JP2004159587A - Recombinant of rhodococcus bacterium and method for producing optically active body by using the same - Google Patents
Recombinant of rhodococcus bacterium and method for producing optically active body by using the same Download PDFInfo
- Publication number
- JP2004159587A JP2004159587A JP2002330732A JP2002330732A JP2004159587A JP 2004159587 A JP2004159587 A JP 2004159587A JP 2002330732 A JP2002330732 A JP 2002330732A JP 2002330732 A JP2002330732 A JP 2002330732A JP 2004159587 A JP2004159587 A JP 2004159587A
- Authority
- JP
- Japan
- Prior art keywords
- rhodococcus
- recombinant
- coenzyme
- bacterium
- gene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、補酵素再生系を構成する遺伝子DNAが導入されたロドコッカス(Rhodococcus)属細菌組換え体、及びそれを用いた光学活性アルコール又は光学活性アミノ酸の製造に関する。
【0002】
【従来の技術】
還元型NAD(P)Hが関与する酵素反応において、酵素反応の結果生じた酸化型補酵素NAD(P)を還元型補酵素NAD(P)Hに再生させ、連続的に目的生産物を得る試みがなされている。その際、補酵素の再生は、微生物の持つNAD(P)還元能(解糖系、メチロトローフのC1化合物資化系)を利用する方法、NAD(P)からNAD(P)Hを生成する能力を有する微生物またはその処理物を添加する方法等により実施される。そのような再生を行う酵素としては、ギ酸脱水素酵素、グルコース脱水素酵素、グルコース6リン酸脱水素酵素、アセトアルデヒド脱水素酵素、ヒドロゲナーゼ等が知られている(Biotechnology 1,677 (1983), J. Am. Chem. Soc. 102, 7104 (1980), Biotechnology Lett. 2, 445 (1980), J. Am. Chem. Soc. 103, 4890 (1981))。
【0003】
しかしながら、従来の再生では、繰り返しの反応や連続的な生産反応の際、微生物菌体の機械的破砕、溶菌等により、再生された補酵素が菌体外へ漏出し、反応系から失われる問題があった。
【0004】
具体的には、大腸菌組換え体を用いた場合、反応中に溶菌を生じ、反応時に補酵素が菌体外に漏れてしまう問題があった。
【0005】
また、微生物菌体を適当な担体に固定した固定化酵素を用いた連続生産反応においても上述と同様に、反応と共に補酵素は反応系外へ漏出し、随時、補酵素を添加しなければならなかった。
【0006】
【発明が解決しようとする課題】
本発明は、再生された補酵素が漏出することなく、効率的に連続生産を可能とする補酵素再生系を構築された遺伝子組換え体の提供、及び補酵素依存性還元酵素による光学活性体、特に光学活性アルコール又は光学活性アミノ酸の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題に鑑み、鋭意検討を行った結果、細胞表層が強固で、産業的に有用な多種の酵素を産生するロドコッカス(Rhodococcus)属細菌に、補酵素再生系を構成する遺伝子を導入することにより、補酵素の漏出がないロドコッカス(Rhodococcus)属細菌組換え体を作成できることを見いだした。また、それを使用することにより、光学活性体の効率的な生産が可能であることを見いだし、本発明を完成するに至った。
【0008】
さらには、補酵素再生系を構成する遺伝子及び補酵素依存性還元酵素遺伝子の両者をロドコッカス(Rhodococcus)属細菌に導入することにより、該補酵素依存性還元酵素による光学活性体の生産が可能であること、且つ菌体外への補酵素の漏れ、添加なく菌体の再利用による生産が可能であることを見いだし、本発明を完成するに至った。
【0009】
すなわち、本発明は、補酵素再生系を構成する遺伝子及び/又は補酵素依存性還元酵素をコードする遺伝子を細胞表層の強固なロドコッカス(Rhodococcus)属細菌に導入することにより得られるロドコッカス(Rhodococcus)属細菌組換え体、及びその組換え体を使用した光学活性アミノ酸又は光学活性アルコールの製造方法、である。
【0010】
【発明の実施の形態】
本発明において、「補酵素」としてはNAD(ニコチンアミドアデニンジヌクレオチド)、NADP(ニコチンアミドアデニンジヌクレオチドリン酸)、FAD(フラビンアミドアデニンジヌクレオチド)等が挙げられる。
【0011】
「補酵素再生系」とは、補酵素依存性還元酵素による還元反応の結果として酸化型に変換された補酵素を還元型に再生する、又は補酵素依存性酸化酵素による酸化反応の結果として還元型に変換された補酵素を酸化型に再生することをいう。
【0012】
上記の補酵素再生系に使用される酵素及びその遺伝子DNAとしては、上記酸化型又は還元型補酵素が再生できれば特に制限はないが、例えばグルコース脱水素酵素、グリセロール脱水素酵素など糖関連物質の脱水素酵素、ギ酸脱水素酵素、イソプロパノール脱水素酵素、ブタンオール脱水素酵素などのアルコール脱水素酵素、ロイシン脱水素酵素、フェニルアラニン脱水素酵素、アラニン脱水素酵素、グルタミン酸脱水素酵素などのアミノ酸脱水素酵素、乳酸脱水素酵素、ピルビン酸脱水素酵素などの有機酸脱水素酵素、オピン脱水素酵素等、及びそれらをコードする遺伝子DNAである(J.Pters , Biotechnology 2nd Ed. vol.8a Chapter9 p391−474)。
【0013】
ここで、ギ酸脱水素酵素とは、ギ酸を酸化して二酸化炭素に変換する酵素活性を有するものであるが(Biochem. J. 301, 625−643(1994))、この酵素反応は酸化還元反応であるため、補酵素の還元力が必要とされる。ギ酸脱水素酵素に用いることのできる補酵素としてはNAD(ニコチンアミドアデニンジヌクレオチド)、NADP(ニコチンアミドアデニンジヌクレオチドリン酸)、FAD(フラビンアミドアデニンジヌクレオチド)などが挙げられるが、NAD(P)H依存型の還元酵素が最も多く報告されており、工業的利用を目的とした場合、NAD(P)を用いることがより好ましい。
【0014】
ギ酸脱水素酵素遺伝子としては、例えばマイコバクテリウム属由来の遺伝子(Appl. Microbiol. Biotechnol. Vol. 44 p479−483( 1995 ) )、シュードモナス属由来の遺伝子(Biotechnol. Appl. Biochem. Vol. 18 p201−207( 1993 )、Eur. J. Biochem. Vol. 83 p485−498( 1978 ) )、パラコッカス属由来の遺伝子(Biosci. Biotech. Biochem. Vol. 56 p1966−1970( 1992 ) )、モラクセラ属由来の遺伝子(Journal Of Bacteriology Vol. 170 p3189−3193( 1988 ) )、メチロモナス属由来の遺伝子(Biochem. J. Vol. 93 p281−290( 1964 )、Z. Allg. Mikrobiol. Vol. 20 p167−175( 1980 )、また、酵母としてカンジダ属由来の遺伝子(Eur. J. Biochem. Vol. 152 p657−662( 1985 ) 、Gene Vol. 162 p99−104( 1995 )、Eur. J. Biochem. Vol. 62 p151−160( 1976 )、Biochim.Biophys. Acta Vol. 566 p12−20( 1979 ) )、ハンセヌラ属由来の遺伝子( EP0299108 A1,B1、特開平2−124093)ペニバシルス属由来の遺伝子(近畿大学工学部研究報告 No. 14 p133−139( 1980 ), No. 15 p115−123( 1981 ), No. 16 p141−152( 1982 ))等が挙げられる。
【0015】
アミノ酸脱水素酵素とは、α―ケト酸、アンモニアを基質とし、α―ケト酸のα位のカルボニル基をアミノ基に還元する能力を有するものをいう。アミノ酸脱水素酵素に用いることのできる補酵素としてはNAD(ニコチンアミドアデニンジヌクレオチド)の還元型であるNADH、NADP(ニコチンアミドアデニンジヌクレオチドリン酸)の還元型であるNADPH、FAD(フラビンアミドアデニンジヌクレオチド)の還元型であるFADHなどが挙げられるが、NAD(P)H依存型の還元酵素が最も多く報告されており、工業的利用を目的とした場合、NAD(P)Hを用いることが好ましい。
【0016】
アルコール脱水素酵素とは、α―ケト酸を基質とし、α位のカルボニル基をヒドロキシ基に還元する能力を有するものである。アミノ酸脱水素酵素に用いることのできる補酵素としてはNAD(ニコチンアミドアデニンジヌクレオチド)の還元型であるNADH、NADP(ニコチンアミドアデニンジヌクレオチドリン酸)の還元型であるNADPH、FAD(フラビンアミドアデニンジヌクレオチド)の還元型であるFADHなどが挙げられるが、NAD(P)H依存型の還元酵素が最も多く報告されており、工業的利用を目的とした場合、NAD(P)Hを用いることが好ましい。
【0017】
まず、本発明は、「補酵素依存性還元酵素を産生するロドコッカス(Rhodococcus)属細菌に、補酵素再生系を構成する遺伝子DNAが導入されたロドコッカス(Rhodococcus)属細菌組換え体」を提供するものである。
【0018】
