JP2004148269A - Membrane separation methane fermentation process - Google Patents
Membrane separation methane fermentation process Download PDFInfo
- Publication number
- JP2004148269A JP2004148269A JP2002319177A JP2002319177A JP2004148269A JP 2004148269 A JP2004148269 A JP 2004148269A JP 2002319177 A JP2002319177 A JP 2002319177A JP 2002319177 A JP2002319177 A JP 2002319177A JP 2004148269 A JP2004148269 A JP 2004148269A
- Authority
- JP
- Japan
- Prior art keywords
- methane fermentation
- membrane
- membrane separation
- concentration
- fermentation tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は膜分離メタン発酵方法に関し、カルシウムスケールの生成を防止する技術に係るものである。
【0002】
【従来の技術】
従来、図2に示すように、メタン発酵処理方法においては、高濃度有機性排水1をメタン発酵槽2で嫌気性の条件下で10日から30日間発酵させ、高濃度有機性排水1に含まれた有機汚濁物をメタンガスと水などに分解し、メタン発酵槽2の消化汚泥を付帯設備の汚泥脱水装置(図示省略)で脱水し、汚泥脱水装置の脱離液をメタン発酵処理液として取り出す。このメタン発酵処理液は相当量の有機汚濁成分を含んでおり、公共水域には放流できないので、生物反応槽3へ導いて活性汚泥処理して有機汚濁成分を基準値以下にまで低減し、沈殿槽4で沈殿分離した後に上澄液を処理水として放流している。
【0003】
ところで、メタン菌などの嫌気性菌は粒子径が小さいので重力分離では十分に固液分離することができず、汚泥脱水装置の脱離液が流入する生物反応槽3での流入汚濁負荷量が多くなるために、生物反応槽3の槽容量を大きくする必要があった。このため、近年では、メタン発酵槽2でのメタン菌などの嫌気性菌の濃度を高めて発酵日数の短縮および発酵槽容量のコンパクト化を図るために、消化汚泥を膜分離装置で膜分離して膜透過液をメタン発酵処理液として取り出す膜分離メタン発酵法が行われている。この膜分離メタン発酵法では膜分離によって嫌気性菌が系外へ流出することなく槽内に残るので、メタン発酵が安定するだけでなく、消化汚泥中の菌濃度を高く維持して発酵速度を速めることができる。
【0004】
この技術分野の技術文献としては例えば特許文献1に記載するものがある。
【0005】
【特許文献1】特開平5−38499号公報
【0006】
【発明が解決しようとする課題】
しかし、高濃度有機性排水中にカルシウムイオンが多く含まれる場合には、膜分離装置の膜表面に炭酸カルシウムがスケールとして析出し、スケールの成長によって膜が目詰まりして膜透過液を取り出すことが出来なくなる。
【0007】
炭酸カルシウムの生成は以下の反応による。
【0008】
【化1】
【0009】
【化2】
ところで、一般に水は緩衝力を有し、化1式においてはpH4.8以上のアルカリ度と、pH8.9以下の酸度の緩衝力を有しているので、水のpHが中性から酸性域であれば水中の二酸化炭素はフリーの炭酸ガスか重炭酸イオンとなっているので、重炭酸カルシウムの形態で溶解し、炭酸カルシウムは生じないが、pHがアルカリ域になると炭酸イオンの比率が増加して炭酸カルシウムとなる。この炭酸カルシウム(CaCO3)は水に難溶の物質で15mg/L程度の溶解度であり、溶解度を越えるとスケールを形成する。したがって、高濃度有機性排水中にカルシウムイオンが多く含まれる場合には炭酸イオンの比率を減少させるためにpHを低下させる必要がある。
【0010】
ところで、炭酸カルシウムの飽和溶液は溶解度積において化3式に示す関係が成立する。
【0011】
【化3】
このため、Ca2+の濃度[Ca2+]とCO3 2−の濃度[CO3 2−]は反比例し、[CO3 2−]はアルカリ度とpHの関数であるので、アルカリ度とCa2+の濃度がわかれば飽和溶液として安定状態となるpH値が決まる。
【0012】
このpHをpHsとし、実pHとの差I=pH−pHsをラングリアインデックスと言い、カルシウムイオンがスケールを形成するか否かの判断に使用しており、I>0ならばスケールが生成し、I≦0ならばスケールは生成しない。
【0013】
このpHsは次式で求める。
pHs=(9.3+A+B)−(C+D)
A:全固形物、B:水温、C:カルシウム硬度、D:アルカリ度
係数A、B、C、Dは表1〜3において決定する。
【0014】
【表1】
【0015】
【表2】
【0016】
【表3】
本発明は上記した課題を解決するものであり、メタン発酵槽における炭酸カルシウムの析出を防止し、カルシウムスケールによる目詰まりを防止できる膜分離メタン発酵方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
上記課題を解決するために、請求項1に記載の本発明の膜分離メタン発酵方法は、高濃度有機性排水をメタン発酵槽でメタン発酵処理するのに際して、濃度調整液をメタン発酵槽へ供給して系内のカルシウムイオン濃度およびpHの調整を行って炭酸カルシウムの析出を抑制しながら、メタン発酵槽の消化汚泥を膜分離して膜透過液をメタン発酵処理液として取り出すものである。
【0018】
上記した構成により、濃度調整液の添加によってメタン発酵槽内のカルシウムイオン濃度およびpHを炭酸カルシウムの発生を抑制できる値に低減し、炭酸カルシウムの濃度をその溶解度以下に維持することで、炭酸カルシウムが膜面にスケールとして析出することを防止する。
【0019】
請求項2に記載の本発明の膜分離メタン発酵方法は、膜透過液に凝集剤を添加して膜透過液中のカルシウムイオンを凝集分離し、脱カルシウムした凝集分離液を濃度調整液としてメタン発酵槽へ供給するものである。
【0020】
上記した構成により、凝集剤として炭酸ソーダを添加し、カルシウムイオンを不溶性の塩である炭酸カルシウムとなし、凝集した炭酸カルシウムの凝集フロックを固液分離して脱カルシウムした凝集分離液をメタン発酵槽へ循環させることで系内のカルシウムイオンを除去するとともに、濃度調整液の必要量を系内において確保することができる。
【0021】
請求項3に記載の本発明の膜分離メタン発酵方法は、凝集分離に際して、凝集剤を添加した凝集反応液を膜分離するものである。
上記した構成において、炭酸カルシウムを凝集剤の添加によって凝集フロック化することで膜の目詰まりを抑制しながら膜で分離することができ、凝集フロックを含む凝集液を膜で固液分離することにより、凝集汚泥濃度を高くして濃縮率の向上によって凝集汚泥を減容化でき、次工程の凝集汚泥の処分における負荷を軽減できる。また、炭酸カルシウムの凝集フロックは径が小さいので、重力沈殿する場合には高分子凝集剤を補助的に添加する必要があるが、膜分離することで高分子凝集剤の添加が不要となり、処理費用を低減できる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1において、高濃度有機性排水11はメタン発酵槽12で嫌気性の条件下で10日から30日間発酵させ、高濃度有機性排水11に含まれた有機汚濁物をメタンガスと水などに分解する。メタン発酵槽12の消化汚泥はメタン膜分離槽13において槽浸漬型膜分離装置(図示省略)等で膜分離し、膜透過液をメタン発酵処理液として取り出し、濃縮した消化汚泥をメタン発酵槽12へ返送し、メタン発酵槽12から余剰汚泥を取り出す。メタン発酵槽12とメタン膜分離槽13は別体として表示したが、メタン発酵槽12に槽浸漬型膜分離装置を浸漬する構成とすることも可能である。
【0023】
メタン発酵槽12では、濃度調整液の適量を添加することでメタン発酵槽12の消化汚泥のカルシウムイオン濃度およびpHを炭酸カルシウムの発生を抑制できる値に低減し、炭酸カルシウムの濃度をその溶解度以下に維持することで、炭酸カルシウムが膜面にスケールとして析出することを防止する。
【0024】
添加する濃度調整液量はラングリアインデックスを指標として決定し、決定した濃度調整液量をメタン発酵槽12へ供給する。ラングリアインデックスは先に述べた手順で求める。
【0025】
メタン発酵処理液(膜透過液)は生物反応槽14へ導いて活性汚泥処理して有機汚濁成分を基準値以下にまで低減し、沈殿槽15で沈殿分離した後に上澄液を処理水として放流し、沈殿汚泥を生物反応槽14へ返送する。
【0026】
メタン発酵処理液(膜透過液)は一部を凝集反応槽16へ導き、凝集剤として炭酸ソーダを添加し、カルシウムイオンを不溶性の塩である炭酸カルシウムとなす。炭酸カルシウムの凝集フロックを含む凝集反応液は凝集膜分離槽17へ導いて槽浸漬型膜分離装置(図示省略)等で膜分離し、凝集フロックの除去により脱カルシウムした凝集膜分離液を返送膜透過液(濃度調整液)としてメタン発酵槽12へ循環させ、濃縮した凝集汚泥を産業廃棄物として廃棄する。
【0027】
メタン発酵槽12で生成する炭酸カルシウムは膜面に析出してスケールを形成するが、炭酸カルシウムを凝集剤の添加によって凝集フロック化することで膜の目詰まりを抑制しながら膜で分離することができ、凝集フロックを含む凝集液を膜分離することで系内のカルシウムイオンを除去するとともに、濃度調整液の必要量を系内において確保することができる。
【0028】
また、凝集分離においては重力沈降も可能であるが、膜を使用することで凝集汚泥濃度を高くして濃縮率の向上によって凝集汚泥を減容化でき、次工程の凝集汚泥の処分における負荷を軽減できる。さらに、炭酸カルシウムの凝集フロックは径が小さいので、重力沈殿する場合には高分子凝集剤を補助的に添加する必要があるが、凝集分離に膜を使用することで高分子凝集剤の添加が不要となって処理費用を低減できる。
【0029】
以下に本発明の実施例を説明する。
高濃度有機性排水量(m3/d) Q1=50
カルシウム濃度(mg/L) Ca=100
メタン発酵槽液温 44℃、表2よりB=1.7
メタン発酵槽全固形物 2%、表1よりA=0.2
メタン発酵槽pH pH=7.5
メタン発酵槽アルカリ度 500mg/L、表3よりD=2.7
ラングリアインデックスI=pH−pHs I=−1+C
スケールを形成させないためには、C≦1
従って、メタン発酵槽カルシウム硬度(mg/L)は、表3よりC2=27以下
カルシウム濃度(mg/L)としては、C3=10.8以下
以上より返送膜透過液量(m3/d)は、
Q2=Q1×(Ca−C3)/C3=413
【0030】
【発明の効果】
以上のように本発明によれば、濃度調整液を添加してメタン発酵槽内のカルシウムイオン濃度およびpHを炭酸カルシウムの発生を抑制できる値に低減し、炭酸カルシウムの濃度をその溶解度以下に維持することで、メタン発酵槽における炭酸カルシウムの析出を防止し、カルシウムスケールによる目詰まりを防止でき、ラングリアインデックスを指標にして濃度調整液をメタン発酵槽へ供給することで濃度調整液の添加操作を的確に行うことができる。凝集分離により脱カルシウムした凝集分離液をメタン発酵槽へ循環させることで系内のカルシウムを除去するとともに、濃度調整液の必要量を系内において確保することができ、炭酸カルシウムを凝集フロック化することで膜の目詰まりを抑制しながら膜分離することができ、凝集フロックを含む凝集液を膜で固液分離することにより、凝集汚泥濃度を高くして濃縮率の向上によって凝集汚泥を減容化し、次工程の凝集汚泥の処分における負荷を軽減できる。
【図面の簡単な説明】
【図1】本発明の実施の形態における膜分離メタン発酵方法を示すフローシート図である。
【図2】従来のメタン発酵方法を示すフローシート図である。
【符号の説明】
11 高濃度有機性排水
12 メタン発酵槽
13 メタン膜分離槽
14 生物反応槽
15 沈殿槽
16 凝集反応槽
17 凝集膜分離槽[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a membrane separation methane fermentation method, and relates to a technique for preventing formation of calcium scale.
[0002]
[Prior art]
Conventionally, as shown in FIG. 2, in the methane fermentation treatment method, high-concentration organic wastewater 1 is fermented in a methane fermentation tank 2 under anaerobic conditions for 10 to 30 days, and contained in the high-concentration organic wastewater 1. The organic pollutants thus obtained are decomposed into methane gas and water, and the digested sludge from the methane fermentation tank 2 is dewatered by a sludge dewatering device (not shown) of the auxiliary equipment, and the desorbed liquid from the sludge dewatering device is taken out as a methane fermentation treatment liquid. . Since this methane fermentation treatment liquid contains a considerable amount of organic pollutants and cannot be discharged into public waters, it is guided to the
[0003]
By the way, since anaerobic bacteria such as methane bacteria have a small particle size, they cannot be sufficiently separated into solid and liquid by gravity separation, and the inflow pollution load in the
[0004]
As a technical document in this technical field, for example, there is one described in Patent Document 1.
[0005]
[Patent Document 1] JP-A-5-38499
[Problems to be solved by the invention]
However, if calcium ions are high in the high-concentration organic wastewater, calcium carbonate precipitates as scale on the membrane surface of the membrane separation device, and the scale grows, clogging the membrane and taking out the membrane permeate. Can not be done.
[0007]
The formation of calcium carbonate is based on the following reaction.
[0008]
Embedded image
[0009]
Embedded image
By the way, water generally has a buffering power. In the chemical formula (1), water has a buffering power of pH 4.8 or higher and an acidity of pH 8.9 or lower. If so, the carbon dioxide in the water is free carbon dioxide or bicarbonate ions, so it dissolves in the form of calcium bicarbonate and does not produce calcium carbonate, but the ratio of carbonate ions increases when the pH becomes alkaline. It becomes calcium carbonate. This calcium carbonate (CaCO 3 ) is a substance which is hardly soluble in water and has a solubility of about 15 mg / L, and forms a scale when the solubility is exceeded. Therefore, when a large amount of calcium ions are contained in the high-concentration organic wastewater, it is necessary to lower the pH in order to reduce the ratio of carbonate ions.
[0010]
Incidentally, a saturated solution of calcium carbonate satisfies the relationship shown in Formula 3 in terms of solubility product.
[0011]
Embedded image
Therefore, since the concentration of Ca 2+ [Ca 2+] and CO 3 2- concentrations [CO 3 2-] is inversely proportional, [CO 3 2-] is a function of alkalinity and pH, alkalinity and Ca 2+ Is determined, the pH value at which the solution becomes stable as a saturated solution is determined.
[0012]
This pH is referred to as pHs, and the difference from the actual pH, I = pH-pHs, is called the Langurian index, which is used to determine whether or not calcium ions form a scale. If I> 0, scale is generated. , I ≦ 0, no scale is generated.
[0013]
This pHs is determined by the following equation.
pHs = (9.3 + A + B)-(C + D)
A: total solids, B: water temperature, C: calcium hardness, D: alkalinity coefficients A, B, C, D are determined in Tables 1-3.
[0014]
[Table 1]
[0015]
[Table 2]
[0016]
[Table 3]
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a membrane separation methane fermentation method capable of preventing precipitation of calcium carbonate in a methane fermentation tank and preventing clogging due to calcium scale.
[0017]
[Means for Solving the Problems]
In order to solve the above problems, the membrane separation methane fermentation method of the present invention according to claim 1 supplies a concentration-adjusted liquid to a methane fermentation tank when performing high-concentration organic wastewater in a methane fermentation tank. In this method, the digestion sludge in the methane fermentation tank is separated by membrane, and the membrane permeate is taken out as a methane fermentation treatment liquid while controlling the calcium ion concentration and pH in the system to suppress the precipitation of calcium carbonate.
[0018]
With the above-described configuration, the addition of the concentration adjusting solution reduces the calcium ion concentration and pH in the methane fermentation tank to values that can suppress the generation of calcium carbonate, and maintains the calcium carbonate concentration at or below its solubility. Is prevented from being deposited as a scale on the film surface.
[0019]
In the membrane separation methane fermentation method of the present invention according to claim 2, a flocculant is added to the membrane permeate to coagulate and separate calcium ions in the membrane permeate, and the decalcified coagulate and separated liquid is used as a concentration adjusting liquid. It is supplied to the fermenter.
[0020]
With the above-described configuration, sodium carbonate is added as a flocculant, calcium ions are converted into calcium carbonate, which is an insoluble salt, and the flocculated floc of the flocculated calcium carbonate is solid-liquid separated and decalcified. By circulating to the system, calcium ions in the system can be removed, and a necessary amount of the concentration adjusting solution can be secured in the system.
[0021]
In the membrane separation methane fermentation method according to the third aspect of the present invention, at the time of coagulation separation, the coagulation reaction solution to which a coagulant is added is subjected to membrane separation.
In the above-described configuration, calcium carbonate can be separated by a membrane while suppressing clogging of the membrane by forming a flocculated floc by adding a flocculant. By increasing the concentration of the coagulated sludge and improving the concentration rate, the volume of the coagulated sludge can be reduced, and the load in the disposal of the coagulated sludge in the next step can be reduced. In addition, the flocculated floc of calcium carbonate has a small diameter, so it is necessary to add a polymer flocculant in the case of gravity precipitation.However, the membrane separation eliminates the need for the polymer flocculant. Costs can be reduced.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, high-concentration organic wastewater 11 is fermented in
[0023]
In the
[0024]
The amount of the concentration adjusting liquid to be added is determined using the Langria index as an index, and the determined amount of the concentration adjusting liquid is supplied to the
[0025]
The methane fermentation treatment liquid (membrane permeate) is guided to the
[0026]
A part of the methane fermentation treatment liquid (membrane permeate) is introduced into the
[0027]
Calcium carbonate generated in the
[0028]
In the coagulation separation, gravity sedimentation is also possible.However, using a membrane can increase the concentration of coagulation sludge and improve the concentration rate to reduce the volume of coagulation sludge. Can be reduced. Furthermore, the flocculated floc of calcium carbonate has a small diameter, so it is necessary to add a polymer flocculant in the case of gravity precipitation, but by using a membrane for flocculation separation, the polymer flocculant can be added. It becomes unnecessary and the processing cost can be reduced.
[0029]
Hereinafter, examples of the present invention will be described.
High-concentration organic wastewater (m 3 / d) Q1 = 50
Calcium concentration (mg / L) Ca = 100
Liquid temperature of methane fermentation tank 44 ° C, B = 1.7 from Table 2
Methane fermenter total solids 2%, A = 0.2 from Table 1
Methane fermenter pH = 7.5
Methane fermentation tank alkalinity 500 mg / L, D = 2.7 from Table 3
Langria index I = pH-pHs I = -1 + C
In order not to form a scale, C ≦ 1
Therefore, the calcium hardness (mg / L) of the methane fermentation tank is C2 = 27 or less from Table 3, and the calcium concentration (mg / L) is C3 = 10.8 or less from the returned membrane permeate amount (m 3 / d). Is
Q2 = Q1 × (Ca−C3) / C3 = 413
[0030]
【The invention's effect】
As described above, according to the present invention, a concentration adjusting solution is added to reduce the calcium ion concentration and pH in the methane fermentation tank to values that can suppress the generation of calcium carbonate, and maintain the calcium carbonate concentration at or below its solubility. By doing so, the precipitation of calcium carbonate in the methane fermentation tank can be prevented, clogging due to calcium scale can be prevented, and the concentration adjustment liquid can be added to the methane fermentation tank by supplying the concentration adjustment liquid to the methane fermentation tank using the Langria index as an index. Can be performed accurately. By circulating the coagulated and separated liquid decalcified by coagulation and separation into the methane fermentation tank, the calcium in the system can be removed, and the required amount of the concentration adjusting solution can be secured in the system to coagulate and flocculate calcium carbonate. In this way, membrane separation can be performed while suppressing clogging of the membrane, and coagulation liquid containing coagulation floc is separated into solid and liquid by the membrane, thereby increasing the concentration of coagulation sludge and improving the concentration rate to reduce coagulation sludge. And the load on the disposal of coagulated sludge in the next step can be reduced.
[Brief description of the drawings]
FIG. 1 is a flow sheet diagram showing a membrane separation methane fermentation method according to an embodiment of the present invention.
FIG. 2 is a flow sheet diagram showing a conventional methane fermentation method.
[Explanation of symbols]
11 High-concentration
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002319177A JP4242137B2 (en) | 2002-11-01 | 2002-11-01 | Membrane separation methane fermentation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002319177A JP4242137B2 (en) | 2002-11-01 | 2002-11-01 | Membrane separation methane fermentation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004148269A true JP2004148269A (en) | 2004-05-27 |
JP4242137B2 JP4242137B2 (en) | 2009-03-18 |
Family
ID=32462091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002319177A Expired - Fee Related JP4242137B2 (en) | 2002-11-01 | 2002-11-01 | Membrane separation methane fermentation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4242137B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006334587A (en) * | 2005-06-01 | 2006-12-14 | Nalco Co | Method for improving flux in membrane bioreactor |
KR100755486B1 (en) * | 2006-07-21 | 2007-09-05 | 주식회사 부강테크 | Anaerobic wastewater treatment process using external pressure type membrane washed vortex flow |
JP2009039667A (en) * | 2007-08-09 | 2009-02-26 | World License:Kk | Scale preventing method of hot spring aqueous system |
WO2009041009A1 (en) * | 2007-09-25 | 2009-04-02 | Kubota Corporation | Method and apparatus for treatment of organic waste |
JP2009529417A (en) * | 2006-03-15 | 2009-08-20 | メリ エントゾルグングステヒニック フューア ディ パピーアインドゥストリー ゲーエムベーハー | Method and apparatus for wastewater anaerobic treatment |
JP2011183247A (en) * | 2010-03-04 | 2011-09-22 | Kobelco Eco-Solutions Co Ltd | Water treatment apparatus and water treatment method |
JP6955235B1 (en) * | 2021-01-27 | 2021-10-27 | Jfeエンジニアリング株式会社 | Methane fermentation method and equipment for organic waste |
-
2002
- 2002-11-01 JP JP2002319177A patent/JP4242137B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006334587A (en) * | 2005-06-01 | 2006-12-14 | Nalco Co | Method for improving flux in membrane bioreactor |
JP2009529417A (en) * | 2006-03-15 | 2009-08-20 | メリ エントゾルグングステヒニック フューア ディ パピーアインドゥストリー ゲーエムベーハー | Method and apparatus for wastewater anaerobic treatment |
KR100755486B1 (en) * | 2006-07-21 | 2007-09-05 | 주식회사 부강테크 | Anaerobic wastewater treatment process using external pressure type membrane washed vortex flow |
JP2009039667A (en) * | 2007-08-09 | 2009-02-26 | World License:Kk | Scale preventing method of hot spring aqueous system |
WO2009041009A1 (en) * | 2007-09-25 | 2009-04-02 | Kubota Corporation | Method and apparatus for treatment of organic waste |
JP5419697B2 (en) * | 2007-09-25 | 2014-02-19 | 株式会社クボタ | Organic waste treatment method and apparatus |
JP2011183247A (en) * | 2010-03-04 | 2011-09-22 | Kobelco Eco-Solutions Co Ltd | Water treatment apparatus and water treatment method |
JP6955235B1 (en) * | 2021-01-27 | 2021-10-27 | Jfeエンジニアリング株式会社 | Methane fermentation method and equipment for organic waste |
JP2022114586A (en) * | 2021-01-27 | 2022-08-08 | Jfeエンジニアリング株式会社 | Organic waste methane fermentation method and device |
Also Published As
Publication number | Publication date |
---|---|
JP4242137B2 (en) | 2009-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5315587B2 (en) | Apparatus and method for treating wastewater containing organic matter | |
JP5223219B2 (en) | Organic wastewater treatment equipment | |
US8192626B2 (en) | Wastewater chemical/biological treatment method for open water discharge | |
KR101804555B1 (en) | WasteWater High-Class Treatment System to remove High-Density Pollutant and Method thereof | |
Chen et al. | The possibility and applicability of coagulation-MBR hybrid system in reclamation of dairy wastewater | |
JP6727056B2 (en) | Wastewater treatment equipment and wastewater treatment method | |
CN110272158A (en) | A kind of high salt, high organic matter and high rigidity wastewater treatment method | |
US20130112617A1 (en) | Redox wastewater biological nutrient removal treatment method | |
JPH1190483A (en) | Method and apparatus for treating waste water | |
JP3653422B2 (en) | Waste water treatment method and waste water treatment equipment | |
CN108821473A (en) | A kind of dyeing and printing sewage treatment process | |
US20050112740A1 (en) | Waste metals recycling-methods, processed and systems for the recycle of metals into coagulants | |
JP4242137B2 (en) | Membrane separation methane fermentation method | |
JP2004033897A (en) | Flocculation method of excretion-containing wastewater, flocculation equipment therefor, composting system equipped therewith | |
KR100876104B1 (en) | Livestock Manure Treatment Apparatus and Method | |
JP5874672B2 (en) | Organic wastewater treatment method and treatment apparatus | |
JP2001017982A (en) | Method and device for treating waste water | |
JP2007038107A (en) | Method for treating organic drainage | |
CN109704505A (en) | A kind of plasma effluent purification method | |
JP2003305493A (en) | Method for starting activated sludge treating apparatus | |
CN211445406U (en) | Landfill leachate treatment device | |
JP2008023417A (en) | Water purifying apparatus and water purifying method | |
JP6243804B2 (en) | Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method | |
CN106865868A (en) | The resource process for reclaiming and device of a kind of high salt high ammonia-nitrogen wastewater | |
KR20180128107A (en) | Anaerobic sewage process with sulfide removal apparatus and method in its effluent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050908 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080909 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081125 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081224 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4242137 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140109 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |