JP2004161989A - Styrene-based expandable resin particle, foamed bead and expansion molding product - Google Patents
Styrene-based expandable resin particle, foamed bead and expansion molding product Download PDFInfo
- Publication number
- JP2004161989A JP2004161989A JP2003129890A JP2003129890A JP2004161989A JP 2004161989 A JP2004161989 A JP 2004161989A JP 2003129890 A JP2003129890 A JP 2003129890A JP 2003129890 A JP2003129890 A JP 2003129890A JP 2004161989 A JP2004161989 A JP 2004161989A
- Authority
- JP
- Japan
- Prior art keywords
- styrene
- polymerization
- resin particles
- expandable resin
- based expandable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、スチレン系発泡性樹脂粒子とその製造方法、さらに、スチレン系発泡ビーズ及び発泡成形品に関する。
【0002】
【従来の技術】
スチレン系発泡性樹脂は、優れた断熱性、経済性、衛生性を特徴として、多くの食品容器、梱包材、緩衝材等に用いられている。これらの発泡成形品は、スチレン系発泡性樹脂粒子を、スチーム等により加熱、所望の嵩密度まで予備発泡し、熟成工程を経た後、成形金型に充填し、再度加熱発泡成形する方法により製造される。このスチレン系発泡性樹脂粒子は、発泡成形性に優れ、成形品としたときの成形品外観が良好であることが求められている。
【0003】
従来、発泡成形品の外観を良好とするためには、成形金型に充填されたスチレン系発泡ビーズを加熱発泡成形する際に、各ビーズ間の空隙を完全に無くすことが必要とされていた。しかし、ビーズ間の空隙を完全に無くすことは困難であった。そこで、空隙をできる限り少なくするため、スチレン系発泡性樹脂粒子自体の特性改善や成形機等の機能を含めた成形技術的な改善が行われてきた。
【0004】
例えば、スチレン系発泡性樹脂粒子自体の特性改善においては、樹脂粒子を可塑化する可塑剤の種類や添加量を調整する方法や、分子量を低分子量化する等の調整が行われてきた。しかし、これらの方法は、樹脂粒子の耐熱性を低下させることにつながり、成形時の加熱発泡により、成形体の表面が溶融し、空隙が増加するといった欠点があった。
【0005】
また、成形機等の機能を含めた成形技術的な改善においては、成形機的には、加熱工程における制御方法を検討し、スチームをより効率的に用いる方法が採用されている。さらに、成形金型では、スリット数を増加する等により、同様にスチームをより効果的に用いる方法が検討されている。しかし、これらの方法は、機械改造費や金型改造費等の金銭的付加が大きく、これら全てを一度に改善することが困難であるという欠点が挙げられる。
【0006】
【発明が解決しようとする課題】
本発明は、成形品の外観が良好で、発泡成形性に優れたスチレン系発泡性樹脂粒子とその製造方法、さらに、スチレン系発泡ビーズ及び発泡成形品を提供することを目的とする。
【0007】
【課題点を解決するための手段】
本発明の第1の態様によれば、スチレン系単量体の懸濁重合において、少なくとも重合後期のとき、反応槽内を低酸素濃度に保ちながら重合反応を進め、重合反応の完了前または重合反応の完了後に、発泡剤を含浸するスチレン系発泡性樹脂粒子の製造方法が提供される。
【0008】
本発明の第2の態様によれば、スチレン系単量体の懸濁重合において、重合開始より、反応槽内を低酸素濃度に保ちながら重合反応を進め、重合反応の完了前又は重合反応の完了後に、昜揮発性発泡剤を含浸することを特徴とするスチレン系発泡性樹脂粒子の製造方法が提供される。
【0009】
本発明の第3の態様によれば、上記の製造方法により得られることを特徴とするスチレン系発泡性樹脂粒子が提供される。
【0010】
本発明の第4の態様によれば、上記のスチレン系発泡性樹脂粒子を発泡させて得られることを特徴とするスチレン系発泡ビーズが提供される。
【0011】
本発明の第5の態様によれば、上記のスチレン系発泡ビーズを成形させて得られることを特徴とするスチレン系発泡成形品が提供される。
【0012】
【発明の実施の形態】
本発明のスチレン系発泡性樹脂粒子、発泡ビーズ及び発泡成形品について詳しく説明する。
本発明の製造方法においては、スチレン系単量体を懸濁重合する。
スチレン系単量体として、スチレン、又はスチレンを主成分とし、α−メチルスチレン、クロルスチレン、ビニルトルエン等のスチレン誘導体、アクリル酸メチル、アクリル酸メチル、アクリル酸ブチル等のアクリル酸エステル類、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル等のメタクリル酸エステル類との混合単量体を使用できる。
【0013】
懸濁重合には、従来公知の方法を採用することができる。
核無しでスチレン系単量体を重合する方法では、一般に、分散剤を含む水性媒体中に、有機過酸化物等の触媒を溶解したスチレン系単量体を分散してラジカルを発生させて重合を行う。
【0014】
分散剤として、難溶性無機塩と界面活性剤を併用してもよいし、有機分散剤等従来公知のものを使用することができる。
難溶性無機塩として、リン酸マグネシウム、リン酸三カルシウム等が使用できる。界面活性剤として、オレイン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、その他懸濁重合に一般的に使用されるアニオン系界面活性剤、ノニオン系界面活性剤のいずれでも使用できる。有機分散剤として、ポリビニルアルコール、ポリビニルピロリドン、メチルセルロース等が使用できる。
有機過酸化物は、10時間半減分解温度が50〜100℃である従来公知のものを使用できる。例えば、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシイソプロピルカーボネイト等がある。有機過酸化物は、重合性単量体に対して、0.001重量%〜0.5重量%使用されるのが好ましい。有機過酸化物は、一又は二以上用いることができる。
【0015】
全体の分子量は、触媒濃度を調整するか、連鎖移動剤を併用するか、又はこれら両方により調整できる。
連鎖移動剤としては、オクチルメルカプタン、ドデシルメルカプタン、α−メチルスチレンダイマー等の従来公知のものが使用できる。連鎖移動剤の添加量は、重合性単量体に対して、20ppm〜100ppm使用することが好ましい。
【0016】
本発明の製造方法においては、少なくとも重合後期に、反応槽内を低酸素濃度に保ちながら反応を進め、重合反応の完了前又は重合反応の完了後に、昜揮発性発泡剤を含浸する。
この方法では、重合開始又は重合途中より、反応槽内を低酸素濃度にしてもよいが、少なくとも重合後期には低酸素濃度にする。好ましくは、重合率が60%以上、より好ましくは60%以上97%未満で低酸素濃度にする。
一般に、反応槽内に酸素が存在した状態で重合が進む場合、スチレン系樹脂粒子中の低分子量物の形成量は増加する。特に、重合後期においては、残存する少ない重合触媒やラジカルを停止するため、スチレン系樹脂粒子表面層で低分子量物が形成され易く、そのため、成形品の外観を損なうこととなる。
一方、本発明の製造方法では、重合後期、又は重合開始より、反応槽内を低酸素濃度に保っているため、このような低分子量物の発生を抑制することが可能となる。酸素濃度は、好ましくは7体積%以下に保ち、より好ましくは1体積%以下に保つ。酸素濃度は、窒素等の不活性ガスで置き換えることにより調節できる。
【0017】
懸濁重合温度は、一般に、80℃〜95℃である。最終的に得られるスチレン系発泡性樹脂粒子において残存するスチレン系単量体の量を少なくするという、工業的な製造効率からは、重合温度は90℃以上が好ましい。
【0018】
本発明の製造方法においては、水分散液の水素イオン濃度が8〜10で重合を開始させ、重合率20%〜50%で、少なくとも1回以上の難溶性無機塩を追加することが好ましい。水分散液は連続相であることが好ましい。
水素イオン濃度が上記の範囲外であると、懸濁重合終了時の粒度分布がシャープとならない恐れがある。水素イオン濃度は、塩基性無機塩により調節することができる。
また、同様の理由により、重合率20%〜50%で難溶性無機塩を追加することができる。
難溶性無機塩は、少なくとも一回以上、例えば、2〜3回追加することができる。また、難溶性無機塩は、さらに重合が進んでから追加することもできる。
【0019】
昜揮発性発泡剤は、重合反応の完了前又は完了後に、スチレン系樹脂粒子に含浸する。
昜揮発性発泡剤としては、プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン、シクロペンタン等の脂肪族炭化水素の中から選ばれる。また、発泡助剤として、脂肪族炭化水素の他に、シクロヘキサン等の脂環式炭化水素や芳香族炭化水素を、昜揮発性発泡剤と併用することもできる。
【0020】
重合に際し、溶剤、可塑剤、発泡セル造核剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等、スチレン系発泡性樹脂粒子を製造する際に用いられる添加剤を、必要に応じて適宜使用してもよい。
【0021】
スチレン系発泡性樹脂粒子は、発泡剤の含浸が完了し、重合系内より排出され、さらに脱水乾燥した後、必要に応じて表面被覆剤を被覆することができる。かかる被覆剤は、従来公知である発泡スチレン系樹脂粒子に用いられるものが適用できる。例えば、ジンクステアレート、ステアリン酸トリグリセライド、ステアリン酸モノグリセライド、ひまし硬化油、アミド化合物、シリコーン類、静電防止剤等である。
【0022】
尚、本発明の製造方法において、スチレン系発泡性樹脂粒子または、再生スチレン系樹脂粒子を核として用いたシード重合法を適用することもできる。この方法においても、上述したように、酸素濃度を低く制御する。
【0023】
通常、懸濁重合により製造されるスチレン系発泡性樹脂粒子では、重量平均分子量(分子量)は、重合触媒の量により決定され、粒子中心部、中間部、及び表層部の分子量は、ほぼ一定であるが、反応槽内の酸素濃度を制御して低下させることなく重合が進む場合、上述したように、スチレン系樹脂粒子表面層で低分子量物が形成され易くなるため、スチレン系発泡ビーズ内の発泡セルサイズの範囲で分子量を比較した場合、最表面部分の分子量は低下する。
しかしながら、本発明により製造されるスチレン系発泡性樹脂粒子では、このような低分子量物の発生が抑制されるため、酸素濃度を制御しない通常の重合により製造される発泡成形品に比較し、外観が良好な発泡成形品を得ることができる。
【0024】
本発明のスチレン系発泡性樹脂粒子の平均粒子径は、通常、0.05〜2.0mmである。
【0025】
本発明のスチレン系発泡ビーズは、スチレン系発泡性樹脂粒子を発泡して製造する。また、本発明のスチレン系発泡成形品は、この発泡ビーズを成形して製造する。
一般には、スチレン系発泡性樹脂粒子を、スチーム等により加熱して所定の嵩密度まで予備発泡し、熟成工程を経て発泡ビーズを製造する。その後、発泡ビーズを成形金型に充填し、再度加熱発泡成形して、発泡成形品を製造する。
【0026】
本発明では、スチレン系発泡性樹脂粒子の発泡成形性を保ちながら、それから得られる成形品外観を良好にさせることができる。本発明の成形品は、食品容器、梱包材、緩衝材等に好適に使用できる。
【0027】
【実施例】
実施例及び比較例における特性評価方法は、以下の通りである。
(1)重量平均分子量(分子量)
スチレン系発泡性樹脂粒子の分子量は、粒子を発泡させて測定した。
スチレン系発泡性樹脂粒子を、飽和水蒸気中で、嵩倍数80ml/gに発泡した。
スチレン系発泡ビーズの分子量は、以下のようにして測定した。
まず、発泡ビーズ(平均粒子径:3.0mm)を5〜6ヶ準備し、それぞれ半分に切断した。次に、図1に示すように、半分に切断した発泡ビーズ1の表面から中心に向かって等間隔に、発泡セル1ヶ分の厚みで、層部分2及び層部分3を、顕微鏡の下で確認しながら切り取った。最表面層部分(層部分2)と、表面層部分(層部分2及び3を合わせた部分)の分子量を測定した。最表面層部分は、発泡セル1ヶ分の部分であり、表面層部分は、発泡セル2ヶ分の部分である。表面層部分の分子量は、層部分2及び3の分子量の平均値として求めた。
本実施例において、最表面層部分の発泡セル1ヶ分とは、およそ50〜100μmの大きさを示し、表面層部分の発泡セル2ヶ分とは、およそ100〜200μmの大きさを示す。
尚、分子量は、ゲルパーミエーションクロマトグラフ(GPC)法により、以下の装置及び条件で測定した。
測定装置:(株)日立製作所社製
溶離液:THF、流量:2ml/分
検出器:UV 220nm
カラム:日立化成工業(株)社製 GL−R400M 2本
【0028】
(2)発泡性
発泡性は、スチレン系発泡性樹脂粒子の揮発性成分量が7.0重量%のときの100℃沸騰水中で3分間発泡させた際の嵩密度(発泡度)を測定した。
【0029】
(3)外観(表面平滑率)
スチレン系発泡性樹脂粒子を、日立テクノプラント(株)製、HBP−700発泡機を用いて、嵩密度が60ml/gとなるように発泡させて、発泡ビーズを得た。さらに、この発泡ビーズを、ダイセン工業(株)製、VS−500成形機を用い、スチーム圧力0.08MPaで実施して、550mm×335mm×150mmの成形品を得た。この成形品の表面部分に、黒色印刷インクをローラーで薄く塗り、この表面部分を画像処理装置にかけた。このとき、表面部分の空隙には印刷インクが塗布されないことから、全塗布面積に対する黒色部分の面積を求め、表面平滑率とし、これを外観の評価数値とした。
【0030】
実施例1
攪拌機付属の14リットルオートクレーブ中に、純水6,000g、燐酸三カルシウム9g、ドデシルベンゼンスルホン酸ソーダ0.3gを入れ、230回転/分で攪拌しながら仕込んだ。このときの水素イオン濃度は8.0であった。
続いて、スチレン6,000g、ベンゾイルパーオキサイド20.8g(Wet75%)、t−ブチルパーオキシイソプロピルカーボネイト2.4g、エチレンビスアミド3gを攪拌しながら仕込んだ。
【0031】
仕込み完了後、重合槽内を密閉し、ブロー用配管を開放した後、窒素を流し、酸素濃度が6.5体積%となった段階でブロー用配管を閉めた。90℃まで昇温し、昇温完了2時間及び3時間後、それぞれ燐酸三カルシウムを3g追加した。このときの重合率は、それぞれ、34%、43%であった。
【0032】
引き続き、90℃で3時間保温した時点で、再度燐酸三カルシウム6gとドデシルベンゼンスルホン酸ソーダ0.3gを追加した。このときの重合槽内における酸素濃度を測定した結果、5.8体積%であった。その後、100℃に1時間かけて昇温した。
【0033】
引き続き、シクロヘキサン90g、さらに1時間後に、ブタン(イソブタン/ノルマルブタン比=4/6)420gを1時間で圧入し、さらに4時間保温した。その後、室温まで冷却し、オートクレーブより取り出した。
【0034】
取り出したスラリーを、洗浄、脱水、乾燥と各工程を行った後、14メッシュ通過、26メッシュ残で分級し、さらに、ジンクステアレート0.08%、ひまし硬化油0.05%、ジメチルシリコーン0.02%を表面被覆し、スチレン系発泡性樹脂粒子(平均粒子径:0.85mm)を得た。分子量及び特性の測定結果を表1に示す。
【0035】
実施例2
仕込み完了から90℃での重合が完了するまで、重合槽内に窒素を流し続け、重合槽内の酸素濃度を0.1体積%以下で制御した以外は、実施例1と同様に行い、スチレン系発泡性樹脂粒子(平均粒子径:0.85mm)を得た。分子量及び特性の測定結果を表1に示す。
【0036】
比較例1
攪拌機付属の14リットルオートクレーブ中に、純水6,000g、燐酸三カルシウム9g、ドデシルベンゼンスルホン酸ソーダ0.3gを入れ、230回転/分で攪拌しながら仕込んだ。このときの水素イオン濃度は8.0であった。
続いて、スチレン6,000g、ベンゾイルパーオキサイド20.8g(Wet75%)、t−ブチルパーオキシイソプロピルカーボネイト2.4g、エチレンビスアミド3gを攪拌しながら仕込んだ。
【0037】
仕込み完了後、90℃まで昇温し、ブロー用配管を開放して重合を進めた。このとき、重合槽内の酸素濃度は、20.7体積%であった。昇温完了2時間及び3時間後、それぞれ燐酸三カルシウムを3g追加した。このときの重合率は、それぞれ、33%、42%であった。
【0038】
引き続き、90℃で3時間保温した時点で、再度燐酸三カルシウム6gとドデシルベンゼンスルホン酸ソーダ0.3gを追加した。このときの重合槽内における酸素濃度を測定した結果、15.8体積%であった。その後、100℃に1時間かけて昇温した。発泡剤の含浸以降は、実施例1と同様に行い、スチレン系発泡性樹脂粒子(平均粒子径:0.85mm)を得た。分子量及び特性の測定結果を表1に示す。
【0039】
【表1】
【0040】
【発明の効果】
本発明によれば、成形品の外観が良好で、発泡成形性に優れたスチレン系発泡性樹脂粒子とその製造方法、さらに、スチレン系発泡ビーズ及び発泡成形品を提供できる。
【図面の簡単な説明】
【図1】本発明の発泡ビーズの最表面層部分と表面層部分を説明するための図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to styrene-based foamable resin particles and a method for producing the same, and further relates to styrene-based foam beads and foam molded articles.
[0002]
[Prior art]
Styrene-based foamable resins are used in many food containers, packing materials, cushioning materials, and the like, because of their excellent heat insulating properties, economic efficiency, and hygiene. These foamed molded articles are manufactured by a method in which styrene-based foamable resin particles are heated by steam or the like, pre-expanded to a desired bulk density, passed through an aging step, filled in a molding die, and then heated and foamed again. Is done. The styrene-based expandable resin particles are required to have excellent foam moldability and have a good appearance of the molded product when formed.
[0003]
Conventionally, in order to improve the appearance of a foam molded product, it is necessary to completely eliminate voids between the beads when heating and foaming styrene foam beads filled in a molding die. . However, it was difficult to completely eliminate voids between beads. Therefore, in order to reduce the voids as much as possible, improvements in characteristics of the styrene-based expandable resin particles themselves and improvements in molding technology including functions of a molding machine and the like have been made.
[0004]
For example, in improving the characteristics of the styrene-based expandable resin particles themselves, a method of adjusting the type and amount of a plasticizer that plasticizes the resin particles, and an adjustment such as reducing the molecular weight have been performed. However, these methods have a drawback that the heat resistance of the resin particles is reduced, and the surface of the molded body is melted by heating and foaming at the time of molding to increase voids.
[0005]
In the improvement of molding technology including the function of a molding machine and the like, a control method in a heating process is examined for a molding machine, and a method of using steam more efficiently is adopted. Further, in a molding die, a method of similarly using steam more effectively by increasing the number of slits is being studied. However, these methods have a drawback that it is difficult to improve all of them at once, because a great amount of money is added to the cost of remodeling the machine and the cost of remodeling the mold.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a styrene-based foamable resin particle having a good appearance of a molded article and excellent foam moldability, a method for producing the same, a styrene-based expanded bead, and a foamed molded article.
[0007]
[Means for solving the problems]
According to the first aspect of the present invention, in the suspension polymerization of a styrenic monomer, at least at the latter stage of the polymerization, the polymerization reaction is advanced while maintaining the inside of the reaction tank at a low oxygen concentration, and before the completion of the polymerization reaction or the polymerization. After the completion of the reaction, there is provided a method for producing styrenic expandable resin particles impregnated with a blowing agent.
[0008]
According to the second aspect of the present invention, in suspension polymerization of a styrene-based monomer, from the start of polymerization, the polymerization reaction is advanced while maintaining the inside of the reaction tank at a low oxygen concentration, and before the completion of the polymerization reaction or during the polymerization reaction. After the completion, there is provided a method for producing styrene-based expandable resin particles, characterized by impregnating a readily volatile blowing agent.
[0009]
According to a third aspect of the present invention, there is provided styrene-based expandable resin particles obtained by the above-described method.
[0010]
According to a fourth aspect of the present invention, there is provided styrene-based expanded beads obtained by expanding the styrene-based expandable resin particles.
[0011]
According to a fifth aspect of the present invention, there is provided a styrenic foam molded article obtained by molding the above-mentioned styrenic foam beads.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The styrene-based expandable resin particles, expanded beads and expanded molded products of the present invention will be described in detail.
In the production method of the present invention, a styrene monomer is subjected to suspension polymerization.
As a styrene monomer, styrene or styrene as a main component, styrene derivatives such as α-methylstyrene, chlorostyrene, vinyltoluene, acrylates such as methyl acrylate, methyl acrylate, butyl acrylate, and methacrylic acid A mixed monomer with methacrylates such as methyl acrylate, ethyl methacrylate and butyl methacrylate can be used.
[0013]
A conventionally known method can be employed for suspension polymerization.
In the method of polymerizing a styrene monomer without a nucleus, generally, a styrene monomer in which a catalyst such as an organic peroxide is dissolved is dispersed in an aqueous medium containing a dispersant to generate radicals. I do.
[0014]
As the dispersant, a sparingly soluble inorganic salt and a surfactant may be used in combination, or a conventionally known dispersant such as an organic dispersant may be used.
As the hardly soluble inorganic salt, magnesium phosphate, tricalcium phosphate and the like can be used. As the surfactant, any of sodium oleate, sodium dodecylbenzenesulfonate, and other anionic surfactants and nonionic surfactants generally used for suspension polymerization can be used. As the organic dispersant, polyvinyl alcohol, polyvinylpyrrolidone, methylcellulose and the like can be used.
As the organic peroxide, a conventionally known organic peroxide having a 10-hour half-decomposition temperature of 50 to 100 ° C. can be used. For example, there are lauroyl peroxide, benzoyl peroxide, t-butylperoxybenzoate, t-butylperoxyisopropyl carbonate and the like. The organic peroxide is preferably used in an amount of 0.001% by weight to 0.5% by weight based on the polymerizable monomer. One or more organic peroxides can be used.
[0015]
The overall molecular weight can be adjusted by adjusting the catalyst concentration, using a chain transfer agent, or both.
As the chain transfer agent, conventionally known ones such as octyl mercaptan, dodecyl mercaptan and α-methylstyrene dimer can be used. The addition amount of the chain transfer agent is preferably 20 ppm to 100 ppm based on the polymerizable monomer.
[0016]
In the production method of the present invention, at least at the latter stage of the polymerization, the reaction is carried out while keeping the inside of the reaction tank at a low oxygen concentration, and the volatile reaction agent is impregnated before the completion of the polymerization reaction or after the completion of the polymerization reaction.
In this method, the inside of the reaction tank may be set to a low oxygen concentration from the start of polymerization or during the polymerization. Preferably, the low oxygen concentration is obtained when the polymerization rate is 60% or more, more preferably 60% or more and less than 97%.
In general, when the polymerization proceeds in a state where oxygen is present in the reaction tank, the amount of the low molecular weight material formed in the styrene resin particles increases. In particular, in the latter stage of polymerization, a small amount of the remaining polymerization catalyst and radicals are stopped, so that a low-molecular-weight product is easily formed on the surface layer of the styrene-based resin particles, thereby impairing the appearance of a molded article.
On the other hand, in the production method of the present invention, since the inside of the reaction tank is kept at a low oxygen concentration from the latter stage of the polymerization or from the start of the polymerization, it is possible to suppress the generation of such low-molecular-weight products. The oxygen concentration is preferably kept below 7% by volume, more preferably below 1% by volume. The oxygen concentration can be adjusted by replacing with an inert gas such as nitrogen.
[0017]
The suspension polymerization temperature is generally between 80C and 95C. The polymerization temperature is preferably 90 ° C. or higher from the industrial production efficiency of reducing the amount of styrene monomer remaining in the finally obtained styrene foamable resin particles.
[0018]
In the production method of the present invention, it is preferable to start polymerization when the hydrogen ion concentration of the aqueous dispersion is 8 to 10, and to add at least one or more hardly soluble inorganic salts at a polymerization rate of 20 to 50%. The aqueous dispersion is preferably a continuous phase.
If the hydrogen ion concentration is outside the above range, the particle size distribution at the end of suspension polymerization may not be sharp. The hydrogen ion concentration can be adjusted with a basic inorganic salt.
Further, for the same reason, a sparingly soluble inorganic salt can be added at a polymerization rate of 20% to 50%.
The poorly soluble inorganic salt can be added at least once or more, for example, two or three times. Further, the sparingly soluble inorganic salt can be added after the polymerization is further advanced.
[0019]
The readily volatile blowing agent impregnates the styrenic resin particles before or after the completion of the polymerization reaction.
The volatile volatile foaming agent is selected from aliphatic hydrocarbons such as propane, isobutane, normal butane, isopentane, normal pentane and cyclopentane. In addition, as a foaming aid, an alicyclic hydrocarbon such as cyclohexane or an aromatic hydrocarbon can be used in combination with a readily volatile foaming agent in addition to an aliphatic hydrocarbon.
[0020]
In the polymerization, solvents, plasticizers, foam cell nucleating agents, fillers, flame retardants, flame retardant aids, lubricants, coloring agents, etc., additives used when producing styrene-based foamable resin particles are required. They may be used as appropriate.
[0021]
After the impregnation of the styrene-based expandable resin particles with the blowing agent is completed, the styrene-based expandable resin particles are discharged from the polymerization system, and are further dehydrated and dried, and then can be coated with a surface coating agent as necessary. As such a coating agent, those used for conventionally known expanded styrene resin particles can be applied. Examples include zinc stearate, triglyceride stearate, monoglyceride stearate, hardened castor oil, amide compounds, silicones, antistatic agents and the like.
[0022]
In the production method of the present invention, a seed polymerization method using styrene foamable resin particles or recycled styrene resin particles as a core can be applied. Also in this method, as described above, the oxygen concentration is controlled to be low.
[0023]
Generally, in styrene-based expandable resin particles produced by suspension polymerization, the weight-average molecular weight (molecular weight) is determined by the amount of the polymerization catalyst, and the molecular weights of the particle center, the intermediate part, and the surface part are almost constant. However, when the polymerization proceeds without reducing the oxygen concentration in the reaction tank by controlling it, as described above, a low-molecular-weight product is easily formed on the styrene-based resin particle surface layer, and thus the styrene-based expanded beads in the styrene-based expanded beads are used. When the molecular weights are compared in the range of the foam cell size, the molecular weight at the outermost surface decreases.
However, in the styrene-based expandable resin particles produced according to the present invention, since the generation of such low-molecular-weight products is suppressed, the appearance is lower than that of a foam molded article produced by ordinary polymerization without controlling the oxygen concentration. Can obtain a good foam molded article.
[0024]
The average particle diameter of the styrene-based expandable resin particles of the present invention is usually 0.05 to 2.0 mm.
[0025]
The styrene foam beads of the present invention are produced by foaming styrene foam resin particles. Further, the styrene-based foam molded article of the present invention is manufactured by molding the foam beads.
Generally, styrene-based expandable resin particles are pre-expanded to a predetermined bulk density by heating with steam or the like, and then subjected to an aging step to produce expanded beads. Thereafter, the foamed beads are filled in a molding die, and are again subjected to heat foam molding to produce a foam molded article.
[0026]
In the present invention, it is possible to improve the appearance of a molded product obtained from the styrene-based expandable resin particles while maintaining the expandability of the expandable resin particles. The molded article of the present invention can be suitably used for food containers, packing materials, cushioning materials and the like.
[0027]
【Example】
The characteristic evaluation methods in the examples and comparative examples are as follows.
(1) Weight average molecular weight (molecular weight)
The molecular weight of the styrene-based expandable resin particles was measured by expanding the particles.
The styrene-based foamable resin particles were foamed in saturated steam at a bulk factor of 80 ml / g.
The molecular weight of the styrene foam beads was measured as follows.
First, 5 to 6 foamed beads (average particle diameter: 3.0 mm) were prepared, and each was cut in half. Next, as shown in FIG. 1, the layer portion 2 and the layer portion 3 are separated under a microscope by a thickness of one foam cell at equal intervals from the surface of the foam bead 1 cut in half toward the center. I cut it out while checking. The molecular weights of the outermost surface layer portion (layer portion 2) and the surface layer portion (portion of layer portions 2 and 3) were measured. The outermost layer portion is a portion for one foam cell, and the surface layer portion is a portion for two foam cells. The molecular weight of the surface layer portion was determined as the average of the molecular weights of the layer portions 2 and 3.
In the present embodiment, one foam cell in the outermost layer indicates a size of about 50 to 100 μm, and two foam cells in the surface layer indicates a size of about 100 to 200 μm.
The molecular weight was measured by gel permeation chromatography (GPC) using the following apparatus and conditions.
Measuring device: Hitachi, Ltd. Eluent: THF, flow rate: 2 ml / min Detector: UV 220 nm
Column: Two GL-R400M manufactured by Hitachi Chemical Co., Ltd.
(2) Foaming foamability was measured by measuring the bulk density (foaming degree) of foaming in boiling water at 100 ° C. for 3 minutes when the amount of volatile components in the styrene-based foamable resin particles was 7.0% by weight. .
[0029]
(3) Appearance (surface smoothness)
The styrene-based foamable resin particles were foamed using an HBP-700 foaming machine manufactured by Hitachi Techno Plant Co., Ltd. to have a bulk density of 60 ml / g to obtain foamed beads. Further, the foamed beads were subjected to a steam pressure of 0.08 MPa using a VS-500 molding machine manufactured by Daisen Industries Co., Ltd. to obtain a molded product of 550 mm × 335 mm × 150 mm. A black printing ink was lightly applied to the surface of the molded article with a roller, and the surface was applied to an image processing apparatus. At this time, since the printing ink was not applied to the voids on the surface portion, the area of the black portion with respect to the entire application area was determined, the surface smoothness was used, and this was used as the evaluation value of the appearance.
[0030]
Example 1
In a 14-liter autoclave attached to a stirrer, 6,000 g of pure water, 9 g of tricalcium phosphate, and 0.3 g of sodium dodecylbenzenesulfonate were charged and charged with stirring at 230 rpm. The hydrogen ion concentration at this time was 8.0.
Subsequently, 6,000 g of styrene, 20.8 g (wet 75%) of benzoyl peroxide, 2.4 g of t-butylperoxyisopropyl carbonate, and 3 g of ethylenebisamide were charged with stirring.
[0031]
After completion of the charging, the inside of the polymerization tank was sealed, and the blowing pipe was opened. Then, nitrogen was flowed, and the blowing pipe was closed when the oxygen concentration reached 6.5% by volume. The temperature was raised to 90 ° C., and 2 hours and 3 hours after completion of the temperature increase, 3 g of tricalcium phosphate was added. At this time, the polymerization rates were 34% and 43%, respectively.
[0032]
Subsequently, when the temperature was maintained at 90 ° C. for 3 hours, 6 g of tricalcium phosphate and 0.3 g of sodium dodecylbenzenesulfonate were added again. As a result of measuring the oxygen concentration in the polymerization tank at this time, it was 5.8% by volume. Thereafter, the temperature was raised to 100 ° C. over 1 hour.
[0033]
Subsequently, 90 g of cyclohexane and 420 g of butane (isobutane / normal butane ratio = 4/6) were injected in 1 hour after 1 hour, and the temperature was kept for 4 hours. Then, it cooled to room temperature and took out from the autoclave.
[0034]
The taken-out slurry was subjected to washing, dehydration, and drying, followed by passing through 14 mesh and classifying with 26 mesh remaining. Further, zinc stearate 0.08%, castor hardened oil 0.05%, dimethyl silicone The surface was coated with 0.02% to obtain styrene foamable resin particles (average particle diameter: 0.85 mm). Table 1 shows the measurement results of the molecular weight and the properties.
[0035]
Example 2
From the completion of the charging to the completion of the polymerization at 90 ° C., nitrogen was continuously flown into the polymerization tank, and the same procedure as in Example 1 was carried out except that the oxygen concentration in the polymerization tank was controlled at 0.1% by volume or less. System expandable resin particles (average particle diameter: 0.85 mm) were obtained. Table 1 shows the measurement results of the molecular weight and the properties.
[0036]
Comparative Example 1
In a 14-liter autoclave attached to a stirrer, 6,000 g of pure water, 9 g of tricalcium phosphate, and 0.3 g of sodium dodecylbenzenesulfonate were charged and charged with stirring at 230 rpm. The hydrogen ion concentration at this time was 8.0.
Subsequently, 6,000 g of styrene, 20.8 g (wet 75%) of benzoyl peroxide, 2.4 g of t-butylperoxyisopropyl carbonate, and 3 g of ethylenebisamide were charged with stirring.
[0037]
After completion of the charging, the temperature was raised to 90 ° C., and the blowing pipe was opened to proceed with polymerization. At this time, the oxygen concentration in the polymerization tank was 20.7% by volume. Two hours and three hours after completion of the heating, 3 g of tricalcium phosphate was added. At this time, the polymerization rates were 33% and 42%, respectively.
[0038]
Subsequently, when the temperature was maintained at 90 ° C. for 3 hours, 6 g of tricalcium phosphate and 0.3 g of sodium dodecylbenzenesulfonate were added again. As a result of measuring the oxygen concentration in the polymerization tank at this time, it was 15.8% by volume. Thereafter, the temperature was raised to 100 ° C. over 1 hour. After the impregnation with the foaming agent, the same procedure as in Example 1 was carried out to obtain styrene-based foamable resin particles (average particle diameter: 0.85 mm). Table 1 shows the measurement results of the molecular weight and the properties.
[0039]
[Table 1]
[0040]
【The invention's effect】
According to the present invention, it is possible to provide a styrene-based expandable resin particle having a good appearance of a molded article and excellent foam moldability, a method for producing the same, a styrene-based expanded bead, and a foamed molded article.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining an outermost surface layer portion and a surface layer portion of a foamed bead of the present invention.
Claims (7)
少なくとも重合後期のとき、反応槽内を低酸素濃度に保ちながら重合反応を進め、
重合反応の完了前または重合反応の完了後に、発泡剤を含浸するスチレン系発泡性樹脂粒子の製造方法。In suspension polymerization of styrenic monomers,
At least during the late stage of the polymerization, the polymerization reaction proceeds while maintaining the inside of the reaction tank at a low oxygen concentration,
A method for producing styrene-based expandable resin particles in which a foaming agent is impregnated before or after completion of the polymerization reaction.
重合開始より、反応槽内を低酸素濃度に保ちながら重合反応を進め、
重合反応の完了前又は重合反応の完了後に、昜揮発性発泡剤を含浸することを特徴とするスチレン系発泡性樹脂粒子の製造方法。In suspension polymerization of styrenic monomers,
From the start of polymerization, the polymerization reaction is promoted while maintaining the inside of the reaction tank at a low oxygen concentration.
A method for producing styrenic foamable resin particles, comprising impregnating a readily volatile foaming agent before or after completion of the polymerization reaction.
重合率20%〜50%で、少なくとも1回以上、難溶性無機塩を加えることを特徴とする請求項1〜3のいずれか一項記載のスチレン系発泡性樹脂粒子の製造方法。In the suspension polymerization of the styrene-based monomer, polymerization is started at a hydrogen ion concentration of the aqueous dispersion of 8 to 10,
The method for producing styrene-based expandable resin particles according to any one of claims 1 to 3, wherein the sparingly soluble inorganic salt is added at least once or more at a polymerization rate of 20% to 50%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003129890A JP3994911B2 (en) | 2002-09-26 | 2003-05-08 | Styrenic expandable resin particles, expanded beads and expanded molded products |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002280359 | 2002-09-26 | ||
JP2003129890A JP3994911B2 (en) | 2002-09-26 | 2003-05-08 | Styrenic expandable resin particles, expanded beads and expanded molded products |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007116432A Division JP2007191725A (en) | 2002-09-26 | 2007-04-26 | Expandable styrene resin particle, expandable bead, and foamed article |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004161989A true JP2004161989A (en) | 2004-06-10 |
JP2004161989A5 JP2004161989A5 (en) | 2006-05-11 |
JP3994911B2 JP3994911B2 (en) | 2007-10-24 |
Family
ID=32827789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003129890A Expired - Lifetime JP3994911B2 (en) | 2002-09-26 | 2003-05-08 | Styrenic expandable resin particles, expanded beads and expanded molded products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3994911B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006160905A (en) * | 2004-12-08 | 2006-06-22 | Hitachi Chem Co Ltd | Reclaimed foamable sytrenic resin particle, method for producing the same, reclaimed styrenic foamed bead and reclaimed foamed styrenic resin molded article |
-
2003
- 2003-05-08 JP JP2003129890A patent/JP3994911B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006160905A (en) * | 2004-12-08 | 2006-06-22 | Hitachi Chem Co Ltd | Reclaimed foamable sytrenic resin particle, method for producing the same, reclaimed styrenic foamed bead and reclaimed foamed styrenic resin molded article |
Also Published As
Publication number | Publication date |
---|---|
JP3994911B2 (en) | 2007-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004529215A5 (en) | ||
US20070082960A1 (en) | Expandable styrene resin particles, expandable beads, and foamed article | |
CA2115974A1 (en) | Bead-form, expandable styrene polymers having a reduced internal water content, and their preparation | |
JP3926289B2 (en) | Styrenic expandable resin particles, expanded beads and expanded molded products | |
JPH04183706A (en) | Production of styrene-modified polyethylene resin particle | |
JP3474995B2 (en) | Method for producing expandable styrene polymer particles | |
JP2004155870A (en) | Expandable styrenic resin particle for building material and its expanded molded product | |
JP3896987B2 (en) | Styrenic expandable resin particles, expanded beads and expanded molded products | |
JP2004161989A (en) | Styrene-based expandable resin particle, foamed bead and expansion molding product | |
JPH07188454A (en) | Expandable styrene polymer particle | |
JP2006131777A (en) | Styrenic foamable resin particle, foamed bead and molded article | |
JPS6310181B2 (en) | ||
JP2007191725A (en) | Expandable styrene resin particle, expandable bead, and foamed article | |
JP2007002265A (en) | Expandable styrene resin particles, expandable beads, and foamed article | |
JP4832716B2 (en) | Small particle size styrenic expandable resin particles, expanded beads and molded products | |
JP3551274B2 (en) | Method for producing expandable styrene resin particles | |
JP2013203978A (en) | Foamable polystyrene-based resin particle, method for producing the same and application thereof | |
JP3551277B2 (en) | Expandable styrene resin particles and method for producing the same | |
JP3024522B2 (en) | Styrene-based expandable resin particles and expanded molded article obtained using the same | |
JP2006028447A (en) | Foamable styrenic polymer particle, its production process and molded product of the same | |
JPH08295757A (en) | Expandable styrene resin particle and its production | |
JP5216503B2 (en) | Expandable styrene resin particles and method for producing the same | |
JP2002249614A (en) | Expandable styrenic resin particle | |
US20050187307A1 (en) | Expandable styrene resin particles, expandable beads, and foamed article | |
JP4365488B2 (en) | Manufacturing method of composite molded product and composite molded product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050816 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060315 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20060315 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20060406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060808 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061010 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070129 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070426 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070514 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070710 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070723 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3994911 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130810 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |