, and FIG. 4B is a cross-sectional view of the DC pump taken along line AA of FIG.
DESCRIPTION OF SYMBOLS 1 Stator iron core 1a Salient pole 2 Teeth 3 Winding coil 4,106 Magnet rotor 5,108 Armature 6 Magnetic pole position 7,115 Magnetic pole position sensor 8,113 Driver IC
9 FPC board 9a FPC lead portion 10 reinforcing plate 11 bent portion 12 coil end length 13 separation plate 14 core press-in stopper 15 board fixing stopper 107 rotor frame 108 armature 110 winding 111 lead wire 112 board 114 shield plate 116 connector

Claims (3)

複数のティースの先端にそれぞれ突極を有する固定子鉄心と、
前記突極の外周側で回転するマグネットロータと、
前記ティースに巻かれた巻線コイルと前記突極とに囲まれた位置に配置されて、前記マグネットロータの磁極位置を検出する磁極位置センサと、
前記磁極位置センサからの出力信号によって前記巻線コイルに流す電流を制御するドライバICとを備えたDCブラシレスモータであって、
少なくとも前記磁極位置センサと前記ドライバICを実装したフレキシブル基板が、前記巻線コイルが巻かれていない位置で前記固定子鉄心に取り付けられるとともに、そのリード部がモータ側面形状に沿って屈曲自在に外部に引き出されたことを特徴とするDCブラシレスモータ。
A stator core having salient poles at the tips of a plurality of teeth,
A magnet rotor rotating on the outer peripheral side of the salient pole;
A magnetic pole position sensor disposed at a position surrounded by the winding coil wound around the teeth and the salient pole, and detecting a magnetic pole position of the magnet rotor;
A DC brushless motor comprising: a driver IC that controls a current flowing through the winding coil according to an output signal from the magnetic pole position sensor.
At least a flexible substrate on which the magnetic pole position sensor and the driver IC are mounted is attached to the stator core at a position where the winding coil is not wound, and a lead portion of the flexible core is bent along the motor side shape. A brushless DC motor, wherein the brushless motor is drawn.
前記フレキシブル基板が前記突極側面から前記マグネットロータと対向する面に屈曲されたことを特徴とする請求項1記載のDCブラシレスモータ。2. The DC brushless motor according to claim 1, wherein the flexible substrate is bent from the side surface of the salient pole to a surface facing the magnet rotor. 請求項1または2記載のDCブラシレスモータを駆動部とし、前記マグネットロータを水封したケーシングを備えたDCポンプであって、前記電機子の形成する磁界によって前記マグネットロータが前記ケーシング内で回転されることを特徴とするDCポンプ。3. A DC pump having a casing in which the DC brushless motor according to claim 1 or 2 is used as a drive unit and the magnet rotor is water-sealed, wherein the magnet rotor is rotated in the casing by a magnetic field formed by the armature. A DC pump, characterized in that:
JP2002329436A 2002-11-13 2002-11-13 DC brushless motor and DC pump provided with the same Expired - Fee Related JP4186593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002329436A JP4186593B2 (en) 2002-11-13 2002-11-13 DC brushless motor and DC pump provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002329436A JP4186593B2 (en) 2002-11-13 2002-11-13 DC brushless motor and DC pump provided with the same

Publications (2)

Publication Number Publication Date
JP2004166401A true JP2004166401A (en) 2004-06-10
JP4186593B2 JP4186593B2 (en) 2008-11-26

Family

ID=32807438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002329436A Expired - Fee Related JP4186593B2 (en) 2002-11-13 2002-11-13 DC brushless motor and DC pump provided with the same

Country Status (1)

Country Link
JP (1) JP4186593B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254022A (en) * 2008-04-01 2009-10-29 Asmo Co Ltd Axial gap motor
CN102483445A (en) * 2009-08-21 2012-05-30 罗伯特·博世有限公司 Magnetic field sensor and method for producing a magnetic field sensor
WO2012132850A1 (en) * 2011-03-28 2012-10-04 Ntn株式会社 Rotation and drive device and centrifugal pump device using same
WO2014031400A1 (en) * 2012-08-24 2014-02-27 Stanadyne Corporation Integrated brushless direct current motor and lift pump
US8827661B2 (en) 2008-06-23 2014-09-09 Thoratec Corporation Blood pump apparatus
US9068572B2 (en) 2010-07-12 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
US9067005B2 (en) 2008-12-08 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
US9132215B2 (en) 2010-02-16 2015-09-15 Thoratee Corporation Centrifugal pump apparatus
US9133854B2 (en) 2010-03-26 2015-09-15 Thoratec Corporation Centrifugal blood pump device
US9366261B2 (en) 2012-01-18 2016-06-14 Thoratec Corporation Centrifugal pump device
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9381285B2 (en) 2009-03-05 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
US9382908B2 (en) 2010-09-14 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
US9410549B2 (en) 2009-03-06 2016-08-09 Thoratec Corporation Centrifugal pump apparatus
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
US9713663B2 (en) 2013-04-30 2017-07-25 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
CN109067099A (en) * 2018-09-25 2018-12-21 深圳市千代机电设备有限公司 A kind of FPC winding motor and generator
US10166318B2 (en) 2015-02-12 2019-01-01 Tc1 Llc System and method for controlling the position of a levitated rotor
US10245361B2 (en) 2015-02-13 2019-04-02 Tc1 Llc Impeller suspension mechanism for heart pump
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
US10506935B2 (en) 2015-02-11 2019-12-17 Tc1 Llc Heart beat identification and pump speed synchronization
JP7046290B1 (en) * 2021-07-08 2022-04-01 三菱電機株式会社 Position detector and linear transfer device
DE102010005854B4 (en) 2010-01-26 2023-03-02 Pierburg Gmbh actuator
EP4135171A4 (en) * 2020-04-08 2024-05-01 Nidec Servo Corporation Single phase brushless dc motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6062756B2 (en) * 2013-02-06 2017-01-18 株式会社デンソー Rotating electric machine

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254022A (en) * 2008-04-01 2009-10-29 Asmo Co Ltd Axial gap motor
US8827661B2 (en) 2008-06-23 2014-09-09 Thoratec Corporation Blood pump apparatus
US9109601B2 (en) 2008-06-23 2015-08-18 Thoratec Corporation Blood pump apparatus
US9067005B2 (en) 2008-12-08 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
US9381285B2 (en) 2009-03-05 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
US9410549B2 (en) 2009-03-06 2016-08-09 Thoratec Corporation Centrifugal pump apparatus
CN102483445A (en) * 2009-08-21 2012-05-30 罗伯特·博世有限公司 Magnetic field sensor and method for producing a magnetic field sensor
CN102483445B (en) * 2009-08-21 2014-08-13 罗伯特·博世有限公司 Magnetic field sensor and method for producing a magnetic field sensor
US9030198B2 (en) 2009-08-21 2015-05-12 Robert Bosch Gmbh Magnetic field sensor and method for producing a magnetic field sensor
DE102010005854B4 (en) 2010-01-26 2023-03-02 Pierburg Gmbh actuator
US9132215B2 (en) 2010-02-16 2015-09-15 Thoratee Corporation Centrifugal pump apparatus
US9133854B2 (en) 2010-03-26 2015-09-15 Thoratec Corporation Centrifugal blood pump device
US9068572B2 (en) 2010-07-12 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
US9382908B2 (en) 2010-09-14 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
US9638202B2 (en) 2010-09-14 2017-05-02 Tc1 Llc Centrifugal pump apparatus
US9850906B2 (en) 2011-03-28 2017-12-26 Tc1 Llc Rotation drive device and centrifugal pump apparatus employing same
JP5969979B2 (en) * 2011-03-28 2016-08-17 ソーラテック コーポレイション Rotation drive device and centrifugal pump device using the same
WO2012132850A1 (en) * 2011-03-28 2012-10-04 Ntn株式会社 Rotation and drive device and centrifugal pump device using same
US9366261B2 (en) 2012-01-18 2016-06-14 Thoratec Corporation Centrifugal pump device
WO2014031400A1 (en) * 2012-08-24 2014-02-27 Stanadyne Corporation Integrated brushless direct current motor and lift pump
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9709061B2 (en) 2013-01-24 2017-07-18 Tc1 Llc Impeller position compensation using field oriented control
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US9713663B2 (en) 2013-04-30 2017-07-25 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US11724094B2 (en) 2013-04-30 2023-08-15 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US10980928B2 (en) 2013-04-30 2021-04-20 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
US10456513B2 (en) 2013-04-30 2019-10-29 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
US10856748B2 (en) 2015-02-11 2020-12-08 Tc1 Llc Heart beat identification and pump speed synchronization
US11712167B2 (en) 2015-02-11 2023-08-01 Tc1 Llc Heart beat identification and pump speed synchronization
US10506935B2 (en) 2015-02-11 2019-12-17 Tc1 Llc Heart beat identification and pump speed synchronization
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
US10166318B2 (en) 2015-02-12 2019-01-01 Tc1 Llc System and method for controlling the position of a levitated rotor
US11781551B2 (en) 2015-02-12 2023-10-10 Tc1 Llc Alternating pump gaps
US11724097B2 (en) 2015-02-12 2023-08-15 Tc1 Llc System and method for controlling the position of a levitated rotor
US11015605B2 (en) 2015-02-12 2021-05-25 Tc1 Llc Alternating pump gaps
US10874782B2 (en) 2015-02-12 2020-12-29 Tc1 Llc System and method for controlling the position of a levitated rotor
US10245361B2 (en) 2015-02-13 2019-04-02 Tc1 Llc Impeller suspension mechanism for heart pump
US11639722B2 (en) 2015-11-16 2023-05-02 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US10888645B2 (en) 2015-11-16 2021-01-12 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
CN109067099A (en) * 2018-09-25 2018-12-21 深圳市千代机电设备有限公司 A kind of FPC winding motor and generator
CN109067099B (en) * 2018-09-25 2023-10-03 深圳市千代机电设备有限公司 FPC winding motor and generator
EP4135171A4 (en) * 2020-04-08 2024-05-01 Nidec Servo Corporation Single phase brushless dc motor
WO2023281687A1 (en) * 2021-07-08 2023-01-12 三菱電機株式会社 Position detector and linear conveyance device
JP7046290B1 (en) * 2021-07-08 2022-04-01 三菱電機株式会社 Position detector and linear transfer device

Also Published As

Publication number Publication date
JP4186593B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JP2004166401A (en) Dc brushless motor and dc pump equipped therewith
JP2699655B2 (en) Brushless motor and its magnetic sensor installation method
JP4083324B2 (en) Rotating electrical equipment
EP0161032A1 (en) Electric motor
CN109891708B (en) Laminated stator using multilayer substrate and in-vehicle sensor using the same
JP2009033786A (en) Inner rotor brushless motor incorporating bus bar
KR101916265B1 (en) Slim Type Stator, Sensorless Type Single Phase Motor and Cooling Fan Using the Same
JP2007318885A (en) Brushless motor
EP1968173A3 (en) Electronically commutatable external rotor motor with a conductor board
EP1492215B1 (en) DC brushless vibration motor
JP2007135395A (en) Flat vibration motor
JP5200521B2 (en) Motor and cooling fan
CN87106152A (en) Motor with velocity indicating device
US20080143210A1 (en) Three-phase motor stator
JP4479188B2 (en) DC can pump
EP1221758B1 (en) Actuator capable of revolving
KR20000057152A (en) Electronically switched two phases reluctance machine
JP2010004598A (en) Controller integrated dynamo-electric machine
JP2007218163A (en) Pump and pump system
JP2004222356A (en) Rotating electric equipment
JP2021023045A (en) motor
JP2003134773A (en) Self-starting synchronous motor and compressor using the same
WO2009120046A2 (en) Direct current brushless vibration motor
JP3741091B2 (en) DC brushless motor and sealless pump using it
KR100979720B1 (en) Stator of vibrator motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees