[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004154092A - Foaming oil-in-water type emulsified product having resistance to freezing - Google Patents

Foaming oil-in-water type emulsified product having resistance to freezing Download PDF

Info

Publication number
JP2004154092A
JP2004154092A JP2002325139A JP2002325139A JP2004154092A JP 2004154092 A JP2004154092 A JP 2004154092A JP 2002325139 A JP2002325139 A JP 2002325139A JP 2002325139 A JP2002325139 A JP 2002325139A JP 2004154092 A JP2004154092 A JP 2004154092A
Authority
JP
Japan
Prior art keywords
oil
parts
weight
water emulsion
starch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002325139A
Other languages
Japanese (ja)
Other versions
JP4506072B2 (en
Inventor
Hiroyuki Komoda
宏幸 菰田
Hiroyuki Ichiyama
裕之 市山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP2002325139A priority Critical patent/JP4506072B2/en
Publication of JP2004154092A publication Critical patent/JP2004154092A/en
Application granted granted Critical
Publication of JP4506072B2 publication Critical patent/JP4506072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Grain Derivatives (AREA)
  • Jellies, Jams, And Syrups (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foaming oil-in-water type emulsified product not causing deformation, crack or roughness or discoloration of a structure or deterioration of taste even when refrigerated and thawed in a state whipped or in a state in which the whipped material is decorated on cake, etc., having little sweetness and freeze resistance of excellent taste and to provide a method for producing the emulsified product. <P>SOLUTION: The oil-in-water type emulsified product having freeze resistance comprises 20-50 wt.% oil and fat, 1-10 wt.% milk solid non-fat, 2-25 wt.% starch decomposed product and water. In the oil-in-water type emulsified product, the dextrin value (DE) of the starch decomposed product is 3-42 and the average molecular weight is 400 to 9,000. The method for producing the foaming oil-in-water type emulsified product having freeze resistance is also provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本発明は、冷凍耐性を有する起泡性水中油型乳化物及びその製造法に関し、さらに詳細にはホイップ状態で冷凍保存後、解凍しても風味が損なわれたり、組織が劣化したりせず、しかも口どけの良好な起泡性水中油型乳化物(ホイップドクリーム)に関する。
【0002】
【従来の技術】従来、ケーキやデザートなどにナッペしたりデコレーションするために用いるホイップドクリームは衛生的にも機能的にも劣化が激しいことから、冷凍保存することが提案されている。しかしながら凍結、解凍という温度変化によってホイップドクリームの品質には多くの悪影響がでる。たとえばデコレーションされたケーキが冷凍解凍後、型崩れまたはひび割れあるいは組織の荒れあるいは変色、風味劣化が起こるといった現象である。
従来、ショ糖を多く配合すると外観の劣化に効果があることは知られていたが甘すぎてしまうという欠点を有していた。ショ糖の代わりに種々の糖を利用することが提案されている。
例えば、油脂8〜60重量%、糖アルコール類5〜50重量%、糖アルコール類を除く無脂固形物2〜18重量%及び有効量の乳化剤、増粘剤、風味料と水を含み、該水対糖アルコールの重量比が1対0.1〜1.5であることを特徴とするホイップ後(含気後)冷解凍を行っても冷凍前の物性を全く損なうことのない起泡性水中油型乳化物(特許文献1参照)が提案されている。
また、油脂35〜55重量%、無脂乳固形分1〜10重量%、ポリグリセリン脂肪酸エステルを含む乳化剤0.1〜2重量%、ソルビトール及び/又は平均分子量が500以下の還元澱粉糖化物1〜10重量%、シクロデキストリン0.2〜2重量%及び水を含有することを特徴とするクリーム状組成物(特許文献2)が提案されている。
しかしながらこれらのものでは糖アルコール類に由来する独特の風味を有しスッキリ感に欠けると共に冷凍耐性の効果としてはまだ十分とは言えない状況にあった。
【0003】
【特許文献1】特開昭57−47457号公報(特許請求の範囲)
【特許文献2】特開平06−269256号公報(特許請求の範囲)
【0004】
【発明が解決しようとする課題】本発明は、ホイップさせた状態もしくはこれをケーキ等にデコレーションした状態で冷凍保存し解凍しても、型崩れまたはひび割れあるいは組織の荒れあるいは変色、風味劣化が起こすことなく、かつ甘みの少ない優れた風味の冷凍耐性を有する起泡性水中油型乳化物及びその製造法を提供することを目的とする。
【0005】
【課題を解決する為の手段】本発明者らは、上記の課題に対して特に糖類全般について鋭意検討を行い特異的にある範囲の澱粉分解物が冷凍耐性と風味の両立という難問に対して効果を有することを見出し、本発明を完成するに至った。
即ち本発明の第1は、油脂20〜50重量%、無脂乳固形分1〜10重量%、澱粉分解物2〜25重量%及び水を含有する水中油型乳化物において、澱粉分解物のデキストリン価(DE)が3〜42の範囲であり且つ平均分子量が400〜9000の範囲であることを特徴とする冷凍耐性を有する起泡性水中油型乳化物である。第2は、澱粉分解物がデキストリン、分枝デキストリン、マルトデキストリン、粉アメ、オリゴ糖から選ばれてなる1種又は2種以上である、第1記載の冷凍耐性を有する起泡性水中油型乳化物である。第3は、油脂中に占める乳脂の割合が20〜100重量%である、第1又は第2記載の冷凍耐性を有する起泡性水中油型乳化物である。第4は、油脂20〜50重量%、無脂乳固形分1〜10重量%、澱粉分解物(デキストリン価(DE)が3〜42の範囲であり且つ平均分子量が400〜9000の範囲である)2〜25重量%及び水を主要原料とするこれらのものを混合し、予備乳化、殺菌又は滅菌処理し均質化処理することを特徴とする冷凍耐性を有する起泡性水中油型乳化物の製造法である。第5は、澱粉分解物がデキストリン、分枝デキストリン、マルトデキストリン、粉アメ、オリゴ糖から選ばれてなる1種又は2種以上である、第4記載の起泡性水中油型乳化物の製造法である。
【0006】
【発明の実施の形態】本発明の冷凍耐性を有する起泡性水中油型乳化物は、油脂20〜50重量%、無脂乳固形分1〜10重量%、澱粉分解物2〜25重量%及び水を含有する水中油型乳化物において、澱粉分解物のデキストリン価(DE)が3〜42の範囲であり且つ平均分子量が400〜9000の範囲の冷凍耐性を有する起泡性水中油型乳化物である。
本発明の油脂としては、動植物性油脂及びそれらの硬化油脂の単独又は2種以上の混合物或いはこれらのものに種々の化学処理又は物理処理を施したものが例示できる。かかる油脂としては、大豆油、綿実油、コーン油、サフラワー油、オリーブ油、パーム油、菜種油、米ぬか油、ゴマ油、カポック油、ヤシ油、パーム核油、カカオ脂、乳脂、ラード、魚油、鯨油等の各種の動植物油脂及びそれらの硬化油、分別油、エステル交換油等の加工油脂(融点15〜40℃程度のもの)が例示できる。
油脂が20〜50重量%必要であり、好ましくは25〜50重量%、更に好ましくは25〜45重量%必要である。油脂が20重量%より低い場合は、水中油型乳化物を起泡する際の起泡性が悪化する傾向にある。50重量%を超える場合は、水中油型乳化物の粘度が高くなり、エージング中に可塑化現象(ボテ)を生じ易い傾向になる。
本発明では、油脂中に占める乳脂の割合が20〜100重量%が好ましく、より好ましくは30〜100重量%、更に好ましくは40〜100重量%は風味の点で好ましい。
【0007】本発明の無脂乳固形分とは、牛乳の全固形分から乳脂肪分を差引いた成分をいい、牛乳、脱脂乳、加糖練乳、無糖練乳、全脂粉乳、脱脂粉乳、バターミルク、バターミルクパウダー、ホエー、ホエーパウダー、カゼイン、カゼインナトリウム、ラクトアルブミン、生クリーム等の乳由来の原料が例示でき、これらの単独または2種以上混合使用するのが好ましい。
無脂乳固形分が1〜10重量%必要であり、好ましくは2〜8重量%、更に好ましくは2〜6重量%必要である。無脂乳固形分が1重量%より低い場合は、水中油型乳化物の乳化安定性が悪くなり、乳味感も少なくなって風味が悪くなる。
10重量%を超える場合は、水中油型乳化物の粘度が高くなり、エージング中に可塑化現象(ボテ)を生じ易い傾向になる。
【0008】本発明の澱粉分解物とは、澱粉を均一の反応系(糊化する)で酸または酵素で加水分解すると、その反応条件により異なる組成の各種の中間生成物が得られる。これらの分解物は共通の性質として、冷水に溶ける程度は異なるが甘味を持つので、一般に澱粉分解糖と呼ばれる。ここでは分解の程度が低く、甘味が殆どないものを抽出したもので、糖の名称をさけて澱粉分解物とよぶ。甘味度としては30以下のものが好ましい。甘味度とは澱粉分解物の甘味度は、ショ糖溶液と比較した値でありパネラー(被験者)による官能検査により甘味を感じる最小の濃度(いき値)の比較、または一定濃度のショ糖溶液(たとえば5%溶液)と同じ甘味の強さを示す被験甘味料の濃度の比較でおこなう。
【0009】澱粉分解物のデキストリン価(DE)が3〜42の範囲であり且つ平均分子量が400〜9000の範囲である必要がある。更に好ましくは澱粉分解物のデキストリン価(DE)が8〜42の範囲であり且つ平均分子量が400〜3000の範囲である必要がある。
DEとはDextrose Equivalentの略称で、澱粉分解物の加水分解の程度を意味し、次の式で表される。
DE=直接還元糖(グルコース換算)÷固形分×100
澱粉分解物の平均分子量はゲルろ過クロマトグラフィーにより測定した。
澱粉分解物の原料となる澱粉は、とうもろこし、ワキシーコーン、馬鈴薯、甘藷、タピオカなどの澱粉が利用できる。
澱粉分解物の量は、固形分量を意味し、2〜25重量%必要であり、好ましくは4〜22重量%、更に好ましくは5〜22重量%必要である。澱粉分解物が2重量%より低い場合は、期待する冷凍耐性の効果が得られにくい。25重量%を超える場合は、水中油型乳化物の粘度が高くなり、エージング中に可塑化現象(ボテ)を生じ易い傾向になる。
【0010】本発明の冷凍耐性を有する起泡性水中油型乳化物を製造するに際して、従来より使用されてきた、レシチン、モノグリセライド、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ショ糖脂肪酸エステル等の合成乳化剤を使用することができる。
【0011】本発明の冷凍耐性を有する起泡性水中油型乳化物については、各種塩類を使用するのが好ましく、ヘキサメタリン酸塩、第2リン酸塩、クエン酸ナトリウム、ポリリン酸塩、重曹等を単独又は2種以上混合使用することが望ましい。
その他所望により安定剤、香料、着色剤、保存料等を使用することができる。
【0012】本発明の冷凍耐性を有する起泡性水中油型乳化物の製造法としては、一般的なクリーム類を製造する要領で行うことができる。具体的には油脂20〜50重量%、無脂乳固形分1〜10重量%、澱粉分解物(デキストリン価(DE)が8〜42の範囲であり且つ平均分子量が400〜9000の範囲である)2〜25重量%及び水を主要原料とするこれらのものを混合し、予備乳化、殺菌又は滅菌処理し均質化処理することにより得ることができる。
起泡性水中油型乳化物の保存性の点で滅菌処理することが好ましい。
【0013】滅菌処理には、間接加熱方式と直接加熱方式の2種類があり、間接加熱処理する装置としてはAPVプレート式UHT処理装置(APV株式会社製)、CP−UHT滅菌装置(クリマティー・パッケージ株式会社製)、ストルク・チューブラー型滅菌装置(ストルク株式会社製)、コンサーム掻取式UHT滅菌装置(テトラパック・アルファラベル株式会社製)等が例示できるが、特にこれらにこだわるものではない。また、直接加熱式滅菌装置としては、超高温滅菌装置(岩井機械工業(株)製)、ユーペリゼーション滅菌装置(テトラパック・アルファラバル株式会社製)、VTIS滅菌装置(テトラパック・アルファラバル株式会社製)、ラギアーUHT滅菌装置(ラギアー株式会社製)、パラリゼーター(パッシュ・アンド・シルケーボーグ株式会社製)等のUHT滅菌装置が例示でき、これらの何れの装置を使用してもよい。
【0014】
【実施例】以下に本発明の実施例を示し本発明をより詳細に説明するが、本発明の精神は以下の実施例に限定されるものではない。なお、例中、%及び部は重量基準を意味する。。特に、添加剤の添加順序或いは油相を水相へ又は水相を油相へ加える等の乳化順序が以下の例示によって限定されるものではないことは言うまでもない。また、結果については以下の方法で評価した。
【0015】
A 水中油型乳化物の粘度、平均粒子径、固形分、ボテテスト(水中油型乳化物の安定性)を評価した。
方法は、
粘度:水中油型乳化物の粘度の測定は、B型粘度計(株式会社東京計器製)にて、2号ローター、60rpmの条件下で行った。
平均粒子径:平均粒子径は、粒子径体積基準で累積分布の50%に相当する粒子径であり、レーザー回折式粒度分布装置(LA500、(株)堀場製作所製)により測定した値である。
固形分:Microwave Moisture/Solid Analyzer(LAB WAVE 9000 CEM corporation製)、エンドポイント法
ボテテスト:水中油型乳化物を100ml容ビーカーに50g採り、20℃で2時間インキュベートし、その後5分間攪拌した時のボテの発生の有無を確認した。
【0016】
B 水中油型乳化物を起泡させた場合の評価方法

Figure 2004154092
【0017】
実施例1
パーム油中融点部(36℃)10.0部、硬化大豆パーム油10.0部、バター脂10.0部にレシチン0.35部を添加混合溶解し油相とする。
これとは別に水60.88部に、脱脂粉乳3.5部、分枝デキストリン(松谷化学工業株式会社製、商品名:パインデックス#100、DE3、原材料ワキシーコーンスターチ、固形分96%、平均分子量8500、甘味度2)5.0部、シュガーエステル(三菱化学フーズ(株)製、 商品名:S−570)0.2部、ヘキサメタリン酸ナトリウム0.05部、重曹0.02部を溶解し水相を調製する。上記油相と水相を65℃で30分間ホモミキサーで攪拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、45Kg/cm の均質化圧力で均質化して、直ちに5℃に冷却した。冷却後約24時間エージングして、起泡性水中油型乳化物を得た。この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またこのホイップドクリームをスポンジケーキにデコレーションし−25℃の冷凍庫で10日間保存後、15℃の定温室で解凍し1日後と2日後上記の方法に従って外観の観察、保形性、組織の荒れ、ひび割れおよび風味を評価した。結果を表1に纏めた。
【0018】
実施例2〜実施例8
実施例2
実施例1の分枝デキストリン5.0部を分枝デキストリン(参松工業株式会社製、商品名:BLD8、DE8、原材料コーンスターチ、固形分96%、平均分子量2000、甘味度5)5.0部に代えた以外は全て実施例1と同様に処理し同様な評価を行った。
実施例3
実施例1の分枝デキストリン5.0部をデキストリン(松谷化学工業株式会社製、商品名:パインデックス#1、DE8、原材料タピオカ澱粉、固形分96%、平均分子量2300、甘味度5)5.0部に代えた以外は全て実施例1と同様に処理し同様な評価を行った。
実施例4
実施例1の分枝デキストリン5.0部をマルトデキストリン(松谷化学工業株式会社製、商品名:TK−16、DE17、原材料タピオカ澱粉、固形分96%、平均分子量910、甘味度16)5.0部に代えた以外は全て実施例1と同様に処理し同様な評価を行った。
実施例5
実施例1の分枝デキストリン5.0部をマルトデキストリン(松谷化学工業株式会社製、商品名:パインデックス#4、DE19、原材料タピオカ澱粉、固形分96%、平均分子量990、甘味度18)5.0部に代えた以外は全て実施例1と同様に処理し同様な評価を行った。
実施例6
実施例1の分枝デキストリン5.0部を粉飴(松谷化学工業株式会社製、商品名:パインデックス#3、DE25、原材料コーンスターチ、固形分96%、平均分子量680、甘味度25)5.0部に代えた以外は全て実施例1と同様に処理し同様な評価を行った。
実施例7
実施例1の分枝デキストリン5.0部を粉飴(松谷化学工業株式会社製、商品名:MPD、DE25、原材料甘藷澱粉、固形分96%、平均分子量680、甘味度25)5.0部に代えた以外は全て実施例1と同様に処理し同様な評価を行った。
実施例8
実施例1の分枝デキストリン5.0部をオリゴ糖(三和澱粉工業株式会社製、商品名:直鎖オリゴ糖オリゴトース、DE40、原材料コーンスターチ、馬鈴薯澱粉、甘藷澱粉、固形分98%、平均分子量420、甘味度30)5.0部に代えた以外は全て実施例1と同様に処理し同様な評価を行った。
【0019】
実施例1〜実施例8の評価を表1に纏めた。
【表1】
Figure 2004154092
【0020】
比較例1
実施例1〜実施例8における澱粉分解物5部を水に代えて以下の要領で実施した。
パーム油中融点部(36℃)10.0部、硬化大豆パーム油10.0部、バター脂10.0部にレシチン0.35部を添加混合溶解し油相とする。
これとは別に水65.88部に、脱脂粉乳3.5部、シュガーエステル(三菱化学フーズ(株)製、 商品名:S−570)0.2部、ヘキサメタリン酸ナトリウム0.05部、重曹0.02部を溶解し水相を調製する。上記油相と水相を65℃で30分間ホモミキサーで攪拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、45Kg/cm の均質化圧力で均質化して、直ちに5℃に冷却した。冷却後約24時間エージングして、起泡性水中油型乳化物を得た。この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またこのホイップドクリームをスポンジケーキにデコレーションし−25℃の冷凍庫で10日間保存後、15℃の定温室で解凍し1日後と2日後上記の方法に従って外観の観察、保形性、組織の荒れ、ひび割れおよび風味を評価した。結果を表2に纏めた。
【0021】
実施例9
パーム油中融点部(36℃)10.0部、硬化大豆パーム油10.0部、バター脂10.0部にレシチン0.35部を添加混合溶解し油相とする。
これとは別に水59.88部に、脱脂粉乳3.5部、粉飴(松谷化学工業株式会社製、商品名:MPD、DE25、原材料甘藷澱粉、固形分96%、平均分子量680、甘味度25)3.0部、オリゴ糖(三和澱粉工業株式会社製、商品名:直鎖オリゴ糖オリゴトース、DE40、原材料コーンスターチ、馬鈴薯澱粉、甘藷澱粉、固形分98%、平均分子量420、甘味度30)3.0部、シュガーエステル(三菱化学フーズ(株)製、 商品名:S−570)0.2部、ヘキサメタリン酸ナトリウム0.05部、重曹0.02部を溶解し水相を調製する。上記油相と水相を65℃で30分間ホモミキサーで攪拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、45Kg/cm の均質化圧力で均質化して、直ちに5℃に冷却した。冷却後約24時間エージングして、起泡性水中油型乳化物を得た。この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またこのホイップドクリームをスポンジケーキにデコレーションし−25℃の冷凍庫で10日間保存後、15℃の定温室で解凍し1日後と2日後上記の方法に従って外観の観察、保形性、組織の荒れ、ひび割れおよび風味を評価した。結果を表2に纏めた。
【0022】
実施例10
パーム油中融点部(36℃)10.0部、硬化大豆パーム油10.0部、バター脂10.0部にレシチン0.35部を添加混合溶解し油相とする。
これとは別に水55.88部に、脱脂粉乳3.5部、粉飴(松谷化学工業株式会社製、商品名:MPD、DE25、原材料甘藷澱粉、固形分96%、平均分子量680、甘味度25)5.0部、オリゴ糖(三和澱粉工業株式会社製、商品名:直鎖オリゴ糖オリゴトース、DE40、原材料コーンスターチ、馬鈴薯澱粉、甘藷澱粉、固形分98%、平均分子量420、甘味度30)5.0部、シュガーエステル(三菱化学フーズ(株)製、 商品名:S−570)0.2部、ヘキサメタリン酸ナトリウム0.05部、重曹0.02部を溶解し水相を調製する。上記油相と水相を65℃で30分間ホモミキサーで攪拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、45Kg/cm の均質化圧力で均質化して、直ちに5℃に冷却した。冷却後約24時間エージングして、起泡性水中油型乳化物を得た。この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またこのホイップドクリームをスポンジケーキにデコレーションし−25℃の冷凍庫で10日間保存後、15℃の定温室で解凍し1日後と2日後上記の方法に従って外観の観察、保形性、組織の荒れ、ひび割れおよび風味を評価した。結果を表2に纏めた。
【0023】
実施例11
パーム油中融点部(36℃)10.0部、硬化大豆パーム油10.0部、バター脂10.0部にレシチン0.35部を添加混合溶解し油相とする。
これとは別に水51.88部に、脱脂粉乳3.5部、粉飴(松谷化学工業株式会社製、商品名:MPD、DE25、原材料甘藷澱粉、固形分96%、平均分子量680、甘味度25)7.0部、オリゴ糖(三和澱粉工業株式会社製、商品名:直鎖オリゴ糖オリゴトース、DE40、原材料コーンスターチ、馬鈴薯澱粉、甘藷澱粉、固形分98%、平均分子量420、甘味度30)7.0部、シュガーエステル(三菱化学フーズ(株)製、 商品名:S−570)0.2部、ヘキサメタリン酸ナトリウム0.05部、重曹0.02部を溶解し水相を調製する。上記油相と水相を65℃で30分間ホモミキサーで攪拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、45Kg/cm の均質化圧力で均質化して、直ちに5℃に冷却した。冷却後約24時間エージングして、起泡性水中油型乳化物を得た。この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またこのホイップドクリームをスポンジケーキにデコレーションし−25℃の冷凍庫で10日間保存後、15℃の定温室で解凍し1日後と2日後上記の方法に従って外観の観察、保形性、組織の荒れ、ひび割れおよび風味を評価した。結果を表2に纏めた。
【0024】
実施例12
パーム油中融点部(36℃)10.0部、硬化大豆パーム油10.0部、バター脂10.0部にレシチン0.35部を添加混合溶解し油相とする。
これとは別に水45.88部に、脱脂粉乳3.5部、粉飴(松谷化学工業株式会社製、商品名:MPD、DE25、原材料甘藷澱粉、固形分96%、平均分子量680、甘味度25)10.0部、オリゴ糖(三和澱粉工業株式会社製、商品名:直鎖オリゴ糖オリゴトース、DE40、原材料コーンスターチ、馬鈴薯澱粉、甘藷澱粉、固形分98%、平均分子量420、甘味度30)10.0部、シュガーエステル(三菱化学フーズ(株)製、 商品名:S−570)0.2部、ヘキサメタリン酸ナトリウム0.05部、重曹0.02部を溶解し水相を調製する。上記油相と水相を65℃で30分間ホモミキサーで攪拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、45Kg/cm の均質化圧力で均質化して、直ちに5℃に冷却した。冷却後約24時間エージングして、起泡性水中油型乳化物を得た。この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またこのホイップドクリームをスポンジケーキにデコレーションし−25℃の冷凍庫で10日間保存後、15℃の定温室で解凍し1日後と2日後上記の方法に従って外観の観察、保形性、組織の荒れ、ひび割れおよび風味を評価した。結果を表2に纏めた。
【0025】
実施例13
パーム油中融点部(36℃)10.0部、硬化大豆パーム油10.0部、バター脂10.0部にレシチン0.35部を添加混合溶解し油相とする。
これとは別に水41.88部に、脱脂粉乳3.5部、粉飴(松谷化学工業株式会社製、商品名:MPD、DE25、原材料甘藷澱粉、固形分96%、平均分子量680、甘味度25)12.0部、オリゴ糖(三和澱粉工業株式会社製、商品名:直鎖オリゴ糖オリゴトース、DE40、原材料コーンスターチ、馬鈴薯澱粉、甘藷澱粉、固形分98%、平均分子量420、甘味度30)12.0部、シュガーエステル(三菱化学フーズ(株)製、 商品名:S−570)0.2部、ヘキサメタリン酸ナトリウム0.05部、重曹0.02部を溶解し水相を調製する。上記油相と水相を65℃で30分間ホモミキサーで攪拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、45Kg/cm の均質化圧力で均質化して、直ちに5℃に冷却した。冷却後約24時間エージングして、起泡性水中油型乳化物を得た。この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またこのホイップドクリームをスポンジケーキにデコレーションし−25℃の冷凍庫で10日間保存後、15℃の定温室で解凍し1日後と2日後上記の方法に従って外観の観察、保形性、組織の荒れ、ひび割れおよび風味を評価した。結果を表2に纏めた。
【0026】
比較例1、実施例9〜実施例13の評価を表2に纏めた。
【表2】
Figure 2004154092
【0027】
実施例14
パーム油中融点部(36℃)8.5部、硬化大豆パーム油8.5部、バター脂8.5部にレシチン0.35部を添加混合溶解し油相とする。
これとは別に水55.38部に、脱脂粉乳3.5部、粉飴(松谷化学工業株式会社製、商品名:MPD、DE25、原材料甘藷澱粉、固形分96%、平均分子量680、甘味度25)7.5部、オリゴ糖(三和澱粉工業株式会社製、商品名:直鎖オリゴ糖オリゴトース、DE40、原材料コーンスターチ、馬鈴薯澱粉、甘藷澱粉、固形分98%、平均分子量420、甘味度30)7.5部、シュガーエステル(三菱化学フーズ(株)製、 商品名:S−570)0.2部、ヘキサメタリン酸ナトリウム0.05部、重曹0.02部を溶解し水相を調製する。上記油相と水相を65℃で30分間ホモミキサーで攪拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、45Kg/cm の均質化圧力で均質化して、直ちに5℃に冷却した。冷却後約24時間エージングして、起泡性水中油型乳化物を得た。この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またこのホイップドクリームをスポンジケーキにデコレーションし−25℃の冷凍庫で10日間保存後、15℃の定温室で解凍し1日後と2日後上記の方法に従って外観の観察、保形性、組織の荒れ、ひび割れおよび風味を評価した。結果を表3に纏めた。
【0028】
実施例15
パーム油中融点部(36℃)15.0部、硬化大豆パーム油15.0部、バター脂15.0部にレシチン0.35部を添加混合溶解し油相とする。
これとは別に水44.88部に、脱脂粉乳3.5部、粉飴(松谷化学工業株式会社製、商品名:MPD、DE25、原材料甘藷澱粉、固形分96%、平均分子量680、甘味度25)3.0部、オリゴ糖(三和澱粉工業株式会社製、商品名:直鎖オリゴ糖オリゴトース、DE40、原材料コーンスターチ、馬鈴薯澱粉、甘藷澱粉、固形分98%、平均分子量420、甘味度30)3.0部、シュガーエステル(三菱化学フーズ(株)製、 商品名:S−570)0.2部、ヘキサメタリン酸ナトリウム0.05部、重曹0.02部を溶解し水相を調製する。上記油相と水相を65℃で30分間ホモミキサーで攪拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、45Kg/cm の均質化圧力で均質化して、直ちに5℃に冷却した。冷却後約24時間エージングして、起泡性水中油型乳化物を得た。この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またこのホイップドクリームをスポンジケーキにデコレーションし−25℃の冷凍庫で10日間保存後、15℃の定温室で解凍し1日後と2日後上記の方法に従って外観の観察、保形性、組織の荒れ、ひび割れおよび風味を評価した。結果を表3に纏めた。
【0029】
実施例16
パーム油中融点部(36℃)5.0部、バター脂11.2部にレシチン0.25部を添加混合溶解し油相とする。
これとは別に水31.48部に、脱脂粉乳3.9部、生クリーム(固形分51%、油分47%)40.0部、粉飴(松谷化学工業株式会社製、商品名:MPD、DE25、原材料甘藷澱粉、固形分96%、平均分子量680、甘味度25)8.0部、シュガーエステル(三菱化学フーズ(株)製、 商品名:S−570)0.1部、ヘキサメタリン酸ナトリウム0.05部、重曹0.02部を溶解し水相を調製する。上記油相と水相を65℃で30分間ホモミキサーで攪拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、45Kg/cm の均質化圧力で均質化して、直ちに5℃に冷却した。冷却後約24時間エージングして、起泡性水中油型乳化物を得た。この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またこのホイップドクリームをスポンジケーキにデコレーションし−25℃の冷凍庫で10日間保存後、15℃の定温室で解凍し1日後と2日後上記の方法に従って外観の観察、保形性、組織の荒れ、ひび割れおよび風味を評価した。結果を表3に纏めた。
【0030】
比較例2
パーム油中融点部(36℃)5.0部、硬化大豆パーム油5.0部、バター脂5.0部にレシチン0.35部を添加混合溶解し油相とする。
これとは別に水56.88部に、脱脂粉乳3.5部、粉飴(松谷化学工業株式会社製、商品名:MPD、DE25、原材料甘藷澱粉、固形分96%、平均分子量680、甘味度25)12.0部、オリゴ糖(三和澱粉工業株式会社製、商品名:直鎖オリゴ糖オリゴトース、DE40、原材料コーンスターチ、馬鈴薯澱粉、甘藷澱粉、固形分98%、平均分子量420、甘味度30)12.0部、シュガーエステル(三菱化学フーズ(株)製、 商品名:S−570)0.2部、ヘキサメタリン酸ナトリウム0.05部、重曹0.02部を溶解し水相を調製する。上記油相と水相を65℃で30分間ホモミキサーで攪拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、45Kg/cm の均質化圧力で均質化して、直ちに5℃に冷却した。冷却後約24時間エージングして、起泡性水中油型乳化物を得た。この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またこのホイップドクリームをスポンジケーキにデコレーションし−25℃の冷凍庫で10日間保存後、15℃の定温室で解凍し1日後と2日後上記の方法に従って外観の観察、保形性、組織の荒れ、ひび割れおよび風味を評価した。結果を表3に纏めた。
【0031】
比較例3
パーム油中融点部(36℃)18.0部、硬化大豆パーム油18.0部、バター脂18.0部にレシチン0.25部を添加混合溶解し油相とする。
これとは別に水40.93部に、脱脂粉乳3.5部、粉飴(松谷化学工業株式会社製、商品名:MPD、DE25、原材料甘藷澱粉、固形分96%、平均分子量680、甘味度25)0.5部、オリゴ糖(三和澱粉工業株式会社製、商品名:直鎖オリゴ糖オリゴトース、DE40、原材料コーンスターチ、馬鈴薯澱粉、甘藷澱粉、固形分98%、平均分子量420、甘味度30)0.5部、シュガーエステル(三菱化学フーズ(株)製、 商品名:S−570)0.2部、ヘキサメタリン酸ナトリウム0.05部、重曹0.02部を溶解し水相を調製する。上記油相と水相を65℃で30分間ホモミキサーで攪拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、45Kg/cm の均質化圧力で均質化して、直ちに5℃に冷却した。冷却後約24時間エージングして、起泡性水中油型乳化物を得た。この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またこのホイップドクリームをスポンジケーキにデコレーションし−25℃の冷凍庫で10日間保存後、15℃の定温室で解凍し1日後と2日後上記の方法に従って外観の観察、保形性、組織の荒れ、ひび割れおよび風味を評価した。結果を表3に纏めた。
【0032】
実施例14、実施例15、実施例16、比較例2、比較例3の評価を表3に纏めた。
【表3】
Figure 2004154092
【0033】
【発明の効果】ホイップさせた状態もしくはこれをケーキ等にデコレーションした状態で冷凍保存し解凍しても、型崩れまたはひび割れあるいは組織の荒れあるいは変色、風味劣化が起こすことなく、かつ甘みの少ない優れた風味の冷凍耐性を有する起泡性水中油型乳化物及びその製造法を提供することが可能になった。[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foamable oil-in-water emulsion having freeze resistance and a method for producing the same. The present invention relates to a foamable oil-in-water emulsion (whipped cream) that does not deteriorate the tissue and has a good mouth feel.
[0002]
2. Description of the Related Art Conventionally, whipped creams used for napping or decorating cakes and desserts are severely deteriorated in terms of hygiene and function, and therefore, frozen storage has been proposed. However, the temperature change of freezing and thawing has many adverse effects on the quality of whipped cream. For example, after the decorated cake is frozen and thawed, the cake loses its shape or cracks, becomes rough or discolored, or loses its flavor.
Heretofore, it has been known that the addition of a large amount of sucrose has an effect on the deterioration of appearance, but has a disadvantage that it is too sweet. It has been proposed to use various sugars instead of sucrose.
