[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004162090A - Heat resistant magnesium alloy - Google Patents

Heat resistant magnesium alloy Download PDF

Info

Publication number
JP2004162090A
JP2004162090A JP2002326825A JP2002326825A JP2004162090A JP 2004162090 A JP2004162090 A JP 2004162090A JP 2002326825 A JP2002326825 A JP 2002326825A JP 2002326825 A JP2002326825 A JP 2002326825A JP 2004162090 A JP2004162090 A JP 2004162090A
Authority
JP
Japan
Prior art keywords
magnesium alloy
mass
alloy
resistant magnesium
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002326825A
Other languages
Japanese (ja)
Inventor
Katsuaki Tanaka
勝章 田中
Eiji Kishi
英治 岸
Motoharu Tanizawa
元治 谷澤
Yuki Okamoto
夕紀 岡本
Manabu Miyoshi
学 三好
Takayuki Kato
崇行 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2002326825A priority Critical patent/JP2004162090A/en
Priority to US10/702,567 priority patent/US20040091384A1/en
Priority to EP03025817A priority patent/EP1418248A1/en
Publication of JP2004162090A publication Critical patent/JP2004162090A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive heat resistant magnesium alloy in which basically Al and Ca alone are incorporated into Mg. <P>SOLUTION: The magnesium alloy has a composition containing, when the sum total is 100 mass%, 1 to 6 mass% Al and also Ca in an amount satisfying a relation that the mass ratio of Ca to Al (Ca/Al) becomes 0.5 to 3 and having the balance Mg with inevitable impurities. The heat resistant magnesium alloy is very inexpensive because it can be obtained by properly regulating the respective amounts of Al and Ca alone. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、安価な耐熱性マグネシウム合金に関するものである。
【0002】
【従来の技術】
近年の軽量化ニーズの高まりにより、アルミニウム合金よりさらに軽量なマグネシウム合金が注目を集めている。マグネシウム合金は、実用金属中で最も軽量であり、航空機用材料の他、自動車用材料等としても使用されつつある。例えば、自動車のホイールやエンジンのヘッドカバー等にマグネシウム合金が使用されている。
【0003】
また、最近の環境意識の高揚に伴って、車両等のさらなる軽量化が求められている。このため、高温域で使用される機器や装置等にまでマグネシウム合金の使用が検討されている。このときに重要となるのが、マグネシウム合金の耐熱性である。従来のマグネシウム合金は、高温強度に乏しく、高温環境下での使用には適さない。特に、構造材のように、大きな応力の作用する部材にマグネシウム合金を使用した場合、大きなクリープ変形等を生じ易かった。
もっとも最近では、マグネシウム合金への添加元素等を適宜選択、調整することで、その耐熱性も相当向上しつつある。例えば、下記の公報に、そのような耐熱性マグネシウム合金が開示されている。
【0004】
【特許文献1】
特開平9−272945号公報
【特許文献2】
特開平9−291332号公報(特許3229954号公報)
【特許文献3】
特開平2002−157979号公報
【0005】
【発明が解決しようとする課題】
上記特許文献1にはMg−Al−Ca−Si系合金が開示されている。上記特許文献2にはMg−Al−Ca−RE−Mn系合金(RE:希土類元素)が開示されている。さらに、上記特許文献3にはMg−Al−Zn系合金が開示されている。この他、Mg−Al−Zn−Mn系合金、Mg−Al−Si−Mn系合金、Mg−Zn−Ca系合金、Mg−RE−Zn系合金(RE:希土類元素)等、含有元素やその含有量の異なる種々の耐熱性マグネシウム合金が、様々な公報や文献等に開示されている。
【0006】
ところが、従来のいずれのマグネシウム合金も、複数種の含有元素を比較的多く含有し、また、高価なREを含有していたりして、高コストのマグネシウム合金となっていた。
本発明はこのような事情に鑑みてなされたものである。すなわち、安価な元素を使用して、その含有量を適切に調整することによって、耐熱性に優れた耐熱性マグネシウム合金を提供することを目的とする。
【0007】
【課題を解決するための手段および発明の効果】
そこで、本発明者らはこの問題点を解決すべく、鋭意研究し各種系統的実験を重ねた結果、安価なAlとCaとのみを適量含有させることで、十分な耐熱性を有するマグネシウム合金が得られることを見出し、これに基づいて本発明を完成するに至ったものである。
すなわち、本発明の耐熱性マグネシウム合金は、全体を100質量%としたときに、Alを1〜6質量%、CaをAlに対する質量比(Ca/Al)で0.5〜3となる量含み、残部がMgと不可避不純物とからなることを特徴とする。
【0008】
本発明の耐熱性マグネシウム合金は、基本的に、AlおよびCaのみをMgに含有させることで、Mg合金の耐熱性を向上させている。このように、安価なありふれた元素を少数種使用しているだけであるため、材料費のみならず製造費を含めて考えても、耐熱性マグネシウム合金の低コスト化が図られる。従って、価格競争力の大きな耐熱性マグネシウム合金が得られる。
【0009】
ところで、CaおよびAlの含有量を上記範囲に限定することにより耐熱性に優れたマグネシウム合金が得られる理由は必ずしも明らかではないが、現状、次のように考えられる。
Alは、Mg結晶粒中に固溶して室温強度を向上させる元素である。また、Alは、マグネシウム合金の融点を下げ鋳造性を改善すると共にマグネシウム合金が凝固する際の温度範囲を狭くして凝固収縮に伴う応力を低減し、鋳造割れを抑制する効果がある。従って、マグネシウム合金を金型鋳造する場合のみならず、冷却速度の速いダイキャスト鋳造する場合でも、Alは、その鋳造性を改善する上で非常に有効な元素である。
Alが1質量%未満では上記効果が薄く、Alが6質量%を超えても効果の向上が望めず経済的でない。そして、このAlの含有量が2〜4質量%であるとより好ましい。
【0010】
ところが、マグネシウム合金中のAl含有量が増えると、Alは、そのマトリックス(デンドライトセルやα結晶粒)中に過飽和に固溶してAlリッチ相を形成する。このAlリッチ相は熱的に不安定であるため、マグネシウム合金が高温になると、Mg−Al化合物(Mg17Al12)となってMgマトリックス中やMg結晶粒界中に析出する。そして、そのマグネシウム合金を高温域で長時間放置すると、その金属間化合物は凝集し粗大化し、マグネシウム合金のクリープ変形を増大させる。つまり、マグネシウム合金の耐熱性を低下させる。
【0011】
しかし本発明では、そのAl含有量に応じてCaを適量含有させ、このCaによって、Alの増加に伴う耐熱性の低下を抑制、防止している。これはCaが上記Mg−Al化合物やマトリックスと反応することにより、クリープの低下要因となるMg17Al12を減少させると共に高温域で安定なCa−Al化合物やMg−Ca化合物等を形成するためであると考えられる。
これらの金属間化合物は、主に結晶粒界中にネットワーク状に晶出または析出して、マグネシウム合金の転位運動をくい止める楔作用をすると考えられる。
このような理由により、本発明のマグネシウム合金は、AlおよびCaをそれぞれ適量含有することにより、高温域でもクリープ変形の少ない優れた耐熱性を発現すると思われる。
【0012】
ここで、CaがAlに対する質量比で0.5未満ではクリープの低下要因であるMg17Al12の析出を十分に抑制できず、マグネシウム合金の耐熱性が不十分となる。一方、Caがその質量比で3を超えても、マグネシウム合金の耐熱性の向上が望めず、経済的でもない。また、Caが増え過ぎると、鋳造性の低下、鋳造割れ、金型との焼付き、伸び低下等の要因ともなり好ましくないと思われる。そして、このCaは、Alとの質量比で1〜2であるとより好ましい。
【0013】
さらに、本発明のマグネシウム合金は、Mnを0.2〜1質量%、望ましくは0.5〜0.7質量%含有しているとより好適である。
MnもMg結晶粒中に固溶してマグネシウム合金を固溶強化させる元素である。また、MnはAlとも反応して、クリープの低下要因であるMg17Al12の析出を抑制すると共に熱的に安定な金属間化合物を形成する。これにより、Mnは、マグネシウム合金の室温強度のみならず高温強度も向上させる元素である。さらに、Mnは、腐食原因となる不純物のFeを沈降除去等する効果も期待できる。このMnが0.2質量%未満では効果が薄く、1質量%を超えても効果の向上は期待できず経済的でない。
【0014】
本明細書では、各元素の組成範囲を「x〜y質量%」という形式で示しているが、これは特に断らない限り、下限値(x質量%)および上限値(y質量%)も含む意味である。
本発明でいう「耐熱性」は、高温雰囲気中におけるマグネシウム合金の機械的性質(例えば、応力緩和試験や軸力保持試験によるクリープ特性または高温強度等)で評価されるものである。
【0015】
本発明のマグネシウム合金は、その製造過程までは問題としない。従って、砂型鋳造、金型鋳造、ダイキャスト鋳造等、いずれの方法で得られたものであっても良い。また、その使用原料も問わず、各種純金属材料を使用しても良いし、より安価なMg−Al合金等を使用しても良い。
【0016】
本発明のマグネシウム合金の用途は、宇宙、軍事、航空の分野を初めとして、自動車、家庭電気機器等、各種分野に及ぶ。もっとも、その耐熱性を生かして、高温環境下で使用される製品、例えば自動車のエンジンルーム内に配置されるエンジン、トランスミッション、エアコン用コンプレッサまたはそれらの関連製品に、本発明のマグネシウム合金が使用されると一層好適である。
【0017】
【実施例】
以下に実施例を挙げて、本発明を具体的に説明する。
マグネシウム合金中のAl、CaおよびMnの含有量(添加量)を種々変更した試験片を製作し、各種試験を行ってそれらの試験片の特性を評価した。
【0018】
(試験片の製造)
電気炉中で予熱した鉄製るつぼの内面に、塩化物系のフラックスを塗布し、その中に純マグネシウム地金、純AlおよびMg−Mn合金を選択的に所定量投入して溶解した。
750℃に保持した溶湯中に、Caを所定量添加した。このときの添加元素やその量は表1中に示した。この溶湯を十分に攪拌し、それらの添加元素を完全に溶解させた後、同温度でしばらく沈静保持した。この溶解作業中、Mgの燃焼を防止するため、溶湯表面に炭酸ガスとSFガスとの混合ガスを吹き付け、適宜、フラックスを溶湯表面に散布した。
こうして得た合金溶湯を金型に流し込み、大気雰囲気中で凝固させた。得られたインゴットから試験素材を切出し、φ10x10mmの円柱状の試験片に切削加工した。
【0019】
(試験片の測定)
▲1▼表1に示したそれぞれの上記試験片について、応力緩和試験を行い、その耐熱性(クリープ特性)を調べた。この応力緩和試験は、150℃の大気雰囲気中で、各試験片の変位が一定に保持されるように、時間の経過と共にその試験片に印加する応力を緩和していくものである。すなわち、各試験片に最初100MPaの圧縮応力を印加し、そのときの試験片の変位が一定に保たれるように、時間の経過に併せてその圧縮応力を低減していった。このとき各試験片について得られた応力−時間関係を図1に示す。
【0020】
なお、比較のため、市販されている各種合金からなる試験片についても同様の応力緩和試験を行った。その結果を図1に併せて示す。なお、ここで使用した合金は、アルミニウム合金ADC12(Al−11Si−2.5Cu)、マグネシウム合金AE42(Mg−4Al−2.7R.E.)、マグネシウム合金AS21(Mg−2Al−1Si)、マグネシウム合金AZ91(Mg−9Al−0.9Zn)である。
【0021】
▲2▼各試験片について通常の引張試験を行い、室温域での機械的特性も測定した。この結果を表1に併せて示した。
【0022】
▲3▼表1に示した試験片No.3(Ca/Al=1.0)および試験片No.C2(Ca/Al=0.3)の金属組織を金属顕微鏡(倍率500)で観察した。これらの金属組織写真を図2(a)、(b)にそれぞれ示す。
【0023】
(評価)
図1の応力緩和試験結果を観ると、Ca/Alの質量比が0.5以上のマグネシウム合金は、応力低下率が小さく、十分な耐熱性を有していることが解る。また、その質量比が大きくなる程、その応力低下率は小さくなり、質量比が1.0以上のマグネシウム合金は、アルミニウム合金(ADC12)に匹敵する耐熱性を発揮した。
【0024】
また、その質量比が0.5であっても、Mnを適量含有したマグネシウム合金は、上記アルミニウム合金と同等の耐熱性を示すことも解った。そして、本発明に係るいずれのマグネシウム合金も、既存の主な耐熱性マグネシウム合金よりクリープ特性に優れることも明らかとなった。
【0025】
この理由は、図2に示す金属組織写真からもうなずける。すなわち、図2(b)に示すように、質量比が0.3である試験片No.C2のマグネシウム合金は、金属組織中にクリープ特性を低下させるMg17Al12が大きく析出している。これに対し、図2(a)に示すように、質量比が1.0である試験片No.3のマグネシウム合金は、そのMg17Al12 が全て、熱的に安定なAl−Ca化合物またはMg−Ca化合物に置換されている。
【0026】
【表1】

Figure 2004162090

【図面の簡単な説明】
【図1】各種マグネシウム合金からなる試験片の応力緩和試験結果を示すグラフである。
【図2】試験片No.3および試験片No.C2を金属顕微鏡で観察した金属組織写真である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inexpensive heat-resistant magnesium alloy.
[0002]
[Prior art]
Due to the growing need for weight reduction in recent years, magnesium alloys, which are lighter than aluminum alloys, have been attracting attention. Magnesium alloys are the lightest among practical metals, and are being used as materials for automobiles as well as materials for aircraft. For example, magnesium alloys are used for automobile wheels, engine head covers, and the like.
[0003]
Further, with the recent rise in environmental awareness, further weight reduction of vehicles and the like is required. For this reason, the use of magnesium alloys is being studied for equipment and devices used in a high temperature range. What is important at this time is the heat resistance of the magnesium alloy. Conventional magnesium alloys have poor high-temperature strength and are not suitable for use in high-temperature environments. In particular, when a magnesium alloy is used for a member on which a large stress acts, such as a structural material, large creep deformation and the like are likely to occur.
Most recently, the heat resistance of the magnesium alloy has been considerably improved by appropriately selecting and adjusting elements added to the magnesium alloy. For example, the following publication discloses such a heat-resistant magnesium alloy.
[0004]
[Patent Document 1]
JP-A-9-272945 [Patent Document 2]
Japanese Patent Application Laid-Open No. 9-291332 (Japanese Patent No. 3229954)
[Patent Document 3]
JP-A-2002-157979
[Problems to be solved by the invention]
Patent Document 1 discloses an Mg-Al-Ca-Si-based alloy. Patent Document 2 discloses an Mg-Al-Ca-RE-Mn-based alloy (RE: rare earth element). Further, Patent Document 3 discloses an Mg-Al-Zn-based alloy. In addition, contained elements such as Mg-Al-Zn-Mn-based alloys, Mg-Al-Si-Mn-based alloys, Mg-Zn-Ca-based alloys, and Mg-RE-Zn-based alloys (RE: rare earth elements) Various heat-resistant magnesium alloys having different contents are disclosed in various publications and literatures.
[0006]
However, all of the conventional magnesium alloys contain a relatively large amount of a plurality of types of contained elements and contain expensive RE, resulting in high cost magnesium alloys.
The present invention has been made in view of such circumstances. That is, an object is to provide a heat-resistant magnesium alloy excellent in heat resistance by using an inexpensive element and appropriately adjusting its content.
[0007]
Means for Solving the Problems and Effects of the Invention
Therefore, the present inventors have conducted intensive studies and conducted various systematic experiments in order to solve this problem. As a result, a magnesium alloy having sufficient heat resistance was obtained by adding only appropriate amounts of inexpensive Al and Ca. It has been found that the present invention can be obtained, and based on this, the present invention has been completed.
That is, the heat-resistant magnesium alloy of the present invention contains Al in an amount of 1 to 6% by mass and Ca in an amount of 0.5 to 3 in mass ratio to Al (Ca / Al), when the whole is 100% by mass. And the balance is made of Mg and unavoidable impurities.
[0008]
The heat-resistant magnesium alloy of the present invention basically improves the heat resistance of the Mg alloy by containing only Al and Ca in Mg. As described above, since only a small number of inexpensive and common elements are used, the cost of the heat-resistant magnesium alloy can be reduced in consideration of not only the material cost but also the production cost. Therefore, a heat-resistant magnesium alloy having high price competitiveness can be obtained.
[0009]
By the way, the reason why a magnesium alloy having excellent heat resistance can be obtained by limiting the contents of Ca and Al to the above ranges is not necessarily clear, but at present, it is considered as follows.
Al is an element that improves the room temperature strength by forming a solid solution in the Mg crystal grains. Further, Al has the effect of lowering the melting point of the magnesium alloy, improving castability, narrowing the temperature range when the magnesium alloy solidifies, reducing the stress accompanying solidification shrinkage, and suppressing casting cracks. Therefore, Al is a very effective element for improving the castability not only in the case of casting a magnesium alloy in a mold but also in the case of die casting in which a cooling rate is high.
If the Al content is less than 1% by mass, the above effect is weak, and if the Al content exceeds 6% by mass, no improvement in the effect can be expected and it is not economical. And it is more preferable that the content of Al is 2 to 4% by mass.
[0010]
However, when the Al content in the magnesium alloy increases, Al forms a supersaturated solid solution in its matrix (dendritic cells and α crystal grains) to form an Al-rich phase. Since the Al-rich phase is thermally unstable, when the temperature of the magnesium alloy becomes high, it becomes a Mg—Al compound (Mg 17 Al 12 ) and precipitates in the Mg matrix or the Mg crystal grain boundaries. When the magnesium alloy is left in a high temperature range for a long time, the intermetallic compound is aggregated and coarsened, and the creep deformation of the magnesium alloy is increased. That is, the heat resistance of the magnesium alloy is reduced.
[0011]
However, in the present invention, an appropriate amount of Ca is contained in accordance with the Al content, and the Ca suppresses and prevents a decrease in heat resistance due to an increase in Al. This is because Ca reacts with the above-mentioned Mg-Al compound or matrix to reduce Mg 17 Al 12 which is a cause of reduction in creep and to form a stable Ca-Al compound or Mg-Ca compound at a high temperature region. It is considered to be.
It is considered that these intermetallic compounds are mainly crystallized or precipitated in the form of a network in crystal grain boundaries, and act as a wedge to stop dislocation motion of the magnesium alloy.
For these reasons, it is considered that the magnesium alloy of the present invention exhibits excellent heat resistance with little creep deformation even in a high temperature range by containing appropriate amounts of Al and Ca.
[0012]
Here, when the mass ratio of Ca to Al is less than 0.5, precipitation of Mg 17 Al 12 , which is a cause of reduction in creep, cannot be sufficiently suppressed, and the heat resistance of the magnesium alloy becomes insufficient. On the other hand, if the mass ratio of Ca exceeds 3, the heat resistance of the magnesium alloy cannot be improved and it is not economical. On the other hand, an excessive increase in Ca is considered to be undesirable because it causes factors such as a decrease in castability, casting cracks, seizure with a mold, and a decrease in elongation. And it is more preferable that this Ca is 1 to 2 in mass ratio with Al.
[0013]
Further, it is more preferable that the magnesium alloy of the present invention contains Mn in an amount of 0.2 to 1% by mass, preferably 0.5 to 0.7% by mass.
Mn is also an element that forms a solid solution in the Mg crystal grains to strengthen the solid solution of the magnesium alloy. In addition, Mn also reacts with Al to suppress precipitation of Mg 17 Al 12 which is a cause of reduction of creep, and to form a thermally stable intermetallic compound. Thereby, Mn is an element that improves not only the room temperature strength but also the high temperature strength of the magnesium alloy. Furthermore, Mn can also be expected to have an effect of, for example, sedimentation removal of the impurity Fe that causes corrosion. If this Mn is less than 0.2% by mass, the effect is small, and if it exceeds 1% by mass, no improvement in the effect can be expected and it is not economical.
[0014]
In the present specification, the composition range of each element is shown in the form of “x to y mass%”, but this also includes a lower limit (x mass%) and an upper limit (y mass%) unless otherwise specified. Meaning.
"Heat resistance" in the present invention is evaluated by mechanical properties of a magnesium alloy in a high-temperature atmosphere (for example, creep characteristics or high-temperature strength by a stress relaxation test or an axial force retention test).
[0015]
The magnesium alloy of the present invention does not matter until the manufacturing process. Therefore, it may be obtained by any method such as sand casting, die casting and die casting. Regardless of the raw material used, various pure metal materials may be used, or a less expensive Mg-Al alloy or the like may be used.
[0016]
Applications of the magnesium alloy of the present invention cover various fields such as automobiles, home electric appliances, etc., in addition to the fields of space, military and aviation. However, taking advantage of its heat resistance, the magnesium alloy of the present invention is used in products used in high-temperature environments, for example, engines, transmissions, air-conditioning compressors or related products arranged in an engine room of an automobile. It is even more suitable.
[0017]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples.
Test pieces with various contents (addition amounts) of Al, Ca and Mn in the magnesium alloy were manufactured, and various tests were performed to evaluate the characteristics of the test pieces.
[0018]
(Production of test pieces)
A chloride-based flux was applied to the inner surface of an iron crucible preheated in an electric furnace, and pure magnesium ingot, pure Al, and Mg-Mn alloy were selectively introduced into the flux and melted.
A predetermined amount of Ca was added to the molten metal kept at 750 ° C. The added elements and their amounts at this time are shown in Table 1. The molten metal was sufficiently stirred to completely dissolve the added elements, and then kept calm at the same temperature for a while. During this melting operation, a mixed gas of carbon dioxide gas and SF 6 gas was blown onto the surface of the molten metal to prevent the burning of Mg, and a flux was sprayed on the surface of the molten metal as appropriate.
The molten alloy thus obtained was poured into a mold and solidified in an air atmosphere. A test material was cut out from the obtained ingot and cut into a cylindrical test piece of φ10 × 10 mm.
[0019]
(Measurement of test piece)
{Circle around (1)} Each of the test pieces shown in Table 1 was subjected to a stress relaxation test, and the heat resistance (creep property) was examined. In the stress relaxation test, the stress applied to each test piece is relaxed with time so that the displacement of each test piece is kept constant in an air atmosphere at 150 ° C. That is, a compressive stress of 100 MPa was first applied to each test piece, and the compressive stress was reduced with time so that the displacement of the test piece at that time was kept constant. FIG. 1 shows the stress-time relationship obtained for each test piece at this time.
[0020]
For the purpose of comparison, the same stress relaxation test was performed on test pieces made of various commercially available alloys. The results are shown in FIG. The alloys used here were aluminum alloy ADC12 (Al-11Si-2.5Cu), magnesium alloy AE42 (Mg-4Al-2.7RE), magnesium alloy AS21 (Mg-2Al-1Si), magnesium alloy The alloy is AZ91 (Mg-9Al-0.9Zn).
[0021]
{Circle around (2)} A normal tensile test was performed on each test piece, and the mechanical properties at room temperature were also measured. The results are shown in Table 1.
[0022]
{Circle around (3)} Test piece No. shown in Table 1. 3 (Ca / Al = 1.0) and test piece no. The metal structure of C2 (Ca / Al = 0.3) was observed with a metal microscope (magnification: 500). These metallographic photographs are shown in FIGS. 2A and 2B, respectively.
[0023]
(Evaluation)
From the results of the stress relaxation test shown in FIG. 1, it can be seen that the magnesium alloy having a Ca / Al mass ratio of 0.5 or more has a small stress reduction rate and has sufficient heat resistance. Further, as the mass ratio increases, the stress reduction rate decreases, and the magnesium alloy having a mass ratio of 1.0 or more exhibited heat resistance comparable to that of an aluminum alloy (ADC12).
[0024]
It was also found that even when the mass ratio was 0.5, a magnesium alloy containing an appropriate amount of Mn exhibited heat resistance equivalent to that of the aluminum alloy. It has also been found that any of the magnesium alloys according to the present invention has better creep properties than existing major heat-resistant magnesium alloys.
[0025]
The reason for this can be seen from the metallographic photograph shown in FIG. That is, as shown in FIG. In the magnesium alloy of C2, Mg 17 Al 12 which deteriorates creep characteristics is largely precipitated in the metal structure. On the other hand, as shown in FIG. In the magnesium alloy of No. 3, all of the Mg 17 Al 12 are replaced with a thermally stable Al—Ca compound or Mg—Ca compound.
[0026]
[Table 1]
Figure 2004162090

[Brief description of the drawings]
FIG. 1 is a graph showing the results of a stress relaxation test of test pieces made of various magnesium alloys.
FIG. No. 3 and test piece no. It is a metallographic photograph of C2 observed with a metallographic microscope.

Claims (2)

全体を100質量%としたときに、
アルミニウム(Al)を1〜6質量%、カルシウム(Ca)をAlに対する質量比(Ca/Al)で0.5〜3となる量含み、残部がマグネシウム(Mg)と不可避不純物とからなることを特徴とする耐熱性マグネシウム合金。
When the whole is 100% by mass,
Aluminum (Al) is contained in an amount of 1 to 6% by mass, calcium (Ca) is contained in an amount of 0.5 to 3 in terms of a mass ratio to Al (Ca / Al), and the balance consists of magnesium (Mg) and unavoidable impurities. Features a heat-resistant magnesium alloy.
さらに、マンガン(Mn)を0.2〜1質量%含む請求項1に記載の耐熱性マグネシウム合金。The heat-resistant magnesium alloy according to claim 1, further comprising manganese (Mn) in an amount of 0.2 to 1% by mass.
JP2002326825A 2002-11-11 2002-11-11 Heat resistant magnesium alloy Pending JP2004162090A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002326825A JP2004162090A (en) 2002-11-11 2002-11-11 Heat resistant magnesium alloy
US10/702,567 US20040091384A1 (en) 2002-11-11 2003-11-05 Heat resistant magnesium alloy
EP03025817A EP1418248A1 (en) 2002-11-11 2003-11-10 Heat resistant magnesiun alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002326825A JP2004162090A (en) 2002-11-11 2002-11-11 Heat resistant magnesium alloy

Publications (1)

Publication Number Publication Date
JP2004162090A true JP2004162090A (en) 2004-06-10

Family

ID=32105521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002326825A Pending JP2004162090A (en) 2002-11-11 2002-11-11 Heat resistant magnesium alloy

Country Status (3)

Country Link
US (1) US20040091384A1 (en)
EP (1) EP1418248A1 (en)
JP (1) JP2004162090A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232060A (en) * 2003-01-31 2004-08-19 Toyota Industries Corp Heat resistant magnesium alloy for casting and heat resistant magnesium alloy casting
WO2008120497A1 (en) 2007-04-03 2008-10-09 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy
JP2009007676A (en) * 2008-07-30 2009-01-15 Toyota Industries Corp Heat resistant magnesium alloy for casting, and heat resistant magnesium alloy casting
WO2010038893A1 (en) 2008-10-03 2010-04-08 株式会社豊田自動織機 Heat-resistant magnesium alloy
WO2010055897A1 (en) 2008-11-14 2010-05-20 株式会社豊田自動織機 Magnesium alloy and magnesium alloy casting
US8123877B2 (en) 2003-01-31 2012-02-28 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy for casting heat-resistant magnesium alloy cast product, and process for producing heat-resistant magnesium alloy cast product
WO2012057329A1 (en) 2010-10-29 2012-05-03 サンデン株式会社 Magnesium-alloy member, compressor for use in air conditioner, and method for manufacturing magnesium-alloy member
WO2018212024A1 (en) * 2017-05-19 2018-11-22 株式会社東海理化電機製作所 Magnesium alloy, magnesium alloy cast, and method for producing same
CN110195178A (en) * 2018-02-26 2019-09-03 中国宝武钢铁集团有限公司 A kind of heat-resisting resistance to combustion magnesium alloy of High-strength high-plasticity and its manufacturing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539572B2 (en) * 2006-01-27 2010-09-08 株式会社豊田中央研究所 Magnesium alloys and castings for casting
DE202006019880U1 (en) * 2006-02-24 2007-09-27 Gerhard Heiche Gmbh Corrosion resistant substrate
DE102008039683B4 (en) * 2008-08-26 2010-11-04 Gkss-Forschungszentrum Geesthacht Gmbh Creep resistant magnesium alloy
CN104046868B (en) * 2014-06-26 2017-01-25 宝山钢铁股份有限公司 Rare-earth-free low-cost high-strength heat-conducting magnesium alloy and preparation method thereof
JP6596236B2 (en) * 2015-05-27 2019-10-23 本田技研工業株式会社 Heat-resistant magnesium alloy and method for producing the same
EP3896182A1 (en) * 2020-04-16 2021-10-20 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Magnesium alloy, in particular for laser build-up welding

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625790A (en) * 1992-03-25 1994-02-01 Mitsui Mining & Smelting Co Ltd High-strength magnesium alloy
JPH08269609A (en) * 1995-03-27 1996-10-15 Toyota Central Res & Dev Lab Inc Mg-al-ca alloy excellent in die castability
JPH09272945A (en) * 1996-04-04 1997-10-21 Mazda Motor Corp Heat resistant magnesium alloy molded member, heat resistant magnesium alloy used for the molding and molding method therefor
JPH09271919A (en) * 1996-04-04 1997-10-21 Mitsui Mining & Smelting Co Ltd Production of heat resistant magnesium alloy member, magnesium alloy used to it and formed member made of magnesium alloy
JP2000104137A (en) * 1998-09-30 2000-04-11 Mazda Motor Corp Magnesium alloy forging stock, forged member and production of the forged member
JP2000319744A (en) * 1999-04-30 2000-11-21 General Motors Corp <Gm> Die-casting of creep-resistant magnesium alloy
JP2001316753A (en) * 2000-05-10 2001-11-16 Japan Steel Works Ltd:The Magnesium alloy and magnesium alloy member excellent in corrosion resistance and heat resistance

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2651244B1 (en) * 1989-08-24 1993-03-26 Pechiney Recherche PROCESS FOR OBTAINING MAGNESIUM ALLOYS BY SPUTTERING.
JP2730847B2 (en) * 1993-06-28 1998-03-25 宇部興産株式会社 Magnesium alloy for castings with excellent high temperature creep strength
JP3229954B2 (en) * 1996-02-27 2001-11-19 本田技研工業株式会社 Heat resistant magnesium alloy
JP3603658B2 (en) * 1999-03-31 2004-12-22 マツダ株式会社 Manufacturing method of forged member
DE19915277A1 (en) * 1999-04-03 2000-10-05 Volkswagen Ag Magnesium alloy used e.g. in the manufacture of a wheel rim contains traces of cadmium, copper, iron, nickel and lanthanum and yttrium
JP3611759B2 (en) * 1999-10-04 2005-01-19 株式会社日本製鋼所 Magnesium alloy and magnesium alloy heat-resistant member with excellent heat resistance and castability
AU753538B2 (en) * 2000-02-24 2002-10-24 Mitsubishi Aluminum Co., Ltd. Die casting magnesium alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625790A (en) * 1992-03-25 1994-02-01 Mitsui Mining & Smelting Co Ltd High-strength magnesium alloy
JPH08269609A (en) * 1995-03-27 1996-10-15 Toyota Central Res & Dev Lab Inc Mg-al-ca alloy excellent in die castability
JPH09272945A (en) * 1996-04-04 1997-10-21 Mazda Motor Corp Heat resistant magnesium alloy molded member, heat resistant magnesium alloy used for the molding and molding method therefor
JPH09271919A (en) * 1996-04-04 1997-10-21 Mitsui Mining & Smelting Co Ltd Production of heat resistant magnesium alloy member, magnesium alloy used to it and formed member made of magnesium alloy
JP2000104137A (en) * 1998-09-30 2000-04-11 Mazda Motor Corp Magnesium alloy forging stock, forged member and production of the forged member
JP2000319744A (en) * 1999-04-30 2000-11-21 General Motors Corp <Gm> Die-casting of creep-resistant magnesium alloy
JP2001316753A (en) * 2000-05-10 2001-11-16 Japan Steel Works Ltd:The Magnesium alloy and magnesium alloy member excellent in corrosion resistance and heat resistance

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232060A (en) * 2003-01-31 2004-08-19 Toyota Industries Corp Heat resistant magnesium alloy for casting and heat resistant magnesium alloy casting
US8123877B2 (en) 2003-01-31 2012-02-28 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy for casting heat-resistant magnesium alloy cast product, and process for producing heat-resistant magnesium alloy cast product
JPWO2008120497A1 (en) * 2007-04-03 2010-07-15 株式会社豊田自動織機 Heat resistant magnesium alloy
WO2008120497A1 (en) 2007-04-03 2008-10-09 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy
JP2009007676A (en) * 2008-07-30 2009-01-15 Toyota Industries Corp Heat resistant magnesium alloy for casting, and heat resistant magnesium alloy casting
WO2010038893A1 (en) 2008-10-03 2010-04-08 株式会社豊田自動織機 Heat-resistant magnesium alloy
JP2010090405A (en) * 2008-10-03 2010-04-22 Toyota Industries Corp Heat-resistant magnesium alloy
WO2010055897A1 (en) 2008-11-14 2010-05-20 株式会社豊田自動織機 Magnesium alloy and magnesium alloy casting
US9180515B2 (en) 2008-11-14 2015-11-10 Kabushiki Kaisha Toyota Jidoshokki Magnesium alloy and magnesium-alloy cast product
WO2012057329A1 (en) 2010-10-29 2012-05-03 サンデン株式会社 Magnesium-alloy member, compressor for use in air conditioner, and method for manufacturing magnesium-alloy member
WO2018212024A1 (en) * 2017-05-19 2018-11-22 株式会社東海理化電機製作所 Magnesium alloy, magnesium alloy cast, and method for producing same
CN110195178A (en) * 2018-02-26 2019-09-03 中国宝武钢铁集团有限公司 A kind of heat-resisting resistance to combustion magnesium alloy of High-strength high-plasticity and its manufacturing method
CN110195178B (en) * 2018-02-26 2021-10-22 中国宝武钢铁集团有限公司 High-strength high-plasticity heat-resistant flame-retardant magnesium alloy and manufacturing method thereof

Also Published As

Publication number Publication date
EP1418248A1 (en) 2004-05-12
US20040091384A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP5327515B2 (en) Magnesium alloys for casting and magnesium alloy castings
JP5852580B2 (en) Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same
US5855697A (en) Magnesium alloy having superior elevated-temperature properties and die castability
WO2006125278A1 (en) Hpdc magnesium alloy
KR101395276B1 (en) Mg-Al based alloys for high temperature casting
JP2004162090A (en) Heat resistant magnesium alloy
JPH0625790A (en) High-strength magnesium alloy
JPH0718364A (en) Heat resistant magnesium alloy
WO2010056130A1 (en) Magnesium based alloys and processes for preparation thereof
JPWO2008072435A1 (en) Magnesium alloy for casting and method for producing magnesium alloy casting
JP2012197491A (en) High strength magnesium alloy and method of manufacturing the same
JP4852082B2 (en) Magnesium alloy
JP5595891B2 (en) Method for producing heat-resistant magnesium alloy, heat-resistant magnesium alloy casting and method for producing the same
US20240263279A1 (en) High strength microalloyed magnesium alloy
JP2002327231A (en) Cast article of heat-resistant magnesium alloy, and manufacturing method therefor
JP4433916B2 (en) Magnesium alloy and magnesium alloy member for plastic working
JP4575645B2 (en) Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy casting
JP2006291327A (en) Heat-resistant magnesium alloy casting
JPWO2008120497A1 (en) Heat resistant magnesium alloy
JP6814446B2 (en) Flame-retardant magnesium alloy and its manufacturing method
JPH05255794A (en) Heat resistant magnesium alloy
JP3865430B2 (en) Heat and wear resistant magnesium alloy
JP5590413B2 (en) High thermal conductivity magnesium alloy
JP2009007676A (en) Heat resistant magnesium alloy for casting, and heat resistant magnesium alloy casting
JP2003129160A (en) Heat resistant magnesium alloy

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060801

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060908