この場合、ロドコッカス(Rhodococcus)属細菌が補酵素依存性還元酵素を産生するので、還元反応の結果、生成した酸化型補酵素を還元型補酵素に再生する系を構築すれば効率的な生産が可能となる。補酵素依存性還元酵素を産生するロドコッカス(Rhodococcus)属細菌としては、ロドコッカス(Rhodococcus)属細菌、ロドコッカス ロドクロウス(Rhodococcus rhodochrous) ATCC12674、ロドコッカス ロドクロウス(Rhodococcus rhodochrous) ATCC19140、ロドコッカス ロドクロウス(Rhodococcus rhodochrous) ATCC17895、ロドコッカス エリスロポリス(Rhodococcus erythropolis) JCM3201、ロドコッカス属(Rhodococcus sp.) N774(FERM BP−960)、ロドコッカス属(Rhodococcus sp.) NCIMB11215が例示できる。
【0019】
酸化型補酵素の還元型補酵素補酵素への再生は、例えば上述したギ酸脱水素酵素、グルコース脱水素酵素、グルコース6リン酸脱水素酵素、リンゴ酸脱水素酵素、アルコール脱水素酵素の酵素反応を利用して行う。これらの酵素はロドコッカス(Rhodococcus)属細菌内で産生させる必要があるため、それらの酵素をコードする遺伝子DNAをロドコッカス(Rhodococcus)属細菌内に導入する。
【0020】
導入の方法としては、遺伝子工学分野で慣用されている技術に準じて行うことができる<Molecular Cloning 2nd Edt., Cold Spring Harbor Laboratory Press(1989)>。ロドコッカス(Rhodococcus)属細菌に関しては、ロドコッカス ロドクロス(Rhodococcus rhodochrous)やロドコッカス エリスロポリス(Rhodococcus erythropolis)から単離された潜在性プラスミド(特開平4−330287号公報、特開平4−148685号公報、特開平9−28379号公報)を利用して構築されたベクターが好適に使用される<J. Gene.Microbiol. 138., 1003
(1992)、特開平5−64589号公報>。
【0021】
次に本発明は、「補酵素依存性酸化酵素を産生するロドコッカス(Rhodococcus)属細菌に、補酵素再生系を構成する遺伝子DNAが導入されたロドコッカス(Rhodococcus)属細菌組換え体」を提供するものである。該組換え体は、上記と同様の方法で作成することができる。
【0022】
すなわち、ロドコッカス(Rhodococcus)属細菌が補酵素依存性酸化酵素を産生するので、酸化反応の結果、生成した還元型補酵素を酸化型補酵素に再生する系をロドコッカス(Rhodococcus)属細菌内に構築すれば効率的な生産が可能となる。
【0023】
補酵素依存性酸化酵素を産生するロドコッカス(Rhodococcus)属細菌としては
ロドコッカス属(Rhodococcus sp.) RHA1 (PCB酸化的分解菌)、ロドコッカス オパカス(Rhodococcus opacus) TSP203 (PCB酸化的分解菌)、ロドコッカス エリスロポリス(Rhodococcus erythropolis) KA2−5−1 (脱硫菌)が挙げられる。
【0024】
補酵素の再生は、例えばグルタミン酸脱水素酵素、NADHオキシダーゼ、NADH脱水素酵素、アルコール脱水素酵素、乳酸脱水素酵素等を使用して行い、これらの酵素はロドコッカス(Rhodococcus)属細菌内で産生させる必要があるため、それらの酵素をコードする遺伝子DNAをロドコッカス(Rhodococcus)属細菌内に導入し、形質導入体(形質転換体)を作製すればよい。
【0025】
さらには、補酵素再生系を構成する遺伝子及び補酵素依存性還元酵素又は該酸化酵素をコードする遺伝子の両方が導入されたロドコッカス(Rhodococcus)属細菌組換え体を作製することも可能である。その場合、該両遺伝子を含むプラスミドベクターを構築し、組換え体を作製することが好ましい。補酵素依存性還元又は酸化酵素は製造する目的物により適宜選択される。
【0026】
前記のごとく作成されたロドコッカス(Rhodococcus)属細菌組換え体は、微生物変換反応における微生物触媒として使用することができる。この際、ロドコッカス(Rhodococcus)属細菌は、細胞表層が強固な点で、繰り返しの使用や連続反応等で他の菌種に比べ優位である。また、産業的に有用な多種の酵素を産生することから非常に好ましい(特開平11−103878号、特開平8−98697号、特開平6−197791号、特開平6−178691号等公報参照)。
【0027】
微生物触媒の調製は、培養を含む工程により調製される。培養方法において、培地としては、通常これらの微生物が生育し得るものならばいずれも使用することができる。例えば、炭素源としてグルコース、フルクトース、シュークロース、マルトース等の糖類、酢酸、クエン酸などの有機酸類、エタノール、グリセロール等のアルコール類など、窒素源としてペプトン、肉エキス、酵母エキス、蛋白質加水分解物、アミノ酸等の一般天然窒素源の他に各種無機、有機酸アンモニウム塩等が使用でき、この他無機塩、微量金属類、ビタミン等が必要に応じて適宜使用される。培養条件は、通常、pH4〜10、温度10〜40℃の範囲にて好気的に10〜180時間培養する。培養は、液体培養、固体培養のいずれで行うこともできる。
【0028】
培養後、集菌操作を行い、必要に応じて洗浄を行うことにより微生物触媒を調製する。その使用形態は、集菌した菌体を適当な緩衝液に懸濁させた菌体懸濁液として、又はアクリルアミド、カラギーナン、アガロース等の適当な担体に固定化、またはイオン交換樹脂等に吸着させた固定化担体として使用することができる。それら使用形態は、反応条件等により適宜選択される。
【0029】
反応は、上記方法で調製した微生物触媒を、基質が溶解又は懸濁した媒体中に添加し、基質と接触することにより行う。媒体は基質の性質(例えば溶解性)及び触媒の安定性等を考慮して適宜選択される。反応終了後の生成物の採取は、定法に従い実施する。
【0030】
【実施例】
本発明を以下の実施例によって更に詳細に説明する。
【0031】
<実施例1> ギ酸脱水素酵素遺伝子を含むロドコッカス(Rhodococcus)属組換え体の作製
(1)マイコバクテリウム・バッカエ(Mycobacterium vaccae N10)の全染色体DNAの抽出は、特開平10−23896号の方法に準じて行った。
【0032】
(2)ギ酸脱水素酵素遺伝子の取得
マイコバクテリウム・バッカエ(Mycobacterium vaccae N10)由来のギ酸脱水素酵素遺伝子は既にクローニングされており、その全塩基配列が明らかとなっている(Appl. Microbiol. Biotechnol. 44, 479−483 (1995))。
【0033】
本ギ酸脱水素酵素遺伝子のORF ( open reading frame )領域(1206bp)の開始コドンATGを含む配列とその上流にXbaI制限部位を付けたプライマー(オリゴヌクレオチドプライマーA:配列番号1)と、終止コドンTGAを含む配列とその下流にSse8387I制限部位を付けたプライマー(オリゴヌクレオチドプライマーB:配列番号2)の二種類のオリゴヌクレオチドプライマーを設計し、DNA/RNA synthesizer( model394:PEバイオシステムズ社製)を用いて合成した。
【0034】
これらのプライマーを用い、上記(1)で調製したマイコバクテリウム・バッカエN10株の染色体DNAを鋳型としてPCR( polymerase chain reaction )法によりギ酸脱水素酵素遺伝子のORF領域すべての増幅を行った。200μl容量のマイクロテストチューブに、以下の各試薬を記載の終濃度になるように加え、20mM トリス塩酸、1.5mM 塩化マグネシウム、25mM 塩化カリウム、0.05% ツイーン20( W/ V )、100mg/ml 牛胎児血清アルブミン、各50mM dATP・dGTP・dCTP・dTTP、これに染色体DNA:10ng、プライマーA及びB:各50pmol、2.5ユニットのTaq DNAポリメラーゼ(宝酒造社製)を添加し、総量を100μlとした。サーマルサイクラー(宝酒造社製)を用いて、DNA変性を94℃で1分、プライマーのアニーリング65℃で2分、プライマーの伸長反応72℃で2分を1サイクルとして、30サイクルの増幅を行い、1206bpのギ酸脱水素酵素遺伝子のORF 領域を含むDNA断片を得た。
【0035】
次にXbaI, Sse8387Iで制限酵素処理を行ったプラスミドpSJ034(図1)に、上記の方法で得られたギ酸脱水素酵素遺伝子を含むDNA断片をXbaI, Sse8387Iで制限酵素処理したものを混合し、これに6.6mM 塩化マグネシウム、10mM DTT及び66uM ATPを含むトリス緩衝液(pH7.6)を20ul加え、さらにT4 DNAリガーゼ(宝酒造社製)350 Uを加えて18℃で16時間反応させてDNA鎖の連結反応を行い、組み換えプラスミド(pRFD001)(図2)を作製した。なお、pSJ034はプラスミドpSJ023より特開平10−337185号明細書記載の方法により作製したものである。pSJ023は形質転換体 R.rhodochrous ATCC 12674/pSJ023 (FERM BP−6232) として、またpRFD001は (FERM P−19078) として産業総合技術研究所 特許生物寄託センターに寄託されている。
【0036】
上記で得られたプラスミドpRFD001を、ロドコッカス(Rhodococcus)属細菌、ロドコッカス ロドクロウス(Rhodococcus rhodochrous) ATCC12674、ロドコッカス ロドクロウス(Rhodococcus rhodochrous) ATCC19140、ロドコッカスロドクロウス(Rhodococcus rhodochrous) ATCC17895、ロドコッカス エリスロポリス(Rhodococcus erythropolis) JCM3201、ロドコッカス属(Rhodococcus sp.) N774(FERM BP−960)、ロドコッカス属(Rhodococcus sp.) NCIMB11215の菌株とそれぞれ混合し、氷上に10分静置後、電気パルス(2.25kv, 200OHMS)を行い、ギ酸脱水素酵素遺伝子を含むプラスミドを導入したロドコッカス(Rhodococcus)属組換え体を作製した。
【0037】
(3)ロドコッカス(Rhodococcus)属組換え体の培養
上記で得られたロドコッカス(Rhodococcus)属組換え体を、各々カナマイシンを含むGGPK培地〔組成:グルコース 15g、酵母エキス 1g、グルタミン酸ナトリウム 10g、KH2PO4 0.5g、K2HPO4 0.5g、Mg2SO4・7H2O 0.5gを蒸留水に溶解して1リットルとする(pH7.2)〕に植菌し、30℃で2日間振とう培養を行った。培養後、集菌し、適当な緩衝液等で菌体懸濁液を調製した。
【0038】
<実施例2> ロドコッカス(Rhodococcus)属組換え体を用いた光学活性1,2−プロピレングリコールの生産
1%( W/V )ヒドロキシアセトン及び33mM ギ酸アンモニウムを含む50mMリン酸カリウム緩衝液( pH7.0 )3mlに、実施例1で作成した菌体懸濁液を加えて30℃で16時間反応させた。比較対照としてギ酸アンモニウムを添加しない場合の反応も行った。反応収率は、HR−1701カラム(0.53mm ID x 30mm、信和化工(株))を用いたガスクロマトグラフィーにより、光学純度は、光学分割カラムCP−Chiralsil−DEX CB(0.25mmID x 25mm、クロムパック社)により求めた。
【0039】
いずれの場合も効率よく1,2−プロピレングリコールを生成していた。ロドコッカス ロドクロウス ATCC12674/pRFD001については光学純度を調べたところ、99%e.e.以上の光学純度のR―1,2−プロピレングリコールが得られた。一方、ギ酸アンモニウム無添加の場合には生成物が得られなかった(表1参照)。
【0040】
【表1】
<実施例3> ロドコッカス(Rhodococcus)属組換え体を用いた光学活性4−クロロ−3−ヒドロキシブタン酸エチルの生産
1%( W/V )4−クロロ−3−オキソブタン酸エチル及び33mM ギ酸アンモニウムを含む50mMリン酸カリウム緩衝液( pH7.0 )3mlに、実施例1で作成した菌体懸濁液を加えて30℃で16時間反応させた。反応収率は、HR−1701カラム(0.53mm ID x30mm、信和化工(株))を用いたガスクロマトグラフィーにより、光学純度は、光学分割カラムCP−Chiralsil−DEX CB(0.25mmID x 25mm、クロムパック社)により求めた。
【0041】
その結果、反応収率90%以上で光学純度70%e.e.以上のR―4−クロロ−3−ヒドロキシブタン酸エチルが得られた(表2参照)。
【0042】
【表2】
<実施例4> ロドコッカス(Rhodococcus)属組換え体を用いた光学活性1−フェニルエチルアルコールの生産
25mM アセトフェノン及び33mM ギ酸アンモニウムを含む50mMリン酸カリウム緩衝液( pH7.0 )3mlに実施例1で作成した菌体懸濁液を加えて30℃で5時間反応させた。比較対照としてギ酸アンモニウムを添加しない場合の反応も行った。反応収率は、HR−1701カラム(0.53mm ID x 30mm、信和化工(株))を用いたガスクロマトグラフィーにより、光学純度は、光学分割カラムCP−Chiralsil−DEX CB(0.25mmID x 25mm、クロムパック社)により求めた。
【0043】
その結果、光学純度99%e.e.以上でS―1−フェニルエチルアルコールが得られた。一方、ギ酸アンモニウム無添加の場合には反応は進まなかった(表3参照)。
【0044】
【表3】
<実施例5> ロドコッカス(Rhodococcus)属組換え体を用いた3−キヌクリジノールの生産
1%(W/V) キヌクリジノン及び33mM ギ酸アンモニウムを含む50mM リン酸カリウム緩衝液( pH7.0 )3mlに実施例1で作成した菌体懸濁液を加えて、30℃で16時間反応させた。比較対照としてギ酸アンモニウムを添加しない場合の反応も行った。また、分析はHR−1701カラム(0.53mm ID x 30mm、信和化工(株))を用いたガスクロマトグラフィーにより行った。
【0045】
その結果、効率よく3−キヌクリジノールが得られた。このことから、ギ酸脱水素酵素遺伝子のロドコッカス(Rhodococcus)属細菌内への導入により菌体内NAD(P)H依存性脱水素酵素の反応がより効率的に行われることが予想された(表4参照)。
【0046】
【表4】
<実施例6> ギ酸脱水素酵素遺伝子及びロイシン脱水素酵素を含むロドコッカス(Rhodococcus)属組換え体及びそれを用いたL−ロイシンの生産
(1)サーモアクチノマイセス・インテルメディウス( Thermoactinomyces intermedius )の全染色体DNAの抽出
サーモアクチノマイセス・インテルメディウス(Thermoactinomyces intermedius )〔Eur. J. Biochem. Vol.222 p305−312( 1994 )〕を培地(組成:トリプチカーゼ ダイズ ブロス30gを蒸留水に溶解して1リットルとする)40mlに植菌し、55℃で振とう培養を行った。培養後、集菌し、10mg/mlのリゾチームを含むSaline−EDTA液( 0.1M EDTA, 0.15M NaCl )2mlに懸濁した。37℃ 1時間振とう後、10ml Tris−SDS液(1%SDS, 0.1M NaCl, 0.1M Tris−HCl( pH9.0 ))を加えゆっくり攪拌した。さらにプロテイナーゼ( proteinase K )を少量加え30分振とうし、その後10mlのフェノール液を加え振とうした。次に溶液を遠心し、水層を分離したあと2倍量のエタノールを加え析出した染色体DNAをガラス棒に巻き取りエタノールで洗浄した。さらに5mlのTE( Tris−HCl, EDTA )に溶解し、RNaseAを適当量加え37℃で30分インキュベートした。その後プロテイナーゼ( proteinase K )を少量加え、30分インキュベートした。次に5mlのフェノール液を加え振とうし、遠心し水層を分離したあと2倍量のエタノールを加え析出した染色体DNAをガラス棒に巻き取りエタノールで洗浄した。その後1mlの滅菌水に溶解し、染色体DNA溶液とした。
【0047】
(2)ロイシン脱水素酵素遺伝子の取得
ロイシン脱水素酵素遺伝子のORF (open reading frame )領域(1166bp)の開始コドンATG上流のシャイン・ダルガーノ配列(SD配列)を含みその上流にSphI制限部位を付けたプライマー(オリゴヌクレオチドC:配列番号3)と、終止コドンTAAを含む配列とその下流にSse8387I制限部位を付けたプライマー(オリゴヌクレオチドD:配列番号4)の二種類のオリゴヌクレオチドプライマーを設計し、DNA/RNA synthesizer( model394:PEバイオシステムズ社製)を用いて合成した。
【0048】
これらプライマーを用い、上記(1)で調製したサーモアクチノマイセス・インテルメディウス株の染色体DNAを鋳型としてPCR( polymerase chain reaction )法によりギ酸脱水素酵素遺伝子のORF領域すべての増幅を行った。
【0049】
(3)ギ酸脱水素酵素遺伝子の取得
実施例1記載のプライマーAと、終止コドンTGAを含む配列とその下流にSphI制限部位を付けたプライマーE(配列番号5)を用い、実施例1記載の方法と同様にPCRを行い、1206bpのギ酸脱水素酵素遺伝子のORF 領域を含むDNA断片を得た。
【0050】
次にXbaI, Sse8387Iで制限酵素処理を行ったプラスミドpSJ034(図1)に、上記の方法で得られたギ酸脱水素酵素遺伝子を含むDNA断片をXbaI, SphIで制限酵素処理したものと(2)で得られたロイシン脱水素酵素遺伝子を含むDNA断片をSphI, Sse8387Iで制限酵素処理したものを混合し、これに6.6mM塩化マグネシウム、10mM DTT及び66uM ATPを含むトリス緩衝液(pH7.6)を20ul加え、さらにT4 DNAリガーゼ(宝酒造社製)350Uを加えて18℃で16時間反応させてDNA鎖の連結反応を行い、組み換えプラスミド(pRFD002)(図3)を作製した。pRFD002は (FERM−19079) として産業総合技術研究所特許微生物寄託センターに寄託されている。
【0051】
上記で得られたプラスミドを、ロドコッカス ロドクロウス(Rhodococcus rhodochrous)ATCC12674株と混合し、氷上に10分静置後、電気パルス(2.25kv, 200OHMS)を行い、ギ酸脱水素酵素遺伝子及びロイシン脱水素酵素遺伝子を含むプラスミドを導入したロドコッカス(Rhodococcus)属組換え体を作製した。
【0052】
(4)ロドコッカス(Rhodococcus)属組換え体の培養
上記で得られたロドコッカス(Rhodococcus)属組換え体を、カナマイシンを含むGGPK培地〔組成:グルコース15g、酵母エキス1g、グルタミン酸ナトリウム10g、KH2PO4 0.5g、K2HPO4 0.5g、Mg2SO4・7H2O 0.5gを蒸留水に溶解して1リットルとする(pH7.2)〕に植菌し、30℃で2日間振とう培養を行った。培養後、集菌し、適当な緩衝液等で菌体懸濁液を調製した。
【0053】
(5) ギ酸脱水素酵素遺伝子及びロイシン脱水素酵素を含むロドコッカス(Rhodococcus)属細菌組換え体によるL−ロイシンの生産
100mM 4−メチル−2−オキソペンタン酸及び166mM ギ酸アンモニウムを含む50mMリン酸カリウム緩衝液( pH7.0 )10mlに、(4)で作成した菌体懸濁液を加えて30℃で反応させた。反応時間が8時間経過したところで反応をとめ、菌体を遠心分離により回収した。回収した菌体をリン酸バッファー(pH7.0)で懸濁し、再度遠心分離することにより洗浄した。回収した菌体に100mM 4−メチル−2−オキソペンタン酸及び166mM ギ酸アンモニウム、50mMリン酸カリウム緩衝液( pH7.0 )を加え10mlとし、30℃で再度反応させた。この操作を繰り返し3回目まで反応させた。
【0054】
定量・分析はWakosil 5C8カラム(和光純薬工業)を用いた高速液体クロマトグラフィーを用いて行った。また、光学異性体の確認は、光学分割カラムMCI GEL CRS 10W(三菱化学)を用いた高速液体クロマトグラフィーにより行った。
【0055】
その結果、NADHを添加することなく、さらには菌体を再利用した3回目の反応においても充分なL−ロイシンの生産を確認した。以上より、ギ酸脱水素酵素遺伝子が導入されたロドコッカス(Rhodococcus)属細菌において、NADHの再生反応が効率的に行われていることが確認された。
【0056】
<比較例1> ギ酸脱水素酵素遺伝子及びロイシン脱水素酵素を含む大腸菌組換え体によるL−ロイシンの製造
(1)大腸菌組換え体
大腸菌組換え体は、JM109(pFDH/LeuDH)を使用した。JM109(pFDH/LeuDH)はFERMP−15350として産業技術総合研究所 特許生物寄託センターに寄託されている。
【0057】
(2)大腸菌組換え体の培養
上記で得られた大腸菌組換え体体JM109(pFDH/LeuDH)を、アンピシリン及びIPTG(イソプロピル−β−D−チオガラクトピラノシド)を含むLB培地(組成:グルコース10g、酵母エキス10g、NaCl 5gを蒸留水に溶解して1リットルとする(pH7.0))に植菌し、30℃で振とう培養を行った。培養後、集菌し、適当な緩衝液等で菌体懸濁液を調製した。
【0058】
(3)L−ロイシンの製造
100mM 4−メチル−2−オキソペンタン酸及び166mM ギ酸アンモニウムを含む50mMリン酸カリウム緩衝液( pH7.0 )10mlに、(2)で作成した菌体懸濁液を加えて30℃で反応させた。また、実施例6と同様の方法で分析を行った。反応時間が6時間経過したところで反応をとめ、菌体を遠心分離により回収した。回収した菌体をリン酸バッファー(pH7.0)で懸濁し、再度遠心分離することにより洗浄した。回収した菌体に100mM 4−メチル−2−オキソペンタン酸及び166mM ギ酸アンモニウム、50mMリン酸カリウム緩衝液( pH7.0 )を加え10mlとし、30℃で再度反応させた。
【0059】
その結果、1回目の反応では6時間の反応で80mMのL−ロイシンが生成したにもかかわらず、2回目の反応ではわずかの反応しか起こらなかった。この反応液にNADHを添加したところ1回目の反応と同程度のL−ロイシンが生成が見られた。このことから、大腸菌組換え体においては、補酵素NADH再生系は機能するものの、菌体内からNADHがすみやかに流出するなどの理由から、NADH無添加条件では繰り返し反応や連続反応には適さないことが明らかとなった。
【0060】
【発明の効果】
細胞表層が強固で、産業的に有用な多種の酵素を産生するロドコッカス(Rhodococcus)属細菌に、補酵素再生系を構成する遺伝子を導入することにより、補酵素の漏出がないロドコッカス(Rhodococcus)属組換え体を作成できる。また、それを使用することにより、光学活性体の効率的な生産が可能である。
【0061】
【図面の簡単な説明】
【0062】
【図1】プラスミドpSJ034の制限酵素地図。
【0063】
【図2】プラスミドpRFD001の制限酵素地図。
【0064】
【図3】プラスミドpRFD002の制限酵素地図。
【0065】
【図4】ロドコッカス(Rhodococcus)属細菌組換え体によるL−ロイシンの生産を示す図。
【0066】
【図5】大腸菌組換え体によるL−ロイシンの生産を示す図。
【0067】
【配列表】
【0068】
【配列表フリーテキスト】
配列番号1:合成DNA
配列番号2:合成DNA
配列番号3:合成DNA
配列番号4:合成DNA
配列番号5:合成DNA[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a recombinant Rhodococcus bacterium into which a gene DNA constituting a coenzyme regeneration system has been introduced, and to the production of an optically active alcohol or an optically active amino acid using the recombinant.
[0002]
[Prior art]
In an enzymatic reaction involving reduced NAD (P) H, oxidized coenzyme NAD (P) generated as a result of the enzymatic reaction is regenerated into reduced coenzyme NAD (P) H to continuously obtain the desired product. Attempts have been made. At this time, the coenzyme is regenerated by a method utilizing the NAD (P) reducing ability (glycolysis system, methylotroph C1 compound utilization system) possessed by the microorganism, the ability to generate NAD (P) H from NAD (P). And a method of adding a microorganism having the above or a processed product thereof. As enzymes for performing such regeneration, formate dehydrogenase, glucose dehydrogenase, glucose 6-phosphate dehydrogenase, acetaldehyde dehydrogenase, hydrogenase and the like are known (Biotechnology 1,677 (1983), J. Am. Chem. Soc. 102, 7104 (1980), Biotechnology Lett. 2, 445 (1980), J. Am. Chem. Soc. 103, 4890 (1981).
[0003]
However, in conventional regeneration, during repetitive reactions or continuous production reactions, the regenerated coenzyme leaks out of the cells due to mechanical disruption, lysis, etc. of the microbial cells and is lost from the reaction system. was there.
[0004]
Specifically, when an Escherichia coli recombinant is used, there is a problem that lysis occurs during the reaction, and the coenzyme leaks out of the cells during the reaction.
[0005]
In a continuous production reaction using an immobilized enzyme in which microbial cells are immobilized on a suitable carrier, the coenzyme leaks out of the reaction system together with the reaction as described above, and the coenzyme must be added as needed. Did not.
[0006]
[Problems to be solved by the invention]
The present invention provides a gene recombinant constructed with a coenzyme regeneration system that enables efficient continuous production without leakage of a regenerated coenzyme, and an optically active substance using a coenzyme-dependent reductase In particular, it is an object of the present invention to provide a method for producing an optically active alcohol or an optically active amino acid.
[0007]
[Means for Solving the Problems]
In view of the above problems, the present inventors have conducted intensive studies, and as a result, a coenzyme regeneration system has been established for a bacterium belonging to the genus Rhodococcus which has a strong cell surface and produces a variety of industrially useful enzymes. It has been found that, by introducing a gene, a recombinant Rhodococcus bacterium without coenzyme leakage can be produced. Further, they have found that efficient production of an optically active substance is possible by using it, and have completed the present invention.
[0008]
Furthermore, by introducing both a gene constituting a coenzyme regeneration system and a coenzyme-dependent reductase gene into a bacterium belonging to the genus Rhodococcus, an optically active substance can be produced by the coenzyme-dependent reductase. The present inventors have found that the production is possible by reusing the cells without leakage of the coenzyme outside the cells and addition of the coenzymes, and have completed the present invention.
[0009]
That is, the present invention relates to a Rhodococcus obtained by introducing a gene constituting a coenzyme regeneration system and / or a gene encoding a coenzyme-dependent reductase into a strong Rhodococcus bacterium on the cell surface. And a method for producing an optically active amino acid or an optically active alcohol using the recombinant.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, examples of the “coenzyme” include NAD (nicotinamide adenine dinucleotide), NADP (nicotinamide adenine dinucleotide phosphate), FAD (flavinamide adenine dinucleotide) and the like.
[0011]
"Coenzyme regeneration system" refers to regeneration of a coenzyme converted to an oxidized form as a result of a reduction reaction by a coenzyme-dependent reductase to a reduced form, or reduction as a result of an oxidation reaction by a coenzyme-dependent oxidase. It means that the coenzyme converted to the form is regenerated to the oxidized form.
[0012]
The enzyme and its gene DNA used in the coenzyme regeneration system are not particularly limited as long as the oxidized or reduced coenzyme can be regenerated. Examples of the enzyme include sugar-related substances such as glucose dehydrogenase and glycerol dehydrogenase. Amino acid dehydrogenases such as dehydrogenase, formate dehydrogenase, isopropanol dehydrogenase, alcohol dehydrogenase such as butanol dehydrogenase, leucine dehydrogenase, phenylalanine dehydrogenase, alanine dehydrogenase, and glutamate dehydrogenase Enzymes, organic acid dehydrogenases such as lactate dehydrogenase and pyruvate dehydrogenase, opine dehydrogenase and the like, and gene DNAs encoding them (J. Pters, Biotechnology 2nd Ed. Vol. 8a Chapter 9 p391- 474).
[0013]
Here, the formate dehydrogenase has an enzymatic activity of oxidizing formic acid to convert it into carbon dioxide (Biochem. J. 301, 625-643 (1994)). Therefore, the reducing power of the coenzyme is required. Examples of coenzymes that can be used for formate dehydrogenase include NAD (nicotinamide adenine dinucleotide), NADP (nicotinamide adenine dinucleotide phosphate), and FAD (flavinamide adenine dinucleotide). ) H-dependent reductases are most frequently reported, and it is more preferable to use NAD (P) for industrial use.
[0014]
Examples of the formate dehydrogenase gene include a gene derived from the genus Mycobacterium (Appl. Microbiol. Biotechnol. Vol. 44 p479-483 (1995)) and a gene derived from the genus Pseudomonas (Biotechnol. Appl. Biochem. 83 (1993), Eur. J. Biochem. Vol. 83 p485-498 (1978), a gene derived from the genus Paracoccus (Biosci. Biotech. Biochem. Vol. 56, p1966-1970 (1992)), and a gene from the genus Molac. Gene (Journal of Bacteriology Vol. 170 p3189-3193 (1988)), a gene derived from the genus Methylomonas (Biochem). J. Vol.93 p281-290 (1964), Z. Allg.Mikrobiol.Vol.20 p167-175 (1980), and a gene derived from the genus Candida as yeast (Eur.J.Biochem.Vol.152 p657-662). (1985), Gene Vol. 162 p99-104 (1995), Eur. J. Biochem. Vol. 62 p151-160 (1976), Biochim. Biophys. Acta Vol. (EP0299108 A1, B1, Japanese Patent Application Laid-Open No. 2-24093) Gene derived from the genus Penibacils (Research Report of the Faculty of Engineering, Kinki University No. 14 p133-139 (1980), No. 15 p115-123) (1981), No. 16 p141-152 (1982)).
[0015]
Amino acid dehydrogenase refers to one having the ability to reduce the carbonyl group at the α-position of α-keto acid to an amino group using α-keto acid and ammonia as substrates. Examples of coenzymes that can be used for amino acid dehydrogenase include NADH, a reduced form of NAD (nicotinamide adenine dinucleotide), NADPH, a reduced form of NADP (nicotinamide adenine dinucleotide phosphate), and FAD (flavinamide adenine). FADH, which is a reduced form of dinucleotide), NAD (P) H-dependent reductase is most frequently reported, and NAD (P) H should be used for industrial use. Is preferred.
[0016]
Alcohol dehydrogenase has a capability of reducing a carbonyl group at the α-position to a hydroxy group using α-keto acid as a substrate. Examples of coenzymes that can be used for amino acid dehydrogenase include NADH, a reduced form of NAD (nicotinamide adenine dinucleotide), NADPH, a reduced form of NADP (nicotinamide adenine dinucleotide phosphate), and FAD (flavinamide adenine). FADH, which is a reduced form of dinucleotide), NAD (P) H-dependent reductase is most frequently reported, and NAD (P) H should be used for industrial use. Is preferred.
[0017]
First, the present invention provides a "Rhodococcus bacterium recombinant obtained by introducing a gene DNA constituting a coenzyme regeneration system into a genus Rhodococcus bacterium that produces a coenzyme-dependent reductase". Things.
[0018]
In this case, since Rhodococcus bacteria produce a coenzyme-dependent reductase, efficient production can be achieved by constructing a system that regenerates the oxidized coenzyme generated as a result of the reduction reaction into a reduced coenzyme. It becomes possible. The Rhodococcus (Rhodococcus) bacteria that produce coenzyme-dependent reductase, Rhodococcus (Rhodococcus) bacteria, Rhodococcus rhodochrous (Rhodococcus rhodochrous) ATCC12674, Rhodococcus rhodochrous (Rhodococcus rhodochrous) ATCC19140, Rhodococcus rhodochrous (Rhodococcus rhodochrous) ATCC17895, Rhodococcus Erythropolis (Rhodococcus erythropolis) JCM3201, Rhodococcus sp. N774 (FERM BP-960), Rhodococcus sp. (Rhodococcus sp.) NCIMB11215 can be exemplified. .
[0019]
The regeneration of the oxidized coenzyme into the reduced coenzyme coenzyme is performed, for example, by the enzymatic reaction of the above-described formate dehydrogenase, glucose dehydrogenase, glucose-6-phosphate dehydrogenase, malate dehydrogenase, and alcohol dehydrogenase. Perform using. Since these enzymes need to be produced in a bacterium of the genus Rhodococcus, the gene DNA encoding the enzyme is introduced into a bacterium of the genus Rhodococcus.
[0020]
The introduction can be carried out according to a technique commonly used in the field of genetic engineering <Molecular Cloning 2 nd Edt. , Cold Spring Harbor Laboratory Press (1989)>. With respect to bacteria belonging to the genus Rhodococcus, latent plasmids isolated from Rhodococcus rhodochrous and Rhodococcus erythropolis (JP-A-4-330287, JP-A-4-14287, JP-A-4-14287) No. 9-28379) is preferably used. <J. Gene. Microbiol. 138. , 1003
(1992), JP-A-5-64589>.
[0021]
Next, the present invention provides a "Rhodococcus genus recombinant obtained by introducing a gene DNA constituting a coenzyme regeneration system into a Rhodococcus genus bacterium that produces a coenzyme-dependent oxidase". Things. The recombinant can be prepared in the same manner as described above.
[0022]
That is, since Rhodococcus bacteria produce a coenzyme-dependent oxidase, a system that regenerates the reduced coenzyme generated as a result of the oxidation reaction into an oxidized coenzyme is constructed in the Rhodococcus bacterium. This will allow efficient production.
[0023]
Rhodococcus bacteria that produce coenzyme-dependent oxidase include
Rhodococcus sp. RHA1 (PCB oxidatively degrading bacterium), Rhodococcus opacus (Rhodococcus opacus) TSP203 (PCB oxidatively degrading bacterium), Rhodococcus erythropolis (Rhodococcus erythropolis including K. erythropolis-1) .
[0024]
Regeneration of the coenzyme is performed using, for example, glutamate dehydrogenase, NADH oxidase, NADH dehydrogenase, alcohol dehydrogenase, lactate dehydrogenase, etc., and these enzymes are produced in the genus Rhodococcus. Since it is necessary, gene DNAs encoding these enzymes may be introduced into a bacterium of the genus Rhodococcus to prepare a transductant (transformant).
[0025]
Furthermore, it is also possible to produce a recombinant Rhodococcus bacterium into which both the gene constituting the coenzyme regeneration system and the gene encoding the coenzyme-dependent reductase or the oxidase have been introduced. In that case, it is preferable to construct a plasmid vector containing both genes to prepare a recombinant. The coenzyme-dependent reducing or oxidizing enzyme is appropriately selected depending on the target product to be produced.
[0026]
The recombinant Rhodococcus bacterium prepared as described above can be used as a microbial catalyst in a microbial conversion reaction. At this time, Rhodococcus bacterium is superior to other bacterial species in repeated use and continuous reaction in that the cell surface layer is strong. Further, it is very preferable because it produces various kinds of enzymes which are industrially useful (see JP-A-11-103878, JP-A-8-98697, JP-A-6-1977791, JP-A-6-178691 and the like). .
[0027]
The preparation of the microbial catalyst is prepared by a process including culturing. In the culture method, any medium can be used as long as these microorganisms can normally grow. For example, glucose, fructose, sucrose, sugars such as maltose, organic acids such as acetic acid and citric acid, alcohols such as ethanol and glycerol as a carbon source, peptone, meat extract, yeast extract, and protein hydrolyzate as a nitrogen source In addition to general natural nitrogen sources such as amino acids and the like, various inorganic and organic acid ammonium salts and the like can be used. In addition, inorganic salts, trace metals, vitamins and the like are appropriately used as needed. Culture conditions are usually aerobic at pH 4 to 10 and at a temperature of 10 to 40 ° C. for 10 to 180 hours. The culture can be performed by either liquid culture or solid culture.
[0028]
After the culture, a microbial catalyst is prepared by performing a cell collection operation and washing as needed. The use form is as a cell suspension in which the collected cells are suspended in a suitable buffer, or immobilized on a suitable carrier such as acrylamide, carrageenan, agarose, or adsorbed on an ion exchange resin or the like. It can also be used as an immobilized carrier. Their use forms are appropriately selected depending on reaction conditions and the like.
[0029]
The reaction is carried out by adding the microbial catalyst prepared by the above method to a medium in which the substrate is dissolved or suspended, and contacting the substrate with the substrate. The medium is appropriately selected in consideration of the properties of the substrate (eg, solubility) and the stability of the catalyst. The product after completion of the reaction is collected according to a standard method.
[0030]
【Example】
The present invention is described in more detail by the following examples.
[0031]
<Example 1> Production of a Rhodococcus genus recombinant containing a formate dehydrogenase gene
(1) The extraction of the whole chromosomal DNA of Mycobacterium vaccae N10 was performed according to the method of JP-A-10-23896.
[0032]
(2) Acquisition of formate dehydrogenase gene
The formate dehydrogenase gene from Mycobacterium vaccae N10 has been cloned and its entire nucleotide sequence has been elucidated (Appl. Microbiol. Biotechnol. 44, 479-483 (1995)). .
[0033]
A sequence containing the start codon ATG of the ORF (open reading frame) region (1206 bp) of the present formate dehydrogenase gene, a primer having an XbaI restriction site upstream thereof (oligonucleotide primer A: SEQ ID NO: 1), and a stop codon TGA And two primers, a primer having an Sse8387I restriction site downstream thereof (oligonucleotide primer B: SEQ ID NO: 2), are designed using a DNA / RNA synthesizer (model 394: manufactured by PE Biosystems). And synthesized.
[0034]
Using these primers, the ORF region of the formate dehydrogenase gene was amplified by PCR (polymerase chain reaction) using the chromosomal DNA of Mycobacterium baccae strain N10 prepared in (1) above as a template. The following reagents were added to a 200 μl microtest tube to the final concentrations described, and 20 mM Tris-HCl, 1.5 mM magnesium chloride, 25 mM potassium chloride, 0.05% Tween 20 (W / V), 100 mg / Ml fetal bovine serum albumin, 50 mM dATP / dGTP / dCTP / dTTP, 10 ng of chromosomal DNA, primers A and B: 50 pmol each, 2.5 units of Taq DNA polymerase (Takara Shuzo), and total amount To 100 μl. Using a thermal cycler (manufactured by Takara Shuzo Co., Ltd.), 30 cycles of amplification were performed, with DNA denaturation at 94 ° C. for 1 minute, primer annealing at 65 ° C. for 2 minutes, and primer extension reaction at 72 ° C. for 2 minutes as 1 cycle. A 1206 bp DNA fragment containing the ORF region of the formate dehydrogenase gene was obtained.
[0035]
Next, a plasmid pSJ034 (FIG. 1) treated with restriction enzymes XbaI and Sse8387I was mixed with a DNA fragment containing the formate dehydrogenase gene obtained by the above method, which was treated with restriction enzymes XbaI and Sse8387I. To this, 20 ul of Tris buffer (pH 7.6) containing 6.6 mM magnesium chloride, 10 mM DTT and 66 uM ATP was added, and 350 U of T4 DNA ligase (Takara Shuzo) was added, followed by reaction at 18 ° C. for 16 hours. A chain ligation reaction was performed to prepare a recombinant plasmid (pRFD001) (FIG. 2). The plasmid pSJ034 was prepared from the plasmid pSJ023 by the method described in JP-A-10-337185. pSJ023 is a transformant. rhodochrous ATCC 12774 / pSJ023 (FERM BP-6232) and pRFD001 as (FERM P-19078) have been deposited at the Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology.
[0036]
The plasmid pRFD001 obtained above, Rhodococcus (Rhodococcus) bacteria, Rhodococcus rhodochrous (Rhodococcus rhodochrous) ATCC12674, Rhodococcus rhodochrous (Rhodococcus rhodochrous) ATCC19140, Rhodococcus b skull mouse (Rhodococcus rhodochrous) ATCC17895, Rhodococcus erythropolis (Rhodococcus erythropolis) JCM3201, Rhodococcus sp. N774 (FERM BP-960) and Rhodococcus sp. NCIMB11215 were mixed with each strain, and allowed to stand on ice for 10 minutes, followed by electric pulse. (2.25 kv, 200 OHMS) to prepare a recombinant of the genus Rhodococcus into which a plasmid containing the formate dehydrogenase gene was introduced.
[0037]
(3) Culture of Rhodococcus recombinants
A recombinant of the genus Rhodococcus obtained above was transformed into a GGPK medium containing kanamycin [composition: glucose 15 g, yeast extract 1 g, sodium glutamate 10 g, KH 2 PO 4 0.5g, K 2 HPO 4 0.5g, Mg 2 SO 4 ・ 7H 2 0.5 g of O was dissolved in distilled water to make 1 liter (pH 7.2)], and shaking culture was performed at 30 ° C. for 2 days. After the culture, the cells were collected and a cell suspension was prepared using an appropriate buffer or the like.
[0038]
<Example 2> Production of optically active 1,2-propylene glycol using a Rhodococcus genus recombinant
The cell suspension prepared in Example 1 was added to 3 ml of 50 mM potassium phosphate buffer (pH 7.0) containing 1% (W / V) hydroxyacetone and 33 mM ammonium formate, followed by reaction at 30 ° C. for 16 hours. Was. As a control, a reaction was performed without adding ammonium formate. The reaction yield was determined by gas chromatography using an HR-1701 column (0.53 mm ID x 30 mm, Shinwa Kako Co., Ltd.), and the optical purity was determined by the optical resolution column CP-Chiralsil-DEX CB (0.25 mm ID x 25 mm). Chrom Pack Inc.).
[0039]
In each case, 1,2-propylene glycol was efficiently produced. The optical purity of Rhodococcus rhodochrous ATCC12674 / pRFD001 was determined to be 99% e.g. e. R-1,2-propylene glycol having the above optical purity was obtained. On the other hand, when no ammonium formate was added, no product was obtained (see Table 1).
[0040]
[Table 1]
Example 3 Production of Optically Active Ethyl 4-Chloro-3-hydroxybutanoate Using Rhodococcus Recombinant
The cell suspension prepared in Example 1 was added to 3 ml of a 50 mM potassium phosphate buffer (pH 7.0) containing 1% (w / v) ethyl 4-chloro-3-oxobutanoate and 33 mM ammonium formate. The reaction was performed at 30 ° C. for 16 hours. The reaction yield was determined by gas chromatography using an HR-1701 column (0.53 mm ID x 30 mm, Shinwa Kako Co., Ltd.), and the optical purity was determined by the optical resolution column CP-Chiralsil-DEX CB (0.25 mm ID x 25 mm, (Chrom Pack).
[0041]
As a result, the reaction yield was 90% or more and the optical purity was 70% e. e. The above ethyl R-4-chloro-3-hydroxybutanoate was obtained (see Table 2).
[0042]
[Table 2]
<Example 4> Production of optically active 1-phenylethyl alcohol using a Rhodococcus genus recombinant
The cell suspension prepared in Example 1 was added to 3 ml of 50 mM potassium phosphate buffer (pH 7.0) containing 25 mM acetophenone and 33 mM ammonium formate, and the mixture was reacted at 30 ° C. for 5 hours. As a control, a reaction was performed without adding ammonium formate. The reaction yield was determined by gas chromatography using an HR-1701 column (0.53 mm ID x 30 mm, Shinwa Kako Co., Ltd.), and the optical purity was determined by the optical resolution column CP-Chiralsil-DEX CB (0.25 mm ID x 25 mm). Chrom Pack Inc.).
[0043]
As a result, the optical purity was 99% e. e. Thus, S-1-phenylethyl alcohol was obtained. On the other hand, the reaction did not proceed when ammonium formate was not added (see Table 3).
[0044]
[Table 3]
<Example 5> Production of 3-quinuclidinol using a recombinant of the genus Rhodococcus
The cell suspension prepared in Example 1 was added to 3 ml of 50 mM potassium phosphate buffer (pH 7.0) containing 1% (W / V) quinuclidinone and 33 mM ammonium formate, and reacted at 30 ° C. for 16 hours. . As a control, a reaction was performed without adding ammonium formate. The analysis was performed by gas chromatography using a HR-1701 column (0.53 mm ID x 30 mm, Shinwa Kako Co., Ltd.).
[0045]
As a result, 3-quinuclidinol was efficiently obtained. From this, it was expected that the reaction of the intracellular NAD (P) H-dependent dehydrogenase would be performed more efficiently by introducing the formate dehydrogenase gene into Rhodococcus bacteria (Table 4). reference).
[0046]
[Table 4]
Example 6 Rhodococcus Recombinant Containing Formate Dehydrogenase Gene and Leucine Dehydrogenase and Production of L-Leucine Using It
(1) Extraction of whole chromosomal DNA of Thermoactinomyces intermedius
Thermoactinomyces intermedius [Eur. J. Biochem. Vol. 222 p305-312 (1994)] was inoculated into 40 ml of a medium (composition: 30 g of trypticase soy broth was dissolved in distilled water to make 1 liter), and shaking culture was performed at 55 ° C. After the culture, the cells were collected and suspended in 2 ml of Saline-EDTA solution (0.1 M EDTA, 0.15 M NaCl) containing 10 mg / ml lysozyme. After shaking at 37 ° C. for 1 hour, 10 ml of a Tris-SDS solution (1% SDS, 0.1 M NaCl, 0.1 M Tris-HCl (pH 9.0)) was added, and the mixture was slowly stirred. Further, a small amount of proteinase (proteinase K) was added, and the mixture was shaken for 30 minutes. Thereafter, 10 ml of a phenol solution was added and shaken. Next, the solution was centrifuged, the aqueous layer was separated, twice the amount of ethanol was added, and the precipitated chromosomal DNA was wound around a glass rod and washed with ethanol. Further, it was dissolved in 5 ml of TE (Tris-HCl, EDTA), RNase A was added in an appropriate amount, and the mixture was incubated at 37 ° C for 30 minutes. Thereafter, a small amount of proteinase K was added, and the mixture was incubated for 30 minutes. Next, 5 ml of a phenol solution was added, shaken, centrifuged, and the aqueous layer was separated. Then, twice the amount of ethanol was added, and the precipitated chromosomal DNA was wound around a glass rod and washed with ethanol. Then, it was dissolved in 1 ml of sterilized water to obtain a chromosomal DNA solution.
[0047]
(2) Acquisition of leucine dehydrogenase gene
A primer (oligonucleotide C: SEQ ID NO: 3) containing a Shine-Dalgarno sequence (SD sequence) upstream of the start codon ATG of the ORF (open reading frame) region (1166 bp) of the leucine dehydrogenase gene and having an SphI restriction site upstream thereof ) And a primer having a Sse8387I restriction site downstream thereof (oligonucleotide D: SEQ ID NO: 4) including a sequence containing a stop codon TAA, and a DNA / RNA synthesizer (model 394: PE Biosystems) (Made by the company).
[0048]
Using these primers, the entire ORF region of the formate dehydrogenase gene was amplified by PCR (polymerase chain reaction) using the chromosomal DNA of Thermoactinomyces intermedius strain prepared in (1) above as a template.
[0049]
(3) Acquisition of formate dehydrogenase gene
PCR was carried out in the same manner as in Example 1 by using the primer A described in Example 1, a sequence containing the termination codon TGA, and a primer E (SEQ ID NO: 5) having a SphI restriction site downstream thereof. A DNA fragment containing the ORF region of the formate dehydrogenase gene was obtained.
[0050]
Next, the plasmid pSJ034 (FIG. 1) treated with restriction enzymes XbaI and Sse8387I was treated with the DNA fragment containing the formate dehydrogenase gene obtained by the above method using restriction enzymes XbaI and SphI, and (2) The leucine dehydrogenase gene-containing DNA fragment obtained in step 1 was mixed with a restriction enzyme treated with SphI and Sse8387I, and the mixture was mixed with Tris buffer (pH 7.6) containing 6.6 mM magnesium chloride, 10 mM DTT and 66 uM ATP. Was added, and 350 U of T4 DNA ligase (Takara Shuzo Co., Ltd.) was further added. The mixture was allowed to react at 18 ° C. for 16 hours to perform a ligation reaction of DNA strands to prepare a recombinant plasmid (pRFD002) (FIG. 3). pRFD002 has been deposited with the National Institute of Advanced Industrial Science and Technology Patent Microorganisms Depositary Center as (FERM-19079).
[0051]
The plasmid obtained above was mixed with Rhodococcus rhodochrous ATCC12674 strain, allowed to stand on ice for 10 minutes, and then subjected to an electric pulse (2.25 kv, 200 OHMS) to give a formate dehydrogenase gene and a leucine dehydrogenase. A recombinant of the genus Rhodococcus into which a plasmid containing the gene was introduced was prepared.
[0052]
(4) Culture of a Rhodococcus genus recombinant
A recombinant of the genus Rhodococcus obtained above was transformed into a GGPK medium containing kanamycin [composition: glucose 15 g, yeast extract 1 g, sodium glutamate 10 g, KH2PO4 0.5 g, K2HPO4 0.5 g, Mg2SO4.7H2O 0.5 g. Was dissolved in distilled water to make 1 liter (pH 7.2)], and shaking culture was performed at 30 ° C. for 2 days. After the culture, the cells were collected and a cell suspension was prepared using an appropriate buffer or the like.
[0053]
(5) Production of L-leucine by a recombinant Rhodococcus bacterium containing a formate dehydrogenase gene and a leucine dehydrogenase
The bacterial cell suspension prepared in (4) was added to 10 ml of 50 mM potassium phosphate buffer (pH 7.0) containing 100 mM 4-methyl-2-oxopentanoic acid and 166 mM ammonium formate, and reacted at 30 ° C. . After a reaction time of 8 hours, the reaction was stopped, and the cells were collected by centrifugation. The collected cells were suspended in a phosphate buffer (pH 7.0) and washed by centrifugation again. To the collected cells, 100 mM 4-methyl-2-oxopentanoic acid, 166 mM ammonium formate, and 50 mM potassium phosphate buffer (pH 7.0) were added to make 10 ml, and reacted at 30 ° C. again. This operation was repeated until the third reaction.
[0054]
Quantitative analysis was performed using high performance liquid chromatography using a Wakosil 5C8 column (Wako Pure Chemical Industries). Confirmation of optical isomers was performed by high performance liquid chromatography using an optical resolution column MCI GEL CRS 10W (Mitsubishi Chemical).
[0055]
As a result, sufficient production of L-leucine was confirmed without addition of NADH, and also in the third reaction in which the cells were reused. From the above, it was confirmed that in the bacteria of the genus Rhodococcus into which the formate dehydrogenase gene was introduced, the NADH regeneration reaction was efficiently performed.
[0056]
<Comparative Example 1> Production of L-leucine by a recombinant Escherichia coli containing a formate dehydrogenase gene and a leucine dehydrogenase
(1) Escherichia coli recombinant
JM109 (pFDH / LeuDH) was used as the recombinant E. coli. JM109 (pFDH / LeuDH) has been deposited at the National Institute of Advanced Industrial Science and Technology Patent Organism Depositary as the FERMP-15350.
[0057]
(2) Culture of recombinant Escherichia coli
Escherichia coli recombinant JM109 (pFDH / LeuDH) obtained above was added to an LB medium containing ampicillin and IPTG (isopropyl-β-D-thiogalactopyranoside) (composition: glucose 10 g, yeast extract 10 g, NaCl 5 g). Was dissolved in distilled water to make 1 liter (pH 7.0), and cultured at 30 ° C. with shaking. After the culture, the cells were collected and a cell suspension was prepared using an appropriate buffer or the like.
[0058]
(3) Production of L-leucine
The cell suspension prepared in (2) was added to 10 ml of a 50 mM potassium phosphate buffer (pH 7.0) containing 100 mM 4-methyl-2-oxopentanoic acid and 166 mM ammonium formate, and reacted at 30 ° C. . The analysis was performed in the same manner as in Example 6. After a reaction time of 6 hours, the reaction was stopped, and the cells were collected by centrifugation. The collected cells were suspended in a phosphate buffer (pH 7.0) and washed by centrifugation again. To the collected cells, 100 mM 4-methyl-2-oxopentanoic acid, 166 mM ammonium formate, and 50 mM potassium phosphate buffer (pH 7.0) were added to make 10 ml, and reacted at 30 ° C. again.
[0059]
As a result, despite the fact that 80 mM L-leucine was produced in the first reaction for 6 hours, only a slight reaction occurred in the second reaction. When NADH was added to this reaction solution, L-leucine was produced at about the same level as in the first reaction. From this fact, in the recombinant Escherichia coli, the coenzyme NADH regeneration system functions, but it is not suitable for the repeated reaction or continuous reaction under the condition that NADH is not added because the NADH immediately flows out of the cells. Became clear.
[0060]
【The invention's effect】
By introducing a gene constituting a coenzyme regeneration system into a bacterium belonging to the genus Rhodococcus having a strong cell surface and producing a variety of industrially useful enzymes, a genus Rhodococcus having no leakage of a coenzyme can be obtained. Recombinants can be made. Further, the use thereof enables efficient production of an optically active substance.
[0061]
[Brief description of the drawings]
[0062]
FIG. 1 is a restriction map of plasmid pSJ034.
[0063]
FIG. 2 is a restriction map of plasmid pRFD001.
[0064]
FIG. 3 is a restriction map of plasmid pRFD002.
[0065]
FIG. 4 is a diagram showing production of L-leucine by a recombinant Rhodococcus bacterium.
[0066]
FIG. 5 is a diagram showing production of L-leucine by a recombinant Escherichia coli.
[0067]
[Sequence list]
[0068]
[Sequence List Free Text]
SEQ ID NO: 1: Synthetic DNA
SEQ ID NO: 2: Synthetic DNA
SEQ ID NO: 3: Synthetic DNA
SEQ ID NO: 4: Synthetic DNA
SEQ ID NO: 5: synthetic DNA
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002330732A JP4372408B2 (en) | 2002-11-14 | 2002-11-14 | Rhodococcus genus bacterial recombinant and method for producing optically active substance using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002330732A JP4372408B2 (en) | 2002-11-14 | 2002-11-14 | Rhodococcus genus bacterial recombinant and method for producing optically active substance using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004159587A true JP2004159587A (en) | 2004-06-10 |
JP4372408B2 JP4372408B2 (en) | 2009-11-25 |
Family
ID=32808340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002330732A Expired - Fee Related JP4372408B2 (en) | 2002-11-14 | 2002-11-14 | Rhodococcus genus bacterial recombinant and method for producing optically active substance using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4372408B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006050967A (en) * | 2004-08-12 | 2006-02-23 | Mitsubishi Rayon Co Ltd | Plasmid originated from rhodococcus bacterium and its derivative, and escherichia coli-rhodococcus bacterium shuttle vector |
WO2007129466A1 (en) * | 2006-05-09 | 2007-11-15 | Mitsui Chemicals, Inc. | Method of producing hydroxycarboxylic acid by regenerating coenzyme |
WO2008047656A1 (en) * | 2006-10-12 | 2008-04-24 | Kaneka Corporation | Method for production of l-amino acid |
JP2010115173A (en) * | 2008-11-14 | 2010-05-27 | Yuki Gosei Kogyo Co Ltd | Method of manufacturing (s)-3-quinuclidinol |
JP2010130912A (en) * | 2008-12-02 | 2010-06-17 | Kaneka Corp | Method for producing optically active 3-quinuclidinol |
JP4954985B2 (en) * | 2006-05-09 | 2012-06-20 | 三井化学株式会社 | Production method of glycolic acid by enhancing coenzyme synthesis |
JP2015186450A (en) * | 2014-03-26 | 2015-10-29 | 三菱化学株式会社 | Method for producing organic compound using microorganisms |
US9528117B2 (en) | 2009-07-24 | 2016-12-27 | Dsm Ip Assets B.V. | Fermentative glycerol-free ethanol production |
-
2002
- 2002-11-14 JP JP2002330732A patent/JP4372408B2/en not_active Expired - Fee Related
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006050967A (en) * | 2004-08-12 | 2006-02-23 | Mitsubishi Rayon Co Ltd | Plasmid originated from rhodococcus bacterium and its derivative, and escherichia coli-rhodococcus bacterium shuttle vector |
JP4570075B2 (en) * | 2004-08-12 | 2010-10-27 | 三菱レイヨン株式会社 | Plasmid derived from Rhodococcus bacterium and derivatives thereof, and E. coli-Rhodococcus bacterium shuttle vector |
WO2007129466A1 (en) * | 2006-05-09 | 2007-11-15 | Mitsui Chemicals, Inc. | Method of producing hydroxycarboxylic acid by regenerating coenzyme |
JP4886775B2 (en) * | 2006-05-09 | 2012-02-29 | 三井化学株式会社 | Production method of glycolic acid by coenzyme regeneration |
JP4954985B2 (en) * | 2006-05-09 | 2012-06-20 | 三井化学株式会社 | Production method of glycolic acid by enhancing coenzyme synthesis |
CN101437949B (en) * | 2006-05-09 | 2012-08-22 | 三井化学株式会社 | Method of producing hydroxycarboxylic acid by regenerating coenzyme |
US8748157B2 (en) | 2006-05-09 | 2014-06-10 | Mitsui Chemicals, Inc. | Method for producing hydroxycarboxylic acid by regenerating coenzyme |
US9133444B2 (en) | 2006-05-09 | 2015-09-15 | Mitsui Chemicals, Inc. | Method for producing hydroxycarboxylic acid by enhancing synthesis of coenzyme |
US9273332B2 (en) | 2006-10-12 | 2016-03-01 | Kaneka Corporation | Method for production of L-amino acid |
WO2008047656A1 (en) * | 2006-10-12 | 2008-04-24 | Kaneka Corporation | Method for production of l-amino acid |
JPWO2008047656A1 (en) * | 2006-10-12 | 2010-02-25 | 株式会社カネカ | Method for producing L-amino acid |
JP2010115173A (en) * | 2008-11-14 | 2010-05-27 | Yuki Gosei Kogyo Co Ltd | Method of manufacturing (s)-3-quinuclidinol |
JP2010130912A (en) * | 2008-12-02 | 2010-06-17 | Kaneka Corp | Method for producing optically active 3-quinuclidinol |
US9528117B2 (en) | 2009-07-24 | 2016-12-27 | Dsm Ip Assets B.V. | Fermentative glycerol-free ethanol production |
US10533181B2 (en) | 2009-07-24 | 2020-01-14 | Dsm Ip Assets B.V. | Fermentative glycerol-free ethanol production |
US10738317B2 (en) | 2009-07-24 | 2020-08-11 | Dsm Ip Assets B.V. | Fermentative glycerol-free ethanol production |
US10883110B2 (en) | 2009-07-24 | 2021-01-05 | Dsm Ip Assets B.V. | Fermentative glycerol-free ethanol production |
US11174489B2 (en) | 2009-07-24 | 2021-11-16 | Dsm Ip Assets B.V. | Fermentative glycerol-free ethanol production |
US11214810B2 (en) | 2009-07-24 | 2022-01-04 | Dsm Ip Assets B.V. | Fermentative glycerol-free ethanol production |
US11326175B2 (en) | 2009-07-24 | 2022-05-10 | Dsm Ip Assets B.V. | Fermentative glycerol-free ethanol production |
JP2015186450A (en) * | 2014-03-26 | 2015-10-29 | 三菱化学株式会社 | Method for producing organic compound using microorganisms |
Also Published As
Publication number | Publication date |
---|---|
JP4372408B2 (en) | 2009-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4757012A (en) | Ascorbic acid intermediates and process enzymes | |
TWI601825B (en) | Process for the enantioselective enzymatic reduction of intermediates | |
US20150218600A1 (en) | Biotechnological preparation of 3-hydroxyisobutyric acid | |
US4758514A (en) | Ascorbic acid intermediates and process enzymes | |
JP4372408B2 (en) | Rhodococcus genus bacterial recombinant and method for producing optically active substance using the same | |
Wang et al. | Production of 1, 3-propanediol from glycerol by recombinant E. coli using incompatible plasmids system | |
US5004690A (en) | Ascorbic acid intermediates and process enzymes | |
EP1985700A1 (en) | Novel (s,s)-butanediol dehydrogenase, gene for the same, and use of the same | |
CN109593702B (en) | Method for synthesizing L-phenyllactic acid by whole cell transformation of genetic engineering strain | |
EP0132308B1 (en) | Biosynthetic 2,5-diketogluconic acid reductase, processes, recombinant cells and expression vectors for its production, and its use in preparing 2-keto-l-gulonic acid | |
EP2357222B1 (en) | Scyllo-inositol-producing cell and scyllo-inositol production method using said cells | |
EP1487974A2 (en) | Nad phosphite oxidoreductase a novel catalyst from bacteria for regeneration of nad(p)h | |
CN116536281A (en) | Ethanol dehydrogenase ADH10C1 with improved thermal stability, and gene and application thereof | |
WO2007099764A1 (en) | Novel carbonyl reductase, gene for the reductase, and method for production of optically active alcohol using the reductase or the gene | |
EP0385415A1 (en) | Process for producing NADH oxidase | |
JP4729919B2 (en) | Microbial culture method and optically active carboxylic acid production method | |
WO2020107783A1 (en) | Method for preparing (s)-1, 2, 3, 4-tetrahydroisoquinoline-3-carboxylic acid by means of multiple enzyme coupling | |
JP4116349B2 (en) | Formate dehydrogenase with modified coenzyme dependence | |
EP2246424A1 (en) | Novel hydrogen peroxide-forming nadh oxidase, and dna encoding the same | |
CN114621935B (en) | Formaldehyde dehydrogenase mutant and application thereof | |
WO2015064517A1 (en) | Formate dehydrogenase and use thereof | |
WO2004013332A1 (en) | Substrate conversion | |
CN110628849A (en) | Method for regenerating oxidation state nicotinamide cofactor | |
JP2005102511A (en) | New alcohol dehydrogenase and its gene | |
JP2011205921A (en) | Recombinant rhodococcus bacterium and method for producing optically active (r)-3-quinuclidinol by using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081009 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081203 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090319 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090430 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090618 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090619 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090827 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090902 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130911 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |