[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004149395A - Method for producing surface coated silicon nitride sintered compact - Google Patents

Method for producing surface coated silicon nitride sintered compact Download PDF

Info

Publication number
JP2004149395A
JP2004149395A JP2002319599A JP2002319599A JP2004149395A JP 2004149395 A JP2004149395 A JP 2004149395A JP 2002319599 A JP2002319599 A JP 2002319599A JP 2002319599 A JP2002319599 A JP 2002319599A JP 2004149395 A JP2004149395 A JP 2004149395A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride sintered
coating layer
powder
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002319599A
Other languages
Japanese (ja)
Inventor
Takeo Fukutome
武郎 福留
Yutaka Kubo
豊 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002319599A priority Critical patent/JP2004149395A/en
Publication of JP2004149395A publication Critical patent/JP2004149395A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a surface coated silicon nitride sintered compact for which a coated layer which is precise has a large adhesion force and a small adhesion force variation is easily formed. <P>SOLUTION: A molten liquid is formed by melting an RE<SB>2</SB>Si<SB>2</SB>O<SB>7</SB>powder (RE is at least one element of the group 3a elements in the periodic table) or a mixed powder of an RE<SB>2</SB>O<SB>3</SB>powder with an SiO<SB>2</SB>powder and covered on a substrate surface consisting of a silicon nitride sintered compact in a nitrogen atmosphere and then the molten liquid is crystallized and the coated layer whose main crystal is RE<SB>2</SB>Si<SB>2</SB>O<SB>7</SB>is formed on the substrate surface. The molar ratio of Si to RE in the coated layer is 1.9-3 in terms of the oxides ratio, SiO<SB>2</SB>/RE<SB>2</SB>O<SB>3</SB>. RE contained in the coated layer is preferably at least one of Lu, Yb and Er. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、室温から高温までの強度特性に優れると共に破壊靱性、耐酸化性に優れ、特にピストン、シリンダー、バルブ、カムローラー、ロッカーアーム、ピストンリング、ピストンピン、グロープラグなどの自動車用部品や、タービンロータ、タービンブレード、ノズル、コンバスタ、スクロール、ノズルサポート、シールリング、スプリングリング、ディフューザ、ダクト、シュラウドなどのガスタービンエンジン用部品に好適に使用される表面被覆窒化珪素焼結体の製造方法に関する。
【0002】
【従来技術】
窒化珪素焼結体は、従来から、強度、硬度、熱的化学的安定性に優れることからエンジニアリングセラミックスとして、特に熱機関構造用材料としてその応用が進められている。
【0003】
窒化珪素焼結体は、一般には窒化珪素粉末に対してY、AlあるいはMgOなどの焼結助剤を添加して焼成することにより製造されており、このような焼結助剤を使用して焼成することにより、高密度で高強度の特性を得ることが報告されている。
【0004】
このような窒化珪素焼結体は、例えばエンジン用部品として使用されているが、エンジン用部品の使用条件が高温化するにしたがい、窒化珪素焼結体の高温における強度及び耐酸化特性のさらなる改善が求められている。
【0005】
かかる要求に対して、これまで焼結助剤、粒界相及び焼成条件等の改良や、焼結体表面での酸化保護膜の形成を中心として、その改善が進められてきた。
【0006】
そこで、本出願人は、先に窒化珪素焼結体の表面に、耐酸化特性の優れたダイシリケートやモノシリケートなどの結晶相を有する被覆層を形成することによって被覆層の剥離や亀裂の発生を防止できることを提案した。
【0007】
例えば、所定量のRE粉末とSiO粉末とを混合し、バインダーを加えて基材表面にスラリーを塗布或いはスプレー等により吹き付けた後、1000〜1800℃の高温で焼き付けるか、或いは混合粉末を予め1000〜1800℃の温度で処理して化合物を合成した後、粉砕して同様の手法にて被覆層を形成することが特開平7−172958号公報で開示されている。そして、実施例において1400℃、Ar雰囲気で1時間焼成し、被覆層を形成した。
【0008】
また、特開2001−130983号公報では、スプレーによって焼結体表面にスラリーを塗布し、1700℃で熱処理して被覆層を形成した。
【0009】
【発明が解決しようとする課題】
しかしながら、特開平7−172958号公報や特開2001−130983号公報に記載の表面被覆方法では、緻密で、且つ付着力の高い被覆層が得られるものの、中には付着力が極端に低い場合が見られ、付着力のばらつきが大きいという問題があった。
【0010】
従って、本発明は、緻密で付着力が高く、付着力のばらつきが少ない被覆層を容易に作製する表面被覆窒化珪素焼結体の製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、融液からRESiを結晶化させることによって、窒化珪素表面の分解を抑制しつつ、基材に対する付着力の高い被覆層を形成でき、さらに融液からの結晶化であるため、付着力のばらつきが小さいという知見に基づくものであり、特に、融液を作製する際の圧力や温度を制御することによって、窒化珪素の分解を抑制し、母材と被覆層との界面に気泡が生成するのを効果的に防止できるとともに、融液の粘度を制御することで、融液内部の気泡除去が容易となり、かつ融液の流出を抑制することができる。
【0012】
即ち、本発明の表面被覆窒化珪素焼結体の製造方法は、窒化珪素焼結体からなる基材表面に設けられたRESi粉末(REは周期律表第3a族元素のうち少なくとも1種)又はRE粉末とSiO粉末との混合粉末を、窒素雰囲気中で加熱溶融して融液を形成した後に、該融液を結晶化してRESi結晶を主体とする被覆層を前記基材表面に形成することを特徴とするものである。
【0013】
特に、前記被覆層に含まれるSi及びREの酸化物換算モル比SiO/REが1.9〜3であることが好ましい。これにより、耐食性を高め、耐食性バラツキを効果的に低減することができる。
【0014】
また、前記被覆層に含まれるREがLu、Yb、Erの少なくとも1種であることが好ましい。これにより、窒化珪素との熱膨張差を小さくでき、クラックの生成を抑制することができる。
【0015】
また、前記被覆層の厚みが3〜100μmであることが好ましい。これによって、熱膨張率の差によるクラックの生成を抑制することができる。
【0016】
さらに、前記窒素雰囲気の圧力が、0.1〜0.9MPaであることが好ましい。これにより、窒化珪素の分解を抑制できるため、気泡の発生を効果的に防止でき、より緻密な被覆層を形成することができる。
【0017】
さらにまた、融液を形成する温度が、RESiの融点(T)に対して、(T−250℃)〜(T+100℃)であることが好ましい。これにより、適度の粘度の融液を生成でき、融液内部に含まれる気泡を除去しやすくなり、かつ融液の流出および揮発を抑制できる。
【0018】
【発明の実施の形態】
本発明の表面被覆窒化珪素焼結体は、窒化珪素質焼結体等の窒化珪素焼結体からなる基材の表面に、周期律表第3a族元素(RE)の結晶相、即ち、RESi(ダイシリケート)で表される化合物の結晶相を形成するための表面被覆窒化珪素焼結体の製造方法に関するものである。
【0019】
本発明によれば、まず、窒化珪素焼結体を基材として準備する。この基材は、窒化珪素質焼結体であれば特に制約はなく、どのような組成系であっても、またどのような製造方法によって作製された窒化珪素質焼結体であっても良い。
【0020】
また、被覆層を形成するための原料粉末を準備する。ここでは、SiO粉末及びRE粉末からRESi(ダイシリケート)粉末を合成して用いる場合について説明する。
【0021】
準備する上記の原料粉末は、不純物が多いと不純物が結晶粒界に偏析し、優先的に腐食し、耐食性を低下させるため、いずれも純度99%以上であることが望ましい。
【0022】
本発明によれば、RE粉末は、周期律表第3a族元素であり、具体的にはY、La、Ce、Lu、Yb、Er、Dy、Sm、Sc及びGdなどを例示できる。これらの中でも、Lu、Yb、Erが好適であり、Lu、Yb、Erのダイシリケート相及びモノシリケート相は、いずれも融点が高いため、優れた高温強度と耐酸化性を提供できる。また、Yb、Lu及びErは、易焼結性、高強度であるとともに、窒化珪素との熱膨張率の差を低減でき、クラックの発生を効果的に抑制する点でも有利である。
【0023】
次いで、原料粉末であるSiO粉末及びRE粉末を所定の比率に調合し、複合混合粉末を作製する。この複合混合粉末を予め加熱処理を行い、SiO粉末及びRE粉末を反応させてRESiを合成する。このようにして得られたRESi仮焼体を粉砕し、所望の粒度に制御した粉末を作製する。
【0024】
本発明によれば、RESi(ダイシリケート)或いはRESiO(モノシリケート)の結晶相自体が非常に優れた耐食性を有することから、被覆層は、優れた耐食性を有する。しかし、かかる結晶相の耐食性が良好であっても、この被覆層は多結晶体からなるものであって、その結晶粒界が存在し、この結晶粒界がダイシリケート以外にYAMやアパタイトなどの窒素含有系結晶相が析出し、被覆層の特性にばらつきが生じる場合があり、また、粒界に不純物的な酸素(過剰酸素)がSiOとして存在する場合、この過剰酸素が水等と反応して気化し、燃焼ガスで流され、その結果粒界相が抜け落ち、被覆層が破壊されやすくなり、また、空隙となった粒界相を介して窒化珪素質焼結体が腐食されやすくなる。
【0025】
そこで、被覆層の組成を制御することが好ましい。即ち、SiO/REモル比を1.9〜3.0、特に2.0〜2.5、さらには2.1〜2.3に設定することにより、被覆層の過剰SiOを低減し、耐食性を高めるとともに、耐食性ばらつきの少ない被覆層を実現することができる。
【0026】
なお、被覆層にRESiO(モノシリケート)が含まれる場合には、SiO/RE比(モル比)が0.9〜2.3、特に1.0〜1.5の範囲にあることが好ましい。
【0027】
このような組成制御により、被覆層の粒界に含まれるSiOを低減でき、かかる粒界相の生成を抑制できる結果、被覆層中の結晶の粒界を経由した酸素あるいは水蒸気の拡散を防止することができ、耐食性のより高い被覆層を実現することができる。
【0028】
次に、得られたRESi粉末に所定の溶媒、バインダーを加えてスラリーを調製する。このスラリーを、基材である窒化珪素質焼結体の表面に塗布する。塗布の方法としては、均一性に優れるCVD法、溶射法、印刷法を用いることができるが、さらに簡単に形成できる点でスラリーディップ法、スラリースプレー法を採用するのが良い。これにより、RESi粉末を均一に基材表面に塗布することができる。
【0029】
上記スラリーの塗布量、即ちその厚みは、熱処理後の被覆層の厚みに影響するが、被覆層の厚みは、保護層としての役割を十分に果たし、且つ寿命を考慮すると共に、内部応力が大きくなって剥離しやすくなるのを防ぐため、3〜100μm、特に5〜70μm、更には10〜50μmとなることが好ましく、このような厚みになるようにスラリーの塗布量を調整することが好ましい。
【0030】
次いで、表面にRESi粉末を塗布した基材を熱処理することにより、目的とする結晶相からなる被覆層を形成することができる。
【0031】
この熱処理は、少なくとも窒素を含む雰囲気で、0.1〜0.9MPaの圧力において行うことが好ましい。窒素を含むことで窒化珪素焼結体の表面で分解するのを抑制することができ、しかも圧力を上記範囲に設定することにより、その効果が高まり、窒化珪素の分解によって生成する気泡による被覆層の付着力低下を効果的に抑制することができる。
【0032】
特に、雰囲気圧力の下限値は0.2MPa、さらに0.3MPaが良い。このように雰囲気を窒素による加圧状態にすることにより、上記雰囲気の効果をより高めることができる。
【0033】
また、融液を作製する温度は、下限値がRESiの融点(T)より250℃低い温度(T−250℃)とすることが良く、特に融点より210℃低い温度(T−210)、更には150℃低い温度(T−150)、より好適には100℃低い温度(T−100℃)が好ましい。なお、融点より低い温度で融液を生成するのは、表面被覆成分と基材の窒化珪素あるいは雰囲気の窒素と反応して融点が低下するためである。一方上限値は、融点より100℃高い温度(T+100℃)が良く、特に(T+80℃)、さらには(T+50℃)が好ましい。
【0034】
このように、熱処理温度を上記の範囲に設定することにより、適度な粘度の融液を生成することができるため、融液内部に含まれる気泡を除去しやすく、しかも融液が基材表面から流れ落ちるのを効果的に抑制できるため、緻密で気孔の残留が少ない被覆層を形成できるとともに、融液の流出や揮発を防止できる。特に、加圧雰囲気で熱処理を行う場合、窒化珪素表面の分解を抑制し、基材に対する付着力のより高い被覆層を形成できる。一般的には、REの種類にもよるが、1500〜1900℃、特に1600〜1850℃の温度とするのが良い。
【0035】
熱処理雰囲気は、加圧状態で組成物の揮発を抑制する点で好ましいものの、さらにSiOの揮散を抑制し、被覆層の組成変動を防ぎ、優れた特性を安定して得るため、SiOガスを発生させるべく、Si/SiOの混合粉末を熱処理炉内に配置するのが良い。
【0036】
このようにして得られた被覆層は、気孔率が2%以下、特に1%以下、更には0.5%以下、より好適には0.3%以下にすることが容易であるため、被覆層の機械的強度がより改善され、より優れた耐食性を示すことができる。
【0037】
つまり、表面被覆窒化珪素焼結体には、RESi(ダイシリケート)結晶からなる被覆層が形成され、従来のSiO、Al、ムライト、コージェライト、YAGなどの保護膜に比べて、付着力が高く、高温酸化性雰囲気でも非常に安定であることから、優れた耐食性が発揮される。また、融点も1550〜1800℃と高いために耐熱性に優れ、高温での寿命が長い。
【0038】
【実施例】
各種SiOとREの混合粉末を表1の割合で混合し、得られた混合粉末を基材である窒化珪素焼結体に塗布した後、表1の条件での熱処理によりコーティング材を溶融して表面被覆層を形成した。なお、試料No.10は、塗布前に予め1400℃で仮焼し、仮焼体を形成した。これを粉砕し、混合粉末として基材に塗布した後、同様にして表面被覆層を形成した。
【0039】
混合粉末を蛍光X線で分析し、REおよびSiを測定した。得られた値から酸化物のモル比SiO/REを算出して、Si/RE比として表1に示した。
【0040】
得られた表面被覆窒化珪素焼結体試料を切断し、断面を鏡面加工した後、SEM観察で表面被覆厚みを測定した。さらに、得られた25mm角の表面被覆試料の表裏にエポキシ樹脂でφ25mmのステンレス棒を固定し、引張り試験を実施した。このときの付着力を測定し、平均値とバラツキを算出した。また、引張り試験後の試料を切断し、その断面を観察して剥離した部位を判定した。そして、エポキシ樹脂と表面被覆層との界面から剥がれている場合を「表面」、表面被覆層と基材の界面で剥がれている場合を「内部」として表示した。
【0041】
また、得られた試料で燃焼ガス雰囲気中での曝露試験を実施して耐食性を評価した。燃焼ガス条件は圧力0.4MPa、流速100m/s、水蒸気分圧30kPaとした。耐食性は100時間の曝露試験後の重量減少量と密度を測定し、これらのデータから減肉量を算出し、耐食性として表示した。結果を表1に示した。
【0042】
【表1】

Figure 2004149395
【0043】
本発明の試料No.1〜16、18〜21は、付着力が200MPaでばらつきが30MPa以内、破断界面がエポキシ樹脂と表面被覆層界面であり、耐食性は減肉量が1μm以下であった。
【0044】
一方、被覆層を形成する際溶融していない試料No.17は付着力が180MPaでばらつきが70MPa、破断界面が表面被覆層と窒化珪素焼結体基材界面であった。さらに表面被覆層がモノシリケートやダイシリケート以外のもので形成されているNo.22〜26は、耐食性が100μm以上と大きく、耐腐食性が著しく劣っている。
【0045】
【発明の効果】
本発明の表面被覆窒化珪素質焼結体の製造方法により、窒化珪素焼結体基材と表面被覆層の付着力が高い、高耐食性の表面被覆窒化珪素質焼結体を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention has excellent strength properties from room temperature to high temperature, and also has excellent fracture toughness and oxidation resistance, and especially automotive parts such as pistons, cylinders, valves, cam rollers, rocker arms, piston rings, piston pins, and glow plugs. For producing surface-coated silicon nitride sintered body suitably used for gas turbine engine parts such as turbine rotor, turbine blade, nozzle, combustor, scroll, nozzle support, seal ring, spring ring, diffuser, duct, shroud, etc. About.
[0002]
[Prior art]
Conventionally, silicon nitride sintered bodies have been applied as engineering ceramics, particularly as heat engine structural materials, because of their excellent strength, hardness, and thermal and chemical stability.
[0003]
A silicon nitride sintered body is generally manufactured by adding a sintering aid such as Y 2 O 3 , Al 2 O 3, or MgO to silicon nitride powder and firing it. It has been reported that high-density and high-strength properties are obtained by firing using an auxiliary agent.
[0004]
Such a silicon nitride sintered body is used, for example, as an engine component. However, as the operating conditions of the engine component increase, the strength and oxidation resistance of the silicon nitride sintered body at high temperatures are further improved. Is required.
[0005]
In response to such demands, improvements have been made with a focus on improvement of sintering aids, grain boundary phases, firing conditions, and the like, and formation of an oxide protective film on the surface of a sintered body.
[0006]
Therefore, the present applicant first forms a coating layer having a crystalline phase such as disilicate or monosilicate having excellent oxidation resistance on the surface of the silicon nitride sintered body, thereby causing peeling or cracking of the coating layer. It is suggested that can be prevented.
[0007]
For example, a predetermined amount of RE 2 O 3 powder and SiO 2 powder are mixed, a binder is added, and a slurry is applied to the surface of the base material or sprayed by spraying or the like, and then baked at a high temperature of 1000 to 1800 ° C. or mixed. Japanese Patent Application Laid-Open No. 7-172958 discloses that a compound is synthesized by previously treating a powder at a temperature of 1000 to 1800 ° C. and then pulverized to form a coating layer by a similar method. And in Example, it baked at 1400 degreeC and Ar atmosphere for 1 hour, and formed the coating layer.
[0008]
In JP-A-2001-130983, a slurry was applied to the surface of a sintered body by spraying, and heat treatment was performed at 1700 ° C. to form a coating layer.
[0009]
[Problems to be solved by the invention]
However, in the surface coating method described in JP-A-7-172958 and JP-A-2001-130983, a dense and high-adhesion coating layer can be obtained, but some of the coating layers have extremely low adhesion. And there was a problem that the dispersion of the adhesive force was large.
[0010]
Accordingly, an object of the present invention is to provide a method for producing a surface-coated silicon nitride sintered body that easily produces a coating layer that is dense, has high adhesion, and has little variation in adhesion.
[0011]
[Means for Solving the Problems]
According to the present invention, by crystallizing RE 2 Si 2 O 7 from a melt, it is possible to form a coating layer having a high adhesive force to a substrate while suppressing decomposition of the silicon nitride surface, and further, to crystallize from the melt. Therefore, it is based on the finding that the dispersion of the adhesive force is small, and in particular, by controlling the pressure and temperature when producing the melt, the decomposition of silicon nitride is suppressed, and the base material and the coating layer Can be effectively prevented from being generated at the interface of the melt, and by controlling the viscosity of the melt, the bubbles inside the melt can be easily removed and the outflow of the melt can be suppressed.
[0012]
That is, the method for producing a surface-coated silicon nitride sintered body of the present invention provides a method for producing a RE 2 Si 2 O 7 powder (RE is a group 3a element of the periodic table) provided on the surface of a substrate made of a silicon nitride sintered body. (At least one) or a mixed powder of RE 2 O 3 powder and SiO 2 powder is heated and melted in a nitrogen atmosphere to form a melt, and the melt is crystallized to form RE 2 Si 2 O 7 crystals. The present invention is characterized in that a coating layer serving as a main component is formed on the surface of the base material.
[0013]
In particular, it is preferable that the oxide / equivalent molar ratio SiO 2 / RE 2 O 3 of Si and RE contained in the coating layer is 1.9 to 3 . Thereby, the corrosion resistance can be increased, and the variation in the corrosion resistance can be effectively reduced.
[0014]
Preferably, the RE contained in the coating layer is at least one of Lu, Yb, and Er. Thereby, the difference in thermal expansion from silicon nitride can be reduced, and generation of cracks can be suppressed.
[0015]
Further, it is preferable that the thickness of the coating layer is 3 to 100 μm. Thereby, generation of cracks due to a difference in thermal expansion coefficient can be suppressed.
[0016]
Further, the pressure of the nitrogen atmosphere is preferably 0.1 to 0.9 MPa. Thereby, decomposition of silicon nitride can be suppressed, so that generation of bubbles can be effectively prevented, and a more dense coating layer can be formed.
[0017]
Furthermore, the temperature for forming the melt for the melting point of RE 2 Si 2 O 7 (T M), is preferably (T M -250 ℃) ~ ( T M + 100 ℃). As a result, a melt having an appropriate viscosity can be generated, air bubbles contained in the melt can be easily removed, and outflow and volatilization of the melt can be suppressed.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The surface-coated silicon nitride sintered body of the present invention has a crystal phase of a Group 3a element (RE) of the periodic table, ie, RE, on a surface of a substrate made of a silicon nitride sintered body such as a silicon nitride based sintered body. The present invention relates to a method for producing a surface-coated silicon nitride sintered body for forming a crystal phase of a compound represented by 2 Si 2 O 7 (die silicate).
[0019]
According to the present invention, first, a silicon nitride sintered body is prepared as a base material. This substrate is not particularly limited as long as it is a silicon nitride sintered body, and may be any composition system, or may be a silicon nitride sintered body produced by any manufacturing method. .
[0020]
Also, a raw material powder for forming a coating layer is prepared. Here, a case will be described in which RE 2 Si 2 O 7 (disilicate) powder is synthesized from SiO 2 powder and RE 2 O 3 powder and used.
[0021]
If the raw material powder to be prepared contains a large amount of impurities, the impurities segregate at the crystal grain boundaries, preferentially corrode, and lower the corrosion resistance.
[0022]
According to the present invention, the RE 2 O 3 powder is a Group 3a element of the periodic table, and specific examples thereof include Y, La, Ce, Lu, Yb, Er, Dy, Sm, Sc, and Gd. . Among these, Lu, Yb, and Er are preferred, and the disilicate phase and the monosilicate phase of Lu, Yb, and Er all have a high melting point, and thus can provide excellent high-temperature strength and oxidation resistance. Further, Yb, Lu and Er are advantageous in that they are easy to sinter and have high strength, can reduce the difference in coefficient of thermal expansion from silicon nitride, and effectively suppress the generation of cracks.
[0023]
Next, the SiO 2 powder and the RE 2 O 3 powder, which are the raw material powders, are mixed at a predetermined ratio to prepare a composite mixed powder. This composite mixed powder is subjected to a heat treatment in advance, and the SiO 2 powder and the RE 2 O 3 powder are reacted to synthesize RE 2 Si 2 O 7 . The calcined RE 2 Si 2 O 7 thus obtained is pulverized to produce a powder having a desired particle size.
[0024]
According to the present invention, since the crystal phase of RE 2 Si 2 O 7 (disilicate) or RE 2 SiO 5 (monosilicate) itself has very excellent corrosion resistance, the coating layer has excellent corrosion resistance. However, even if the corrosion resistance of such a crystal phase is good, this coating layer is made of a polycrystalline material, and its crystal grain boundaries are present, and this crystal grain boundary is formed of not only disilicate but also YAM or apatite. In some cases, a nitrogen-containing crystal phase precipitates, causing variations in the characteristics of the coating layer. When impurity oxygen (excess oxygen) is present as SiO 2 at the grain boundaries, the excess oxygen reacts with water or the like. And it is washed away by the combustion gas. As a result, the grain boundary phase falls off, the coating layer is easily broken, and the silicon nitride-based sintered body is easily corroded through the grain boundary phase which has become void. .
[0025]
Therefore, it is preferable to control the composition of the coating layer. That is, by setting the SiO 2 / RE 2 O 3 molar ratio to 1.9 to 3.0, particularly 2.0 to 2.5, and more preferably to 2.1 to 2.3, the excess SiO 2 of the coating layer is obtained. Can be reduced, the corrosion resistance can be increased, and a coating layer with less corrosion resistance variation can be realized.
[0026]
When the coating layer contains RE 2 SiO 5 (monosilicate), the SiO 2 / RE 2 O 3 ratio (molar ratio) is 0.9 to 2.3, particularly 1.0 to 1.5. It is preferably within the range.
[0027]
By such composition control, SiO 2 contained in the grain boundary of the coating layer can be reduced, and generation of such a grain boundary phase can be suppressed. As a result, diffusion of oxygen or water vapor through the crystal grain boundary in the coating layer can be prevented. And a coating layer having higher corrosion resistance can be realized.
[0028]
Next, a predetermined solvent and a binder are added to the obtained RE 2 Si 2 O 7 powder to prepare a slurry. This slurry is applied to the surface of a silicon nitride sintered body as a base material. As a coating method, a CVD method, a thermal spraying method, or a printing method, which is excellent in uniformity, can be used. However, a slurry dipping method or a slurry spraying method is preferable because it can be more easily formed. Thereby, the RE 2 Si 2 O 7 powder can be uniformly applied to the substrate surface.
[0029]
The coating amount of the slurry, that is, its thickness affects the thickness of the coating layer after the heat treatment, but the thickness of the coating layer sufficiently plays a role as a protective layer, and considering the service life, the internal stress is large. The thickness is preferably 3 to 100 μm, particularly 5 to 70 μm, and more preferably 10 to 50 μm, in order to prevent the film from being easily peeled off, and it is preferable to adjust the amount of the slurry applied so as to have such a thickness.
[0030]
Next, the base material having the surface coated with the RE 2 Si 2 O 7 powder is subjected to a heat treatment, whereby a coating layer made of a desired crystal phase can be formed.
[0031]
This heat treatment is preferably performed in an atmosphere containing at least nitrogen at a pressure of 0.1 to 0.9 MPa. By containing nitrogen, decomposition on the surface of the silicon nitride sintered body can be suppressed, and by setting the pressure within the above range, the effect is enhanced, and the coating layer is formed by bubbles generated by decomposition of silicon nitride. Can be effectively suppressed from decreasing.
[0032]
In particular, the lower limit of the atmospheric pressure is preferably 0.2 MPa, more preferably 0.3 MPa. When the atmosphere is pressurized with nitrogen, the effect of the atmosphere can be further enhanced.
[0033]
The temperature for producing a melt may be a lower limit to the RE 2 Si 2 melting point of O 7 (T M) than 250 ° C. lower temperature (T M -250 ℃), low especially 210 ° C. than the melting point temperature (T M -210), even lower temperatures (T M -150) is 0.99 ° C., more preferably 100 ° C. lower temperature (T M -100 ℃) are preferred. The reason why the melt is generated at a temperature lower than the melting point is that the surface coating component reacts with silicon nitride of the substrate or nitrogen in the atmosphere to lower the melting point. On the other hand, the upper limit is preferably a temperature 100 ° C. higher than the melting point (T M + 100 ° C.), particularly preferably (T M + 80 ° C.), and further preferably (T M + 50 ° C.).
[0034]
As described above, by setting the heat treatment temperature in the above range, a melt having an appropriate viscosity can be generated, so that bubbles contained in the melt can be easily removed, and the melt can be removed from the surface of the base material. Since the flow-down can be effectively suppressed, it is possible to form a coating layer which is dense and has few residual pores, and can prevent outflow and volatilization of the melt. In particular, when heat treatment is performed in a pressurized atmosphere, decomposition of the silicon nitride surface can be suppressed, and a coating layer having higher adhesion to a substrate can be formed. In general, although it depends on the type of RE, the temperature is preferably from 1500 to 1900 ° C, particularly preferably from 1600 to 1850 ° C.
[0035]
Although the heat treatment atmosphere is preferable in terms of suppressing the volatilization of the composition under a pressurized state, it further suppresses the volatilization of SiO 2 , prevents the composition fluctuation of the coating layer, and stably obtains excellent characteristics. It is preferable that the Si / SiO 2 mixed powder be placed in a heat treatment furnace to generate the powder.
[0036]
The coating layer thus obtained can easily have a porosity of 2% or less, particularly 1% or less, more preferably 0.5% or less, and more preferably 0.3% or less. The mechanical strength of the layer can be further improved and exhibit better corrosion resistance.
[0037]
That is, a coating layer made of RE 2 Si 2 O 7 (disilicate) crystal is formed on the surface-coated silicon nitride sintered body to protect conventional SiO 2 , Al 2 O 3 , mullite, cordierite, YAG, and the like. Compared with the film, it has a higher adhesive force and is very stable even in a high-temperature oxidizing atmosphere, so that excellent corrosion resistance is exhibited. Further, since the melting point is as high as 1550 to 1800 ° C., the heat resistance is excellent, and the life at a high temperature is long.
[0038]
【Example】
Various mixed powders of SiO 2 and RE 2 O 3 are mixed at a ratio shown in Table 1, and the obtained mixed powder is applied to a silicon nitride sintered body as a base material. Was melted to form a surface coating layer. The sample No. Sample No. 10 was calcined at 1400 ° C. before coating to form a calcined body. This was pulverized and applied to a substrate as a mixed powder, and then a surface coating layer was formed in the same manner.
[0039]
The mixed powder was analyzed by X-ray fluorescence to measure RE and Si. The oxide molar ratio SiO 2 / RE 2 O 3 was calculated from the obtained values and is shown in Table 1 as the Si / RE ratio.
[0040]
The obtained surface-coated silicon nitride sintered body sample was cut, the cross section was mirror-finished, and the surface coating thickness was measured by SEM observation. Further, a stainless steel rod having a diameter of 25 mm was fixed to the front and back of the obtained surface coating sample of 25 mm square with an epoxy resin, and a tensile test was performed. The adhesive force at this time was measured, and the average value and the variation were calculated. Further, the sample after the tensile test was cut, and the cross section thereof was observed to determine a peeled portion. And, the case where it was peeled off from the interface between the epoxy resin and the surface coating layer was indicated as “surface”, and the case where it was peeled off at the interface between the surface coating layer and the substrate was indicated as “inside”.
[0041]
An exposure test was performed on the obtained sample in a combustion gas atmosphere to evaluate corrosion resistance. The combustion gas conditions were a pressure of 0.4 MPa, a flow rate of 100 m / s, and a partial pressure of steam of 30 kPa. As for the corrosion resistance, the weight loss and the density after the exposure test for 100 hours were measured, and the thinning amount was calculated from these data, and displayed as the corrosion resistance. The results are shown in Table 1.
[0042]
[Table 1]
Figure 2004149395
[0043]
Sample No. of the present invention In Nos. 1 to 16 and 18 to 21, the adhesive force was 200 MPa, the variation was within 30 MPa, the fracture interface was the interface between the epoxy resin and the surface coating layer, and the corrosion resistance was 1 μm or less in wall thickness.
[0044]
On the other hand, in the case of Sample No. In No. 17, the adhesive force was 180 MPa, the variation was 70 MPa, and the fracture interface was the interface between the surface coating layer and the silicon nitride sintered body substrate. Further, No. 1 in which the surface coating layer was formed of a material other than monosilicate and disilicate. Samples Nos. 22 to 26 have a large corrosion resistance of 100 μm or more, and have extremely poor corrosion resistance.
[0045]
【The invention's effect】
According to the method for producing a surface-coated silicon nitride sintered body of the present invention, a highly corrosion-resistant surface-coated silicon nitride sintered body having high adhesion between the silicon nitride sintered body substrate and the surface coating layer can be obtained.

Claims (6)

窒化珪素焼結体からなる基材表面に設けられたRESi粉末(REは周期律表第3a族元素のうち少なくとも1種)又はRE粉末とSiO粉末との混合粉末を、窒素雰囲気中で加熱溶融して融液を形成した後に、該融液を結晶化してRESi結晶を主体とする被覆層を前記基材表面に形成することを特徴とする表面被覆窒化珪素焼結体の製造方法。RE 2 Si 2 O 7 powder (RE is at least one element from Group 3a of the periodic table) or a mixture of RE 2 O 3 powder and SiO 2 powder provided on the surface of a substrate made of a silicon nitride sintered body After the powder is heated and melted in a nitrogen atmosphere to form a melt, the melt is crystallized to form a coating layer mainly composed of RE 2 Si 2 O 7 crystals on the surface of the base material. For producing a surface-coated silicon nitride sintered body. 前記被覆層に含まれるSi及びREの酸化物換算モル比SiO/REが1.9〜3であることを特徴とする請求項1記載の表面被覆窒化珪素焼結体の製造方法。 2. The method for producing a surface-coated silicon nitride sintered body according to claim 1, wherein a molar ratio SiO 2 / RE 2 O 3 of oxides of Si and RE contained in the coating layer is 1.9 to 3. 3. . 前記被覆層に含まれるREがLu、Yb、Erの少なくとも1種であることを特徴とする請求項1又は2記載の表面被覆窒化珪素焼結体の製造方法。The method for producing a surface-coated silicon nitride sintered body according to claim 1 or 2, wherein RE contained in the coating layer is at least one of Lu, Yb, and Er. 前記被覆層の厚みが3〜100μmであることを特徴とする請求項1乃至3のいずれかに記載の表面被覆窒化珪素焼結体の製造方法。The method for producing a surface-coated silicon nitride sintered body according to any one of claims 1 to 3, wherein the thickness of the coating layer is 3 to 100 µm. 前記窒素雰囲気の圧力が、0.1〜0.9MPaであることを特徴とする請求項1乃至4のいずれかに記載の表面被覆窒化珪素焼結体の製造方法。The method for producing a surface-coated silicon nitride sintered body according to any one of claims 1 to 4, wherein the pressure of the nitrogen atmosphere is 0.1 to 0.9 MPa. 融液を形成する温度が、RESiの融点(T)に対して、(T−250℃)〜(T+100℃)であることを特徴とする請求項1乃至5のいずれかに記載の表面被覆窒化珪素焼結体の製造方法。Temperature to form a melt, RE respect 2 Si 2 O 7 melting point (T M), according to claim 1 to 5, characterized in that a (T M -250 ℃) ~ ( T M + 100 ℃) The method for producing a surface-coated silicon nitride sintered body according to any one of the above.
JP2002319599A 2002-11-01 2002-11-01 Method for producing surface coated silicon nitride sintered compact Pending JP2004149395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002319599A JP2004149395A (en) 2002-11-01 2002-11-01 Method for producing surface coated silicon nitride sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002319599A JP2004149395A (en) 2002-11-01 2002-11-01 Method for producing surface coated silicon nitride sintered compact

Publications (1)

Publication Number Publication Date
JP2004149395A true JP2004149395A (en) 2004-05-27

Family

ID=32462401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002319599A Pending JP2004149395A (en) 2002-11-01 2002-11-01 Method for producing surface coated silicon nitride sintered compact

Country Status (1)

Country Link
JP (1) JP2004149395A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351446A (en) * 2005-06-17 2006-12-28 Ngk Spark Plug Co Ltd Manufacturing method of ceramic heater, and glow plug
WO2007073983A1 (en) * 2005-12-23 2007-07-05 Robert Bosch Gmbh Glow, spark or heating element for internal combustion and/or heating devices
JP2010235335A (en) * 2009-03-30 2010-10-21 Kyocera Corp Ceramic sintered compact, heat dissipating substrate and electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351446A (en) * 2005-06-17 2006-12-28 Ngk Spark Plug Co Ltd Manufacturing method of ceramic heater, and glow plug
JP4699816B2 (en) * 2005-06-17 2011-06-15 日本特殊陶業株式会社 Manufacturing method of ceramic heater and glow plug
WO2007073983A1 (en) * 2005-12-23 2007-07-05 Robert Bosch Gmbh Glow, spark or heating element for internal combustion and/or heating devices
JP2009521079A (en) * 2005-12-23 2009-05-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Glow element, spark element or heating element for internal combustion engines and / or heating devices
JP2010235335A (en) * 2009-03-30 2010-10-21 Kyocera Corp Ceramic sintered compact, heat dissipating substrate and electronic device

Similar Documents

Publication Publication Date Title
US6645649B2 (en) Surface-coated sintered body of silicon nitride
JP4959213B2 (en) Thermal barrier coating member and manufacturing method thereof, thermal barrier coating material, gas turbine, and sintered body
US6159553A (en) Thermal barrier coating for silicon nitride
CN105263887B (en) Environmental barrier for refractory substrate comprising silicon
US7323247B2 (en) Oxidation barrier coatings for silicon based ceramics
US6682821B2 (en) Corrosion-resistant ceramics
WO2008109214A2 (en) Environmental barrier coating
US20110203281A1 (en) Article for high temperature service
US20120223127A1 (en) Components and methods of forming protective coating systems on components
JP5552435B2 (en) BSAS powder
JP2005325014A (en) Article comprising substrate and top barrier layer and method of preparing it
JP4969094B2 (en) Thermal barrier coating member and production thereof, and gas turbine
US20050013993A1 (en) Environmental &amp; thermal barrier coating
EP2530063A2 (en) Composite article having silicate barrier layer and method therefor
JP2010242223A (en) Thermal barrier coating member, production method therefor, thermal barrier coating material, gas turbine, and sintered compact
JP2004149395A (en) Method for producing surface coated silicon nitride sintered compact
JP4031244B2 (en) Corrosion resistant ceramics
JP4090335B2 (en) Corrosion resistant ceramics
JP5320352B2 (en) Thermal barrier coating member and manufacturing method thereof, thermal barrier coating material, gas turbine, and sintered body
JP2007197320A (en) Corrosion-resistant ceramic and its manufacturing method
WO2022155134A1 (en) Composite thermal spray powder of oxides and non-oxides
JP2001130983A (en) Silicon nitride sintered compact
JP2004010381A (en) Surface-coated silicon nitride sintered compact
JP4064640B2 (en) Corrosion-resistant ceramics and method for producing the same
JP4069610B2 (en) Surface-coated silicon nitride sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701