[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004163372A - Measuring apparatus for electromagnetic waves - Google Patents

Measuring apparatus for electromagnetic waves Download PDF

Info

Publication number
JP2004163372A
JP2004163372A JP2002332403A JP2002332403A JP2004163372A JP 2004163372 A JP2004163372 A JP 2004163372A JP 2002332403 A JP2002332403 A JP 2002332403A JP 2002332403 A JP2002332403 A JP 2002332403A JP 2004163372 A JP2004163372 A JP 2004163372A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
antenna
waves
electromagnetic
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002332403A
Other languages
Japanese (ja)
Inventor
Yukio Yamamoto
幸雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002332403A priority Critical patent/JP2004163372A/en
Publication of JP2004163372A publication Critical patent/JP2004163372A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for measuring electromagnetic waves which can accurately measure the intensity of an electromagnetic wave. <P>SOLUTION: The electromagnetic wave measuring apparatus includes an anechoic chamber, constituted of a wall surface for absorbing the electromagnetic waves to form a regular hexagonal shape region isolated from an external world, a turntable disposed at the center of the regular hexagon shape for placing a device to be measured for radiating the waves, three antennas disposed on a straight line for connecting each mid-point of every other three sides of the six sides of the hexagonal shape to the central position of the hexagonal shape so that the directional gain in a direction perpendicular to the line is substantially zero, and a radio wave absorbing plate disposed between the three antennas to absorb the wave. Since in this constitution, the paths of the waves reflected once and received by the antenna 26 are only two paths L2 and the directional gains of the antenna 26 in the direction of this path is substantially zero, and accordingly, the components of these waves do not affect the intensities of the waves to be measured. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電波暗室の内部にアンテナ及び被測定機器を配置し、該被測定機器が放射する電磁波の強度を計測する電磁波測定装置に関する。
【0002】
【従来の技術】
従来より、電波暗室内部にアンテナを配置して構成された電磁波測定装置が、電子機器などの被測定機器から放射される電磁波の計測に用いられている。
【0003】
図3には、従来技術に係る電磁波測定装置10の一例が示されている。この電磁波測定装置10では、長方形の領域を囲む電波暗室12の内部にアンテナ支持台14が設置され、このアンテナ支持台14にアンテナ16を一台を取り付けて、回転するターンテーブル18上に載置された被測定機器19が放射する電磁波の測定が実施される。この電磁波測定では、周波数帯域ごとに異なる種類のアンテナ16を用いて計測が行われ、また、アンテナ16を回転するなどして偏波面を変更する必要もある。そのため、測定中には、作業者により、アンテナ16を付け替えたり、アンテナ16の偏波面を変更する作業が行われる。
【0004】
また、別の従来技術に係る電磁波測定装置の一例が、特開2001−116785号公報に示されている。この電磁波測定装置では、電波暗室又はオープンサイトにターンテーブルが配置され、このターンテーブル上に載置された被測定機器により放射される電磁波が、ターンテーブルから所定測定距離の位置に設置した複数のアンテナを用いて測定される。この電磁波測定装置では、電磁波は複数のアンテナで同時に測定されるため、アンテナの付け替え、偏波面変更の作業が省力化され、電磁波の測定時間が短縮されるという利点がある。
【0005】
【特許文献1】
特開2001−116785号公報
【0006】
【発明が解決しようとする課題】
上述の電磁波強度の測定においては、被測定機器から直線的に直接飛来する電磁波のみが計測されることが理想的であり好ましい。しかし、実際には、電波暗室の壁面で反射して、アンテナに到達する電磁波が存在し、測定精度に影響を与えている。このような電磁波のうち、壁面で2回以上反射した電磁波は、その強度が十分に小さくなり、測定精度への影響がほとんどない。しかし、電波暗室の壁面で1回だけ反射された電磁波は、無視できない程度の強度があり、電磁波強度の測定精度に影響を与えてしまう、といった問題がある。特開2001−116785号に開示される技術においても、電波暗室の形状は特定されていないが、同様な問題が生じ得る。
【0007】
また、特開2001−116785号に開示される技術では、複数のアンテナが並べて配置されるため、アンテナ同士の電磁的な結合が生じ、電磁波測定の精度に影響を与えてしまう、といった問題もある。
【0008】
本発明は、上述の課題に鑑みてなされたものであり、精度良く電磁波強度の測定を行うことができる電磁波測定装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、被測定機器が放射する電磁波の強度を測定するための電磁波測定装置であって、電磁波を吸収する壁面で構成され、外界から隔離した正六角形形状の領域を形成する電波暗室と、前記正六角形形状の中心に配置され、電磁波を放射する被測定機器を載置するためのターンテーブルと、前記正六角形形状の6辺のうち1つおきの3辺の各中点と前記正六角形形状の中心位置とを結ぶ直線上に配置され、前記直線に垂直な方向の指向性利得がほぼゼロである3つのアンテナと、前記3つのアンテナ間に配置され、電磁波を吸収する電波吸収板と、を備えたものである。
【0010】
電磁波測定装置をこのような構成とすることにより、電波暗室の壁面で1回反射してアンテナに到達する電磁波は、アンテナの指向性利得がほぼゼロである方向からアンテナに受信されるため、1回反射した電磁波が測定精度に影響を与えることを防止することができる。また、複数のアンテナ間には電波吸収板が配置されているため、アンテナ同士の電磁的な結合を防止することができる。
【0011】
また、前記電波吸収板は、その板面を、前記正六角形形状の中心位置を通る直線に、あわせて配置されることも好ましい。このように電波吸収板が配置されることにより、被測定機器から放射される電磁波は、電波吸収板で反射することがない。よって、電磁波が電波吸収板で反射してアンテナに到達することが未然に防止される。
【0012】
【発明の実施の形態】
以下に、図面を参照して、本発明の実施形態について説明する。
【0013】
図1は、本発明の実施形態に係る電磁波測定装置20の概略構成を示す構成図である。この図1は、電磁波測定装置20を上方から見た図である。
【0014】
電磁波測定装置20では、電波を吸収する特性を有する複数の壁面が、正六角形の各辺の位置に配置されることで、電波暗室22が形成されている。この電波暗室22の正六角形形状の内側の領域は、外界から電磁波が到来しない隔離された領域となっている。また、この領域の上方は、電波を吸収する天井で覆われている。
【0015】
この電波暗室22内部の正六角形領域の中心には、その上に被測定機器を載置可能であり、非導電性の素材で構成されたターンテーブル28が配置されている。ターンテーブル28は電波暗室22の中心を回転軸として所定速度で回転する。また、電波暗室22の中心と、電波暗室22の6辺のうち1つおきの3辺の各中点とを結ぶ各直線L1上には、電磁波を測定するためのアンテナ26が配置されている。アンテナ26は、例えばホーンアンテナ、ダブルリッジドアンテナである。全てのアンテナ26は、同じ条件で測定が行えるように、電波暗室22の中心から所定の測定距離r1の位置に配置されている。これらのアンテナ26は、それぞれアンテナ支持台24に取り付けられている。アンテナ26は、アンテナ支持台24に取り付け/取り外しが可能であり、また、その取り付け高さ及び偏波面も調節可能である。各アンテナ26には、スペクトラムアナライザ32が接続されており、被測定機器が放射した電磁波の強度を測定可能である。また、各アンテナ26の中間には、アンテナ26同士の電磁的な結合を防止するための電波吸収板30が配置されている。この電波吸収板30は、電波暗室22の中心を通る直線に、その板面を合わせて配置されている。このように電波暗室22内部に3つのアンテナ26が配置されると、3つのアンテナによる計測を同時に行うことができるため、測定作業及び測定時間の効率化が図られる。
【0016】
次に、上述した構成の本実施形態に係る電磁波測定装置20が、電磁波強度の測定精度の低下を防止する作用について説明する。図2は、図1の電磁波測定装置20を用いて、被測定機器34から放射される電磁波を測定する際の状況を示している。この図2において、アンテナ26は点で表されている。このアンテナ26は、電波暗室22の中心方向と壁面方向に指向性A1,A2を有し、アンテナ26と電波暗室22の中心を結ぶ直線と垂直な方向の指向性利得はほぼゼロである。
【0017】
測定時には、ターンテーブル28が回転するため、被測定機器34から放射される電磁波は、電波暗室22内の全ての方向に放射される。この際、被測定機器34からアンテナ26に直接に放射される電磁波が、アンテナ26で測定すべき電磁波であるが、一部の電磁波は電波暗室22の壁面で一回反射してアンテナ26に到達する。本実施形態では、電波暗室22が六角形形状であり、且つ、アンテナ26が配置される位置は電波暗室の中心と壁面の中点を結ぶ直線上であるため、一回反射してアンテナ26に受信される電磁波の経路は、図中示される2つの経路L2のみである。そして、さらに、この2経路の電磁波がアンテナ26に受信される方向、すなわち、中心と中点を結ぶ直線におよそ垂直な方向は、アンテナ26の指向性利得がほぼゼロであるため、これらの電磁波成分は、測定される電磁波強度に影響せず、測定精度の低下が防止されている。
【0018】
また、本実施形態では、各アンテナ26間に電波吸収板30が配置されているため、アンテナ26の結合、すなわち、電磁波の受信特性について、アンテナ26同士が互いに与える影響が低減され、よって、電磁波の測定精度の低下が防止されている。さらに、このアンテナ26は、正六角形形状の中心位置を通る直線に、電波吸収板30の板面があわせて配置されているため、電波吸収板30による電磁波の反射が発生することがない。すなわち、電波吸収板30によるアンテナ26方向への電磁波の反射がなく、この点においても、測定精度の低下が防止されている。
【0019】
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、等価な範囲で様々な変形が可能である。例えば、床面に電波吸収体を敷設して、電磁波が床面で反射され、アンテナ26で受信されることを防止してもよい。
【0020】
【発明の効果】
本発明では、正六角形形状の電波暗室の内部において、電波暗室の中心と一壁面の中点を結ぶ直線上にアンテナが配置され、且つ、その直線の垂直な方向にはアンテナの指向性がほぼゼロであるため、電波暗室の壁面で反射した電磁波による、電磁波強度の測定精度の低下を防止することができる。
【0021】
また、アンテナ間に電波吸収板が配置されるため、アンテナ間の結合が低減され、電磁波強度の測定精度の低下を防止することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る電磁波測定装置の概略構成を示す構成図である。
【図2】被測定機器から放射される電磁波を測定する際の状況を示す説明図である。
【図3】従来技術に係る電磁波測定装置の概略構成を示す構成図である。
【符号の説明】
10,20 電磁波測定装置、12,22 電波暗室、14,24 アンテナ支持台、16,26 アンテナ、18,28 ターンテーブル、30 電波吸収板、32 スペクトラムアナライザ、34 被測定機器。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electromagnetic wave measuring device in which an antenna and a device to be measured are arranged inside an anechoic chamber and the intensity of electromagnetic waves emitted by the device to be measured is measured.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an electromagnetic wave measuring device configured by disposing an antenna inside an anechoic chamber has been used for measuring electromagnetic waves radiated from a device to be measured such as an electronic device.
[0003]
FIG. 3 shows an example of the electromagnetic wave measuring apparatus 10 according to the related art. In the electromagnetic wave measuring apparatus 10, an antenna support 14 is installed inside an anechoic chamber 12 surrounding a rectangular area, and one antenna 16 is mounted on the antenna support 14 and placed on a rotating turntable 18. The measurement of the electromagnetic wave radiated by the measured device 19 is performed. In this electromagnetic wave measurement, measurement is performed using a different type of antenna 16 for each frequency band, and it is necessary to change the plane of polarization by rotating the antenna 16 or the like. Therefore, during the measurement, an operator performs an operation of replacing the antenna 16 or changing a polarization plane of the antenna 16.
[0004]
An example of another conventional electromagnetic wave measuring device is disclosed in Japanese Patent Application Laid-Open No. 2001-116785. In this electromagnetic wave measuring device, a turntable is arranged in an anechoic chamber or open site, and a plurality of electromagnetic waves radiated by a device to be measured mounted on the turntable are set at a predetermined measurement distance from the turntable. It is measured using an antenna. In this electromagnetic wave measuring apparatus, since the electromagnetic wave is measured by a plurality of antennas at the same time, there is an advantage that the work of replacing the antenna and changing the plane of polarization can be saved and the measuring time of the electromagnetic wave can be shortened.
[0005]
[Patent Document 1]
JP 2001-116785 A
[Problems to be solved by the invention]
In the above-described measurement of the electromagnetic wave intensity, it is ideal and preferable to measure only the electromagnetic waves that directly fly directly from the device to be measured. However, actually, there is an electromagnetic wave that is reflected on the wall surface of the anechoic chamber and reaches the antenna, which affects the measurement accuracy. Among such electromagnetic waves, the intensity of the electromagnetic wave reflected twice or more on the wall surface is sufficiently small, and hardly affects measurement accuracy. However, the electromagnetic wave reflected only once on the wall of the anechoic chamber has a non-negligible intensity, and has a problem that the measurement accuracy of the electromagnetic wave intensity is affected. In the technology disclosed in JP-A-2001-116785, the shape of the anechoic chamber is not specified, but a similar problem may occur.
[0007]
Further, in the technique disclosed in Japanese Patent Application Laid-Open No. 2001-116785, since a plurality of antennas are arranged side by side, there is a problem that electromagnetic coupling between the antennas occurs and affects the accuracy of electromagnetic wave measurement. .
[0008]
The present invention has been made in view of the above-described problems, and has as its object to provide an electromagnetic wave measuring device that can accurately measure electromagnetic wave intensity.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is an electromagnetic wave measuring device for measuring the intensity of an electromagnetic wave emitted by a device under test, comprising an electromagnetic wave absorbing wall surface, a regular hexagonal shape isolated from the outside world An anechoic chamber forming an area of the above, a turntable arranged at the center of the regular hexagonal shape for mounting a device to be measured that radiates electromagnetic waves, and three every three sides of the six sides of the regular hexagonal shape. Three antennas arranged on a straight line connecting each midpoint of the side and the center position of the regular hexagonal shape, and three antennas having a directional gain in a direction perpendicular to the straight line being substantially zero, and being arranged between the three antennas; And a radio wave absorbing plate for absorbing electromagnetic waves.
[0010]
With such a configuration of the electromagnetic wave measuring device, the electromagnetic wave that is reflected once on the wall of the anechoic chamber and reaches the antenna is received by the antenna from a direction in which the directional gain of the antenna is almost zero. It is possible to prevent the reflected electromagnetic wave from affecting the measurement accuracy. Further, since the radio wave absorbing plate is disposed between the plurality of antennas, electromagnetic coupling between the antennas can be prevented.
[0011]
It is also preferable that the radio wave absorbing plate is arranged so that its plate surface is aligned with a straight line passing through the center of the regular hexagon. By arranging the radio wave absorbing plate in this way, the electromagnetic wave radiated from the device to be measured is not reflected by the radio wave absorbing plate. Therefore, the electromagnetic wave is prevented from being reflected by the radio wave absorbing plate and reaching the antenna.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 is a configuration diagram illustrating a schematic configuration of an electromagnetic wave measurement device 20 according to an embodiment of the present invention. FIG. 1 is a diagram of the electromagnetic wave measuring device 20 as viewed from above.
[0014]
In the electromagnetic wave measuring device 20, a plurality of wall surfaces having a characteristic of absorbing radio waves are arranged at positions of each side of a regular hexagon, so that an anechoic chamber 22 is formed. The area inside the regular hexagonal shape of the anechoic chamber 22 is an isolated area where electromagnetic waves do not come from the outside. The area above this area is covered with a ceiling that absorbs radio waves.
[0015]
At the center of the regular hexagonal area inside the anechoic chamber 22, a turntable 28 on which a device to be measured can be mounted and made of a non-conductive material is arranged. The turntable 28 rotates at a predetermined speed around the center of the anechoic chamber 22 as a rotation axis. An antenna 26 for measuring electromagnetic waves is arranged on each straight line L1 connecting the center of the anechoic chamber 22 and the midpoints of every other three sides of the six sides of the anechoic chamber 22. . The antenna 26 is, for example, a horn antenna or a double ridged antenna. All the antennas 26 are arranged at a predetermined measurement distance r1 from the center of the anechoic chamber 22 so that measurement can be performed under the same conditions. These antennas 26 are attached to the antenna support 24, respectively. The antenna 26 can be attached / detached to / from the antenna support 24, and its attachment height and polarization plane can also be adjusted. A spectrum analyzer 32 is connected to each antenna 26, and can measure the intensity of electromagnetic waves emitted by the device under test. In addition, a radio wave absorbing plate 30 for preventing electromagnetic coupling between the antennas 26 is arranged in the middle of each antenna 26. The radio wave absorbing plate 30 is arranged with its plate surface aligned with a straight line passing through the center of the radio wave anechoic chamber 22. When the three antennas 26 are arranged inside the anechoic chamber 22 as described above, the measurement by the three antennas can be performed at the same time, so that the efficiency of the measurement operation and the measurement time can be improved.
[0016]
Next, the operation of the electromagnetic wave measuring device 20 according to the present embodiment having the above-described configuration to prevent the measurement accuracy of the electromagnetic wave intensity from lowering will be described. FIG. 2 shows a situation when the electromagnetic wave radiated from the device under test 34 is measured using the electromagnetic wave measuring device 20 of FIG. In FIG. 2, the antenna 26 is represented by a dot. The antenna 26 has directivities A1 and A2 in the center direction and the wall direction of the anechoic chamber 22, and the directional gain in a direction perpendicular to a straight line connecting the antenna 26 and the center of the anechoic chamber 22 is almost zero.
[0017]
At the time of measurement, since the turntable 28 rotates, the electromagnetic waves radiated from the device under test 34 are radiated in all directions in the anechoic chamber 22. At this time, the electromagnetic wave directly radiated from the device under test 34 to the antenna 26 is an electromagnetic wave to be measured by the antenna 26, but a part of the electromagnetic wave is reflected once by the wall surface of the anechoic chamber 22 and reaches the antenna 26. I do. In the present embodiment, the anechoic chamber 22 has a hexagonal shape, and the position where the antenna 26 is disposed is on a straight line connecting the center of the anechoic chamber and the midpoint of the wall. The paths of the received electromagnetic waves are only two paths L2 shown in the figure. Further, the direction in which the two-path electromagnetic waves are received by the antenna 26, that is, the direction approximately perpendicular to the straight line connecting the center and the midpoint, is almost zero because the directional gain of the antenna 26 is almost zero. The components do not affect the intensity of the electromagnetic wave to be measured, and a decrease in measurement accuracy is prevented.
[0018]
Further, in the present embodiment, since the radio wave absorbing plate 30 is disposed between the antennas 26, the influence of the antennas 26 on each other on the coupling of the antennas 26, that is, the reception characteristics of the electromagnetic waves is reduced. Of the measurement accuracy is prevented. Further, in the antenna 26, since the plate surface of the radio wave absorbing plate 30 is arranged so as to be aligned with a straight line passing through the center position of the regular hexagon, the electromagnetic wave is not reflected by the radio wave absorbing plate 30. That is, there is no reflection of the electromagnetic wave in the direction of the antenna 26 by the radio wave absorbing plate 30, and also in this respect, a decrease in measurement accuracy is prevented.
[0019]
The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment, and various modifications can be made within an equivalent range. For example, a radio wave absorber may be laid on the floor to prevent electromagnetic waves from being reflected by the floor and received by the antenna 26.
[0020]
【The invention's effect】
In the present invention, the antenna is arranged on a straight line connecting the center of the anechoic chamber and the midpoint of one wall inside the regular hexagonal shaped anechoic chamber, and the directivity of the antenna is almost perpendicular to the straight line. Since it is zero, it is possible to prevent a decrease in the measurement accuracy of the electromagnetic wave intensity due to the electromagnetic wave reflected on the wall surface of the anechoic chamber.
[0021]
Further, since the radio wave absorbing plate is disposed between the antennas, the coupling between the antennas is reduced, and a decrease in the measurement accuracy of the electromagnetic wave intensity can be prevented.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a schematic configuration of an electromagnetic wave measurement device according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a situation when measuring an electromagnetic wave radiated from a device to be measured.
FIG. 3 is a configuration diagram showing a schematic configuration of an electromagnetic wave measuring device according to a conventional technique.
[Explanation of symbols]
10, 20 electromagnetic wave measuring device, 12, 22 anechoic chamber, 14, 24 antenna support, 16, 26 antenna, 18, 28 turntable, 30 radio wave absorbing plate, 32 spectrum analyzer, 34 device to be measured.

Claims (2)

被測定機器が放射する電磁波の強度を測定するための電磁波測定装置であって、
電磁波を吸収する壁面で構成され、外界から隔離した正六角形形状の領域を形成する電波暗室と、
前記正六角形形状の中心に配置され、電磁波を放射する被測定機器を載置するためのターンテーブルと、
前記正六角形形状の6辺のうち1つおきの3辺の各中点と前記正六角形形状の中心位置とを結ぶ直線上に配置され、前記直線に垂直な方向の指向性利得がほぼゼロである3つのアンテナと、
前記3つのアンテナ間に配置され、電磁波を吸収する電波吸収板と、
を備えたことを特徴とする電磁波測定装置。
An electromagnetic wave measuring device for measuring the intensity of electromagnetic waves emitted by the device under test,
An anechoic chamber composed of walls absorbing electromagnetic waves and forming a regular hexagonal area isolated from the outside world;
A turntable for placing a device to be measured that radiates an electromagnetic wave, which is arranged at the center of the regular hexagonal shape,
The regular hexagonal shape is arranged on a straight line connecting each midpoint of every other three sides of the six sides of the regular hexagonal shape and the center position of the regular hexagonal shape, and the directivity gain in a direction perpendicular to the straight line is substantially zero. There are three antennas,
A radio wave absorbing plate arranged between the three antennas and absorbing electromagnetic waves;
An electromagnetic wave measuring device comprising:
請求項1に記載の電磁波測定装置であって、
前記電波吸収板は、その板面を、前記正六角形形状の中心位置を通る直線に、あわせて配置されることを特徴とする電磁波測定装置。
The electromagnetic wave measuring device according to claim 1,
The electromagnetic wave measuring device is characterized in that the radio wave absorbing plate is arranged so that its plate surface is aligned with a straight line passing through the center of the regular hexagon.
JP2002332403A 2002-11-15 2002-11-15 Measuring apparatus for electromagnetic waves Pending JP2004163372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002332403A JP2004163372A (en) 2002-11-15 2002-11-15 Measuring apparatus for electromagnetic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002332403A JP2004163372A (en) 2002-11-15 2002-11-15 Measuring apparatus for electromagnetic waves

Publications (1)

Publication Number Publication Date
JP2004163372A true JP2004163372A (en) 2004-06-10

Family

ID=32809498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002332403A Pending JP2004163372A (en) 2002-11-15 2002-11-15 Measuring apparatus for electromagnetic waves

Country Status (1)

Country Link
JP (1) JP2004163372A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058460A (en) * 2007-09-03 2009-03-19 Nec Tokin Corp Antenna elevator and spurious radiation electromagnetic wave measurement system using same
CN105911393A (en) * 2015-02-24 2016-08-31 沃尔夫冈·奥皮茨 Test chamber for EMV measurement test
WO2017105372A1 (en) * 2015-12-19 2017-06-22 Istanbul Sehir Universitesi A test station for wireless communication devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058460A (en) * 2007-09-03 2009-03-19 Nec Tokin Corp Antenna elevator and spurious radiation electromagnetic wave measurement system using same
CN105911393A (en) * 2015-02-24 2016-08-31 沃尔夫冈·奥皮茨 Test chamber for EMV measurement test
US10094865B2 (en) 2015-02-24 2018-10-09 Wolfgang Opitz Test chamber for electromagnetic compatibility measurement and test chamber validation method
WO2017105372A1 (en) * 2015-12-19 2017-06-22 Istanbul Sehir Universitesi A test station for wireless communication devices

Similar Documents

Publication Publication Date Title
US7035594B2 (en) Method and apparatus for testing and evaluating wireless communication devices
US8400366B2 (en) Radiation efficiency measuring apparatus and radiation efficiency measuring method
JP7329085B2 (en) High-speed OTA production line test platform
EP3282266B1 (en) System for testing wireless terminal and method for controlling the same
US7999560B2 (en) Interference exclusion capability testing apparatus
US20210167517A1 (en) Terahertz leaky-wave antenna measuring system
JP5396601B2 (en) Radiation efficiency measuring device
JP7309847B2 (en) Near-field antenna for remote radio control of antenna arrays
EP3182144B1 (en) Wireless terminal testing system and method for controlling same
JP7162728B2 (en) Improved measuring device for antenna systems
US20100109957A1 (en) Apparatus for measuring antenna radiation performance and method of designing the same
CN107462775A (en) A kind of electromagnet shield effect test system and its method for testing for improving shield effectiveness
US11693038B2 (en) Portable, integrated antenna test bed with built-in turntable
TW200921117A (en) Electromagnetic wave measuring apparatus
CN106936524B (en) Test system of wireless terminal
US20100039333A1 (en) Antenna Coupler
US6795035B2 (en) System for antenna sidelobe modification
JP2004163372A (en) Measuring apparatus for electromagnetic waves
US20080143628A1 (en) Reference oscillator assembly
ES2652418T3 (en) Antenna calibration
JPH1174680A (en) Shield box
Joseph et al. An improved method to determine the antenna factor
JP2001255347A (en) Probe for measuring near electromagnetic field
JP2005221436A (en) Interference immunity test apparatus and electromagnetic waves generator
CN221057660U (en) Antenna and low-frequency-offset omnidirectional production and measurement system