[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004158200A - Fuel cell device - Google Patents

Fuel cell device Download PDF

Info

Publication number
JP2004158200A
JP2004158200A JP2002319814A JP2002319814A JP2004158200A JP 2004158200 A JP2004158200 A JP 2004158200A JP 2002319814 A JP2002319814 A JP 2002319814A JP 2002319814 A JP2002319814 A JP 2002319814A JP 2004158200 A JP2004158200 A JP 2004158200A
Authority
JP
Japan
Prior art keywords
fuel cell
case
air
heat exchange
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002319814A
Other languages
Japanese (ja)
Other versions
JP4304960B2 (en
Inventor
Shinya Kurihara
信也 栗原
Ayanori Yamanashi
文徳 山梨
Natsuki Kuroiwa
夏樹 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002319814A priority Critical patent/JP4304960B2/en
Publication of JP2004158200A publication Critical patent/JP2004158200A/en
Application granted granted Critical
Publication of JP4304960B2 publication Critical patent/JP4304960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To promptly exhaust the hydrogen leaked in the case to house a fuel cell power generation system to the outside of the case. <P>SOLUTION: The fuel cell power generation system 1 consisting of a hydrogen storage tank 5, a pressure control valve 11, and a fuel cell 7 etc. is housed at the upper part inside the case 3. The air exhausted from an air electrode exit of the fuel cell 7 is sent inside the case 3 through outside piping 27a. Air passages 29a, 29b, 29c are formed at the lower part inside the case 3 by arranging passage separation walls 31, 33, 35. The passage separation wall 31 is made as a heat exchange part of metal mesh 36, and the passage separation walls 33, 35 are equipped with heat exchange parts of metal mesh 37, 41. An air exhaust port 49 is provided at the upper part of the case 3 and a condensed water exhaust port 45 is provided at the bottom part of the case 3 respectively. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、燃料電池に水素供給源から水素を供給して発電を行う燃料電池発電システムを備えた燃料電池装置に関する。
【0002】
【従来の技術】
燃料電池発電システムをケース内に収容する例としては、特許文献1に記載されたものがある。
【0003】
【特許文献1】
特開2002−56864号公報
【0004】
これは、燃料電池と、燃料電池に空気を供給するためのブロアとを結ぶ配管の途中に、分岐ラインを設け、分岐ラインの先端には開閉弁を設置し、開閉弁の下流側を、ケース内に開放している。開閉弁は、ケース内に設置した水素濃度センサが検出する水素濃度が所定値を超えたときに開弁し、ケース内に空気を導入することで、ケース内の水素濃度上昇を防ぐ。
【0005】
【発明が解決しようとする課題】
ところで、ケース内で水素漏れが発生したときに、この漏れた水素をケース外に速やかに排出することが、燃料電池装置の信頼性向上を図る上で必要である。
【0006】
そこで、この発明は、燃料電池発電システムを収容するケース内で漏れた水素を、ケース外に速やかに排出することを目的としている。
【0007】
【課題を解決するための手段】
前記目的を達成するために、この発明は、燃料電池に、水素供給源から水素を供給するとともに、空気を供給して発電を行う燃料電池発電システムをケース内に収容し、前記燃料電池から排出される空気を前記ケース内に送り込み、前記ケース内の空気を強制置換する構成としてある。
【0008】
【発明の効果】
この発明によれば、燃料電池から排出される空気を、燃料電池発電システムを収容したケース内に送り込み、このケース内の空気を強制置換するようにしたので、燃料電池発電システムから水素漏れが発生しても、この漏れた水素を、専用の換気設備を設けることなく、ケース外に速やかに排出することができる。
【0009】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づき説明する。
【0010】
図1は、この発明の実施の一形態を示す燃料電池装置の断面図である。この燃料電池装置は、燃料電池発電システム1をケース3内の上部に収容している。燃料電池発電システム1は、水素供給源としての水素貯蔵タンク5と、燃料電池7の燃料極入口とを水素配管9で接続する。
【0011】
水素配管9には、水素貯蔵タンク1内の高圧水素を減圧する圧力調整弁11を設け、圧力調整弁11と燃料電池7との間の水素配管9には、エゼクタ13を設ける。エゼクタ13は、燃料電池7の燃料極出口から排出される水素を、水素循環配管15を通して燃料電池7に循環させるためのポンプである。
【0012】
また、燃料電池7の燃料極出口に接続される水素排出配管17にはパージ弁19を設け、燃料極出口から排出される水素中の不純物が多くなったときに、この排出水素を水素排出配管17を通してケース3の外部に排出する。
【0013】
前記した燃料電池7の空気極入口と、ケース3内に配置したコンプレッサ21とを空気供給配管23で接続し、コンプレッサ21を作動させることにより、ケース3の外部に引き出した空気供給配管25を経て、燃料電池7の空気極に空気を供給する。
【0014】
燃料電池7の空気極出口には、空気排出配管27を接続し、この空気排出配管27は、ケース3の外部に引き出した外部配管27aを備え、外部配管27aの下流側端部は、ケース3の下部にてケース3内に開口している。
【0015】
ケース3内における燃料電池発電システム1の下方には、上記した外部配管27aを経てケース3内に送り込まれる空気の流路29(29a,29b,29c)を設けてある。この空気流路29は、上下方向に所定間隔をおいて積層配置してある流路分離壁31,33,35によって形成してある。
【0016】
最上部の流路分離壁31は、ケース3内を上下にほぼ2分する位置にあり、熱交換部としての金属繊維である金属メッシュ36で構成してある。
【0017】
中央の流路分離壁33は、図中で左側半分を熱交換部としての金属繊維である金属メッシュ37で構成し、同右側半分を空気の流通を妨げる板状の隔壁部39で構成する。そして、この流路分離壁33を、図中で左側の金属メッシュ37側が同右側の隔壁部39より下方となるよう傾斜させる。
【0018】
最下部の流路分離壁35は、図中で右側半分を熱交換部としての金属繊維である金属メッシュ41で構成し、同左側半分を空気の流通を妨げる板状の隔壁部43で構成する。そして、この流路分離壁35を、図中で右側の金属メッシュ41側が同左側の隔壁部43より下方となるよう傾斜させる。
【0019】
すなわち、空気が流通する金属メッシュ37,41に対し、空気の流通を妨げる隔壁部39,43を、空気の流れ方向に沿って設けてこれら両者で流路分離壁33,35をそれぞれ形成し、この各流路分離壁33,35を、所定間隔をおいて複数配置して空気流路29を形成するとともに、互いに隣接する各流路分離壁33,35の金属メッシュ37,41を、互い違いとなるよう配置してある。
【0020】
そして、上記最下部の流路分離壁35の金属メッシュ41の図中で右側端部下方のケース3底面には、ケース3内に導入する空気の凝縮水を排出する凝縮水排出口45を設け、凝縮水排出口45には、ドレインバルブ47を設ける。
【0021】
一方、ケース3における燃料電池7の空気極出口に接続した外部配管27aと反対側の上部には、ケース3内の空気を排出する空気排出口49を設け、この空気排出口49には、水素濃度センサ51を設置する。
【0022】
次に作用を説明する。
【0023】
燃料電池7には、水素貯蔵タンク5から水素を供給するとともに、コンプレッサ21により空気を供給することで、燃料電池発電システム1として発電を行う。このとき、燃料電池7にて反応後の余剰の水素は、エゼクタ13により水素循環配管15を通して燃料電池7に循環する。
【0024】
また、燃料極出口から排出される水素中の不純物が多くなったときには、パージ弁19を適宜開いてケース3の外部に水素を排出する。
【0025】
一方、燃料電池7にて反応後の余剰の空気は、外部配管27aを含む空気排出配管27を流れ、ケース3の下部に送り込む。ここで燃料電池7から排出される空気は、反応によって温度上昇しており、この温度上昇した空気を外部配管27aに導くことで、冷却されて速やかに温度低下する。
【0026】
温度低下した空気は、ケース3内の最下部の空気流路29aに流出して図中で右方向に向かって流れ、最下部の流路分離壁35の金属メッシュ41を通過してその上部の空気流路29bに流出する。
【0027】
空気流路29bに流出した空気は、図中で左方向に向かって流れ、中央部の流路分離壁33の金属メッシュ37を通過してその上部の空気流路29cに流出する。
【0028】
空気流路29cに流出した空気は、図中で右方向に向かって流れるとともに、その上部の流路分離壁31すなわち金属メッシュ36を通過してケース3の上部に流出する。
【0029】
外部配管27aからケース3内に流入した空気は、金属メッシュ41,37,36を通過する際に、熱交換によって冷却され、空気温度がケース3内の温度にまでさらに低下する。
【0030】
また、燃料電池7の空気極出口から排出される空気は湿度が100%であり、このような空気が熱交換されて、温度低下することで、凝縮水が発生する。この凝縮水は、下方に落下してケース3の底部に達し、必要に応じてドレインバルブ47を開放することで、凝縮水排出口45からケース3の外部に排出される。
【0031】
一方、最上部の金属メッシュ36を通過してケース3の上部に流出した空気は、空気排出口49からケース3の外部に排出される。このとき、燃料電池発電システム1から水素漏れが発生した場合には、空気より軽い水素は、空気とともに前記した空気排出口49からケース3の外部に排出される。
【0032】
ここで、水素濃度センサ51が水素濃度を検出し、この検出水素濃度が、所定値以上の場合には、水素貯蔵タンク5からの水素の供給を停止させるなどの措置を施す。
【0033】
上記した燃料電池発電システムによれば、次のような効果を奏する。
【0034】
(1)燃料電池7から排出される空気を、燃料電池発電システム1を収容したケース13内に送り込み、このケース13内の空気を強制置換するようにしたので、燃料電池発電システム1から水素漏れが発生しても、この漏れた水素を、専用の換気設備を設けることなく、ケース13の外部に速やかに排出することができる。
【0035】
(2)燃料電池7から排出される空気は、酸素濃度が減少しているため、ケース3内の酸素濃度を、例えば20%より低く保つことができ、ケース3内での水素の燃焼下限濃度を例えば4%より押し上げることができる。つまり、ケース3内の水素濃度が4%より高くなっても燃焼を回避できる。
【0036】
(3)燃料電池7から排出される空気は、湿度が100%であるため、ケース3内の空気の湿度を約100%に保つことができ、水素が漏れたときに生成される可燃領域の空気混合水素の熱容量を上昇させ、着火、燃焼を抑制することができる。
【0037】
(4)燃料電池7から排出される空気を、ケース3内の空気流路29でケース3内の温度にまで下げることにより凝縮させ、この凝縮水を捕捉して凝縮水排出口45からケース3の外部に排出する。このため、ケース3内の結露を防止することができ、燃料電池発電システム1の構成部品の腐食、漏電を防止することができる。
【0038】
(5)熱交換部である金属メッシュ36,37,41を、ケース3内の燃料電池発電システム1の下方に配置しているので、熱交換部で凝縮された凝縮水は、ケース3の下方に集積されてケース3の外部に排出される。このため、その過程で燃料電池発電システム1に凝縮水が接触することがなく、燃料電池発電システム1の構成部品は、水滴の付着を防止できて腐食、漏電を確実に回避することができる。また、ケース3内に送り込んだ空気は、ケース3の下部から上部へ流通し、空気排気口49からケース3の外部へ排出されるため、空気よりも軽い(漏出)水素を空気排気口49からから容易に排出することができる。
【0039】
(6)燃料電池7から排出される空気を、一旦ケース3の外部の外部配管27に流出させて、急速に冷却するため、ケース3内の熱交換部(金属メッシュ36,37,41)で、空気をケース3内の温度にまで素早く冷却することができる。
【0040】
(7)熱交換部(金属メッシュ36,37,41)を、熱容量と表面積が大きな金属繊維としているので、熱交換部を通過する空気を、速やかにケース3内の温度にまで冷却することができ、余分な水分の排出を確実に行うことができる。
【0041】
(8)空気流路29を、隔壁部39,43を備えた流路分離壁33,35によって、蛇行する空気流路29a,29b,29cとしたので、隔壁部39,43を設けない場合に比べて空気流路長が長くなり、上部の燃料電池発電システム1に達するまでに空気を確実にケース3内温度にまで冷却することができる。
【0042】
(9)流路分離壁33,35は、金属メッシュ37,41を隔壁部39,43よりそれぞれ下方に配置することで傾斜しているので、金属メッシュ36,37,41で凝縮して下方に落下した水分は、上記傾斜によって下方にスムーズに流れ、ケース3の底面まで速やかに落下してケース3外部に排出することができる。
【図面の簡単な説明】
【図1】この発明の実施の一形態を示す燃料電池装置の断面図である。
【符号の説明】
1 燃料電池発電システム
3 ケース
5 水素貯蔵タンク(水素供給源)
7 燃料電池
27a 外部配管
29(29a,29b,29c) 空気流路
31,33,35 流路分離壁
36,37,41 金属メッシュ(金属繊維,熱交換部)
39,43 隔壁部
45 凝縮水排出口
49 空気排出口
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell device provided with a fuel cell power generation system that generates hydrogen by supplying hydrogen from a hydrogen supply source to the fuel cell.
[0002]
[Prior art]
An example in which a fuel cell power generation system is housed in a case is described in Patent Document 1.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-56864
This is because a branch line is provided in the middle of the pipe connecting the fuel cell and a blower for supplying air to the fuel cell, an on-off valve is installed at the end of the branch line, and the downstream side of the on-off valve is a case. Open to the inside. The on-off valve opens when the hydrogen concentration detected by the hydrogen concentration sensor installed in the case exceeds a predetermined value, and introduces air into the case to prevent an increase in the hydrogen concentration in the case.
[0005]
[Problems to be solved by the invention]
By the way, when hydrogen leakage occurs in the case, it is necessary to quickly discharge the leaked hydrogen to the outside of the case in order to improve the reliability of the fuel cell device.
[0006]
Therefore, an object of the present invention is to quickly discharge hydrogen leaked in a case accommodating a fuel cell power generation system out of the case.
[0007]
[Means for Solving the Problems]
To achieve the above object, the present invention provides a fuel cell power generation system that supplies hydrogen to a fuel cell from a hydrogen supply source and supplies air to generate electric power in a case, and discharges the fuel cell from the fuel cell. Is supplied into the case and the air in the case is forcibly replaced.
[0008]
【The invention's effect】
According to the present invention, the air discharged from the fuel cell is sent into the case accommodating the fuel cell power generation system, and the air in the case is forcibly replaced, so that hydrogen leakage occurs from the fuel cell power generation system. Even so, the leaked hydrogen can be quickly discharged out of the case without providing a dedicated ventilation facility.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0010]
FIG. 1 is a sectional view of a fuel cell device showing one embodiment of the present invention. In this fuel cell device, the fuel cell power generation system 1 is accommodated in an upper part of a case 3. In the fuel cell power generation system 1, a hydrogen storage tank 5 as a hydrogen supply source and a fuel electrode inlet of a fuel cell 7 are connected by a hydrogen pipe 9.
[0011]
The hydrogen piping 9 is provided with a pressure regulating valve 11 for reducing high-pressure hydrogen in the hydrogen storage tank 1, and the hydrogen piping 9 between the pressure regulating valve 11 and the fuel cell 7 is provided with an ejector 13. The ejector 13 is a pump for circulating the hydrogen discharged from the fuel electrode outlet of the fuel cell 7 to the fuel cell 7 through the hydrogen circulation pipe 15.
[0012]
Further, a purge valve 19 is provided in the hydrogen discharge pipe 17 connected to the fuel electrode outlet of the fuel cell 7, and when the impurities in the hydrogen discharged from the fuel electrode outlet increase, the discharged hydrogen is discharged to the hydrogen discharge pipe. It is discharged to the outside of the case 3 through 17.
[0013]
The air electrode inlet of the fuel cell 7 and the compressor 21 arranged in the case 3 are connected by an air supply pipe 23, and the compressor 21 is operated to pass through an air supply pipe 25 drawn out of the case 3. Then, air is supplied to the air electrode of the fuel cell 7.
[0014]
An air discharge pipe 27 is connected to an air electrode outlet of the fuel cell 7. The air discharge pipe 27 includes an external pipe 27 a drawn out of the case 3, and a downstream end of the external pipe 27 a is connected to the case 3. At the lower part of the case 3.
[0015]
Below the fuel cell power generation system 1 in the case 3, there is provided a flow path 29 (29a, 29b, 29c) of the air sent into the case 3 via the external pipe 27a described above. The air flow path 29 is formed by flow path separation walls 31, 33, 35 which are stacked and arranged at predetermined intervals in the vertical direction.
[0016]
The uppermost channel separation wall 31 is located at a position that vertically divides the inside of the case 3 into two parts, and is formed of a metal mesh 36 that is a metal fiber as a heat exchange part.
[0017]
The left half of the flow passage separating wall 33 in the figure is made of a metal mesh 37 which is a metal fiber serving as a heat exchange part, and the right half thereof is made of a plate-shaped partition wall part 39 which blocks air flow. Then, the flow path separation wall 33 is inclined such that the left metal mesh 37 side in the drawing is lower than the partition wall 39 on the right side.
[0018]
In the lowermost channel separation wall 35, the right half in the figure is constituted by a metal mesh 41 which is a metal fiber as a heat exchange part, and the left half is constituted by a plate-shaped partition part 43 which blocks air flow. . Then, the flow path separation wall 35 is inclined such that the right metal mesh 41 side is lower than the left partition wall 43 in the figure.
[0019]
That is, for the metal meshes 37 and 41 through which the air flows, partition walls 39 and 43 that obstruct the flow of the air are provided along the flow direction of the air, and both of them form the flow path separation walls 33 and 35, respectively. A plurality of the flow path separation walls 33, 35 are arranged at predetermined intervals to form the air flow path 29, and the metal meshes 37, 41 of the flow path separation walls 33, 35 adjacent to each other are alternately arranged. It is arranged so that it becomes.
[0020]
A condensed water discharge port 45 for discharging condensed water of the air introduced into the case 3 is provided on the bottom surface of the case 3 below the right end of the metal mesh 41 of the lowermost channel separation wall 35 in the drawing. The condensed water discharge port 45 is provided with a drain valve 47.
[0021]
On the other hand, an air outlet 49 for discharging air from the case 3 is provided at an upper portion of the case 3 opposite to the external pipe 27 a connected to the air electrode outlet of the fuel cell 7. The density sensor 51 is installed.
[0022]
Next, the operation will be described.
[0023]
Hydrogen is supplied to the fuel cell 7 from the hydrogen storage tank 5 and air is supplied by the compressor 21 to generate power as the fuel cell power generation system 1. At this time, excess hydrogen after the reaction in the fuel cell 7 is circulated to the fuel cell 7 through the hydrogen circulation pipe 15 by the ejector 13.
[0024]
When the impurities in the hydrogen discharged from the fuel electrode outlet increase, the purge valve 19 is opened as appropriate to discharge the hydrogen to the outside of the case 3.
[0025]
On the other hand, excess air after the reaction in the fuel cell 7 flows through the air discharge pipe 27 including the external pipe 27a and is sent to the lower part of the case 3. Here, the temperature of the air discharged from the fuel cell 7 has risen due to the reaction, and the air whose temperature has risen is led to the external pipe 27a, so that the air is cooled and rapidly cooled.
[0026]
The temperature-reduced air flows out to the lowermost air flow path 29a in the case 3 and flows rightward in the drawing, passes through the metal mesh 41 of the lowermost flow path separation wall 35, and flows upward. It flows out to the air passage 29b.
[0027]
The air that has flowed out to the air flow path 29b flows leftward in the drawing, passes through the metal mesh 37 of the flow path separation wall 33 at the center, and flows out to the upper air flow path 29c.
[0028]
The air that has flowed out to the air flow path 29c flows rightward in the drawing, and flows out of the upper part of the case 3 through the flow path separation wall 31, that is, the metal mesh 36 thereabove.
[0029]
The air that has flowed into the case 3 from the external pipe 27a is cooled by heat exchange when passing through the metal meshes 41, 37, and 36, and the air temperature further decreases to the temperature inside the case 3.
[0030]
Further, the air discharged from the air electrode outlet of the fuel cell 7 has a humidity of 100%, and such air is subjected to heat exchange to lower the temperature, thereby generating condensed water. The condensed water falls downward and reaches the bottom of the case 3, and is discharged from the condensed water discharge port 45 to the outside of the case 3 by opening the drain valve 47 as necessary.
[0031]
On the other hand, the air that has flowed to the upper part of the case 3 through the uppermost metal mesh 36 is discharged to the outside of the case 3 from the air discharge port 49. At this time, if hydrogen leaks from the fuel cell power generation system 1, hydrogen lighter than air is discharged to the outside of the case 3 from the air discharge port 49 together with air.
[0032]
Here, the hydrogen concentration sensor 51 detects the hydrogen concentration, and if the detected hydrogen concentration is equal to or higher than a predetermined value, measures such as stopping supply of hydrogen from the hydrogen storage tank 5 are taken.
[0033]
According to the above-described fuel cell power generation system, the following effects can be obtained.
[0034]
(1) The air discharged from the fuel cell 7 is sent into the case 13 containing the fuel cell power generation system 1 and the air in the case 13 is forcibly replaced. Is generated, the leaked hydrogen can be quickly discharged to the outside of the case 13 without providing a dedicated ventilation facility.
[0035]
(2) Since the oxygen concentration of the air discharged from the fuel cell 7 is reduced, the oxygen concentration in the case 3 can be kept lower than, for example, 20%, and the lower combustion limit concentration of hydrogen in the case 3 Can be increased, for example, by more than 4%. That is, even if the hydrogen concentration in the case 3 becomes higher than 4%, combustion can be avoided.
[0036]
(3) Since the humidity of the air discharged from the fuel cell 7 is 100%, the humidity of the air in the case 3 can be maintained at about 100%, and the air in the flammable region generated when hydrogen leaks out. The heat capacity of the air-mixed hydrogen can be increased, and ignition and combustion can be suppressed.
[0037]
(4) The air discharged from the fuel cell 7 is condensed by lowering the temperature to the temperature inside the case 3 in the air flow path 29 in the case 3, the condensed water is captured, and the case 3 is discharged from the condensed water discharge port 45. To the outside of the For this reason, dew condensation in the case 3 can be prevented, and corrosion and leakage of components of the fuel cell power generation system 1 can be prevented.
[0038]
(5) Since the metal meshes 36, 37, and 41, which are the heat exchange units, are arranged below the fuel cell power generation system 1 in the case 3, the condensed water condensed in the heat exchange unit is located below the case 3. And is discharged to the outside of the case 3. For this reason, condensed water does not come into contact with the fuel cell power generation system 1 in the process, and the components of the fuel cell power generation system 1 can prevent adhesion of water droplets and can reliably avoid corrosion and electric leakage. Further, the air sent into the case 3 flows from the lower part to the upper part of the case 3 and is discharged to the outside of the case 3 from the air exhaust port 49, so that hydrogen (leakage) lighter than air is discharged from the air exhaust port 49. Can be easily discharged from
[0039]
(6) The air discharged from the fuel cell 7 once flows into the external pipe 27 outside the case 3 and is rapidly cooled, so that it is cooled by the heat exchange portions (metal meshes 36, 37, and 41) in the case 3. Thus, the air can be quickly cooled down to the temperature in the case 3.
[0040]
(7) Since the heat exchange portions (metal meshes 36, 37, 41) are made of metal fibers having a large heat capacity and a large surface area, the air passing through the heat exchange portion can be quickly cooled to the temperature in the case 3. It is possible to reliably discharge excess water.
[0041]
(8) Since the air flow path 29 is formed as the meandering air flow paths 29a, 29b, and 29c by the flow path separation walls 33 and 35 provided with the partition walls 39 and 43, when the partition walls 39 and 43 are not provided. In comparison, the air flow path length is longer, and the air can be reliably cooled to the temperature inside the case 3 before reaching the upper fuel cell power generation system 1.
[0042]
(9) Since the flow path separation walls 33 and 35 are inclined by disposing the metal meshes 37 and 41 below the partition walls 39 and 43, respectively, the flow path separation walls 33 and 35 condense on the metal meshes 36, 37 and 41 and move downward. The water that has dropped can smoothly flow downward due to the above inclination, drop quickly to the bottom surface of the case 3, and be discharged to the outside of the case 3.
[Brief description of the drawings]
FIG. 1 is a sectional view of a fuel cell device showing one embodiment of the present invention.
[Explanation of symbols]
1 fuel cell power generation system 3 case 5 hydrogen storage tank (hydrogen supply source)
7 Fuel cell 27a External piping 29 (29a, 29b, 29c) Air flow paths 31, 33, 35 Flow path separation walls 36, 37, 41 Metal mesh (metal fiber, heat exchange section)
39, 43 Partition wall 45 Condensed water outlet 49 Air outlet

Claims (7)

燃料電池に、水素供給源から水素を供給するとともに、空気を供給して発電を行う燃料電池発電システムをケース内に収容し、前記燃料電池から排出される空気を前記ケース内に送り込み、前記ケース内の空気を強制置換することを特徴とする燃料電池装置。To the fuel cell, while supplying hydrogen from a hydrogen supply source, a fuel cell power generation system that supplies air to generate power is housed in a case, and air discharged from the fuel cell is sent into the case, and the case is A fuel cell device for forcibly replacing air in a fuel cell. 前記ケース内に、このケース内に送り込んだ空気の温度を低下させる熱交換部と、この熱交換部で温度低下した空気から生成される凝縮水を、前記ケース外部に排出する凝縮水排出口とを、それぞれ設けたことを特徴とする請求項1記載の燃料電池装置。In the case, a heat exchange unit that reduces the temperature of the air sent into the case, and a condensed water discharge port that discharges condensed water generated from the air whose temperature has been reduced in the heat exchange unit to the outside of the case. 2. The fuel cell device according to claim 1, wherein 前記熱交換部を、前記燃料電池発電システムより下方に配置する一方、前記ケースの上部に空気排出口を設けたことを特徴とする請求項2記載の燃料電池装置。3. The fuel cell device according to claim 2, wherein the heat exchange unit is disposed below the fuel cell power generation system, and an air outlet is provided in an upper part of the case. 前記燃料電池から排出される空気を、前記ケース内部からケース外部へ一旦導いてから、ケース内部に送り込む外部配管を設けたことを特徴とする請求項1ないし3のいずれかに記載の燃料電池装置4. The fuel cell device according to claim 1, further comprising an external pipe for guiding air discharged from the fuel cell from the inside of the case to the outside of the case, and then sending the air into the case. 前記熱交換部を、金属繊維で構成したことを特徴とする請求項1ないし4のいずれかに記載の燃料電池装置。The fuel cell device according to any one of claims 1 to 4, wherein the heat exchanging part is made of a metal fiber. 空気が流通する前記熱交換部に対し、空気の流通を妨げる隔壁部を、空気の流れ方向に沿って設けてこれら両者で流路分離壁を形成し、この流路分離壁を、所定間隔をおいて複数配置して空気流路を形成するとともに、互いに隣接する前記各流路分離壁の熱交換部を、互い違いとなるよう配置したことを特徴とする請求項1ないし5のいずれかに記載の燃料電池装置。For the heat exchange section through which air flows, a partition section that obstructs the flow of air is provided along the flow direction of the air, and both of them form a flow path separation wall. 6. An air flow path is formed by arranging a plurality of air flow paths, and heat exchange portions of the flow path separation walls adjacent to each other are disposed alternately. Fuel cell device. 前記複数の流路分離壁を上下方向に沿って複数積層して配置するとともに、前記流路分離壁を、前記熱交換部が前記隔壁部より下方位置となるよう傾斜して配置したことを特徴とする請求項6記載の燃料電池装置。A plurality of the plurality of flow path separation walls are stacked and arranged along a vertical direction, and the flow path separation walls are arranged so as to be inclined such that the heat exchange section is located below the partition section. The fuel cell device according to claim 6, wherein
JP2002319814A 2002-11-01 2002-11-01 Fuel cell device Expired - Fee Related JP4304960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002319814A JP4304960B2 (en) 2002-11-01 2002-11-01 Fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002319814A JP4304960B2 (en) 2002-11-01 2002-11-01 Fuel cell device

Publications (2)

Publication Number Publication Date
JP2004158200A true JP2004158200A (en) 2004-06-03
JP4304960B2 JP4304960B2 (en) 2009-07-29

Family

ID=32800929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002319814A Expired - Fee Related JP4304960B2 (en) 2002-11-01 2002-11-01 Fuel cell device

Country Status (1)

Country Link
JP (1) JP4304960B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030969A1 (en) * 2004-09-16 2006-03-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system, and gas leakage determination method for fuel cell system
JP2011517021A (en) * 2008-04-01 2011-05-26 ダイムラー・アクチェンゲゼルシャフト FUEL CELL DEVICE AND METHOD OF OPERATING FUEL CELL DEVICE
JP2012059550A (en) * 2010-09-09 2012-03-22 Panasonic Corp Fuel cell system
JP6103120B1 (en) * 2016-02-12 2017-03-29 富士電機株式会社 FUEL CELL DEVICE AND FUEL CELL DEVICE OPERATION CONTROL METHOD

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030969A1 (en) * 2004-09-16 2006-03-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system, and gas leakage determination method for fuel cell system
US8216729B2 (en) 2004-09-16 2012-07-10 Toyota Jidosha Kabushiki Kaisha Fuel cell system and gas leak determination method for fuel cell system
JP2011517021A (en) * 2008-04-01 2011-05-26 ダイムラー・アクチェンゲゼルシャフト FUEL CELL DEVICE AND METHOD OF OPERATING FUEL CELL DEVICE
JP2012059550A (en) * 2010-09-09 2012-03-22 Panasonic Corp Fuel cell system
JP6103120B1 (en) * 2016-02-12 2017-03-29 富士電機株式会社 FUEL CELL DEVICE AND FUEL CELL DEVICE OPERATION CONTROL METHOD
JP2017147215A (en) * 2016-02-12 2017-08-24 富士電機株式会社 Fuel cell device and method for controlling operation of fuel cell device

Also Published As

Publication number Publication date
JP4304960B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
KR100818430B1 (en) Fuel cell generation system
JP4591872B2 (en) Fuel cell device
KR101461874B1 (en) Full cell system and its humidifying and cooling method
JP5318415B2 (en) Fuel cell system having a liquid separator
WO2008149753A1 (en) Humidifier and fuel cell system
JP5077810B2 (en) Fuel cell device
JP3818068B2 (en) Fuel cell system
JP5383111B2 (en) Fuel cell
JP2004158200A (en) Fuel cell device
JP5248072B2 (en) Fuel cell system
JP5173302B2 (en) Fuel cell device
JP2009199808A (en) Water purification system of fuel cell
JP5388463B2 (en) Fuel cell device
JP2002313376A (en) Gas supplying device of fuel cell
JP4629999B2 (en) Water treatment system and fuel cell power generation system
US20230187668A1 (en) Fuel cell system
JP5079370B2 (en) Packaged fuel cell
JP2007329079A (en) Package type fuel cell
JP5305689B2 (en) Fuel cell device
JP5732618B2 (en) Neutralization tank and fuel cell system
US10995019B2 (en) Heating apparatus and water electrolysis system
JP5969406B2 (en) Fuel cell device
JP2008016269A (en) Fuel cell system
JP2006278117A (en) Solid polymer fuel cell generator
JP5219712B2 (en) Fuel cell device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees