[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004161541A - Anticlouding low reflective film and coating liquid for forming anticlouding low reflective film - Google Patents

Anticlouding low reflective film and coating liquid for forming anticlouding low reflective film Download PDF

Info

Publication number
JP2004161541A
JP2004161541A JP2002329227A JP2002329227A JP2004161541A JP 2004161541 A JP2004161541 A JP 2004161541A JP 2002329227 A JP2002329227 A JP 2002329227A JP 2002329227 A JP2002329227 A JP 2002329227A JP 2004161541 A JP2004161541 A JP 2004161541A
Authority
JP
Japan
Prior art keywords
film
low
fogging
volatile organic
coating liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002329227A
Other languages
Japanese (ja)
Inventor
Takayuki Ogawa
小川  貴之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2002329227A priority Critical patent/JP2004161541A/en
Publication of JP2004161541A publication Critical patent/JP2004161541A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anticlouding low reflective film having excellent anticlouding property, low reflective property and low reflective property in the exhibition of anticlouding property. <P>SOLUTION: In the anticlouding low reflective film formed on the surface of a base material, the film is a porous silica film and the average diameter of voids is controlled to 5-30 nm. The voids are formed by volatilizing a volatile organic material from the film. A coating liquid for forming the film has at least a silicon alkoxide as a silica source and the volatile organic material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、車両用のガラス窓、建築用のガラス窓、鏡、ショーウィンドウ、テレビジョン用のディスプレーガラス、太陽電池用ガラス基板、レンズ等の光学部品等に供されるガラス基板の水分による曇りを防止する防曇性低反射膜に関し、特に、単純且つ安全な工程でもって製造でき大面積化が容易な基材上に形成される防曇性低反射膜及び防曇性低反射膜形成用塗布液に関する。
【0002】
【従来の技術】
基材の反射率を低減させる低反射膜としては、単層または複数層からなるものが知られているが、単層および2層からなるものは、残存反射率が大きく、効率が悪く、屈折率の異なる3層を積層したものが好ましいと言われている。しかし、3層を積層させるには、公知の真空蒸着法、ディップコーティング法等いずれの方法でも、煩雑であるとともに生産性が低いという欠点があり、廉価な低反射ガラスを得るためには、単層の低反射膜が好ましい。
【0003】
一般的に基材の屈折率がn 、単層膜の屈折率がnの場合の反射率Rは、n>nのとき、極小値として(n −n/(n+n をとることが知られている。このRは、n=nのとき、すなわちn=n 1/2 のときが最小となる関数だから、単層膜の屈折率nがn 1/2に近いほど反射率は低減される。更に、一般に使用される基材ガラスがフロート法等で製造されたソーダ石灰ガラス(n=1.51程度)なので、単層膜の目標屈折率nは1.23となる。従って、単層膜で反射率を低減させる為には、その単層膜の屈折率が1.23に限りなく近い低屈折率のものがより好ましいことになる。
【0004】
低屈折率の膜で低反射性を発現させる方法としては、膜を多孔質性にする方法や膜の表面に微細な凹凸面を形成する方法が提案されている。前者は、シリカベースのマトリックスから有機物をエッチングや焼成によって除去し膜を多孔性にする方法(例えば、特許文献1、特許文献2参照)、後者は、コロイダルシリカ等のシリカ微粒子で膜表面を凹凸形状にする方法(例えば、特許文献3、特許文献4参照)、2種類上の平均分子量のシリカ系ゾルから膜を形成し該膜の表面を凹凸形状にする方法(例えば、特許文献5参照)等が知られている。
【0005】
最近、上記したような膜の多孔質性や膜の表面に微細な凹凸面を利用した防曇性が提案されている。例えば、特許文献6では、光半導体が分散された多孔質性の膜が開示され、光半導体による親水性と多孔質膜の吸水性によって防曇性が向上するとある。又、特許文献7では、金属酸化物微粒子を用いて、膜表面を凹凸することで、親水性の表面積が拡がり防曇性が向上することが開示されている。
【0006】
しかし、前記文献で開示されている物品は、低反射性又は防曇性の単独機能に関するものであり、両方の機能を有するものではない。例えば、防曇性を得るために、表面を凹凸とした場合、凹凸形状により、低反射性が予期せずに得られる場合があるが、防曇性発現時には、前記凹凸形状が水膜によって埋まるために低反射効果がほとんどなくなる。又、多孔質膜の吸水効果で防曇性が発現する場合であっても、吸水時には膜の屈折率が変動するので、低反射性が損なわれるなどの問題がある。
【0007】
低反射性と防曇性を兼ね備えた単層膜が特許文献8に開示されているが、多孔質性の弗化マグネシウム膜であり、真空蒸着による成膜が必要で、大面積化が容易でなく、コスト的にも不利である。又、得られる膜も脆く耐久性にも問題がある。加えて、多孔質部分に関して特別な設計がなされていないので、吸水時の屈折率が変動する問題は解決されていない。又、多孔質性の膜が必ずしも防曇性を示すわけではなく、例えば、特許文献9の実施例及び図では、平均孔径1nm乃至2nmの多孔質性の膜は、吸水性を示さないことが開示されている。
【0008】
又、耐久性のある多孔質性の膜を得るためには、膜の固体部分の強度を高める必要がある。膜の強度を高める有効な方法は、比較的高温で膜の焼成を行うことである。しかし、特許文献8で開示されている真空蒸着で得られた多孔質性の膜を焼成した場合、空孔が消失する問題がある。又、特許文献6で開示されている物品は、350℃までの焼成で得られたもので、膜の強度は十分ではなく、耐久性に問題があった。
【0009】
【特許文献1】
特開昭62−226840号公報
【特許文献2】
特開平3−199043号公報
【特許文献3】
特開平5−288903号公報
【特許文献4】
特開平8−122501号公報
【特許文献5】
特許第2716330号公報
【特許文献6】
特開平11−235550号公報
【特許文献7】
特開平11−100234号公報
【特許文献8】
特開平11−77876号公報
【特許文献9】
特開2000−77399号公報(8項〜10項、実施例及び図)
【0010】
【本発明が解決しようとする課題】
本発明が解決しようとする課題は、防曇性、及び、低反射性、並びに防曇性発現時に低反射性を保持する防曇性低反射膜、及び該膜が形成された堅牢で耐久性に優れ、コスト的に優れ大面積化が容易な基材上に形成される防曇性低反射膜及び防曇性低反射膜形成用塗布液を提供することである。
【0011】
【課題を解決するための手段】
本発明は、上記問題を鑑みなされたものである。すなわち、基材の表面に形成される防曇性低反射膜であって、該膜が多孔質性のシリカ膜で、空孔を5体積%〜85体積%有し、前記空孔の平均孔径が5nm〜30nmであることを特徴とする。基材上に形成される膜を上記構造とすることにより、低反射性、及び防曇性、並びに防曇性発現時にも低反射性を保持する防曇性低反射膜を得ることができる。
【0012】
前記膜の空孔は、シリカを主成分とするマトリックスに導入された揮散性有機物を400℃〜750℃の温度範囲で加熱して前記揮散性有機物を膜から揮散させることによって形成された空孔である。
【0013】
上記のような防曇性低反射膜を得るための塗布液は、少なくともシリカ源としてのケイ素アルコキシド、及び前記揮散性有機物を有する防曇性低反射膜形成用塗布液であって、前記揮散性有機物は、ケイ素アルコシキシド又はケイ素アルコキシド希釈溶液に溶解する性質を有していることが好ましく、その平均分子量が200〜2000であることがより好ましい。
【0014】
そのような揮散性有機物として、吸水性ウレタン樹脂、ポリエチレングリコール、ポリビニルアルコール、セルロース、陰イオン系界面活性剤、非イオン系界面活性剤、両性界面活性剤、陽イオン系界面活性剤、レシチン等のリン脂質および植物由来のサポニン系界面活性剤の群から少なくとも1種以上選ばれる揮散性有機物を使用することができる。
【0015】
又、防曇性低反射膜形成用塗布液には、シランカップリング剤を有していることが好ましく、前記シランカップリング剤には、N−γ−(アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−γ−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルフェニルジエトキシシラン、2−アミノ−1−メチルエチルトリエトキシシラン、N−メチル−γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリエトキシシラン、N−ブチル−γ−アミノプロピルメチルジエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−イソシアナートプロピルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、メタクリロキシプロピルトリメトキシシラン、γ−ポリオキシエチレンプロピルトリメトキシシラン、3−メタクリルオキシプロピルトリメトキシシランの群から少なくとも1種以上選ばれるシランカップリング剤を使用することができる。
【0016】
又、ケイ素アルコキシドと揮散性有機物との重量比が、8:1〜2:7であることが好ましく、さらには、ケイ素アルコキシドとシランカップリング剤との重量比が8:1〜3:6であることが好ましい。
【0017】
上記塗布液を使用することで、防曇性低反射膜を容易に製造することができ、大面積化が容易である。又、得られた防曇性低反射膜は堅牢且つ耐久性にも優れる。
【0018】
【発明の実施の形態】
本発明で得られる防曇性低反射膜は、基材上に形成される防曇性低反射膜であり、該膜は多孔質性のシリカ膜で、空孔を5体積%〜85体積%有している。基材として通常使用されるガラス基材の屈折率は1.51程度であるので、膜の屈折率が1.23のときが、低反射効果が最も高い。実用的な範囲を鑑み膜の屈折率の範囲は、1.1〜1.45、好ましくは、1.2〜1.40であることが好ましい。尚、本発明で表記する屈折率は、波長550nmでの値である。又、本発明での低反射膜とは、波長380〜800nmの光が膜に入射角60度で入射したときの反射率が基材だけの場合と比べて2.5%以上低いものをいう。又、膜の防曇性発現時の低反射性とは、膜面に水蒸気があたっているときに波長380〜800nmの光が膜に入射角60度で入射したときの反射率が水蒸気があたっていない基材だけの場合と比べて2.5%以上低いものをいう。
【0019】
多孔質性のシリカ膜は吸水性を有するが、吸水時には、屈折率が上昇し、低反射効果が減少する。本発明人は、膜が吸水するとき、すなわち防曇性発現時に屈折率がほとんど変動しない空孔サイズを鋭意検討した結果、空孔の平均孔径が5nm〜30nmのときが、低反射性、及び防曇性、並びに防曇性発現時の低反射性の効果が高いことを見いだした。空孔の平均孔径が5nm未満では、防曇性の効果が小さく、30nmを超えると膜のヘーズが高くなり透過率が減少することや、防曇性発現時の低反射効果が減少する等の問題がある。低反射性と防曇性発現時の低反射効果を鑑みると空孔の平均孔径は20nm以下、防曇性を鑑みると空孔の平均孔径は10nm、より好ましくは12nm以上が好ましい。
【0020】
さらには前記空孔の平均長さは10nm〜300nm、より好ましくは200nm以下であることが好ましい、空孔の平均長さが10nm未満だと防曇性の効果が小さく、300nmを超えると、防曇性発現時の低反射効果が減少する傾向にある。尚、本発明の空孔の径、長さ、空孔が膜に占める体積率は走査型電子顕微鏡(SEM)観察で求めることができる。
【0021】
上記のような多孔質性のシリカ膜は、シリカを主成分とするマトリックスに導入された揮散性有機物を400℃〜750℃の温度範囲で加熱して前記揮散性有機物を膜から揮散させることによって形成されたものである。揮散性有機物とは前記加熱によってシリカ膜から揮散する有機物を意味し、塗布液にシリカ源のケイ素アルコキシドとともに導入され、基材に塗布液を塗布した後、前記加熱によって揮散するものである。本発明の目的とする防曇性低反射膜を得るためには、多孔質性のシリカ膜の空孔サイズを厳密に制御しなければならない。前記空孔はシリカを主成分とするマトリックスに導入された揮散性有機物を400℃〜750℃の温度範囲で加熱して前記揮散性有機物を膜から揮散させることによって形成される。加熱温度が400℃未満では、揮散性有機物の揮散が不十分なことや、形成される多孔質性のシリカ膜の堅牢度が十分でない等の問題がある。一方、750℃を超えると、膜が焼きしまり、空孔が消滅する等の不具合が生じる。
【0022】
厳密に制御された空孔をえるためには、防曇性低反射膜を得るための塗布液中にシリカ源のケイ素アルコキシドと揮散性有機物とが均質に分散していることが重要となる。従って、揮散性有機物は、ケイ素アルコシキシド又はケイ素アルコキシド希釈溶液に溶解するの性質を有していることが好ましい。ケイ素アルコキシド希釈溶液とは、ケイ素アルコキシドを溶媒で希釈したものであって、前記溶媒としては、水、メタノール、エタノール、イソプロパノール、n−ブタノール、イソブタノール等の低級脂肪族アルコール類、エチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテル等のエチレングリコール誘導体、ジエチレングリコール、ジエチレングリコールモノブチルエーテル等のジエチレングリコール誘導体、及びジアセトンアルコール、トルエン、キシレン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、メチルエチルケトオキシム、及びこれらの混合物等を挙げることができる。実用的な観点から低級脂肪族アルコール類、低級脂肪族アルコール類と水との混合物が好ましい。
【0023】
又、制御された空孔サイズを得るために揮散性有機物の大きさは、平均分子量が200〜2000であることが好ましい。平均分子量が200未満である場合は、形成された細孔が小さく充分な防曇性が発揮されない。一方、平均分子量が2000よりも大きい場合には、形成された細孔が多きく、外観や膜の堅牢度に問題が生じやすくなる。
【0024】
上記条件を満足する揮散性有機物として、吸水性のウレタン樹脂、ポリエチレングリコール、ポリビニルアルコール、セルロース、陰イオン系界面活性剤、非イオン系界面活性剤、両性界面活性剤、陽イオン系界面活性剤、レシチン等のリン脂質および植物由来のサポニン系界面活性剤の群から少なくとも1種以上選ばれる揮散性有機物を使用することができる。
【0025】
さらに、揮散性有機物をシリカマトリックス中に均質に分散させるために前記シリカを主成分とするシリカマトリックスがシランカップリング剤を含有していることが好ましい。シランカップリング剤は、1個以上のアルコキシ基と1個以上の有機物と反応活性な有機官能基を有するケイ素化合物であり、シランカップリング剤を使用することによって、前記揮散性有機物と前記シリカとが網目架橋を形成させやすくなる。そのようなシランカップリング剤として、N−γ−(アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−γ−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルフェニルジエトキシシラン、2−アミノ−1−メチルエチルトリエトキシシラン、N−メチル−γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリエトキシシラン、N−ブチル−γ−アミノプロピルメチルジエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−イソシアナートプロピルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、メタクリロキシプロピルトリメトキシシラン、γ−ポリオキシエチレンプロピルトリメトキシシラン、3−メタクリルオキシプロピルトリメトキシシランの群から少なくとも1種以上選ばれるシランカップリング剤を使用することができる。
【0026】
又、ケイ素アルコキシドと前記揮散性有機物との重量比が、8:1〜2:7であることが好ましい。ケイ素アルコキシドが過剰な範囲外では、得られる膜の低反射効果、及び防曇効果が低く、揮散性有機物が過剰となる過剰となる範囲外では、得られる膜の強度が低く、耐久性に問題が生じる。
【0027】
さらに、ケイ素アルコキシドに対するシランカップリング剤の比は、重量比で2以下、好ましくは、1/8〜2であることがより好ましい。1/8未満であると、シランカップリング剤の効果が少なく、2を超えると得られる膜のシリカネットワークの強度が低くなるので耐久性に問題が生じる。
【0028】
本発明の塗布液を基材へ塗布する方法は、特に限定されるものではないが、ディップコート、フローコート、スピンコート、ロールコート、バーコート、スプレーコート、スクリーン印刷、フレキソ印刷等の公知手段が採用できる。
【0029】
本発明の防曇性被膜が形成される基材には、代表的なものとしてはガラスがあげられる。そのガラスは自動車用ならびに建築用、産業用ガラス等に通常用いられている板ガラスであり、フロート法、デュープレックス法、ロールアウト法等による板ガラスであって、製法は特に問わない。
【0030】
ガラス種としては、クリアをはじめグリーン、ブロンズ等の各種着色ガラスやUV、IRカットガラス、電磁遮蔽ガラス等の各種機能性ガラス、網入りガラス、低膨張ガラス、ゼロ膨張ガラス等防火ガラスに供し得るガラス、強化ガラスやそれに類するガラス、合わせガラスのほか複層ガラス等、銀引き法、あるいは真空成膜法により作製された鏡、さらには平板、曲げ板等各種ガラス製品を使用できる。板厚としては1.0mm以上10mm以下が好ましく、自動車用としては1.0mm以上5.0mm以下が好ましい。基材の表面への防曇性低反射膜の形成は、基材の片面だけであってもよいし、両面に行ってもよい。又、防曇剤の被覆は基材面の全面でも一部分であってもよい。
【0031】
加えて、基材は、ガラスに限定されるものではなく、光透過性や光反射性を有する金属、セラミックス等も、防曇性低反射膜形成時に変形しないものであれば使用することができる。
【0032】
本発明の防曇性低反射膜は、低反射性と防曇性を要する、例えば、メガネ・カメラ等のレンズ、窓ガラス、車両用ガラス、ヘルメットのシールド、水中眼鏡等の物品、または浴室内で使用する鏡等の特に透明性が要求される物品等に適用可能であり、中でも、低反射性と防曇性の両特性を有することから車両用ガラス、特に車両用フロントガラスに使用した場合に特に効力を発揮する。
【0033】
【実施例】
以下、実施例により本発明を具体的に説明する。ただし本発明は係る実施例に限定されるものではない。
【0034】
以下の実施例及び比較例において、低反射性、防曇性発現時の低反射性、可視光透過率、ヘーズ率、汚れ除去性、繰り返し防曇性、及び耐摩耗性を下記のようにして測定し、全試験で合格した膜を防曇性低反射膜とした。
【0035】
〔低反射性〕:波長380〜800nmの光を入射角60度で膜面側から入射させ、透過光をマルチ測光測定器(大塚エレクトロニクス社製、MCPD−3000)により測定し、基材と比較して、透過率の上昇が3.5%以上を優(◎)、2.5%以上3.5%未満を良(○)、2.5%未満を不可(×)とした。
【0036】
〔防曇性発現時の低反射性〕:加湿器(松下電器社製、FE−03KLW)から断続的に発生する蒸気を膜面に当てながら上記〔低反射性〕と同様の操作で測定を行った。蒸気を当てないときの基材と比較して、透過率の上昇が3.5%以上を優(◎)、2.5%以上3.5%未満を良(○)、2.5%未満を不可(×)とした。
【0037】
〔汚れ除去性〕:膜面に手の親指を押しつけ指紋を付け、呼気をかけてティッシュペーパーで拭き、再び呼気をかけて指紋の残存状況を観察した。指紋形状が見えないものを合格(○)、指紋形状が見えるものを不合格(×)とした。
【0038】
〔繰り返し防曇性〕:“繰り返し防曇性眼鏡用くもり止め剤試験法”(JISS4030)に基づき、43℃に設定した温水の水蒸気中に評価用サンプルを3分間保持した時の曇り具合と、保持後に常温(23℃、63%RH)中に取り出したときの呼気による曇り具合を目視で観察し、この操作を5サイクル行った。外観に異常がなく曇りが発生せず、目視判断によるサンプルの可視光透過性に問題がないものを合格(○)とし、曇りが発生したものを不合格(×)とした。
【0039】
〔堅牢度〕:スチールウール(#0000)で10往復の手拭き摩耗後の外観を評価し、傷が発生しなかったものを合格(○)、傷が発生又は膜が剥離したものを不合格(×)とした。
【0040】
実施例1
精製水及びエタノールとイソプロパノールの混合物(エキネンF1)を重量比で1:1に調整した希釈溶媒に、3:7の重量比で揮散性有機物として平均分子量500の陰イオン系界面活性剤(三洋化成社製、LipoquatR)及びケイ素源としてテトラエトキシシラン(以下TEOS)を塗布液中の全固形分濃度が8%になるように添加し、充分に撹拌した後、0.2規定の硝酸水溶液を塗布液に対して重量比で2/100になるように添加混合して、防曇性低反射膜形成用塗布液を得た。1000mm×1000mm×3mm(厚さ)サイズのフロートガラス基材にスピンコーティング法で塗布し、該ガラス基材を450℃、10分焼成し、0.1μmの膜厚を有する防曇性低反射膜付ガラス基材を得た。得られた防曇性低反射膜付ガラス基材は、空孔の平均孔径30nm(SEM観察から測定)であり、反射低減効果は3.5%、防曇性発現時の反射低減効果は2.6%、汚れ除去性、繰り返し防曇性、堅牢度の評価結果が全て合格と表1に示すとおり優れた物性を有していた。
【0041】
【表1】

Figure 2004161541
【0042】
実施例2
実施例1と同様の希釈溶媒に6:4の重量比で揮散性有機物として平均分子量2000のポリエチレングリコール(以下PEG)、及びケイ素源としてTEOSを塗布液中の全固形分濃度が8%になるように添加し、充分に撹拌した後、0.2規定の硝酸水溶液を塗布液に対して重量比で2/100になるよに添加混合して、防曇性低反射膜形成用塗布液を得、ガラス基材の焼成温度を600℃とした以外は実施例1と同様の操作で0.1μmの膜厚を有する防曇性低反射膜付ガラス基材を得た。得られた防曇性低反射膜付ガラス基材は、空孔の平均孔径20nm(SEM観察から測定)、反射低減効果3.8%、防曇性発現時の反射低減効果は3.2%、汚れ除去性、繰り返し防曇性、堅牢度の評価結果が全て合格と表1に示すとおり優れた物性を有していた。
【0043】
実施例3
実施例1と同様の希釈溶媒に4:4:2の重量比で揮散性有機物として平均分子量400のPEG、及びケイ素源としてTEOS、シランカップリング剤として3−メタクリルオキシプロピルトリメトキシシラン(以下MOMS)を塗布液中の全固形分濃度が8%になるように添加し、充分に撹拌した後、0.2規定の硝酸水溶液を塗布液に対して重量比で2/100になるように添加混合して、防曇性低反射膜形成用塗布液を得た以外は実施例1と同様の操作で0.1μmの膜厚を有する防曇性低反射膜付ガラス基材を得た。得られた防曇性低反射膜付ガラス基材は、空孔の平均孔径15nm(SEM観察から測定)、反射低減効果4%、防曇性発現時の反射低減効果は3.7%、汚れ除去性、繰り返し防曇性、堅牢度の評価結果が全て合格と表1に示すとおり優れた物性を有していた。
【0044】
実施例4
PEGの平均分子量を1000、焼成温度を730℃とした以外は、実施例3と同様の操作で防曇性低反射膜付ガラス基材を得た。得られた防曇性低反射膜付ガラス基材は、空孔の平均孔径12nm(SEM観察から測定)、反射低減効果3.8%、防曇性発現時の反射低減効果は3.8%、汚れ除去性、繰り返し防曇性、堅牢度の評価結果が全て合格と表1に示すとおり優れた物性を有していた。
【0045】
実施例5
実施例1と同様の希釈溶媒に3:3:4の重量比で揮散性有機物として平均分子量700のカルボキシメチルセルロースナトリウム、ケイ素源としてTEOS、及びシランカップリング剤としてMOMSを塗布液中の全固形分濃度が8%になるように添加し、充分に撹拌した後、0.2規定の硝酸水溶液を塗布液に対して重量比で2/100になるように添加混合して、防曇性低反射膜形成用塗布液を得、焼成温度を650℃とした以外は実施例1と同様の操作で0.1μmの膜厚を有する防曇性低反射膜付ガラス基材を得た。得られた防曇性低反射膜付ガラス基材は、空孔の平均孔径15nm(SEM観察から測定)、反射低減効果4.1%、防曇性発現時の反射低減効果は4.0%、汚れ除去性、繰り返し防曇性、堅牢度の評価結果が全て合格と、表1に示すとおり優れた物性を有していた。
【0046】
比較例1
焼成温度を350℃とした以外は実施例1と同様の操作で多孔質性のシリカ膜付ガラス基材を得た。得られた多孔質性のシリカ膜付ガラス基材は、空孔の平均孔径50nm(SEM観察から測定)、反射低減効果2.6%であったが、防曇性発現時の反射低減効果は0.6%と不合格、汚れ除去性、堅牢度の評価結果も不合格であった。
【0047】
比較例2
揮散性有機物として、平均分子量500のシリコーンを使用した以外は、実施例1と同様の操作で防曇性低反射膜形成用塗布液を得ようとしたが、均質な塗布液を得ることができず、多孔質性のシリカ膜付ガラス基材を得ることができなかった。
【0048】
比較例3
ジメトキシメチル3,3,3−トリフルオロプロピルトリメトキシシランをエタノール中で重量比0.17倍の水であらかじめ加水分解しておいたものと、アセト酢酸エチルと反応させておいたオルトチタン酸テトラエチルと、メチルトリエトキシシランを重量比で11.5:1:18.7となるようにエタノール溶媒中で混合した。混合後、オルトチタン酸テトラエチルに対して重量比5.5倍の水で加水分解して防曇性低反射膜形成用塗布液を得、焼成温度を450℃、又、焼成時雰囲気を窒素雰囲気とした以外は、実施例1と同様の操作で多孔質性のシリカ膜付ガラス基材を得た。得られた多孔質性のシリカ膜付ガラス基材は、空孔の平均孔径2nm(SEM観察から測定)、反射低減効果2.7%であったが、防曇性は発現せず、繰り返し防曇性、防曇性発現時の反射低減効果が不合格であった。
【0049】
比較例4
揮散性有機物として平均分子量100のPEGを用いた以外は実施例3と同様の操作で、0.1μmの膜厚のシリカ膜付ガラス基材を得た。汚れ除去性、堅牢度は合格したが、反射低減効果は0.5%と不合格、繰り返し防曇性も不合格となった。
【0050】
比較例5
揮散性有機物として平均分子量20000のPEGを用いた以外は実施例3と同様の操作で、0.1μmの膜厚の多孔質性のシリカ膜付ガラス基材を得た。得られた多孔質性のシリカ膜付ガラス基材は、空孔の平均孔径50nm(SEM観察から測定)、反射低減効果4%と合格であったが、防曇性発現時の反射低減効果が1%と低く不合格、又、汚れ除去性、堅牢度の評価結果も不合格であった。
【0051】
【発明の効果】
本発明の防曇性低反射膜形成用塗布液は、低反射性、防曇性に加え、防曇性発現時の低反射性にも優れる防曇性低反射膜を形成でき、本発明による防曇性低反射膜は、防曇性及び低反射性とで視界を確保する部材への使用に適する。又、堅牢度、汚れ除去性にも優れるので、窓ガラス部材への使用する場合に特に効果を発揮できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to fogging due to moisture of a glass substrate used for an optical component such as a glass window for a vehicle, a glass window for a building, a mirror, a show window, a display glass for a television, a glass substrate for a solar cell, and a lens. Anti-fogging low-reflection film for preventing fogging, particularly for forming an anti-fogging low-reflection film and an anti-fogging low-reflection film formed on a substrate which can be manufactured by a simple and safe process and can be easily enlarged. Related to coating liquid.
[0002]
[Prior art]
As a low-reflection film for reducing the reflectance of a substrate, a low-reflection film having a single layer or a plurality of layers is known. However, a low-reflection film having a single layer or two layers has a large residual reflectance, poor efficiency, and refraction. It is said that a laminate of three layers having different rates is preferable. However, in order to laminate the three layers, any of the known methods such as vacuum evaporation and dip coating has the disadvantage that the method is complicated and the productivity is low. A low-reflection coating of the layer is preferred.
[0003]
Generally, the refractive index of the substrate is ns  When the refractive index of the single-layer film is n, the reflectance R is ns> N, (ns  -N2  )2/ (Ns+ N2  )2  It is known to take This R is n2= Ns, That is, n = ns 1/2  Is the minimum function, so that the refractive index n of the single-layer film is ns 1/2, The reflectance decreases. Further, a commonly used base glass is a soda-lime glass (n) manufactured by a float method or the like.s= 1.51), the target refractive index n of the single-layer film is 1.23. Therefore, in order to reduce the reflectance with a single-layer film, it is more preferable that the refractive index of the single-layer film is as low as 1.23.
[0004]
As a method of expressing low reflectivity with a low refractive index film, a method of making the film porous and a method of forming a fine uneven surface on the surface of the film have been proposed. The former is a method of removing organic matter from a silica-based matrix by etching or baking to make the film porous (for example, see Patent Documents 1 and 2), and the latter is a method in which the surface of the film is roughened with fine silica particles such as colloidal silica. A method of forming a shape (for example, see Patent Documents 3 and 4), a method of forming a film from a silica-based sol having two types of average molecular weights and making the surface of the film uneven (for example, see Patent Document 5) Etc. are known.
[0005]
Recently, anti-fogging properties using the above-mentioned porosity of the film and fine irregularities on the surface of the film have been proposed. For example, Patent Document 6 discloses a porous film in which an optical semiconductor is dispersed, and describes that the antifogging property is improved by the hydrophilicity of the optical semiconductor and the water absorption of the porous film. Further, Patent Document 7 discloses that by using metal oxide fine particles to make the film surface uneven, the hydrophilic surface area is increased and the antifogging property is improved.
[0006]
However, the articles disclosed in the above-mentioned documents relate to a single function of low reflection or anti-fogging property, and do not have both functions. For example, in order to obtain anti-fogging properties, when the surface is made uneven, low reflectivity may be unexpectedly obtained due to the uneven shape, but when the anti-fogging property is developed, the uneven shape is filled with a water film. Therefore, the low reflection effect is almost eliminated. Further, even when the antifogging property is exhibited due to the water absorbing effect of the porous film, there is a problem that the refractive index of the film fluctuates at the time of absorbing water, and the low reflectivity is impaired.
[0007]
Patent Document 8 discloses a single-layer film having both low reflectivity and antifogging property. However, it is a porous magnesium fluoride film, which needs to be formed by vacuum deposition, and is easy to increase in area. There is no disadvantage in terms of cost. Further, the obtained film is brittle and has a problem in durability. In addition, since there is no special design for the porous portion, the problem that the refractive index fluctuates when absorbing water has not been solved. In addition, a porous film does not necessarily exhibit anti-fogging properties. For example, in Examples and figures of Patent Document 9, a porous film having an average pore size of 1 nm to 2 nm does not exhibit water absorption. It has been disclosed.
[0008]
Further, in order to obtain a durable porous film, it is necessary to increase the strength of a solid portion of the film. An effective way to increase the strength of the film is to bake the film at a relatively high temperature. However, when a porous film obtained by vacuum deposition disclosed in Patent Document 8 is fired, there is a problem that pores disappear. Further, the article disclosed in Patent Document 6 is obtained by firing up to 350 ° C., and the strength of the film is not sufficient, and there is a problem in durability.
[0009]
[Patent Document 1]
JP-A-62-226840
[Patent Document 2]
JP-A-3-199043
[Patent Document 3]
JP-A-5-288903
[Patent Document 4]
JP-A-8-122501
[Patent Document 5]
Japanese Patent No. 2716330
[Patent Document 6]
JP-A-11-235550
[Patent Document 7]
JP-A-11-100234
[Patent Document 8]
JP-A-11-77876
[Patent Document 9]
JP 2000-77399A (Items 8 to 10, Examples and Figures)
[0010]
[Problems to be solved by the present invention]
The problem to be solved by the present invention is to provide an anti-fogging property, a low-reflecting property, and an anti-fogging low-reflection film that retains a low reflecting property when the anti-fogging property is developed, and a robust and durable film formed with the film. An object of the present invention is to provide an antifogging low-reflection film and a coating liquid for forming an antifogging low-reflection film formed on a base material which is excellent in cost, is excellent in cost, and is easy to increase in area.
[0011]
[Means for Solving the Problems]
The present invention has been made in view of the above problems. That is, the antifogging low-reflection film formed on the surface of the substrate, wherein the film is a porous silica film, having 5% to 85% by volume of pores, and the average pore diameter of the pores. Is 5 nm to 30 nm. When the film formed on the base material has the above-described structure, a low-reflection and anti-fogging property, and an anti-fogging low-reflection film that retains low-reflection even when the anti-fogging property is developed can be obtained.
[0012]
The pores of the film are formed by heating the volatile organic substance introduced into the silica-based matrix in a temperature range of 400 ° C. to 750 ° C. to volatilize the volatile organic substance from the film. It is.
[0013]
The coating liquid for obtaining the anti-fogging low reflection film as described above is a coating liquid for forming an anti-fogging low reflection film having at least a silicon alkoxide as a silica source, and the volatile organic material, The organic substance preferably has a property of dissolving in a diluted solution of silicon alkoxide or silicon alkoxide, and more preferably has an average molecular weight of 200 to 2,000.
[0014]
Examples of such volatile organic substances include water-absorbing urethane resins, polyethylene glycol, polyvinyl alcohol, cellulose, anionic surfactants, nonionic surfactants, amphoteric surfactants, cationic surfactants, lecithin and the like. At least one volatile organic substance selected from the group consisting of phospholipids and plant-derived saponin-based surfactants can be used.
[0015]
Further, the coating liquid for forming an anti-fogging low reflection film preferably has a silane coupling agent, and the silane coupling agent includes N-γ- (aminoethyl) -γ-aminopropyl trisilane. Ethoxysilane, N-γ- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-aminopropylmethyl Dimethoxysilane, γ-aminopropylphenyldiethoxysilane, 2-amino-1-methylethyltriethoxysilane, N-methyl-γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltriethoxysilane, N- Butyl-γ-aminopropylmethyldiethoxysilane, N-β- (aminoethyl) γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, γ-glycidoxypropyltriethoxy Silane, γ-glycidoxypropylmethyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-isocyanatopropyltriethoxy Silane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane, methacryloxypropyltrimethoxysilane, γ-polyoxyethylenepropyltrimethoxysilane, 3-methacryloxypropyl At least one silane coupling agent selected from the group of trimethoxysilane can be used.
[0016]
The weight ratio between the silicon alkoxide and the volatile organic material is preferably from 8: 1 to 2: 7, and more preferably the weight ratio between the silicon alkoxide and the silane coupling agent is from 8: 1 to 3: 6. Preferably, there is.
[0017]
By using the above-mentioned coating liquid, an anti-fogging low reflection film can be easily produced, and it is easy to increase the area. Further, the obtained anti-fogging low reflection film is robust and excellent in durability.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The antifogging low-reflection film obtained in the present invention is an antifogging low-reflection film formed on a substrate, and is a porous silica film having 5% to 85% by volume of pores. Have. Since the refractive index of a glass substrate generally used as a substrate is about 1.51, the low reflection effect is highest when the refractive index of the film is 1.23. In consideration of the practical range, the range of the refractive index of the film is preferably from 1.1 to 1.45, and more preferably from 1.2 to 1.40. The refractive index described in the present invention is a value at a wavelength of 550 nm. In addition, the low reflection film in the present invention refers to a film having a reflectance of 2.5% or more lower when the light having a wavelength of 380 to 800 nm is incident on the film at an incident angle of 60 degrees than in the case where only the substrate is used. . The low reflectivity at the time of exhibiting the antifogging property of the film means that the reflectance at the time when light having a wavelength of 380 to 800 nm is incident on the film at an incident angle of 60 degrees when the water vapor hits the film surface. It is 2.5% or more lower than the case where only the base material is not used.
[0019]
The porous silica film has water absorbency, but upon water absorption, the refractive index increases and the low reflection effect decreases. The present inventor, when the film absorbs water, that is, as a result of intensive examination of the pore size of which the refractive index hardly fluctuates when the antifogging property is exhibited, when the average pore diameter of the pores is 5 nm to 30 nm, low reflectivity, and It has been found that the antifogging property and the effect of low reflection when the antifogging property is exhibited are high. When the average pore diameter of the pores is less than 5 nm, the anti-fogging effect is small, and when it exceeds 30 nm, the haze of the film becomes high and the transmittance decreases, and the low reflection effect when the anti-fogging property is exhibited decreases. There's a problem. Considering the low reflectivity and the low reflection effect when the antifogging property is exhibited, the average pore diameter of the pores is preferably 20 nm or less, and considering the antifogging property, the average pore diameter is preferably 10 nm, more preferably 12 nm or more.
[0020]
Further, the average length of the pores is preferably from 10 nm to 300 nm, more preferably 200 nm or less. If the average length of the pores is less than 10 nm, the effect of the antifogging property is small. There is a tendency that the low reflection effect at the time of appearance of haze decreases. The diameter, length, and volume ratio of the holes in the film of the present invention can be determined by observation with a scanning electron microscope (SEM).
[0021]
The porous silica film as described above is obtained by heating the volatile organic substance introduced into the matrix containing silica as a main component in a temperature range of 400 ° C. to 750 ° C. to volatilize the volatile organic substance from the film. It was formed. The volatile organic substance means an organic substance which volatilizes from the silica film by the above-mentioned heating, and is introduced into a coating liquid together with a silicon alkoxide as a silica source, and after applying the coating liquid to a base material, volatilizes by the above-mentioned heating. In order to obtain the antifogging and low-reflection film intended for the present invention, the pore size of the porous silica film must be strictly controlled. The pores are formed by heating the volatile organic substance introduced into the matrix containing silica as a main component in a temperature range of 400 ° C. to 750 ° C. to vaporize the volatile organic substance from the film. If the heating temperature is lower than 400 ° C., there are problems such as insufficient volatilization of volatile organic substances and insufficient rigidity of the formed porous silica film. On the other hand, when the temperature exceeds 750 ° C., problems such as burning of the film and disappearing of pores occur.
[0022]
In order to obtain strictly controlled pores, it is important that the silicon alkoxide of the silica source and the volatile organic substance are uniformly dispersed in the coating liquid for obtaining the anti-fog low reflection film. Therefore, the volatile organic substance preferably has a property of dissolving in a diluted solution of silicon alkoxide or silicon alkoxide. The silicon alkoxide diluted solution is a solution obtained by diluting a silicon alkoxide with a solvent. Examples of the solvent include water, methanol, ethanol, isopropanol, n-butanol, lower aliphatic alcohols such as isobutanol, ethylene glycol, and ethylene glycol. Glycol monobutyl ether, ethylene glycol derivatives such as ethylene glycol monoethyl ether acetate, diethylene glycol, diethylene glycol derivatives such as diethylene glycol monobutyl ether, and diacetone alcohol, toluene, xylene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, methyl ethyl ketoxime, And mixtures thereof. From a practical viewpoint, lower aliphatic alcohols and mixtures of lower aliphatic alcohols and water are preferred.
[0023]
Further, in order to obtain a controlled pore size, the volatile organic substance preferably has an average molecular weight of 200 to 2,000. When the average molecular weight is less than 200, the formed pores are small and sufficient antifogging property cannot be exhibited. On the other hand, when the average molecular weight is larger than 2,000, the number of formed pores is large, and a problem is likely to occur in the appearance and the robustness of the film.
[0024]
As volatile organic substances satisfying the above conditions, water-absorbing urethane resin, polyethylene glycol, polyvinyl alcohol, cellulose, anionic surfactant, nonionic surfactant, amphoteric surfactant, cationic surfactant, At least one volatile organic substance selected from the group consisting of phospholipids such as lecithin and saponin-based surfactants derived from plants can be used.
[0025]
Further, in order to uniformly disperse the volatile organic substance in the silica matrix, it is preferable that the silica matrix containing silica as a main component contains a silane coupling agent. The silane coupling agent is a silicon compound having an organic functional group reactive with one or more alkoxy groups and one or more organic substances, and by using a silane coupling agent, the volatile organic substance and the silica Makes it easier to form network crosslinks. As such a silane coupling agent, N-γ- (aminoethyl) -γ-aminopropyltriethoxysilane, N-γ- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane Γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylphenyldiethoxysilane, 2-amino-1-methylethyltriethoxysilane, N-methyl -Γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltriethoxysilane, N-butyl-γ-aminopropylmethyldiethoxysilane, N-β- (aminoethyl) -γ-aminopropyltriethoxysilane , N-β- (aminoethyl) -N-β- (A Noethyl) -γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyl Trimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-isocyanatopropyltriethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane, methacryloxy A silane coupling agent selected from at least one selected from the group consisting of propyltrimethoxysilane, γ-polyoxyethylenepropyltrimethoxysilane, and 3-methacryloxypropyltrimethoxysilane. Can be used.
[0026]
Further, the weight ratio of the silicon alkoxide to the volatile organic substance is preferably from 8: 1 to 2: 7. When the silicon alkoxide is out of the excessive range, the obtained film has a low reflection effect and a low antifogging effect, and outside the excessive range in which the volatile organic substance is excessive, the obtained film has low strength and has a problem in durability. Occurs.
[0027]
Further, the weight ratio of the silane coupling agent to the silicon alkoxide is preferably 2 or less, more preferably 1/8 to 2. If it is less than 1/8, the effect of the silane coupling agent is small, and if it is more than 2, the strength of the silica network of the obtained film becomes low, so that there is a problem in durability.
[0028]
The method of applying the coating solution of the present invention to a substrate is not particularly limited, but known means such as dip coating, flow coating, spin coating, roll coating, bar coating, spray coating, screen printing, flexographic printing and the like. Can be adopted.
[0029]
A typical example of the substrate on which the antifogging film of the present invention is formed is glass. The glass is a plate glass generally used for automobiles, architectural glass, industrial glass, and the like, and is a plate glass obtained by a float method, a duplex method, a roll-out method, etc., and its production method is not particularly limited.
[0030]
As a glass type, it can be used for various colored glasses such as clear and green, bronze and the like, and various functional glasses such as UV, IR cut glass and electromagnetic shielding glass, netted glass, low expansion glass, fire resistant glass such as zero expansion glass. Various glass products such as glass, tempered glass and similar glasses, laminated glass, double-layered glass, mirrors made by a silver drawing method or a vacuum film forming method, and flat and bent plates can be used. The plate thickness is preferably from 1.0 mm to 10 mm, and the thickness is preferably from 1.0 mm to 5.0 mm for automobiles. The formation of the anti-fogging low reflection film on the surface of the substrate may be performed on only one side of the substrate or on both sides. Further, the coating of the antifogging agent may be on the entire surface or a part of the substrate surface.
[0031]
In addition, the substrate is not limited to glass, and metals and ceramics having light transmittance and light reflectivity can be used as long as they do not deform when forming the anti-fog low reflection film. .
[0032]
The anti-fog low reflection film of the present invention requires low reflectivity and anti-fog properties, for example, lenses such as glasses and cameras, window glasses, vehicle glass, helmet shields, articles such as underwater glasses, or bathrooms. It is applicable to mirrors and other articles that require transparency, such as mirrors used in vehicles, and especially when used in glass for vehicles, especially for windshields for vehicles because it has both low reflection and anti-fog properties. Especially effective for
[0033]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to such an embodiment.
[0034]
In the following Examples and Comparative Examples, low reflectivity, low reflectivity at the time of anti-fogging property development, visible light transmittance, haze rate, stain removal properties, repeated anti-fogging properties, and abrasion resistance as follows The film measured and passed in all the tests was defined as an antifogging low reflection film.
[0035]
[Low reflectivity]: Light having a wavelength of 380 to 800 nm is incident from the film surface side at an incident angle of 60 degrees, and the transmitted light is measured with a multi-photometer (MCPD-3000, manufactured by Otsuka Electronics Co., Ltd.) and compared with the base material. Then, 3.5% or more of the increase in transmittance was evaluated as excellent (◎), 2.5% or more and less than 3.5% was evaluated as good (○), and less than 2.5% was evaluated as unacceptable (x).
[0036]
[Low reflectivity when antifogging property is exhibited]: Measurement is performed by the same operation as the above [low reflectivity] while applying vapor generated intermittently from a humidifier (Matsushita Electric Co., Ltd., FE-03KLW) to the film surface. went. Compared to the substrate without steam, the rise in transmittance is excellent when 3.5% or more is excellent (◎), when 2.5% or more and less than 3.5% is good (○), and less than 2.5% Was set to impossible (x).
[0037]
[Removability of dirt]: Fingerprints were applied by pressing the thumb of the hand against the membrane surface, breathing was performed and wiped with tissue paper, and breathing was performed again to observe the remaining state of fingerprints. When the fingerprint shape was not seen, it was judged as pass (○), and when the fingerprint shape was seen, it was judged as unacceptable (x).
[0038]
[Repeat antifogging property]: Based on "Repeat antifogging spectacle antifoggant test method" (JISS4030), the degree of fogging when the evaluation sample was held in steam of warm water set at 43 ° C for 3 minutes, After the holding, the degree of fogging due to exhalation when taken out at room temperature (23 ° C., 63% RH) was visually observed, and this operation was performed for 5 cycles. Samples having no abnormality in appearance and no fogging and having no problem with the visible light transmittance of the samples as judged by visual inspection were judged as acceptable (O), and those with fogging were judged as unacceptable (X).
[0039]
[Ruggedness]: The appearance after 10 times reciprocating hand wiping with steel wool (# 0000) was evaluated. If no scratches were generated, the appearance was evaluated as pass (O). X).
[0040]
Example 1
An anionic surfactant having an average molecular weight of 500 (Sanyo Chemical Industries, Ltd.) as a volatile organic substance in a weight ratio of 3: 7 was added to a diluting solvent prepared by adjusting a mixture of purified water and a mixture of ethanol and isopropanol (echinen F1) to a weight ratio of 1: 1. Co., Ltd., Lipoquat®) and tetraethoxysilane (hereinafter referred to as TEOS) as a silicon source were added so that the total solid concentration in the coating solution was 8%, and after sufficient stirring, a 0.2 N aqueous nitric acid solution was applied. The mixture was added and mixed at a weight ratio of 2/100 with respect to the liquid to obtain a coating liquid for forming an anti-fogging low reflection film. Spin coating method on a 1000 mm × 1000 mm × 3 mm (thickness) size float glass substrate, baking the glass substrate at 450 ° C. for 10 minutes, and a 0.1 μm thick anti-fogging low reflection film A coated glass substrate was obtained. The obtained glass substrate with an anti-fogging low reflection film has an average pore diameter of 30 nm (measured from SEM observation), a reflection reduction effect of 3.5%, and a reflection reduction effect of 2% when the anti-fogging property is exhibited. The evaluation results of 0.6%, stain removal property, repetitive antifogging property and fastness were all acceptable and had excellent physical properties as shown in Table 1.
[0041]
[Table 1]
Figure 2004161541
[0042]
Example 2
In the same dilution solvent as in Example 1, polyethylene glycol (hereinafter referred to as PEG) having an average molecular weight of 2,000 as a volatile organic material and TEOS as a silicon source in a weight ratio of 6: 4, and the total solid concentration in the coating solution becomes 8%. After the mixture is sufficiently stirred, a 0.2 N aqueous nitric acid solution is added and mixed at a weight ratio of 2/100 with respect to the coating solution to obtain a coating solution for forming an anti-fogging low reflection film. A glass substrate with an antifogging and low-reflection film having a thickness of 0.1 μm was obtained in the same manner as in Example 1 except that the firing temperature of the glass substrate was changed to 600 ° C. The obtained glass substrate with an anti-fogging low reflection film has an average pore diameter of 20 nm (measured from SEM observation), a reflection reduction effect of 3.8%, and a reflection reduction effect of 3.2% when the anti-fogging property is exhibited. As shown in Table 1, all of the evaluation results of the stain removal property, the repetitive antifogging property and the fastness were excellent, and had excellent physical properties.
[0043]
Example 3
In the same diluent solvent as in Example 1, PEG having an average molecular weight of 400 as a volatile organic substance, TEOS as a silicon source, and 3-methacryloxypropyltrimethoxysilane (hereinafter referred to as MOMS) as a silane coupling agent in a weight ratio of 4: 4: 2 in volatile solvents. ) Was added so that the total solid concentration in the coating solution was 8%, and after sufficient stirring, a 0.2 N aqueous nitric acid solution was added so that the weight ratio to the coating solution was 2/100. A glass substrate with an anti-fogging low-reflection film having a thickness of 0.1 μm was obtained in the same manner as in Example 1 except that mixing was performed to obtain a coating liquid for forming an anti-fogging low-reflection film. The obtained glass substrate with an anti-fogging low reflection film has an average pore diameter of 15 nm (measured from SEM observation), a reflection reduction effect of 4%, a reflection reduction effect of 3.7% when the anti-fogging property is exhibited, and dirt. As shown in Table 1, the evaluation results of the removability, the repetitive antifogging property and the fastness were all acceptable, and had excellent physical properties.
[0044]
Example 4
A glass substrate with an antifogging and low reflection film was obtained in the same manner as in Example 3, except that the average molecular weight of PEG was 1,000 and the firing temperature was 730 ° C. The obtained glass substrate with an anti-fogging low reflection film has an average pore diameter of 12 nm (measured from SEM observation), a reflection reduction effect of 3.8%, and a reflection reduction effect of 3.8% when the anti-fogging property is exhibited. As shown in Table 1, all of the evaluation results of the stain removal property, the repetitive antifogging property, and the fastness had excellent physical properties.
[0045]
Example 5
The same solid solvent as in Example 1 in a 3: 3: 4 weight ratio of sodium carboxymethylcellulose having an average molecular weight of 700 as a volatile organic substance, TEOS as a silicon source, and MOMS as a silane coupling agent was used as the total solid content in the coating solution. The mixture was added to a concentration of 8%, and after sufficiently stirring, a 0.2 N aqueous nitric acid solution was added and mixed at a weight ratio of 2/100 with respect to the coating solution to obtain anti-fog and low reflection. A coating liquid for forming a film was obtained, and a glass substrate having an antifogging and low-reflection film having a film thickness of 0.1 μm was obtained in the same manner as in Example 1 except that the firing temperature was changed to 650 ° C. The obtained glass substrate with anti-fogging low reflection film had an average pore diameter of 15 nm (measured from SEM observation), a reflection reduction effect of 4.1%, and a reflection reduction effect of 4.0% when anti-fogging property was exhibited. As shown in Table 1, all of the evaluation results of the stain removal property, the repetitive antifogging property, and the fastness were excellent.
[0046]
Comparative Example 1
A porous glass substrate with a silica film was obtained in the same manner as in Example 1 except that the firing temperature was 350 ° C. The obtained porous silica-coated glass substrate had an average pore diameter of 50 nm (measured from SEM observation) and a reflection reduction effect of 2.6%. The rejection was 0.6%, and the evaluation results of the stain removability and the fastness were also rejected.
[0047]
Comparative Example 2
An attempt was made to obtain a coating liquid for forming an antifogging low-reflection film by the same operation as in Example 1 except that silicone having an average molecular weight of 500 was used as the volatile organic substance, but a uniform coating liquid could be obtained. Therefore, a porous glass substrate with a silica film could not be obtained.
[0048]
Comparative Example 3
Dimethoxymethyl 3,3,3-trifluoropropyltrimethoxysilane hydrolyzed in water at a weight ratio of 0.17 in ethanol, and tetraethyl orthotitanate reacted with ethyl acetoacetate And methyltriethoxysilane were mixed in an ethanol solvent at a weight ratio of 11.5: 1: 18.7. After mixing, the mixture is hydrolyzed with water at a weight ratio of 5.5 times the weight of tetraethyl orthotitanate to obtain a coating liquid for forming an antifogging low-reflection film. The firing temperature is 450 ° C., and the firing atmosphere is a nitrogen atmosphere. A porous glass substrate with a silica film was obtained in the same manner as in Example 1 except that the above conditions were satisfied. The obtained porous silica-coated glass substrate had an average pore diameter of 2 nm (measured from SEM observation) and a reflection-reducing effect of 2.7%, but did not exhibit anti-fogging properties and was repeatedly protected. The reflection-reducing effect at the time of exhibiting the fogging property and the anti-fogging property was rejected.
[0049]
Comparative Example 4
A glass substrate with a silica film having a thickness of 0.1 μm was obtained in the same manner as in Example 3, except that PEG having an average molecular weight of 100 was used as the volatile organic substance. Although the stain removal property and the fastness were passed, the reflection reducing effect was 0.5% and rejected, and the repetition antifogging property was also rejected.
[0050]
Comparative Example 5
A glass substrate with a porous silica film having a thickness of 0.1 μm was obtained in the same manner as in Example 3, except that PEG having an average molecular weight of 20,000 was used as the volatile organic substance. The obtained porous glass substrate with a silica film had an average pore diameter of 50 nm (measured from SEM observation) and a reflection reduction effect of 4%, which was acceptable. It was rejected as low as 1%, and the evaluation results of dirt removal property and fastness were also rejected.
[0051]
【The invention's effect】
The coating liquid for forming an antifogging low-reflection film of the present invention can form an antifogging low-reflection film which is excellent in low reflection and anti-fogging properties, in addition to low reflection and anti-fogging properties, according to the invention. The anti-fog low reflection film is suitable for use as a member for ensuring visibility with anti-fog and low reflectivity. In addition, since it is excellent in robustness and dirt removal properties, it is particularly effective when used for window glass members.

Claims (8)

基材の表面に形成される防曇性低反射膜であって、該膜が空孔を有する多孔質性のシリカ膜で、前記空孔の平均孔径が5nm〜30nmであることを特徴とする防曇性低反射膜。An antifogging low-reflection film formed on the surface of a substrate, wherein the film is a porous silica film having pores, and the pores have an average pore diameter of 5 nm to 30 nm. Anti-fog low reflection film. 前記空孔はシリカを主成分とするマトリックスに導入された揮散性有機物を400℃〜750℃の温度範囲で加熱して前記揮散性有機物を膜から揮散させることによって形成された空孔であることを特徴とする請求項1に記載の防曇性低反射ガラス。The vacancies are vacancies formed by heating a volatile organic substance introduced into a matrix containing silica as a main component in a temperature range of 400 ° C. to 750 ° C. to volatilize the volatile organic substance from a film. The anti-fogging low reflection glass according to claim 1, characterized in that: 少なくともシリカ源としてのケイ素アルコキシド、及び前記揮散性有機物を有することを特徴とする請求項1又は請求項2に記載の防曇性低反射膜を得るための防曇性低反射膜形成用塗布液。The coating liquid for forming an anti-fogging low-reflection film for obtaining the anti-fogging low-reflection film according to claim 1 or 2, comprising at least a silicon alkoxide as a silica source and the volatile organic substance. . 揮散性有機物がケイ素アルコシキシド又はケイ素アルコキシド希釈溶液に溶解することを特徴とする特徴とする請求項3に記載の防曇性低反射膜形成用塗布液。The coating liquid according to claim 3, wherein the volatile organic substance is dissolved in a diluted solution of silicon alkoxide or silicon alkoxide. 揮散性有機物の平均分子量が200〜2000であることを特徴とする請求項3又は請求項4のいずれかに記載の防曇性低反射膜形成用塗布液。The coating liquid for forming an anti-fogging low reflection film according to claim 3 or 4, wherein the volatile organic substance has an average molecular weight of 200 to 2,000. シランカップリング剤を有していることを特徴とする請求項3乃至請求項5のいずれかに記載の防曇性低反射膜形成用塗布液。The coating liquid for forming an anti-fogging low reflection film according to any one of claims 3 to 5, further comprising a silane coupling agent. ケイ素アルコキシドと揮散性有機物との重量比が、8:1〜2:7であることを特徴とする請求項3乃至請求項6のいずれかに記載の防曇性低反射膜形成用塗布液。The coating liquid according to any one of claims 3 to 6, wherein the weight ratio between the silicon alkoxide and the volatile organic substance is from 8: 1 to 2: 7. ケイ素アルコキシドに対するシランカップリング剤の比が、重量比で2以下であることを特徴とする請求項項6又は請求項7に記載の防曇性低反射膜形成用塗布液。The coating liquid for forming an anti-fogging low reflection film according to claim 6 or 7, wherein the ratio of the silane coupling agent to the silicon alkoxide is 2 or less by weight.
JP2002329227A 2002-11-13 2002-11-13 Anticlouding low reflective film and coating liquid for forming anticlouding low reflective film Pending JP2004161541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002329227A JP2004161541A (en) 2002-11-13 2002-11-13 Anticlouding low reflective film and coating liquid for forming anticlouding low reflective film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002329227A JP2004161541A (en) 2002-11-13 2002-11-13 Anticlouding low reflective film and coating liquid for forming anticlouding low reflective film

Publications (1)

Publication Number Publication Date
JP2004161541A true JP2004161541A (en) 2004-06-10

Family

ID=32807280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002329227A Pending JP2004161541A (en) 2002-11-13 2002-11-13 Anticlouding low reflective film and coating liquid for forming anticlouding low reflective film

Country Status (1)

Country Link
JP (1) JP2004161541A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110262734A1 (en) * 2008-10-14 2011-10-27 Nanning Joerg Arfsten Stain resistant particles
CN102584024A (en) * 2012-01-19 2012-07-18 蚌埠玻璃工业设计研究院 Preparation method of efficient increased-transmission and antireflection glass
JP2017024961A (en) * 2015-07-27 2017-02-02 ニッポン高度紙工業株式会社 Manufacturing method of inorganic oxide compact
CN110443972A (en) * 2019-09-12 2019-11-12 深圳市泛海三江电子股份有限公司 Labyrinth structure of smoke alarm and labyrinth background value control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110262734A1 (en) * 2008-10-14 2011-10-27 Nanning Joerg Arfsten Stain resistant particles
CN102584024A (en) * 2012-01-19 2012-07-18 蚌埠玻璃工业设计研究院 Preparation method of efficient increased-transmission and antireflection glass
JP2017024961A (en) * 2015-07-27 2017-02-02 ニッポン高度紙工業株式会社 Manufacturing method of inorganic oxide compact
CN110443972A (en) * 2019-09-12 2019-11-12 深圳市泛海三江电子股份有限公司 Labyrinth structure of smoke alarm and labyrinth background value control method
CN110443972B (en) * 2019-09-12 2024-02-06 深圳市高新投三江电子股份有限公司 Maze background value control method

Similar Documents

Publication Publication Date Title
JP6939573B2 (en) Translucent structure
EP3179280B1 (en) Translucent structure
DE69730259T2 (en) Laminate and process for its preparation
KR100783714B1 (en) Coating material composition and article having coating film formed therewith
US11772125B2 (en) Antiglare film-coated substrate, antiglare film forming liquid composition, and method of producing antiglare film-coated substrate
EP0866037B1 (en) Multilayered water-repellent film and method of forming same on glass substrate
JP4107050B2 (en) Coating material composition and article having a coating formed thereby
KR101091851B1 (en) A coating composition endowing transparent substrate with anti-reflection effect and a preparing method for transparent substrate with anti-reflection effect using the composition
JP4893539B2 (en) Article having antiglare layer and method for producing the same
JP6586897B2 (en) Base material with antiglare film, coating liquid for film formation and method for producing the same
KR100676405B1 (en) Reflection-reducing film
WO2018212145A1 (en) Transparent product and method for producing transparent product
JP2002543027A (en) Organized substrate capable of forming glazing and method of manufacturing the same
US20230150867A1 (en) Glass substrate with silica film
JP3514065B2 (en) Laminate and manufacturing method thereof
JP2000192021A (en) Hydrophilic, antifogging and antistaining substrate and its preparation
JP2004161541A (en) Anticlouding low reflective film and coating liquid for forming anticlouding low reflective film
JP2007241177A (en) Antireflection structure and structure
JPH10101377A (en) Anticlouding coating film and its production
JP3628802B2 (en) Antifogging thin film and method for forming the same
JP2002139602A (en) Antireflection film
JP3788532B2 (en) Antifogging film and method for producing the same
JP3649596B2 (en) Substrate on which hydrophilic oxide film is formed and method for producing the same
JP2001152137A (en) Non-fogging film-formed base and its preparation process
JP2008046392A (en) Method of manufacturing plastic optical article