For example, 8 to 60% by weight of fats and oils, 5 to 50% by weight of sugar alcohols, 2 to 18% by weight of non-fat solids excluding sugar alcohols and an effective amount of an emulsifier, a thickener, a flavor and water, A foaming property that does not impair physical properties before freezing even after cold thawing after whipping (after aeration), characterized in that the weight ratio of water to sugar alcohol is 1: 0.1 to 1.5. An oil-in-water emulsion (see Patent Document 1) has been proposed.
35 to 55% by weight of fats and oils, 1 to 10% by weight of non-fat milk solids, 0.1 to 2% by weight of emulsifier containing polyglycerin fatty acid ester, sorbitol and / or reduced starch saccharified product having an average molecular weight of 500 or less 1 A creamy composition (Patent Literature 2) has been proposed, which contains 10 to 10% by weight, 0.2 to 2% by weight of cyclodextrin, and water.
However, these products had a unique flavor derived from sugar alcohols, lacked a refreshing feeling, and were still in a situation where the effect of freeze resistance was not yet sufficient.
[0003]
[Patent Document 1] JP-A-57-47457 (Claims)
[Patent Document 2] Japanese Patent Application Laid-Open No. 06-269256 (Claims)
[0004]
According to the present invention, even when frozen and stored and thawed in a whipped state or a state in which it is decorated in a cake or the like, it loses its shape or cracks, or has a rough or discolored structure, and has a poor flavor. It is an object of the present invention to provide a foamable oil-in-water emulsion having no sweetness and excellent flavor freezing resistance with little sweetness and a method for producing the same.
[0005]
Means for Solving the Problems The present inventors have conducted intensive studies on the above-mentioned problems, particularly on saccharides in general, and have found that a specific range of starch hydrolyzate can solve the problem of compatibility between freezing resistance and flavor. The inventors have found that they have an effect, and have completed the present invention.
That is, a first aspect of the present invention is an oil-in-water emulsion containing 20 to 50% by weight of fats and oils, 1 to 10% by weight of non-fat milk solids, 2 to 25% by weight of starch decomposed product, and water. A foamable oil-in-water emulsion having a dextrin value (DE) in the range of 3-42 and an average molecular weight in the range of 400-9000, which has freeze resistance. Second, the freeze-resistant foamable oil-in-water type according to the first item, wherein the starch degradation product is one or more selected from dextrin, branched dextrin, maltodextrin, powdered candy, and oligosaccharide. It is an emulsion. Third, the freeze-resistant foamable oil-in-water emulsion according to the first or second aspect, wherein the proportion of milk fat in the fat is 20 to 100% by weight. Fourth, fats and oils 20 to 50% by weight, non-fat milk solids 1 to 10% by weight, starch decomposed products (dextrin value (DE) is in the range of 3 to 42 and average molecular weight is in the range of 400 to 9000) ) A foamable oil-in-water emulsion having freeze resistance, which is obtained by mixing, pre-emulsifying, sterilizing or sterilizing and homogenizing the mixture by mixing 2 to 25% by weight and water as main raw materials. It is a manufacturing method. Fifthly, the production of the foamable oil-in-water emulsion according to the fourth aspect, wherein the starch hydrolyzate is one or more selected from dextrin, branched dextrin, maltodextrin, powdered candy, and oligosaccharides Is the law.
[0006]
DESCRIPTION OF THE PREFERRED EMBODIMENTS The foamable oil-in-water emulsion having freeze resistance according to the present invention comprises 20 to 50% by weight of fats and oils, 1 to 10% by weight of non-fat milk solids, and 2 to 25% by weight of starch decomposed product. Oil-in-water emulsion containing water and water, wherein the dextrin value (DE) of the starch hydrolyzate is in the range of 3 to 42 and the average molecular weight is in the range of 400 to 9000. Things.
Examples of the fats and oils of the present invention include animal and plant fats and oils and their hardened fats, alone or in combination of two or more, or those obtained by subjecting these to various chemical or physical treatments. Such fats and oils include soybean oil, cottonseed oil, corn oil, safflower oil, olive oil, palm oil, rapeseed oil, rice bran oil, sesame oil, kapok oil, coconut oil, palm kernel oil, cocoa butter, milk fat, lard, fish oil, whale oil, etc. And processed oils and fats having a melting point of about 15 to 40 ° C., such as animal and vegetable oils and fats, their hardened oils, fractionated oils, and transesterified oils.
20 to 50% by weight of fats and oils is required, preferably 25 to 50% by weight, more preferably 25 to 45% by weight. When the amount of the fat or oil is lower than 20% by weight, the foaming property when foaming the oil-in-water emulsion tends to deteriorate. If it exceeds 50% by weight, the viscosity of the oil-in-water emulsion becomes high, and the plasticizing phenomenon (bottom) tends to occur during aging.
In the present invention, the proportion of milk fat in fats and oils is preferably 20 to 100% by weight, more preferably 30 to 100% by weight, and even more preferably 40 to 100% by weight in terms of flavor.
[0007] The non-fat milk solid content of the present invention refers to a component obtained by subtracting milk fat from the total solid content of milk, and includes milk, skim milk, sweetened condensed milk, sugar-free condensed milk, whole fat powdered milk, skim milk powder, and buttermilk. And milk-derived raw materials such as buttermilk powder, whey, whey powder, casein, sodium caseinate, lactalbumin, fresh cream, etc., and it is preferable to use these alone or as a mixture of two or more.
The non-fat milk solid content is required to be 1 to 10% by weight, preferably 2 to 8% by weight, more preferably 2 to 6% by weight. When the solid content of non-fat milk is lower than 1% by weight, the emulsion stability of the oil-in-water emulsion is deteriorated, the milky feeling is reduced and the flavor is deteriorated.
If it exceeds 10% by weight, the viscosity of the oil-in-water emulsion becomes high, and the plasticization phenomenon (bottom) tends to occur during aging.
[0008] The starch hydrolyzate of the present invention is obtained by hydrolyzing starch with an acid or an enzyme in a homogeneous reaction system (gelatinizing) to obtain various intermediate products having different compositions depending on the reaction conditions. These decomposed products have a common property, although they have different degrees of solubility in cold water, but have a sweet taste, and are generally called starch-degrading sugars. In this case, a substance which has a low degree of decomposition and has almost no sweetness is extracted, and is referred to as a starch decomposed product by avoiding the name of sugar. The sweetness is preferably 30 or less. The degree of sweetness is the value of the degree of sweetness of the starch hydrolyzate compared to the sucrose solution. The minimum concentration (threshold value) at which sweetness is felt by a panelist (subject) through a sensory test, or the concentration of sucrose solution ( (For example, a 5% solution) by comparing the concentrations of test sweeteners having the same sweetness intensity.
The dextrin value (DE) of the starch hydrolyzate must be in the range of 3-42 and the average molecular weight must be in the range of 400-9000. More preferably, the dextrin value (DE) of the starch hydrolyzate must be in the range of 8-42 and the average molecular weight must be in the range of 400-3000.
DE is an abbreviation of Dextrose Equivalent and means the degree of hydrolysis of a starch hydrolyzate and is represented by the following formula.
DE = direct reducing sugar (glucose conversion) ÷ solid content × 100
The average molecular weight of the starch hydrolyzate was measured by gel filtration chromatography.
As the starch used as a raw material of the starch degradation product, starch such as corn, waxy corn, potato, sweet potato, tapioca and the like can be used.
The amount of the starch hydrolyzate means the solid content, which is required to be 2 to 25% by weight, preferably 4 to 22% by weight, more preferably 5 to 22% by weight. When the starch decomposition product is lower than 2% by weight, the expected effect of freezing resistance is hardly obtained. If it exceeds 25% by weight, the viscosity of the oil-in-water emulsion becomes high, and the plasticization phenomenon (bottom) tends to occur during aging.
[0010] In producing the freeze-resistant foamable oil-in-water emulsion of the present invention, lecithin, monoglyceride, sorbitan fatty acid ester, propylene glycol fatty acid ester, polyglycerin fatty acid ester, polyoxygen, which have been conventionally used. Synthetic emulsifiers such as ethylene sorbitan fatty acid ester and sucrose fatty acid ester can be used.
For the foamable oil-in-water emulsion having freeze resistance of the present invention, it is preferable to use various salts, such as hexametaphosphate, diphosphate, sodium citrate, polyphosphate, and sodium bicarbonate. Are desirably used alone or in combination of two or more.
Other stabilizers, fragrances, coloring agents, preservatives and the like can be used as desired.
The method for producing the foamable oil-in-water emulsion having freeze resistance according to the present invention can be carried out in the same manner as that for producing general creams. Specifically, fats and oils 20 to 50% by weight, non-fat milk solids 1 to 10% by weight, starch decomposition products (dextrin value (DE) is in the range of 8 to 42 and average molecular weight is in the range of 400 to 9000) ) These can be obtained by mixing those containing 2 to 25% by weight and water as main raw materials, pre-emulsifying, sterilizing or sterilizing and homogenizing.
It is preferable to sterilize the foamable oil-in-water emulsion from the viewpoint of storage stability.
There are two types of sterilization treatments, an indirect heating method and a direct heating method. As the indirect heating treatment apparatus, an APV plate type UHT processing apparatus (manufactured by APV Co., Ltd.) and a CP-UHT sterilization apparatus (Crimati. Examples include, but are not particularly limited to, Sturger Tubular Type Sterilizer (manufactured by Torque Co., Ltd.) and UHT Sterilizer of Conserm scraping type (manufactured by Tetra Pak Alpha Label Co., Ltd.). . Examples of the direct heating sterilizer include an ultra-high temperature sterilizer (manufactured by Iwai Machinery Co., Ltd.), an operation sterilizer (manufactured by Tetra Pak Alfa Laval Co., Ltd.), and a VTIS sterilizer (Tetra Pak Alfa Laval stock. UHT sterilizer such as Lagiar UHT Sterilizer (Lagiar Co., Ltd.) and Paralyzer (Pash & Silkeborg Co., Ltd.), and any of these devices may be used.
[0014]
The present invention will be described in more detail with reference to the following examples, but the spirit of the present invention is not limited to the following examples. In addition, in an example,% and a part mean a weight basis. . In particular, it goes without saying that the order of addition of the additives or the order of emulsification such as adding the oil phase to the water phase or the water phase to the oil phase is not limited by the following examples. The results were evaluated by the following methods.
[0015]
A The oil-in-water emulsion was evaluated for viscosity, average particle size, solid content, and boiling test (stability of the oil-in-water emulsion).
The method is
Viscosity: The viscosity of the oil-in-water emulsion was measured with a B-type viscometer (manufactured by Tokyo Keiki Co., Ltd.) under the condition of No. 2 rotor and 60 rpm.
Average particle diameter: The average particle diameter is a particle diameter corresponding to 50% of the cumulative distribution on a particle diameter volume basis, and is a value measured by a laser diffraction type particle size distribution apparatus (LA500, manufactured by Horiba, Ltd.).
Solid content: Microwave Moisture / Solid Analyzer (manufactured by LAB WAVE 9000 CEM Corporation), endpoint method
Bote test: 50 g of the oil-in-water emulsion was placed in a 100 ml beaker, incubated at 20 ° C for 2 hours, and then checked for the occurrence of boil when stirred for 5 minutes.
[0016]
B. Evaluation method when an oil-in-water emulsion is foamed
Figure 2004154092
[0017]
Example 1
0.35 parts of lecithin is added to 10.0 parts of a medium melting point part of palm oil (36 ° C.), 10.0 parts of hardened soy palm oil, and 10.0 parts of butterfat, and mixed to form an oil phase.
Separately, in 60.88 parts of water, 3.5 parts of skim milk powder, branched dextrin (trade name: Paindex # 100, DE3, manufactured by Matsutani Chemical Industry Co., Ltd., raw material waxy corn starch, solid content 96%, average molecular weight 8500, sweetness 2) 5.0 parts, sugar ester (manufactured by Mitsubishi Chemical Foods Co., Ltd., trade name: S-570) 0.2 parts, sodium hexametaphosphate 0.05 parts, and sodium bicarbonate 0.02 parts are dissolved. Prepare the aqueous phase. The oil phase and the aqueous phase were stirred at 65 ° C. for 30 minutes with a homomixer and pre-emulsified, and then subjected to a sterilization treatment by a direct heating method at 144 ° C. for 4 seconds by an ultra-high temperature sterilizer (manufactured by Iwai Machinery Co., Ltd.). After performing, 45Kg / cm 2 And immediately cooled to 5 ° C. After cooling, the mixture was aged for about 24 hours to obtain a foamable oil-in-water emulsion. To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above-mentioned whipping method, and overrun, shape retention and water separation were measured according to the above-mentioned methods. This whipped cream was decorated in a sponge cake, stored in a freezer at -25 ° C for 10 days, thawed in a constant temperature room at 15 ° C, and after 1 and 2 days, observed for appearance, shape retention, and roughened tissue according to the above method. , Cracks and flavor were evaluated. The results are summarized in Table 1.
[0018]
Example 2 to Example 8
Example 2
5.0 parts of the branched dextrin of Example 1 was replaced with 5.0 parts of a branched dextrin (manufactured by Sanmatsu Kogyo Co., Ltd., trade name: BLD8, DE8, raw material corn starch, solid content 96%, average molecular weight 2000, sweetness 5). The processing was performed in the same manner as in Example 1 except for changing to the above, and the same evaluation was performed.
Example 3
5.0 parts of the branched dextrin of Example 1 was replaced with dextrin (trade name: Paindex # 1, DE8, raw material tapioca starch, solid content 96%, average molecular weight 2300, sweetness 5) manufactured by Matsutani Chemical Industry Co., Ltd. Except for changing to 0 parts, all were processed in the same manner as in Example 1 and evaluated in the same manner.
Example 4
5.0 parts of the branched dextrin of Example 1 was converted to maltodextrin (trade name: TK-16, DE17, raw material tapioca starch, solid content 96%, average molecular weight 910, sweetness 16) (manufactured by Matsutani Chemical Industry Co., Ltd.) Except for changing to 0 parts, all were processed in the same manner as in Example 1 and evaluated in the same manner.
Example 5
5.0 parts of the branched dextrin of Example 1 was maltodextrin (trade name: Paindex # 4, DE19, manufactured by Matsutani Chemical Industry Co., Ltd., raw material tapioca starch, solid content 96%, average molecular weight 990, sweetness 18) 5 The same processing and evaluation as in Example 1 were performed except that the amount was changed to 0.0 part.
Example 6
5. 5.0 parts of the branched dextrin of Example 1 was powdered candy (trade name: Paindex # 3, DE25, raw material corn starch, solid content 96%, average molecular weight 680, sweetness 25) manufactured by Matsutani Chemical Industry Co., Ltd. Except for changing to 0 parts, all were processed in the same manner as in Example 1 and evaluated in the same manner.
Example 7
5.0 parts of the branched dextrin of Example 1 was converted into 5.0 parts of powdered candy (trade name: MPD, DE25, raw material sweet potato starch, solid content 96%, average molecular weight 680, degree of sweetness 25, manufactured by Matsutani Chemical Industry Co., Ltd.) The processing was performed in the same manner as in Example 1 except that the above was replaced with the same evaluation.
Example 8
5.0 parts of the branched dextrin of Example 1 was converted to an oligosaccharide (manufactured by Sanwa Starch Industry Co., Ltd., trade name: linear oligosaccharide oligotose, DE40, raw material corn starch, potato starch, sweet potato starch, solid content 98%, average molecular weight) All treatments were carried out in the same manner as in Example 1 except for changing to 420, sweetness 30) and 5.0 parts, and the same evaluation was performed.
[0019]
Table 1 summarizes the evaluations of Examples 1 to 8.
[Table 1]
Figure 2004154092
[0020]
Comparative Example 1
The procedure was carried out in the following manner by replacing 5 parts of the starch hydrolyzate in Examples 1 to 8 with water.
0.35 parts of lecithin is added to 10.0 parts of a medium melting point part of palm oil (36 ° C.), 10.0 parts of hardened soy palm oil, and 10.0 parts of butterfat, and mixed to form an oil phase.
Separately, in 65.88 parts of water, 3.5 parts of skim milk powder, 0.2 parts of sugar ester (manufactured by Mitsubishi Chemical Foods Co., Ltd., trade name: S-570), 0.05 part of sodium hexametaphosphate, sodium bicarbonate Dissolve 0.02 parts to prepare an aqueous phase. The oil phase and the aqueous phase were stirred at 65 ° C. for 30 minutes with a homomixer and pre-emulsified, and then subjected to a sterilization treatment by a direct heating method at 144 ° C. for 4 seconds by an ultra-high temperature sterilizer (manufactured by Iwai Machinery Co., Ltd.). After performing, 45Kg / cm 2 And immediately cooled to 5 ° C. After cooling, the mixture was aged for about 24 hours to obtain a foamable oil-in-water emulsion. To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above-mentioned whipping method, and overrun, shape retention and water separation were measured according to the above-mentioned methods. This whipped cream was decorated in a sponge cake, stored in a freezer at -25 ° C for 10 days, thawed in a constant temperature room at 15 ° C, and after 1 and 2 days, observed for appearance, shape retention, and roughened tissue according to the above method. , Cracks and flavor were evaluated. The results are summarized in Table 2.
[0021]
Example 9
0.35 parts of lecithin is added to 10.0 parts of a medium melting point part of palm oil (36 ° C.), 10.0 parts of hardened soy palm oil, and 10.0 parts of butterfat, and mixed to form an oil phase.
Separately from this, in 59.88 parts of water, 3.5 parts of skim milk powder, candy powder (trade name: MPD, DE25, manufactured by Matsutani Chemical Industry Co., Ltd., raw material sweet potato starch, solid content 96%, average molecular weight 680, sweetness) 25) 3.0 parts, oligosaccharide (manufactured by Sanwa Starch Industry Co., Ltd., trade name: linear oligosaccharide oligotose, DE40, raw material corn starch, potato starch, sweet potato starch, solid content 98%, average molecular weight 420, sweetness 30) ) 3.0 parts, 0.2 parts of sugar ester (manufactured by Mitsubishi Chemical Foods Co., Ltd., trade name: S-570), 0.05 part of sodium hexametaphosphate, and 0.02 part of sodium bicarbonate are dissolved to prepare an aqueous phase. . The oil phase and the aqueous phase were stirred at 65 ° C. for 30 minutes with a homomixer and pre-emulsified, and then subjected to a sterilization treatment by a direct heating method at 144 ° C. for 4 seconds by an ultra-high temperature sterilizer (manufactured by Iwai Machinery Co., Ltd.). After performing, 45Kg / cm 2 And immediately cooled to 5 ° C. After cooling, the mixture was aged for about 24 hours to obtain a foamable oil-in-water emulsion. To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above-mentioned whipping method, and overrun, shape retention and water separation were measured according to the above-mentioned methods. This whipped cream was decorated in a sponge cake, stored in a freezer at -25 ° C for 10 days, thawed in a constant temperature room at 15 ° C, and after 1 and 2 days, observed for appearance, shape retention, and roughened tissue according to the above method. , Cracks and flavor were evaluated. The results are summarized in Table 2.
[0022]
Example 10
0.35 parts of lecithin is added to 10.0 parts of a medium melting point part of palm oil (36 ° C.), 10.0 parts of hardened soy palm oil, and 10.0 parts of butterfat, and mixed to form an oil phase.
Separately, in 55.88 parts of water, 3.5 parts of skim milk powder, powdered candy (trade name: MPD, DE25, manufactured by Matsutani Chemical Industry Co., Ltd., raw material sweet potato starch, solid content 96%, average molecular weight 680, sweetness) 25) 5.0 parts, oligosaccharide (manufactured by Sanwa Starch Kogyo Co., Ltd., trade name: linear oligosaccharide oligotose, DE40, raw material corn starch, potato starch, sweet potato starch, solid content 98%, average molecular weight 420, sweetness 30) ) 5.0 parts, sugar ester (manufactured by Mitsubishi Chemical Foods Co., Ltd., trade name: S-570) 0.2 part, sodium hexametaphosphate 0.05 part, and sodium bicarbonate 0.02 part are dissolved to prepare an aqueous phase. . The oil phase and the aqueous phase were stirred at 65 ° C. for 30 minutes with a homomixer and pre-emulsified, and then subjected to a sterilization treatment by a direct heating method at 144 ° C. for 4 seconds by an ultra-high temperature sterilizer (manufactured by Iwai Machinery Co., Ltd.). After performing, 45Kg / cm 2 And immediately cooled to 5 ° C. After cooling, the mixture was aged for about 24 hours to obtain a foamable oil-in-water emulsion. To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above-mentioned whipping method, and overrun, shape retention and water separation were measured according to the above-mentioned methods. This whipped cream was decorated in a sponge cake, stored in a freezer at -25 ° C for 10 days, thawed in a constant temperature room at 15 ° C, and after 1 and 2 days, observed for appearance, shape retention, and roughened tissue according to the above method. , Cracks and flavor were evaluated. The results are summarized in Table 2.
[0023]
Example 11
0.35 parts of lecithin is added to 10.0 parts of a medium melting point part of palm oil (36 ° C.), 10.0 parts of hardened soy palm oil, and 10.0 parts of butterfat, and mixed to form an oil phase.
Separately from this, in 51.88 parts of water, 3.5 parts of skim milk powder, 3.5 parts of powdered candy (Matsuya Chemical Industry Co., Ltd., trade name: MPD, DE25, raw material sweet potato starch, solid content 96%, average molecular weight 680, sweetness) 25) 7.0 parts, oligosaccharide (manufactured by Sanwa Starch Industry Co., Ltd., trade name: linear oligosaccharide oligotose, DE40, raw material corn starch, potato starch, sweet potato starch, solid content 98%, average molecular weight 420, sweetness 30) ) 7.0 parts, 0.2 part of sugar ester (trade name: S-570, manufactured by Mitsubishi Chemical Foods, Inc.), 0.05 part of sodium hexametaphosphate, and 0.02 part of sodium bicarbonate are dissolved to prepare an aqueous phase. . The oil phase and the aqueous phase were stirred at 65 ° C. for 30 minutes with a homomixer and pre-emulsified, and then subjected to a sterilization treatment by a direct heating method at 144 ° C. for 4 seconds by an ultra-high temperature sterilizer (manufactured by Iwai Machinery Co., Ltd.). After performing, 45Kg / cm 2 And immediately cooled to 5 ° C. After cooling, the mixture was aged for about 24 hours to obtain a foamable oil-in-water emulsion. To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above-mentioned whipping method, and overrun, shape retention and water separation were measured according to the above-mentioned methods. This whipped cream was decorated in a sponge cake, stored in a freezer at -25 ° C for 10 days, thawed in a constant temperature room at 15 ° C, and after 1 and 2 days, observed for appearance, shape retention, and roughened tissue according to the above method. , Cracks and flavor were evaluated. The results are summarized in Table 2.
[0024]
Example 12
0.35 parts of lecithin is added to 10.0 parts of a medium melting point part of palm oil (36 ° C.), 10.0 parts of hardened soy palm oil, and 10.0 parts of butterfat, and mixed to form an oil phase.
Separately from this, in 45.88 parts of water, 3.5 parts of skim milk powder, powdered candy (trade name: MPD, DE25, manufactured by Matsutani Chemical Industry Co., Ltd., raw material sweet potato starch, solid content 96%, average molecular weight 680, sweetness) 25) 10.0 parts, oligosaccharide (manufactured by Sanwa Starch Industry Co., Ltd., trade name: linear oligosaccharide oligotose, DE40, raw material corn starch, potato starch, sweet potato starch, solid content 98%, average molecular weight 420, sweetness 30) ) 10.0 parts, sugar ester (manufactured by Mitsubishi Chemical Foods Co., Ltd., trade name: S-570) 0.2 part, sodium hexametaphosphate 0.05 part, and sodium bicarbonate 0.02 part are dissolved to prepare an aqueous phase. . The oil phase and the aqueous phase were stirred at 65 ° C. for 30 minutes with a homomixer and pre-emulsified, and then subjected to a sterilization treatment by a direct heating method at 144 ° C. for 4 seconds by an ultra-high temperature sterilizer (manufactured by Iwai Machinery Co., Ltd.). After performing, 45Kg / cm 2 And immediately cooled to 5 ° C. After cooling, the mixture was aged for about 24 hours to obtain a foamable oil-in-water emulsion. To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above-mentioned whipping method, and overrun, shape retention and water separation were measured according to the above-mentioned methods. This whipped cream was decorated in a sponge cake, stored in a freezer at -25 ° C for 10 days, thawed in a constant temperature room at 15 ° C, and after 1 and 2 days, observed for appearance, shape retention, and roughened tissue according to the above method. , Cracks and flavor were evaluated. The results are summarized in Table 2.
[0025]
Example 13
0.35 parts of lecithin is added to 10.0 parts of a medium melting point part of palm oil (36 ° C.), 10.0 parts of hardened soy palm oil, and 10.0 parts of butterfat, and mixed to form an oil phase.
Separately from this, in 41.88 parts of water, 3.5 parts of skim milk powder, candy powder (trade name: MPD, DE25, manufactured by Matsutani Chemical Industry Co., Ltd., raw material sweet potato starch, solid content 96%, average molecular weight 680, sweetness) 25) 12.0 parts, oligosaccharide (manufactured by Sanwa Starch Industry Co., Ltd., trade name: linear oligosaccharide oligotose, DE40, raw material corn starch, potato starch, sweet potato starch, solid content 98%, average molecular weight 420, sweetness 30) ) 12.0 parts, sugar ester (manufactured by Mitsubishi Chemical Foods Co., Ltd., trade name: S-570) 0.2 part, sodium hexametaphosphate 0.05 part, and sodium bicarbonate 0.02 part are dissolved to prepare an aqueous phase. . The oil phase and the aqueous phase were stirred at 65 ° C. for 30 minutes with a homomixer and pre-emulsified, and then subjected to a sterilization treatment by a direct heating method at 144 ° C. for 4 seconds by an ultra-high temperature sterilizer (manufactured by Iwai Machinery Co., Ltd.). After performing, 45Kg / cm 2 And immediately cooled to 5 ° C. After cooling, the mixture was aged for about 24 hours to obtain a foamable oil-in-water emulsion. To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above-mentioned whipping method, and overrun, shape retention and water separation were measured according to the above-mentioned methods. This whipped cream was decorated in a sponge cake, stored in a freezer at -25 ° C for 10 days, thawed in a constant temperature room at 15 ° C, and after 1 and 2 days, observed for appearance, shape retention, and roughened tissue according to the above method. , Cracks and flavor were evaluated. The results are summarized in Table 2.
[0026]
Table 2 summarizes the evaluations of Comparative Example 1 and Examples 9 to 13.
[Table 2]
Figure 2004154092
[0027]
Example 14
8.55 parts of a medium melting point part of palm oil (36 ° C.), 8.5 parts of hardened soy palm oil, and 8.5 parts of butterfat are mixed with 0.35 part of lecithin and dissolved to form an oil phase.
Separately from this, in 55.38 parts of water, 3.5 parts of skim milk powder, powdered candy (trade name: MPD, DE25, manufactured by Matsutani Chemical Industry Co., Ltd., raw material sweet potato starch, solid content 96%, average molecular weight 680, sweetness) 25) 7.5 parts, oligosaccharide (manufactured by Sanwa Starch Industry Co., Ltd., trade name: linear oligosaccharide oligotose, DE40, raw material corn starch, potato starch, sweet potato starch, solid content 98%, average molecular weight 420, sweetness 30) ) 7.5 parts, 0.2 part of sugar ester (trade name: S-570, manufactured by Mitsubishi Chemical Foods Co., Ltd.), 0.05 part of sodium hexametaphosphate, and 0.02 part of sodium bicarbonate are dissolved to prepare an aqueous phase. . The oil phase and the aqueous phase were stirred at 65 ° C. for 30 minutes with a homomixer and pre-emulsified, and then subjected to a sterilization treatment by a direct heating method at 144 ° C. for 4 seconds by an ultra-high temperature sterilizer (manufactured by Iwai Machinery Co., Ltd.). After performing, 45Kg / cm 2 And immediately cooled to 5 ° C. After cooling, the mixture was aged for about 24 hours to obtain a foamable oil-in-water emulsion. To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above-mentioned whipping method, and overrun, shape retention and water separation were measured according to the above-mentioned methods. This whipped cream was decorated in a sponge cake, stored in a freezer at -25 ° C for 10 days, thawed in a constant temperature room at 15 ° C, and after 1 and 2 days, observed for appearance, shape retention, and roughened tissue according to the above method. , Cracks and flavor were evaluated. The results are summarized in Table 3.
[0028]
Example 15
0.35 parts of lecithin is added to 15.0 parts of medium melting point part of palm oil (36 ° C.), 15.0 parts of hardened soybean palm oil, and 15.0 parts of butterfat, and mixed to form an oil phase.
Separately, to 44.88 parts of water, 3.5 parts of skim milk powder, 3.5 parts of powdered candy (Matsuya Chemical Industry Co., Ltd., trade name: MPD, DE25, raw material sweet potato starch, solid content 96%, average molecular weight 680, sweetness) 25) 3.0 parts, oligosaccharide (manufactured by Sanwa Starch Industry Co., Ltd., trade name: linear oligosaccharide oligotose, DE40, raw material corn starch, potato starch, sweet potato starch, solid content 98%, average molecular weight 420, sweetness 30) ) 3.0 parts, 0.2 parts of sugar ester (manufactured by Mitsubishi Chemical Foods Co., Ltd., trade name: S-570), 0.05 part of sodium hexametaphosphate, and 0.02 part of sodium bicarbonate are dissolved to prepare an aqueous phase. . The oil phase and the aqueous phase were stirred at 65 ° C. for 30 minutes with a homomixer and pre-emulsified, and then subjected to a sterilization treatment by a direct heating method at 144 ° C. for 4 seconds by an ultra-high temperature sterilizer (manufactured by Iwai Machinery Co., Ltd.). After performing, 45Kg / cm 2 And immediately cooled to 5 ° C. After cooling, the mixture was aged for about 24 hours to obtain a foamable oil-in-water emulsion. To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above-mentioned whipping method, and overrun, shape retention and water separation were measured according to the above-mentioned methods. This whipped cream was decorated in a sponge cake, stored in a freezer at -25 ° C for 10 days, thawed in a constant temperature room at 15 ° C, and after 1 and 2 days, observed for appearance, shape retention, and roughened tissue according to the above method. , Cracks and flavor were evaluated. The results are summarized in Table 3.
[0029]
Example 16
0.25 parts of lecithin is added to 5.0 parts of a medium melting point part of palm oil (36 ° C.) and 11.2 parts of butterfat to form a mixed oil phase.
Separately, in 31.48 parts of water, 3.9 parts of skim milk powder, 40.0 parts of fresh cream (solid content 51%, oil content 47%), powdered candy (Matsuya Chemical Industry Co., Ltd., trade name: MPD, DE25, raw material sweet potato starch, solid content 96%, average molecular weight 680, sweetness 25) 8.0 parts, sugar ester (manufactured by Mitsubishi Chemical Foods Co., Ltd., trade name: S-570) 0.1 part, sodium hexametaphosphate An aqueous phase is prepared by dissolving 0.05 part and baking soda 0.02 part. The oil phase and the aqueous phase were stirred at 65 ° C. for 30 minutes with a homomixer and pre-emulsified, and then subjected to a sterilization treatment by a direct heating method at 144 ° C. for 4 seconds by an ultra-high temperature sterilizer (manufactured by Iwai Machinery Co., Ltd.). After performing, 45Kg / cm 2 And immediately cooled to 5 ° C. After cooling, the mixture was aged for about 24 hours to obtain a foamable oil-in-water emulsion. To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above-mentioned whipping method, and overrun, shape retention and water separation were measured according to the above-mentioned methods. This whipped cream was decorated in a sponge cake, stored in a freezer at -25 ° C for 10 days, thawed in a constant temperature room at 15 ° C, and after 1 and 2 days, observed for appearance, shape retention, and roughened tissue according to the above method. , Cracks and flavor were evaluated. The results are summarized in Table 3.
[0030]
Comparative Example 2
0.35 part of lecithin is added to 5.0 parts of a medium melting point part of palm oil (36 ° C.), 5.0 parts of hardened soybean palm oil, and 5.0 parts of butterfat and mixed to form an oil phase.
Separately from this, in 56.88 parts of water, 3.5 parts of skim milk powder, powdered candy (trade name: MPD, DE25, manufactured by Matsutani Chemical Industry Co., Ltd., raw material sweet potato starch, solid content 96%, average molecular weight 680, sweetness) 25) 12.0 parts, oligosaccharide (manufactured by Sanwa Starch Industry Co., Ltd., trade name: linear oligosaccharide oligotose, DE40, raw material corn starch, potato starch, sweet potato starch, solid content 98%, average molecular weight 420, sweetness 30) ) 12.0 parts, sugar ester (manufactured by Mitsubishi Chemical Foods Co., Ltd., trade name: S-570) 0.2 part, sodium hexametaphosphate 0.05 part, and sodium bicarbonate 0.02 part are dissolved to prepare an aqueous phase. . The oil phase and the aqueous phase were stirred at 65 ° C. for 30 minutes with a homomixer and pre-emulsified, and then subjected to a sterilization treatment by a direct heating method at 144 ° C. for 4 seconds by an ultra-high temperature sterilizer (manufactured by Iwai Machinery Co., Ltd.). After performing, 45Kg / cm 2 And immediately cooled to 5 ° C. After cooling, the mixture was aged for about 24 hours to obtain a foamable oil-in-water emulsion. To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above-mentioned whipping method, and overrun, shape retention and water separation were measured according to the above-mentioned methods. This whipped cream was decorated in a sponge cake, stored in a freezer at -25 ° C for 10 days, thawed in a constant temperature room at 15 ° C, and after 1 and 2 days, observed for appearance, shape retention, and roughened tissue according to the above method. , Cracks and flavor were evaluated. The results are summarized in Table 3.
[0031]
Comparative Example 3
0.25 part of lecithin is added to 18.0 parts of medium melting point part of palm oil (36 ° C.), 18.0 parts of hardened soybean palm oil and 18.0 parts of butterfat, and mixed to form an oil phase.
Separately, in 40.93 parts of water, 3.5 parts of skim milk powder, powdered candy (trade name: MPD, DE25, manufactured by Matsutani Chemical Industry Co., Ltd., raw material sweet potato starch, solid content 96%, average molecular weight 680, sweetness) 25) 0.5 part, oligosaccharide (manufactured by Sanwa Starch Industry Co., Ltd., trade name: linear oligosaccharide oligotose, DE40, raw material corn starch, potato starch, sweet potato starch, solid content 98%, average molecular weight 420, sweetness 30) ) 0.5 part, sugar ester (manufactured by Mitsubishi Chemical Foods Co., Ltd., trade name: S-570) 0.2 part, sodium hexametaphosphate 0.05 part, and sodium bicarbonate 0.02 part are dissolved to prepare an aqueous phase. . The oil phase and the aqueous phase were stirred at 65 ° C. for 30 minutes with a homomixer and pre-emulsified, and then subjected to a sterilization treatment by a direct heating method at 144 ° C. for 4 seconds by an ultra-high temperature sterilizer (manufactured by Iwai Machinery Co., Ltd.). After performing, 45Kg / cm 2 And immediately cooled to 5 ° C. After cooling, the mixture was aged for about 24 hours to obtain a foamable oil-in-water emulsion. To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above-mentioned whipping method, and overrun, shape retention and water separation were measured according to the above-mentioned methods. This whipped cream was decorated in a sponge cake, stored in a freezer at -25 ° C for 10 days, thawed in a constant temperature room at 15 ° C, and after 1 and 2 days, observed for appearance, shape retention, and roughened tissue according to the above method. , Cracks and flavor were evaluated. The results are summarized in Table 3.
[0032]
Table 3 summarizes the evaluations of Example 14, Example 15, Example 16, Comparative Example 2, and Comparative Example 3.
[Table 3]
Figure 2004154092
[0033]
Even when frozen and stored and thawed in a whipped state or in a state decorated with a cake or the like, it does not lose its shape, cracks, rough or discolored tissue, or deteriorates in flavor, and has little sweetness. It has become possible to provide a foamable oil-in-water emulsion having a freezing resistance and a production method thereof.

Claims (5)

油脂20〜50重量%、無脂乳固形分1〜10重量%、澱粉分解物2〜25重量%及び水を含有する水中油型乳化物において、澱粉分解物のデキストリン価(DE)が3〜42の範囲であり且つ平均分子量が400〜9000の範囲であることを特徴とする冷凍耐性を有する起泡性水中油型乳化物。In an oil-in-water emulsion containing 20 to 50% by weight of fats and oils, 1 to 10% by weight of non-fat milk solids, 2 to 25% by weight of starch hydrolyzate and water, the dextrin value (DE) of the starch hydrolyzate is 3 to 42. A foamable oil-in-water emulsion having freeze resistance, which has a range of 42 and an average molecular weight of 400 to 9000. 澱粉分解物がデキストリン、分枝デキストリン、マルトデキストリン、粉アメ、オリゴ糖から選ばれてなる1種又は2種以上である、請求項1記載の冷凍耐性を有する起泡性水中油型乳化物。The freeze-resistant foamable oil-in-water emulsion according to claim 1, wherein the starch degradation product is one or more selected from dextrin, branched dextrin, maltodextrin, powdered candy, and oligosaccharide. 油脂中に占める乳脂の割合が20〜100重量%である、請求項1又は請求項2記載の冷凍耐性を有する起泡性水中油型乳化物。3. The foamable oil-in-water emulsion having freeze resistance according to claim 1, wherein the proportion of milk fat in the fat is 20 to 100% by weight. 油脂20〜50重量%、無脂乳固形分1〜10重量%、澱粉分解物(デキストリン価(DE)が3〜42の範囲であり且つ平均分子量が400〜9000の範囲である)2〜25重量%及び水を主要原料とするこれらのものを混合し、予備乳化、殺菌又は滅菌処理し均質化処理することを特徴とする冷凍耐性を有する起泡性水中油型乳化物の製造法。20 to 50% by weight of fats and oils, 1 to 10% by weight of solid content of non-fat milk, starch decomposed product (dextrin value (DE) is in the range of 3 to 42 and average molecular weight is in the range of 400 to 9000) A method for producing a foamable oil-in-water emulsion having freezing resistance, which comprises mixing, by weight, and water as main raw materials, preliminary emulsification, sterilization or sterilization, and homogenization. 澱粉分解物がデキストリン、分枝デキストリン、マルトデキストリン、粉アメ、オリゴ糖から選ばれてなる1種又は2種以上である、請求項4記載の起泡性水中油型乳化物の製造法。The method for producing a foamable oil-in-water emulsion according to claim 4, wherein the starch hydrolyzate is at least one selected from dextrin, branched dextrin, maltodextrin, powdered candy, and oligosaccharide.
JP2002325139A 2002-11-08 2002-11-08 Foamable oil-in-water emulsion with freezing resistance Expired - Fee Related JP4506072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325139A JP4506072B2 (en) 2002-11-08 2002-11-08 Foamable oil-in-water emulsion with freezing resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325139A JP4506072B2 (en) 2002-11-08 2002-11-08 Foamable oil-in-water emulsion with freezing resistance

Publications (2)

Publication Number Publication Date
JP2004154092A true JP2004154092A (en) 2004-06-03
JP4506072B2 JP4506072B2 (en) 2010-07-21

Family

ID=32804456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325139A Expired - Fee Related JP4506072B2 (en) 2002-11-08 2002-11-08 Foamable oil-in-water emulsion with freezing resistance

Country Status (1)

Country Link
JP (1) JP4506072B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253390A (en) * 2004-03-12 2005-09-22 Nissei Co Ltd Oil-in-water emulsified composition, frozen dessert and whipped cream
JP2006025690A (en) * 2004-07-15 2006-02-02 Fuji Oil Co Ltd Oil-in-water emulsified product and method for producing food using the same
WO2009005107A1 (en) 2007-07-02 2009-01-08 San-Ei Gen F.F.I., Inc. Processed food composition containing dextrin
JP2010022305A (en) * 2008-07-23 2010-02-04 Fuji Oil Co Ltd Foaming oil-in-water type emulsion
JP2010104371A (en) * 2009-12-21 2010-05-13 Nissei Co Ltd Oil-in-water emulsified composition, and whipped cream
JP2010207190A (en) * 2009-03-12 2010-09-24 Kaneka Corp Foaming oil-in-water emulsified oil-and-fat composition
JP2011024532A (en) * 2009-07-28 2011-02-10 Nippon Shokuhin Kako Co Ltd Whipped cream, method for producing whipped cream, and method for producing cake
WO2015056203A1 (en) * 2013-10-16 2015-04-23 International Foodstuffs Co. Llc A functional cream base powder composition and products made thereof
JP2016178883A (en) * 2015-03-24 2016-10-13 株式会社Adeka Whip cream
JP2018078863A (en) * 2016-11-18 2018-05-24 物産フードサイエンス株式会社 Milk feeling improver
JP2018100247A (en) * 2016-12-21 2018-06-28 松浦薬業株式会社 Dextrin formulation
WO2018123253A1 (en) * 2016-12-27 2018-07-05 株式会社J-オイルミルズ Starch for whipped cream, and whipped cream including said starch

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6198469B2 (en) * 2013-06-04 2017-09-20 キユーピー株式会社 Oil-in-water emulsified seasoning

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118405A (en) * 1977-03-25 1978-10-16 Asahi Denka Kogyo Kk Foamable oil-in-water emulsified fats
JPS5851864A (en) * 1981-09-18 1983-03-26 Nippon Oil & Fats Co Ltd Frozen whipped cream
JPH06269256A (en) * 1993-03-18 1994-09-27 Nisshin Oil Mills Ltd:The Creamy composition resistant to freezing and thawing and its production
JPH08280346A (en) * 1995-04-14 1996-10-29 Asahi Denka Kogyo Kk Oil-in-water type emulsified fat and its production
JPH0994061A (en) * 1995-09-29 1997-04-08 Takanashi Nyugyo Kk Creams having freeze resistance and thir production
JPH11346644A (en) * 1998-06-09 1999-12-21 Chibori:Kk Fresh cake and its production
JP2000001502A (en) * 1998-04-27 2000-01-07 Roquette Freres Production of low-de starch hydrolyzate by nano- filtration fractionation, product obtained thereby, and use of such product
JP2001352901A (en) * 2000-06-12 2001-12-25 Taiyo Yushi Kk Oil-in-water type emulsion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118405A (en) * 1977-03-25 1978-10-16 Asahi Denka Kogyo Kk Foamable oil-in-water emulsified fats
JPS5851864A (en) * 1981-09-18 1983-03-26 Nippon Oil & Fats Co Ltd Frozen whipped cream
JPS5847152B2 (en) * 1981-09-18 1983-10-20 日本油脂株式会社 frozen whipped cream
JPH06269256A (en) * 1993-03-18 1994-09-27 Nisshin Oil Mills Ltd:The Creamy composition resistant to freezing and thawing and its production
JPH08280346A (en) * 1995-04-14 1996-10-29 Asahi Denka Kogyo Kk Oil-in-water type emulsified fat and its production
JPH0994061A (en) * 1995-09-29 1997-04-08 Takanashi Nyugyo Kk Creams having freeze resistance and thir production
JP2000001502A (en) * 1998-04-27 2000-01-07 Roquette Freres Production of low-de starch hydrolyzate by nano- filtration fractionation, product obtained thereby, and use of such product
JPH11346644A (en) * 1998-06-09 1999-12-21 Chibori:Kk Fresh cake and its production
JP2001352901A (en) * 2000-06-12 2001-12-25 Taiyo Yushi Kk Oil-in-water type emulsion

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253390A (en) * 2004-03-12 2005-09-22 Nissei Co Ltd Oil-in-water emulsified composition, frozen dessert and whipped cream
JP2006025690A (en) * 2004-07-15 2006-02-02 Fuji Oil Co Ltd Oil-in-water emulsified product and method for producing food using the same
WO2009005107A1 (en) 2007-07-02 2009-01-08 San-Ei Gen F.F.I., Inc. Processed food composition containing dextrin
JP2010022305A (en) * 2008-07-23 2010-02-04 Fuji Oil Co Ltd Foaming oil-in-water type emulsion
JP2010207190A (en) * 2009-03-12 2010-09-24 Kaneka Corp Foaming oil-in-water emulsified oil-and-fat composition
JP2011024532A (en) * 2009-07-28 2011-02-10 Nippon Shokuhin Kako Co Ltd Whipped cream, method for producing whipped cream, and method for producing cake
JP2010104371A (en) * 2009-12-21 2010-05-13 Nissei Co Ltd Oil-in-water emulsified composition, and whipped cream
WO2015056203A1 (en) * 2013-10-16 2015-04-23 International Foodstuffs Co. Llc A functional cream base powder composition and products made thereof
JP2016178883A (en) * 2015-03-24 2016-10-13 株式会社Adeka Whip cream
JP2018078863A (en) * 2016-11-18 2018-05-24 物産フードサイエンス株式会社 Milk feeling improver
JP7129143B2 (en) 2016-11-18 2022-09-01 物産フードサイエンス株式会社 Milky feeling improver
JP2018100247A (en) * 2016-12-21 2018-06-28 松浦薬業株式会社 Dextrin formulation
WO2018123253A1 (en) * 2016-12-27 2018-07-05 株式会社J-オイルミルズ Starch for whipped cream, and whipped cream including said starch
JPWO2018123253A1 (en) * 2016-12-27 2019-10-31 株式会社J−オイルミルズ Whipped cream starch and whipped cream containing the starch
JP7019603B2 (en) 2016-12-27 2022-02-15 株式会社J-オイルミルズ Starch for whipped cream and whipped cream containing the starch

Also Published As

Publication number Publication date
JP4506072B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
Nelen et al. Sucrose esters
CN105473000B (en) Whipped cream and its manufacturing method
JP5747526B2 (en) Food quality improver and food
JP4506072B2 (en) Foamable oil-in-water emulsion with freezing resistance
JP4390598B2 (en) Plastic oil-in-water emulsion composition and method for producing the same
JPWO2005063039A1 (en) Creams, foams thereof or dried powders and methods for producing them
JP2010022305A (en) Foaming oil-in-water type emulsion
JP5365000B2 (en) Oil-in-water emulsion
JP2002335897A (en) Oil-in-water type emulsion composition and method for producing the same
JPS6236649B2 (en)
JP3230884B2 (en) Freeze-thaw-resistant creamy composition and method for producing the same
JPH0697966B2 (en) Method for producing foamable oil-in-water emulsion
JP2007202417A (en) Oil-in-water emulsified substance for frozen dessert
JP4826739B2 (en) Oil for frozen dessert
JP2009050235A (en) Foaming oil-in-water emulsified product
WO2004062384A1 (en) O/w emulsion and process for producing food with the same
JP4882749B2 (en) Oil-in-water emulsion
JP2841946B2 (en) Foamable oil-in-water emulsion composition
JP2001245620A (en) Oil in water type emulsion and whipped cream
WO2004041002A1 (en) Low-fat foamable oil-in-water emulsion
JPH1132676A (en) Oil-in-water type emulsified oil-and-fat composition and its production
JPS62248454A (en) Production of processed foaming chocolate food
JPH0626511B2 (en) Method for producing creamy fat composition
JPS6344936A (en) Composite emulsion and its preparation
JP2009240189A (en) Pneumatic oil and fat composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees