[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004156826A - Vehicular refrigerating equipment - Google Patents

Vehicular refrigerating equipment Download PDF

Info

Publication number
JP2004156826A
JP2004156826A JP2002322330A JP2002322330A JP2004156826A JP 2004156826 A JP2004156826 A JP 2004156826A JP 2002322330 A JP2002322330 A JP 2002322330A JP 2002322330 A JP2002322330 A JP 2002322330A JP 2004156826 A JP2004156826 A JP 2004156826A
Authority
JP
Japan
Prior art keywords
refrigerant
heating
heat
compressor
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002322330A
Other languages
Japanese (ja)
Inventor
Takashi Tanaka
孝史 田中
Fumio Kikuchi
文男 菊池
Tsutomu Itahana
勉 板鼻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002322330A priority Critical patent/JP2004156826A/en
Publication of JP2004156826A publication Critical patent/JP2004156826A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the mounting performance of a refrigerating equipment for vehicle. <P>SOLUTION: The vehicular refrigerating equipment is provided with a bypass piping L2 bypassing a condenser 2 and expansion valves 3A and 3B and leading a refrigerant in a gaseous phase state discharged from a compressor 1 into evaporators 4A and 4B, a constant pressure expansion valve 11 decompressing the refrigerant communicating through the bypass piping L2 to an internal temperature saturation pressure of a cold insulation box or less, and a heat exchanger 15 heating the refrigerant communicating through the bypass piping L2 by using engine cooling water as a heat source. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、保冷だけでなく保温も行える冷凍車用の冷凍装置に関し、特に車両への架装性を高める技術に関する。
【0002】
【従来の技術】
保冷だけでなく保温も行える冷凍車において、保温のための加熱を行う方式にのひとつに温水加熱方式がある。この方式は、車両用エンジンの冷却水(とはいえその温度は90℃前後になる)を庫内に導入し、放熱させることにより庫内を加熱するというものである(例えば下記の特許文献1,2)。
【0003】
【特許文献1】特開平08−099522号公報([0018]段落、図1および図5)
【特許文献2】特開平10−160321号公報([0016]段落、図1および図4)
【0004】
【発明が解決しようとする課題】
ところで、上記の加熱方式には、冷却水を庫内に導入するための配管を別途施工する必要があり、車両に対する冷凍装置の架装が複雑になるという問題点が指摘されている。
【0005】
本発明は上記の事情に鑑みてなされたものであり、車両に対する冷凍装置の架装性を向上させることを目的としている。
【0006】
【課題を解決するための手段】
上記の課題を解決するための手段として、次のような構成の車両用冷凍装置を採用する。すなわち本発明に係る請求項1記載の車両用冷凍装置は、圧縮機から吐出される気相状態の冷媒を、温度管理を要する空間の内部温度飽和圧力以下に減圧し、さらに加熱したうえでエバポレータに導入することを特徴とする。
【0007】
圧縮機から吐出された気相状態の冷媒を、温度管理を要する空間(例えば、後述する実施形態における保冷庫)の内部温度飽和圧力以下まで減圧したうえでエバポレータに導入すると、導入された冷媒がエバポレータ内で凝縮を伴わなわずに放熱し、エバポレータが設置された前記空間の空気を加熱する。
本発明においては、気相状態の冷媒による上記のような凝縮を伴わない放熱によっても前記空間の加熱に十分な熱量を確保できない場合、減圧した冷媒を追加熱することにより、より大きな熱量が前記空間に供給されることになる。したがって、従来の温水冷却方式のように冷却水を庫内に導入するための配管を別途施工する必要がない。
【0008】
請求項2記載の車両用冷凍装置は、請求項1記載の車両用冷凍装置において、圧縮機から吐出される気相状態の冷媒を、コンデンサおよび膨張弁をバイパスしてエバポレータに導入するバイパス路と、
該バイパス路を流通する前記冷媒を保冷庫の庫内温度飽和圧力以下に減圧する減圧手段と、
前記バイパス路を開閉して前記冷媒の流通を断続する開閉手段と、
前記バイパス路を流通する前記冷媒を加熱する加熱手段とを備えることを特徴とする。
【0009】
本発明においては、開閉手段を切り換えてバイパス路への冷媒を断てば通常の冷却運転が行え、バイパス路に冷媒を流通させれば上記のような凝縮を伴わない加熱運転が行えるというように、開閉手段を操作すれば必要に応じて冷却/加熱運転が選択される。
【0010】
請求項3記載の車両用冷凍装置は、請求項2記載の車両用冷凍装置において、前記加熱手段が、車両走行用エンジンの冷却水を熱源とすることを特徴とする。
【0011】
本発明においては、非常に大きな熱量をもながらも本来ならラジエタ等にて廃棄されるしかないエンジン冷却水を熱源として使用することにより、余計なエネルギーを必要とすることなく前記空間の追加熱が行える。
【0012】
請求項4記載の車両用冷凍装置は、請求項3記載の車両用冷凍装置において、前記加熱手段への前記冷却水の供給を断続する断続手段を備える。
【0013】
本発明においては、気相状態の冷媒による上記のような凝縮を伴わない放熱で十分な熱量が確保できる場合は、加熱手段への冷却水の供給を断つことにより、過剰な加熱が防止される。
【0014】
【発明の実施の形態】
本発明に係る実施形態を図1および図2に示して説明する。
図1には2つの保冷庫(ただし、保冷だけでなく保温も行える)を有する冷凍車に搭載される車両用冷凍装置の概要を示す。同図において、符号1は圧縮機、2はコンデンサ、3A,3Bは膨張弁、4A,4Bはエバポレータ、5はアキュムレータ、6はレシーバである。各機器は図中に太実線で示す冷媒配管L1を介して接続されて冷凍サイクルを実現する系統を構成している。圧縮機1は、後述する車両走行用エンジン(または圧縮機駆動用に別個に設けられたエンジン)EGから駆動力を得ている。
【0015】
2つのエバポレータ4A,4Bは、膨張弁3A,3Bとともに前記系統に並列に接続されている。並列に分岐して膨張弁3A、エバポレータ4Aを配置された一方の配管にはエバポレータ4Aへの冷媒の導入を断続する開閉弁10Aが設けられ、膨張弁3B、エバポレータ4Bを配置された一方の配管にはエバポレータ4Bへの冷媒の導入を断続する開閉弁10Bが設けられている。エバポレータ4Aは2つの保冷庫の一方(以下ではここを前室Aと呼ぶ)に配置され、エバポレータ4Bは2つの保冷庫の他方(以下ではここを後室Bと呼ぶ)に配置されている。
【0016】
主要な冷媒配管L1には、圧縮機1から吐出された冷媒をコンデンサ2、レシーバ6および膨張弁3A,3Bをバイパスしてエバポレータ4A,4Bに導入するバイパス配管(図中に細実線で示す)L2が接続されている。また、バイパス配管L2の先端は2つに分岐しており、その一方がエバポレータ4Aの入口側に接続され、他方がエバポレータ4Bの入口側に接続されている。そして、エバポレータ4Aの入口側に接続された一方のバイパス配管には、エバポレータ4Aへの冷媒の導入を断続する開閉弁10Cが設けられ、エバポレータ4Bの入口側に接続された他方のバイパス配管には、エバポレータ4Bへの冷媒の導入を断続する開閉弁10Dが設けられている。
【0017】
バイパス配管L2には、気相状態の冷媒を所定の圧力(低圧;PLset、過熱状態に置かれた場合の保冷庫の庫内温度飽和圧力。後述するPHsetよりも低い)以下まで減圧させる定圧膨張弁11が設けられている。
【0018】
冷媒配管L1の高圧側(圧縮機1とコンデンサ2との間)には、圧縮機1の吐出圧力が所定の圧力(高圧;PHset、上記PLsetよりも高い)以上になったら開く吐出圧力調整弁13が設けられている。これにより、圧縮機1の入力を増大させ、加熱能力を確実なものとできる。
【0019】
圧縮機1とコンデンサ2との間、コンデンサ2とレシーバ6との間、およびエバポレータ4A,4Bの出口側の冷媒配管L1には、冷媒の流れを一方向に規制する逆止弁14がそれぞれ設置されている。
【0020】
バイパス配管L2には、定圧膨張弁11によって減圧された気相状態の冷媒を車両走行用のエンジン(または圧縮機駆動用に別個に設けられたエンジン)EGの排熱を利用して加熱する熱交換器15が設けられている。詳述すると、本来ラジエタ16Aや空調用のヒータコア16Bに循環供給されて冷却されるエンジンEGの冷却水の一部を、別途設けた冷却水配管17を通じて熱交換器15に循環供給し、冷却水と減圧された冷媒との間で熱交換させて冷媒を加熱するのである。また、冷却水配管17には、熱交換器15への冷却水の導入を断続する開閉弁18が設けられており、必要に応じて冷媒の加熱を実施・中断できるようになっている。
【0021】
熱交換器15には、径の異なる2つの管を内外に配置し、内側の管に冷媒を、内側の管と外側の管の間の空間に冷却水を通して両者を熱交換させる二重管構造の熱交換器が使用されている。
【0022】
上記のように構成された車両用冷凍装置の作動の仕方を、[1.前室、後室とも冷却運転モード]、[2.前室、後室とも加熱運転モード]、[3.前室冷却、後室加熱運転モード]、[4.前室加熱、後室冷却運転モード]の各モードごとに説明する。
[1.前室、後室とも冷却運転モード]を選択すると、次の3つのモードを選択的に実行することになる。なお、下記の▲2▼、▲3▼の各モードは単独でも実行可能である。
まず、開閉弁10C,10Dを閉じ、開閉弁10A,10Bを開いて前室A、後室Bを並行して冷却する(前室、後室並行冷却モード;▲1▼)。圧縮機1で圧縮された冷媒は高温高圧の気相状態となり、その圧力が開閉弁10C,10Dを閉じられたことでPHsetよりも大きくなり、吐出圧力調整弁13を開いてコンデンサ2に流入する。コンデンサ2に流入した冷媒は、屋外の空気に熱を与え、自らは凝縮して高温高圧の液冷媒となる。凝縮、液化した冷媒は、レシーバ6、開閉弁10A,10Bを流通し、膨張弁3A,3Bを流通する過程で断熱膨張し、低温低圧の液冷媒となってエバポレータ4A,4Bに並行して流入する。エバポレータ4A,4Bに流入した冷媒は、前室A、後室B内の空気を冷却し、自らは蒸発して低温低圧のガス冷媒となる。蒸発、気化した冷媒はアキュムレータ5を流通し、圧縮機1に吸入されて圧縮され、以降は上記の行程を繰り返す。
【0023】
ここで、後室Bが目標とする設定温度に達すると、開閉弁10B,10C,10Dを閉じ、開閉弁10Aを開いて前室Aのみを冷却し、後室Bについては温度管理を停止する(前室のみ冷却モード;▲2▼)。圧縮機1で圧縮された冷媒は高温高圧の気相状態となり、吐出圧力調整弁13を開いてコンデンサ2に流入する。コンデンサ2に流入した冷媒は、屋外の空気に熱を与え、自らは凝縮して高温高圧の液冷媒となる。凝縮、液化した冷媒は、レシーバ6、開閉弁10Aを流通し、膨張弁3Aを流通する過程で断熱膨張し、低温低圧の液冷媒となってエバポレータ4Aに流入する。エバポレータ4Aに流入した冷媒は、前室A内の空気を冷却し、自らは蒸発して低温低圧のガス冷媒となる。蒸発、気化した冷媒はアキュムレータ5を流通し、圧縮機1に吸入されて圧縮され、以降は上記の行程を繰り返す。
【0024】
一方、前室Aが目標とする設定温度に達すると、開閉弁10A,10C,10Dを閉じ、開閉弁10Bを開いて後室Bのみを冷却し、前室Aについては温度管理を停止する(後室のみ冷却モード;▲3▼)。圧縮機1で圧縮された冷媒は高温高圧の気相状態となり、吐出圧力調整弁13を開いてコンデンサ2に流入する。コンデンサ2に流入した冷媒は、屋外の空気に熱を与え、自らは凝縮して高温高圧の液冷媒となる。凝縮、液化した冷媒は、レシーバ6、開閉弁10Bを流通し、膨張弁3Bを流通する過程で断熱膨張し、低温低圧の液冷媒となってエバポレータ4Bに流入する。エバポレータ4Bに流入した冷媒は、後室B内の空気を冷却し、自らは蒸発して低温低圧のガス冷媒となる。蒸発、気化した冷媒はアキュムレータ5を流通し、圧縮機1に吸入されて圧縮され、以降は上記の行程を繰り返す。
【0025】
[2.前室、後室とも加熱運転モード]を選択すると、次の3つのモードを選択的に実行することになる。なお、下記の▲5▼、▲6▼の各モードは単独でも実行可能である。
まず、開閉弁10A,10Bを閉じ、開閉弁10C,10Dを開いて前室A、後室Bを並行して加熱する(前室、後室並行加熱モード;▲4▼)。圧縮機1で圧縮された冷媒は、高温高圧の気相状態となり、その圧力がPHsetよりも小さい限りはコンデンサ2には流入せず、バイパス配管L2を流通し、定圧膨張弁11にてPLsetまで気相状態を保ちつつ減圧される。減圧された冷媒は、開閉弁10C,10Dを流通し、エバポレータ4A,4Bに並行して導入される。エバポレータ4A,4Bでは、導入された気相状態の冷媒が凝縮を伴わないで放熱し、前室A、後室B内の空気を加熱する。放熱した冷媒は低温低圧の気相状態となり、アキュムレータ5を流通し、圧縮機1に吸入されて圧縮され、以降は上記の行程を繰り返す。
【0026】
ここで、後室Bが目標とする設定温度に達すると、開閉弁10A,10B,10Dを閉じ、開閉弁10Cを開いて前室Aのみを加熱し、後室Bについては温度管理を停止する(前室のみ加熱モード;▲5▼)。圧縮機1で圧縮された冷媒は、高温高圧の気相状態となり、その圧力がPHsetよりも小さい限りはコンデンサ2には流入せず、バイパス配管L2を流通し、定圧膨張弁11にてPLsetまで気相状態を保ちつつ減圧される。減圧された冷媒は、開閉弁10Cを流通し、エバポレータ4Aに導入される。エバポレータ4Aでは、導入された気相状態の冷媒が凝縮を伴わないで放熱し、前室A内の空気を加熱する。放熱した冷媒は低温低圧の気相状態となり、アキュムレータ5を流通し、圧縮機1に吸入されて圧縮され、以降は上記の行程を繰り返す。
【0027】
一方、前室Aが目標とする設定温度に達すると、開閉弁10A,10B,10Cを閉じ、開閉弁10Dを開いて後室Bのみを加熱し、前室Aについては温度管理を停止する(後室のみ加熱モード;▲6▼)。圧縮機1で圧縮された冷媒は、高温高圧の気相状態となり、その圧力がPHsetよりも小さい限りはコンデンサ2には流入せず、バイパス配管L2を流通し、定圧膨張弁11にてPLsetまで気相状態を保ちつつ減圧される。減圧された冷媒は、開閉弁10Dを流通し、エバポレータ4Bに導入される。エバポレータ4Bでは、導入された気相状態の冷媒が凝縮を伴わないで放熱し、後室B内の空気を加熱する。放熱した冷媒は低温低圧の気相状態となり、アキュムレータ5を流通し、圧縮機1に吸入されて圧縮され、以降は上記の行程を繰り返す。
【0028】
上記▲4▼〜▲6▼の各モードにおいて、気相状態の冷媒による上記のような凝縮を伴わない放熱(これを以下では非凝縮ホットガス加熱サイクルによる放熱という)によっても各室の加熱に十分な熱量を確保できない場合は、開閉弁18を開き、エンジンEGの熱を奪った冷却水を熱交換器15に導入する。熱交換器15に冷媒が導入されると、バイパス配管L2を流通する気相状態の冷媒が追加熱されるので、より大きな熱量が各室に供給されることになる。なお、非凝縮ホットガス加熱サイクルの放熱によって十分な熱量を確保できる場合は、開閉弁18を閉じておけば過剰な加熱が防止される。
【0029】
[3.前室冷却、後室加熱運転モード]を選択すると、前述した[前室のみ冷却モード;▲2▼]と、同じく前述した[後室のみ加熱モード;▲6▼]とを交互に実行することになる。ここでも、▲6▼のモードにおいて後室Bの加熱に十分な熱量を確保できない場合は、上記の要領で熱交換器15に冷却水を導入することにより、より大きな熱量が後室Bに供給される。
【0030】
[4.前室加熱、後室冷却運転モード]を選択すると、前述した[前室のみ加熱モード;▲5▼]と、同じく前述した[後室のみ冷却モード;▲3▼]とを交互に実行することになる。ここでも、▲5▼のモードにおいて前室Aの加熱に十分な熱量を確保できない場合は、上記の要領で熱交換器15に冷却水を導入することにより、より大きな熱量が前室Aに供給される。
【0031】
上記のような構成の車両用冷凍装置をトラックに架装した状態を図2に示す。図2に示すように、本実施形態においては、エンジン冷却水を循環させる冷却水配管17は、運転席20とバン21との間に置かれて庫外の運転席20背部壁に沿って設けられる熱交換器15を巡るだけの引き回し配設であり、エバポレータ4A,4Bに分岐する前のバイパス配管L2と温水熱損失の影響が少ないうちに熱交換可能な構成を実現する。このような構成を採用することにより、例えば上記の特許文献1,2に記載された車両用冷凍装置のように、バン前部の前室用空調ユニット、さらにはバン後部の後室用空調ユニットにまで冷却水配管を設置する必要がなく、温水熱源を利用した加熱とホットガス加熱とを併用した冷凍装置を車両に搭載する際の作業性、すなわち架装性に非常に優れた構成を提供できる。
【0032】
加えて、開閉弁10A〜10Dを操作すれば必要に応じて冷却/加熱運転が選択されるので、求められる負荷に応じて簡単に運転の形態を切り換えることができる。また、非常に大きな熱量をもながらも本来ならそのほとんどがラジエタ16A等にて廃棄されるしかないエンジン冷却水を熱源として使用することにより、余計なエネルギーを必要とすることなく各室の追加熱が行えるので、保温状態に移行させた庫内を迅速に、かつ効率よく加熱することができる。さらに、非凝縮ホットガス加熱サイクルの放熱で十分な熱量が確保できる場合は、熱交換器15への冷却水の供給を断つことにより、過剰な加熱が防止されるので、負荷に見合った適切な加熱運転を行うことができる。
【0033】
ところで、本実施形態においては、冷媒を加熱する熱源としてエンジン冷却水を使用したが、これを使用せず、熱源を発生させる補機(例えばビスカスヒータ)を加熱手段として別個に搭載しても構わない。
【0034】
【発明の効果】
以上説明したように、本発明によれば、非凝縮ホットガス加熱サイクルの放熱によっても、温度管理を必要とする空間の加熱に十分な熱量を確保できない場合、減圧した冷媒を追加熱することにより、より大きな熱量が前記空間に供給されることになる。したがって、従来の温水冷却方式のように冷却水を庫内に導入するための配管を別途施工する必要がないので、車両に対する冷凍装置の架装性を格段に向上させることができる。
【0035】
本発明によれば、開閉手段を切り換えてバイパス路への冷媒を断てば通常の冷却運転が行え、バイパス路に冷媒を流通させれば上記のような凝縮を伴わない加熱運転が行えるというように、開閉手段を操作すれば必要に応じて冷却/加熱運転が選択されるので、求められる負荷に応じて簡単に運転の形態を切り換えることができる。
【0036】
本発明によれば、非常に大きな熱量をもながらも本来ならラジエタ等にて廃棄されるしかないエンジン冷却水を熱源として使用することにより、余計なエネルギーを必要とすることなく保冷庫の追加熱が行えるので、保温状態に移行させた庫内を迅速に、かつ効率よく加熱することができる。
【0037】
本発明によれば、非凝縮ホットガス加熱サイクルの放熱で十分な熱量が確保できる場合は、加熱手段への冷却水の供給を断つことにより、過剰な加熱が防止されるので、負荷に見合った適切な加熱運転を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す図であって、2つの保冷庫を有する車両用冷凍装置の概要を示す図である。
【図2】図1の車両用冷凍装置をトラックに架装した状態を示す説明図である。
【符号の説明】
1 圧縮機
2 コンデンサ
3A,3B 膨張弁
4A,4B エバポレータ
5 アキュムレータ
6 レシーバ
10C,10D 開閉弁(開閉手段)
11 定圧膨張弁(減圧手段)
15 熱交換器(加熱手段)
17 冷却水配管
18 開閉弁(断続手段)
L1 冷媒配管
L2 バイパス配管(バイパス路)
EG エンジン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerating apparatus for a refrigerating car that can not only keep cold but also keep heat, and more particularly to a technique for improving the mountability to a vehicle.
[0002]
[Prior art]
In a refrigerating car that can not only keep cold but also keep warm, there is a hot water heating method as one of the methods for heating for keeping heat. According to this method, cooling water (although the temperature is about 90 ° C.) of a vehicle engine is introduced into a refrigerator, and the interior of the refrigerator is heated by radiating heat. , 2).
[0003]
Patent Document 1: Japanese Patent Application Laid-Open No. 08-099522 (paragraph [0018], FIGS. 1 and 5)
[Patent Document 2] JP-A-10-160321 (paragraph [0016], FIGS. 1 and 4)
[0004]
[Problems to be solved by the invention]
By the way, in the above-mentioned heating method, it is necessary to separately provide a pipe for introducing cooling water into the refrigerator, and it has been pointed out that the mounting of the refrigeration apparatus on the vehicle becomes complicated.
[0005]
The present invention has been made in view of the above circumstances, and has as its object to improve the mountability of a refrigeration system for a vehicle.
[0006]
[Means for Solving the Problems]
As means for solving the above problems, a vehicle refrigeration system having the following configuration is employed. That is, in the vehicle refrigeration apparatus according to the first aspect of the present invention, the refrigerant in the gaseous state discharged from the compressor is depressurized to a temperature not higher than the internal temperature saturation pressure of the space requiring temperature control, and is further heated and then heated. It is characterized by being introduced into.
[0007]
When the refrigerant in the gaseous phase discharged from the compressor is decompressed to or below the internal temperature saturation pressure of a space requiring temperature management (for example, a cool box in an embodiment described later) and then introduced into the evaporator, the introduced refrigerant is cooled. The heat is radiated without condensing in the evaporator, and the air in the space where the evaporator is installed is heated.
In the present invention, in the case where it is not possible to secure a sufficient amount of heat for heating the space even by the heat release without condensation as described above by the refrigerant in the gaseous phase, a larger amount of heat is obtained by additionally heating the depressurized refrigerant. It will be supplied to the space. Therefore, there is no need to separately provide a pipe for introducing cooling water into the storage unlike the conventional hot water cooling system.
[0008]
According to a second aspect of the present invention, there is provided the vehicle refrigeration apparatus according to the first aspect, wherein a bypass passage for introducing a refrigerant in a gaseous state discharged from the compressor into the evaporator by bypassing the condenser and the expansion valve. ,
Decompression means for decompressing the refrigerant flowing through the bypass to a temperature equal to or lower than a temperature saturation pressure in the refrigerator.
Opening and closing means for opening and closing the bypass path to interrupt the flow of the refrigerant,
Heating means for heating the refrigerant flowing through the bypass path.
[0009]
In the present invention, the normal cooling operation can be performed by switching the opening / closing means to cut off the refrigerant to the bypass path, and the heating operation without condensation as described above can be performed by flowing the refrigerant through the bypass path. By operating the opening / closing means, a cooling / heating operation is selected as required.
[0010]
According to a third aspect of the present invention, in the vehicle refrigeration apparatus according to the second aspect, the heating means uses cooling water of a vehicle traveling engine as a heat source.
[0011]
In the present invention, by using the engine cooling water as a heat source, which has a very large amount of heat but which would otherwise be discarded by a radiator or the like, the additional heat of the space can be reduced without requiring extra energy. I can do it.
[0012]
According to a fourth aspect of the present invention, there is provided a vehicle refrigeration apparatus according to the third aspect, further comprising an intermittent unit for intermittently supplying the cooling water to the heating unit.
[0013]
In the present invention, when a sufficient amount of heat can be secured by the heat radiation without the above-described condensation by the refrigerant in the gaseous state, excessive heating is prevented by cutting off the supply of the cooling water to the heating means. .
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment according to the present invention will be described with reference to FIGS.
FIG. 1 shows an outline of a vehicle refrigeration system mounted on a refrigeration vehicle having two cool boxes (however, it can perform not only cool but also warm). In the figure, reference numeral 1 denotes a compressor, 2 denotes a condenser, 3A and 3B denote expansion valves, 4A and 4B denote evaporators, 5 denotes an accumulator, and 6 denotes a receiver. Each device is connected via a refrigerant pipe L1 indicated by a thick solid line in the drawing to constitute a system for realizing a refrigeration cycle. The compressor 1 obtains a driving force from a vehicle running engine (or an engine separately provided for driving the compressor) EG described later.
[0015]
The two evaporators 4A and 4B are connected in parallel with the system together with the expansion valves 3A and 3B. One of the pipes branched in parallel and provided with the expansion valve 3A and the evaporator 4A is provided with an on-off valve 10A for interrupting the introduction of the refrigerant to the evaporator 4A, and the other pipe provided with the expansion valve 3B and the evaporator 4B. Is provided with an on-off valve 10B for interrupting the introduction of the refrigerant into the evaporator 4B. The evaporator 4A is arranged in one of the two cool boxes (hereinafter referred to as the front room A), and the evaporator 4B is arranged in the other of the two cool boxes (hereinafter referred to as the rear room B).
[0016]
A main refrigerant pipe L1 is a bypass pipe (indicated by a thin solid line in the figure) for introducing refrigerant discharged from the compressor 1 into the evaporators 4A, 4B by bypassing the condenser 2, the receiver 6, and the expansion valves 3A, 3B. L2 is connected. The tip of the bypass pipe L2 is branched into two, one of which is connected to the inlet side of the evaporator 4A, and the other is connected to the inlet side of the evaporator 4B. The one bypass pipe connected to the inlet side of the evaporator 4A is provided with an on-off valve 10C for interrupting the introduction of the refrigerant to the evaporator 4A, and the other bypass pipe connected to the inlet side of the evaporator 4B is connected to the other bypass pipe. , An on-off valve 10D for intermittently introducing refrigerant into the evaporator 4B is provided.
[0017]
In the bypass pipe L2, constant-pressure expansion is performed to reduce the refrigerant in the gaseous phase to a predetermined pressure (low pressure; PLset, the internal temperature saturation pressure of the cool box when placed in an overheated state, lower than PHset described later). A valve 11 is provided.
[0018]
On the high pressure side of the refrigerant pipe L1 (between the compressor 1 and the condenser 2), a discharge pressure regulating valve that opens when the discharge pressure of the compressor 1 exceeds a predetermined pressure (high pressure; PHset, higher than the PLset). 13 are provided. Thereby, the input of the compressor 1 can be increased and the heating capacity can be ensured.
[0019]
Check valves 14 for restricting the flow of the refrigerant in one direction are provided between the compressor 1 and the condenser 2, between the condenser 2 and the receiver 6, and on the refrigerant pipe L1 on the outlet side of the evaporators 4A and 4B. Have been.
[0020]
In the bypass pipe L2, heat for heating the refrigerant in the gaseous state depressurized by the constant-pressure expansion valve 11 by using the exhaust heat of the engine EG for driving the vehicle (or an engine separately provided for driving the compressor). An exchanger 15 is provided. More specifically, a part of the cooling water of the engine EG, which is originally circulated and supplied to the radiator 16A and the air conditioning heater core 16B, is circulated and supplied to the heat exchanger 15 through a separately provided cooling water pipe 17, and the cooling water is supplied. The refrigerant is heated by exchanging heat between the refrigerant and the depressurized refrigerant. Further, the cooling water pipe 17 is provided with an on-off valve 18 for interrupting the introduction of the cooling water to the heat exchanger 15 so that the heating of the refrigerant can be performed or interrupted as necessary.
[0021]
The heat exchanger 15 has a double-tube structure in which two tubes having different diameters are arranged inside and outside, and a refrigerant is passed through an inner tube and a cooling water is passed through a space between an inner tube and an outer tube to exchange heat. Heat exchangers are used.
[0022]
The operation of the vehicle refrigeration system configured as described above is described in [1. Cooling operation mode for both front and rear chambers], [2. Heating operation mode for both front and rear rooms], [3. Front-chamber cooling, rear-chamber heating operation mode], [4. Each mode of [front room heating, rear room cooling operation mode] will be described.
[1. When the cooling operation mode is selected for both the front and rear chambers, the following three modes are selectively executed. Each of the following modes (2) and (3) can be executed independently.
First, the on-off valves 10C and 10D are closed, and the on-off valves 10A and 10B are opened to cool the front chamber A and the rear chamber B in parallel (front and rear chamber parallel cooling mode; (1)). The refrigerant compressed by the compressor 1 is in a high-temperature and high-pressure gaseous phase, and the pressure becomes higher than PHset by closing the on-off valves 10C and 10D, and flows into the condenser 2 by opening the discharge pressure regulating valve 13. . The refrigerant flowing into the condenser 2 gives heat to the outdoor air and condenses itself to become a high-temperature and high-pressure liquid refrigerant. The condensed and liquefied refrigerant flows through the receiver 6, the on-off valves 10A and 10B, adiabatically expands in the process of flowing through the expansion valves 3A and 3B, becomes a low-temperature and low-pressure liquid refrigerant, and flows in parallel to the evaporators 4A and 4B. I do. The refrigerant flowing into the evaporators 4A and 4B cools the air in the front chamber A and the rear chamber B, and evaporates to become a low-temperature low-pressure gas refrigerant. The evaporated and vaporized refrigerant flows through the accumulator 5, is sucked into the compressor 1 and is compressed, and thereafter, the above process is repeated.
[0023]
Here, when the rear chamber B reaches the target set temperature, the on-off valves 10B, 10C, and 10D are closed, and the on-off valve 10A is opened to cool only the front chamber A, and the temperature management of the rear chamber B is stopped. (Cooling mode for front chamber only; (2)). The refrigerant compressed by the compressor 1 enters a high-temperature and high-pressure gas phase state, and flows into the condenser 2 by opening the discharge pressure regulating valve 13. The refrigerant flowing into the condenser 2 gives heat to the outdoor air and condenses itself to become a high-temperature and high-pressure liquid refrigerant. The condensed and liquefied refrigerant flows through the receiver 6, the on-off valve 10A, adiabatically expands in the process of flowing through the expansion valve 3A, and flows into the evaporator 4A as a low-temperature and low-pressure liquid refrigerant. The refrigerant flowing into the evaporator 4A cools the air in the front chamber A and evaporates to become a low-temperature low-pressure gas refrigerant. The evaporated and vaporized refrigerant flows through the accumulator 5, is sucked into the compressor 1 and is compressed, and thereafter, the above process is repeated.
[0024]
On the other hand, when the front chamber A reaches the target set temperature, the on-off valves 10A, 10C, and 10D are closed, the on-off valve 10B is opened to cool only the rear chamber B, and the temperature control for the front chamber A is stopped ( Cooling mode only in rear chamber; (3)). The refrigerant compressed by the compressor 1 enters a high-temperature and high-pressure gas phase state, and flows into the condenser 2 by opening the discharge pressure regulating valve 13. The refrigerant flowing into the condenser 2 gives heat to the outdoor air and condenses itself to become a high-temperature and high-pressure liquid refrigerant. The condensed and liquefied refrigerant flows through the receiver 6, the on-off valve 10B, and adiabatically expands in the process of flowing through the expansion valve 3B, and flows into the evaporator 4B as a low-temperature and low-pressure liquid refrigerant. The refrigerant flowing into the evaporator 4B cools the air in the rear chamber B, and evaporates to become a low-temperature low-pressure gas refrigerant. The evaporated and vaporized refrigerant flows through the accumulator 5, is sucked into the compressor 1 and is compressed, and thereafter, the above process is repeated.
[0025]
[2. When the heating operation mode is selected for both the front room and the rear room, the following three modes are selectively executed. The following modes (5) and (6) can be executed independently.
First, the on-off valves 10A and 10B are closed, and the on-off valves 10C and 10D are opened to heat the front chamber A and the rear chamber B in parallel (front and rear chamber parallel heating mode; (4)). The refrigerant compressed by the compressor 1 is in a gaseous state of high temperature and high pressure, and does not flow into the condenser 2 as long as the pressure is smaller than PHset, flows through the bypass pipe L2, and reaches PLset at the constant pressure expansion valve 11. The pressure is reduced while maintaining the gas phase. The depressurized refrigerant flows through the on-off valves 10C and 10D, and is introduced into the evaporators 4A and 4B in parallel. In the evaporators 4A and 4B, the introduced refrigerant in a gaseous state radiates heat without condensing, and heats the air in the front chamber A and the rear chamber B. The radiated refrigerant becomes a low-temperature and low-pressure gaseous phase, flows through the accumulator 5, is sucked into the compressor 1 and compressed, and thereafter repeats the above process.
[0026]
Here, when the rear chamber B reaches the target set temperature, the on-off valves 10A, 10B, 10D are closed, and the on-off valve 10C is opened to heat only the front chamber A, and the temperature control of the rear chamber B is stopped. (Heating mode only in front room; (5)). The refrigerant compressed by the compressor 1 is in a gaseous state of high temperature and high pressure, and does not flow into the condenser 2 as long as the pressure is smaller than PHset, flows through the bypass pipe L2, and reaches PLset at the constant pressure expansion valve 11. The pressure is reduced while maintaining the gas phase. The depressurized refrigerant flows through the on-off valve 10C and is introduced into the evaporator 4A. In the evaporator 4A, the introduced refrigerant in the gaseous state radiates heat without condensing, and heats the air in the front chamber A. The radiated refrigerant becomes a low-temperature and low-pressure gaseous phase, flows through the accumulator 5, is sucked into the compressor 1 and compressed, and thereafter repeats the above process.
[0027]
On the other hand, when the front chamber A reaches the target set temperature, the on-off valves 10A, 10B, and 10C are closed, and the on-off valve 10D is opened to heat only the rear chamber B, and the temperature control of the front chamber A is stopped ( Heating mode only in rear room; (6)). The refrigerant compressed by the compressor 1 is in a gaseous state of high temperature and high pressure, and does not flow into the condenser 2 as long as the pressure is smaller than PHset, flows through the bypass pipe L2, and reaches PLset at the constant pressure expansion valve 11. The pressure is reduced while maintaining the gas phase. The depressurized refrigerant flows through the on-off valve 10D and is introduced into the evaporator 4B. In the evaporator 4B, the introduced refrigerant in the gaseous phase radiates heat without condensing, and heats the air in the rear chamber B. The radiated refrigerant becomes a low-temperature and low-pressure gaseous phase, flows through the accumulator 5, is sucked into the compressor 1 and compressed, and thereafter repeats the above process.
[0028]
In each of the above modes (4) to (6), the heat of each chamber can also be heated by the heat release without condensing by the refrigerant in the gaseous state (hereinafter referred to as heat release by the non-condensed hot gas heating cycle). When a sufficient amount of heat cannot be secured, the on-off valve 18 is opened, and the cooling water from which heat of the engine EG has been taken is introduced into the heat exchanger 15. When the refrigerant is introduced into the heat exchanger 15, the refrigerant in the gaseous phase flowing through the bypass pipe L2 is additionally heated, so that a larger amount of heat is supplied to each chamber. If a sufficient amount of heat can be ensured by the heat radiation of the non-condensing hot gas heating cycle, excessive heating can be prevented by closing the on-off valve 18.
[0029]
[3. When the front room cooling and rear room heating operation mode is selected, the above-mentioned [front room only cooling mode; [2]] and the above described [back room only heating mode; [6]] are alternately executed. become. Also in this case, in the mode of (6), if a sufficient amount of heat for heating the rear chamber B cannot be secured, a larger amount of heat is supplied to the rear chamber B by introducing cooling water into the heat exchanger 15 in the manner described above. Is done.
[0030]
[4. When the front room heating and rear room cooling operation mode is selected, the above-mentioned [front room only heating mode; [5]] and the above-mentioned [rear room only cooling mode; [3]] are executed alternately. become. Also in this case, if the amount of heat sufficient for heating the anterior chamber A cannot be secured in the mode of (5), a larger amount of heat is supplied to the anterior chamber A by introducing cooling water into the heat exchanger 15 in the manner described above. Is done.
[0031]
FIG. 2 shows a state in which the vehicle refrigeration device having the above configuration is mounted on a truck. As shown in FIG. 2, in the present embodiment, a cooling water pipe 17 for circulating engine cooling water is provided between the driver's seat 20 and the van 21 and provided along the back wall of the driver's seat 20 outside the refrigerator. In this configuration, the heat exchanger 15 is arranged only around the heat exchanger 15 to be provided, and realizes a configuration in which heat can be exchanged while the influence of the hot water heat loss with the bypass pipe L2 before branching to the evaporators 4A and 4B is small. By adopting such a configuration, for example, as in the refrigeration systems for vehicles described in Patent Documents 1 and 2, the air conditioning unit for the front room at the front of the van and the air conditioning unit for the rear room at the rear of the van It is not necessary to install a cooling water pipe, and a configuration that is extremely excellent in workability when mounting a refrigeration system that combines heating using a hot water heat source and hot gas heating in a vehicle, that is, excellent in bodyworkability it can.
[0032]
In addition, if the on / off valves 10A to 10D are operated, the cooling / heating operation is selected as required, so that the operation mode can be easily switched according to the required load. In addition, by using the engine cooling water as a heat source, which has a very large amount of heat but is almost always discarded by the radiator 16A or the like, the additional heat of each room is not required. Can be quickly and efficiently heated in the refrigerator which has been shifted to the heat-retaining state. Further, when a sufficient amount of heat can be secured by the heat radiation of the non-condensed hot gas heating cycle, excessive heating is prevented by cutting off the supply of the cooling water to the heat exchanger 15. A heating operation can be performed.
[0033]
By the way, in the present embodiment, the engine cooling water is used as a heat source for heating the refrigerant, but an auxiliary device (for example, a viscous heater) for generating a heat source may be separately mounted as a heating means without using this. Absent.
[0034]
【The invention's effect】
As described above, according to the present invention, even by the heat radiation of the non-condensed hot gas heating cycle, if it is not possible to secure a sufficient amount of heat for heating the space requiring temperature control, by additionally heating the depressurized refrigerant. , A larger amount of heat will be supplied to the space. Therefore, unlike the conventional hot water cooling system, it is not necessary to separately provide a pipe for introducing the cooling water into the storage, so that the mountability of the refrigeration system for the vehicle can be significantly improved.
[0035]
According to the present invention, a normal cooling operation can be performed by switching the opening / closing means to cut off the refrigerant to the bypass, and a heating operation without condensation as described above can be performed by flowing the refrigerant through the bypass. In addition, if the opening / closing means is operated, the cooling / heating operation is selected as needed, so that the operation mode can be easily switched according to the required load.
[0036]
According to the present invention, the use of engine cooling water as a heat source, which has a very large amount of heat but would otherwise be discarded in a radiator or the like, allows the additional heat of the cool box without requiring extra energy. Can be quickly and efficiently heated in the refrigerator which has been shifted to the heat-retaining state.
[0037]
According to the present invention, when a sufficient amount of heat can be ensured by the heat radiation of the non-condensing hot gas heating cycle, by cutting off the supply of the cooling water to the heating means, excessive heating is prevented, and the load is commensurate with the load. Appropriate heating operation can be performed.
[Brief description of the drawings]
FIG. 1 is a view showing an embodiment of the present invention, and is a view showing an outline of a vehicle refrigeration apparatus having two cool boxes.
FIG. 2 is an explanatory view showing a state where the vehicle refrigeration apparatus of FIG. 1 is mounted on a truck.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3A, 3B Expansion valve 4A, 4B Evaporator 5 Accumulator 6 Receiver 10C, 10D Opening / closing valve (opening / closing means)
11 Constant pressure expansion valve (pressure reducing means)
15 Heat exchanger (heating means)
17 Cooling water piping 18 On-off valve (intermittent means)
L1 Refrigerant pipe L2 Bypass pipe (bypass path)
EG engine

Claims (4)

圧縮機から吐出される気相状態の冷媒を、温度管理を要する空間の内部温度飽和圧力以下に減圧し、さらに加熱したうえでエバポレータに導入することを特徴とする車両用冷凍装置。A refrigeration system for a vehicle, wherein a refrigerant in a gaseous state discharged from a compressor is depressurized to an internal temperature saturation pressure or lower in a space requiring temperature control, heated, and then introduced into an evaporator. 圧縮機から吐出される気相状態の冷媒を、コンデンサおよび膨張弁をバイパスしてエバポレータに導入するバイパス路と、
該バイパス路を流通する前記冷媒を保冷庫の庫内温度飽和圧力以下に減圧する減圧手段と、
前記バイパス路を開閉して前記冷媒の流通を断続する開閉手段と、
前記バイパス路を流通する前記冷媒を加熱する加熱手段とを備えることを特徴とする車両用冷凍装置。
A bypass for introducing a refrigerant in a gaseous state discharged from the compressor to the evaporator, bypassing the condenser and the expansion valve,
Decompression means for decompressing the refrigerant flowing through the bypass to a temperature equal to or lower than a temperature saturation pressure in the refrigerator.
Opening and closing means for opening and closing the bypass path to interrupt the flow of the refrigerant,
Heating means for heating the refrigerant flowing through the bypass passage.
前記加熱手段が、車両走行用エンジンの冷却水を熱源とすることを特徴とする請求項2記載の車両用冷凍装置。3. The refrigeration system for a vehicle according to claim 2, wherein said heating means uses cooling water of a vehicle driving engine as a heat source. 前記加熱手段への前記冷却水の供給を断続する断続手段を備える請求項3記載の車両用冷凍装置。The vehicle refrigeration apparatus according to claim 3, further comprising an intermittent unit for intermittently supplying the cooling water to the heating unit.
JP2002322330A 2002-11-06 2002-11-06 Vehicular refrigerating equipment Pending JP2004156826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002322330A JP2004156826A (en) 2002-11-06 2002-11-06 Vehicular refrigerating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002322330A JP2004156826A (en) 2002-11-06 2002-11-06 Vehicular refrigerating equipment

Publications (1)

Publication Number Publication Date
JP2004156826A true JP2004156826A (en) 2004-06-03

Family

ID=32802544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002322330A Pending JP2004156826A (en) 2002-11-06 2002-11-06 Vehicular refrigerating equipment

Country Status (1)

Country Link
JP (1) JP2004156826A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101334A (en) * 2018-12-24 2020-07-02 株式会社デンソー Cooling system for delivery vehicle
CN117048293A (en) * 2023-08-31 2023-11-14 东风华神汽车有限公司 Double-temperature system and double-temperature refrigerator car thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101334A (en) * 2018-12-24 2020-07-02 株式会社デンソー Cooling system for delivery vehicle
CN117048293A (en) * 2023-08-31 2023-11-14 东风华神汽车有限公司 Double-temperature system and double-temperature refrigerator car thereof

Similar Documents

Publication Publication Date Title
JP7172815B2 (en) In-vehicle temperature controller
JP7099392B2 (en) In-vehicle temperature control device
JP6973446B2 (en) In-vehicle temperature control device
US11179994B2 (en) Heat pump for automobile
KR101656583B1 (en) Air conditioning system for a motor vehicle
JP4201011B2 (en) Heat storage device
WO2010079818A1 (en) Air conditioning device for vehicle
JP7251229B2 (en) In-vehicle temperature controller
EP3878670A1 (en) In-vehicle temperature control system
KR101903108B1 (en) Heat Pump For a Vehicle
JP2003075021A (en) Gas heat pump type air conditioning system, engine cooling water heating device, and operating method for the gas heat pump type air conditioning system
JP2007303435A (en) Exhaust heat recovery device
JP7380650B2 (en) In-vehicle temperature control system
JP2010001013A (en) Heating, ventilating and/or air-conditioning device for automobile
KR101811762B1 (en) Heat Pump For a Vehicle
CN104837658A (en) Heat pump system for vehicle
US10611212B2 (en) Air conditioner for vehicle
JP7543980B2 (en) Vehicle temperature control system
JP2021014201A (en) In-vehicle temperature control device
JP2017081560A (en) Units for vehicle air conditioners
KR101544877B1 (en) Heat pump system for vehicle
JP2010012820A (en) Vehicular air-conditioner
JP2004156826A (en) Vehicular refrigerating equipment
US20140116082A1 (en) Heat exchange apparatus
JP2008286203A (en) Exhaust heat recovery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050621

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070828

A131 Notification of reasons for refusal

Effective date: 20070904

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080108

Free format text: JAPANESE INTERMEDIATE CODE: A02