[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004146179A - Lead acid storage battery - Google Patents

Lead acid storage battery Download PDF

Info

Publication number
JP2004146179A
JP2004146179A JP2002309345A JP2002309345A JP2004146179A JP 2004146179 A JP2004146179 A JP 2004146179A JP 2002309345 A JP2002309345 A JP 2002309345A JP 2002309345 A JP2002309345 A JP 2002309345A JP 2004146179 A JP2004146179 A JP 2004146179A
Authority
JP
Japan
Prior art keywords
sheet
lead
storage battery
lead acid
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002309345A
Other languages
Japanese (ja)
Inventor
Hiroshi Okamoto
岡本 浩
Mikito Hasegawa
長谷川 幹人
Itaru Hayashi
林 到
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002309345A priority Critical patent/JP2004146179A/en
Publication of JP2004146179A publication Critical patent/JP2004146179A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a long lifetime lead acid storage battery to suppress disconnection of a knot part of a grille shape object and reduction of the lead acid storage battery capacity thereby caused, which occur in the lead acid storage battery using an expanded meshes of a net as the grille shape object by a rotary expanding method superior in productivity. <P>SOLUTION: A plurality of strips of intermittent slits are formed in parallel in a sheet constituted of lead or lead alloy, and threads parts formed between the slits are made to protrude in the vertical direction against the sheet face, and in the lead acid battery provided with the expanded grille shape object formed by developing and extending this sheet in the width direction, and in the knot part and the threads part of the meshes of the net constituting the expanded grille shape object, the tensile strength in the width direction of the sheet of the knot part is made to be the tensile strength or more in the longitudinal direction of the threads part. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は自動車等に用いられる鉛蓄電池に関するものである。
【0002】
【従来の技術】
近年、鉛蓄電池の格子体は、生産性を向上させることを目的として、鋳造法によるものからエキスパンド法によるものが用いられている。エキスパンド法では一般的に鉛−カルシウム合金シートにスリットを形成し、このスリットを展開して網目を形成する。
【0003】
このエキスパンド法の中でもレシプロ方式が一般的に用いられてきた。このレシプロ方式によるエキスパンド工法では間欠的に鉛合金シートを往復運動する金型に送り込むことによって、鉛合金シートにスリットを形成し、金型の先端部でスリットで挟まれたストランドとなる部分をシートの幅方向へ展開して網目を形成する。
【0004】
このため、網目の生産速度を向上するためには金型の刃数を増やすか、プレス速度を増加させる必要がある。しかしながら、このような方法では金型の重量増を招いたり、より大出力のプレス機が必要となり、設備はより大型化してランニングコストが増大するという問題があった。そこでさらに生産性を向上させる手段として、特許文献1に記載されているようなロータリエキスパンド方式が採用されつつある。この方式では図1に示したような凸状加工刃1を形成した円盤状カッター2を図2に示したように間隔を設けて積層したカッターロール3、3´の一対間にシートを通過させてシートに千鳥状のスリットを形成するものである。この方式によればカッターロールの回転数を増加させることで比較的容易に生産速度を向上させることができる。
【0005】
カッターロール対3、3´は互いに凸状加工刃1が対向するよう配置されており、凸状加工刃1同士の重なりによってシート4がせん断され、図3に示したような断続したスリット5が平行に円盤状カッター2の枚数に応じて複数条分形成される。凸状加工刃1間には平坦部7が形成され、この平坦部7が断続部6に対応する。スリット5を展開してエキスパンド網目とするために、スリット5間の断続部6を交互に切断してスリット5を千鳥状とする必要がある。
【0006】
特許文献1に記載されたロータリーエキスパンド方式では断続部6を交互に切断するために、図4に示したように、凸状加工刃1間の平坦部7に厚み方向に交互に薄肉部8を形成し、図2に示したカッターロール対3、3´において、平坦部7同士が重なり合うよう配置する。図5はカッターロール対3、3´が重なり合うよう配置された状態を示す断面図であるが、薄肉部8同士が対向する部分は逃げ部9を形成し、この逃げ部9に対応する断続部8は切断されない。一方、薄肉部8の反対面10同士が重なりあう部分はせん断部を形成し、このせん断部に対応する断続部6は切断される。このようにして断続部6が交互に切断されて、シートに千鳥状スリットが形成される。
【0007】
このようにして図6に示したように、シート4上に千鳥状スリット11を形成される。このシート4のA−A´断面を見た場合、図7に示したように千鳥状スリット11で囲まれた線条部12が凸状加工刃1の先端形状に応じて上下方向に円弧状に突出している。
【0008】
その後、シート4を幅方向に展開することにより、図8に示したようなエキスパンド網目13を形成する。このエキスパンド網目は線条部12と線条部12同士を結合する結節部13で構成される。なお、結節部13は切断されずに残った断続部6に対応する。
【0009】
このようなロータリーエキスパンド方式では比較的高速でエキスパンド網目を形成することができる。しかしながら、図5に示したように、結節部14は断続部6のせん断時に変形を受けて応力が集中する。また、図7に示したように、線条部12がシート4面の上下方向に円弧状に突出させた後、シート幅方向に展開されるため、線条部12には捩れが生じる。この捩れにより線条部12自体に応力がかかるが、線条部12の支点である結節部14にも応力が集中する。
【0010】
このようなエキスパンド網目を鉛蓄電池の格子体として用いた場合、エキスパンド加工時の応力が集中した結節部14が腐食したり、正極活物質の膨張による引張り力によって断線し、比較的早期に寿命に至るという問題があった。
【0011】
このような格子の結節部14が腐食するという現象は、特に高温環境下で使用される頻度の高い、自動車用鉛蓄電池さらには電池中の単位セルを構成する極板群中の負極板の枚数が正極板の枚数と同枚数か正極板の枚数より1枚少ない構成の蓄電池において顕著である。このような極板群構成の場合、極板群の両端に位置する2枚の極板(以下、端板)中、一方もしくは両方が正極板となる。
【0012】
このような端板が正極板であって、正極端板が直接電槽内壁に接する構成、すなわち、特に負極板が袋状セパレータに収納されるか、もしくは袋状セパレータではなく、リーフ状のセパレータを用いた構成の場合、正極端板は腐食により体積膨張し結節部が断線することで電池容量が低下する確率が、他の端板でない正極板に比べて大きいことがわかってきた。
【0013】
負極板に挟まれている正極板の場合、正極活物質と負極活物質の膨張によって正極板の両面は比較的均一に正極板の厚み方向への圧迫力によって結節部が挟持されているが、端板が正極板である場合には極板の両面が均一に挟持されていないため結節部の断線が発生し電池容量の低下が発生しやすいと推測される。
【0014】
【特許文献1】
特開平3−204126号公報
【0015】
【発明が解決しようとする課題】
本発明は前記したような生産性に優れたロータリーエキスパンド方式によるエキスパンド網目を格子体に用いた鉛蓄電池において発生する格子体の結節部の断線とこれによる電池容量の低下を抑制し、長寿命の鉛蓄電池を提供することを目的とする。
【0016】
【課題を解決するための手段】
前記した課題を解決するために、本発明の鉛もしくは鉛合金で構成されたシートに断続したスリットを平行に複数条形成するとともに、スリット間に形成された線条部をシート面に対して上下方向に突出させ、シートを幅方向に展開伸張して形成したエキスパンド格子体を備えた鉛蓄電池であって、エキスパンド格子体を構成する網目の結節部と線条部において、結節部のシート幅方向の引張強度を線条部の長さ方向の引張強度以上としたことを特徴とする鉛蓄電池を示すものである。
【0017】
また、本発明の請求項2に係る発明は、請求項1の鉛蓄電池において、負極板の枚数を正極板の枚数以下とした鉛蓄電池を示すものである。
【0018】
さらに、本発明の請求項3に係る発明は、請求項1もしくは請求項2の鉛蓄電池において、電槽内壁に直接接触する正極板を備えた鉛蓄電池を示すものである。
【0019】
【発明の実施の形態】
本発明の実施の形態による鉛蓄電池の構成を説明する。
【0020】
本発明による鉛蓄電池に用いる格子体はロータリーエキスパンド方式によって作成されることによって、図8に示したような線条部に捩れを有している。ロータリーエキスパンド方式による格子体の作成方法としては種々のものが示されているが、従来の技術において例示した特許文献1に示したような方法によって作成することができる。ロータリーエキスパンド方式によるエキスパンド網目は格子材料となるシートに断続したスリットを平行に複数条形成し、スリット断続部を交互に切断するとともに、このスリット間に位置する線条部を上下方向に円弧状に突出させたのち、シートを幅方向、すなわち、スリットと概直交する方向に展開したエキスパンド網目を少なくとも正極格子体に用いるものである。
【0021】
本発明においては図9に示したように、格子体15を構成する結節部16のシート幅方向(図9中のW方向)の引張強度をTn、線条部17の線条部長さ方向(図9中のL方向)の引張強度をTsとしたときに、Ts≦Tnとするものである。このような構成を得るために種々の方法を採用することができる。例えば、図6に示した断続部6の長さ寸法を増加させることによって達成することができる。他の方法として薄肉部8をより薄く形成することによって逃げ部9の体積を増加させ、結節部16に係る応力を減少させることが行われる。さらに他の方法としては図5の示したカッターロール対の重ね合わせにおいて、平坦部7の重ね合わせ量(図5におけるC寸法)を0もしくは図10に示したように対向する平坦部7同士を0.1〜0.3mm程度の極小量のみ離間させることによって結節部16の変形を最小限に抑制できる。特に平坦部17同士を離間させた場合、断続部6の切断は完全に行われないが、シート幅方向への展開工程によって、容易に切断が行われ、シートは展開される。
【0022】
本発明の鉛蓄電池はこのようにして得た格子体15を少なくとも正極格子体として用い、以降は従来の方法によって鉛蓄電池を構成することによって得ることができる。シート材としては従来から用いられている0.03〜0.10質量%程度のシート強度を確保するために必要な量のカルシウムや0.20〜2.00質量%程度のシート耐食性に好ましい効果を確保する程度のスズを含有したPb−Ca−Sn合金であって、圧延によってエキスパンド加工に好適な圧延組織を有した圧延シートを用いることができる。
【0023】
このようにして得た本発明の鉛蓄電池ではロータリーエキスパンド格子において従来顕著に発生していた結節部16の断線を抑制し、安定した寿命特性を有した鉛蓄電池を得ることができる。
【0024】
このような本発明の構成は極板群を構成する負極板の枚数が正極板枚数と同枚数かもしくは1枚少ない鉛蓄電池に適用することが好ましい。このような極板構成の鉛蓄電池は端板の一方もしくは両方が正極板となり、端板としての正極板はその両面が負極板によって加圧されていない。そのため正極板の腐食による体積膨張が端板でなり正極板に比較して著しく大きくなり、格子体の結節部が容易に断線し、電池の容量が急激に低下する頻度が極めて高いため、このような極板群構成の鉛蓄電池に本発明の構成を適用することにより、本発明の効果をより顕著に得ることができる。
【0025】
また、前記したような極板群の端板のいずれか一方が正極板で構成において、特に正極板が直接電槽内壁に接する構成の鉛蓄電池では、電槽内壁は平滑であるので、この正極端板の体積膨張がさらに大きくなることによって結節部の断線がさらに促進される。したがって、正極板が直接電槽内壁に接する構成の鉛蓄電池に本発明の構成を適用することが好ましい。このような構成は負極板のみが袋状セパレータに収納された構成や、袋状セパレータではなく、リーフ状のセパレータを用いた構成が該当する。
【0026】
【実施例】
Pb−0.07質量%Ca−1.60質量%Sn合金で構成され、表面にPb−7質量%Sb−5質量%Sn合金層を10μmの厚みで形成した総厚1.0mmの圧延シートを作成し、発明の実施の形態で説明したロータリーエキスパンド方式によって正極格子体を作成した。なお、エキスパンド加工に用いる円盤状カッターの平坦部7の重ね合わせ量を変化させることにより、図9に示した格子体15を構成する結節部16のシート幅方向(図9中のW方向)の引張強度をTnと線条部17の線条部長さ方向(図9中のL方向)の引張強度をTsを種々に変化させて作成した。これらの正極格子体を用いて表1に示した構成でJIS−D5301で規定する55D23形鉛蓄電池を作成した。なお、セパレータは微孔性ポリエチレンの袋状セパレータを用い、正極板もしくは負極板のいずれかを袋状セパレータに収納した。
【0027】
【表1】

Figure 2004146179
【0028】
表1に示した各電池についてJIS−D5301に規定された軽負荷寿命試験を放電時間を4分から1分に変更し75℃気相雰囲気下で行った。その結果を表1に示した。表1に示した結果、従来例による電池1、4、7および10は本発明例による電池に比較して短寿命であった。これらの従来例の電池を分解調査を行ったところ、正極格子の結節部での断線が発生していた。特にこの現象は電槽内壁と直接接触する正極板の存在する電池4、10において顕著であった。
【0029】
一方、電槽内壁に直接接触する構成であっても本発明の構成による電池5、6、11および12は極めて優れた寿命特性を有していた。
【0030】
【発明の効果】
以上、説明してきたように、本発明の構成によれば、生産性に優れたロータリーエキスパンド格子体を用いた鉛蓄電池の特に正極格子の結節部において従来顕著に発生していた断線を抑制し、これによる容量低下を抑制するとともに、長寿命の鉛蓄電池を生産性よく安価に提供できることから、工業上、極めて有用である。
【図面の簡単な説明】
【図1】円盤状カッターを示す図
【図2】カッターロール対を示す図
【図3】凸状加工刃によってシート上に形成されたスリットを示す図
【図4】凸状加工刃を示す図
【図5】カッターロール対の断面を示す図
【図6】シート上に形成されたスリットを示す図
【図7】千鳥状スリットを形成したシートの断面を示す図
【図8】エキスパンド網目を示す図
【図9】本発明の鉛蓄電池の格子体を示す図
【図10】本発明の鉛蓄電池の格子体の製造工程を示す図
【符号の説明】
1    凸状加工刃
2    円盤状カッター
3、3´   カッターロール
4      シート
5      スリット
6      断続部
7      平坦部
8      薄肉部
9      逃げ部
10     反対面
11     千鳥状スリット
12     線条部
13     エキスパンド網目
14     結節部
15     格子体
16     結節部
17     線条部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lead storage battery used for an automobile or the like.
[0002]
[Prior art]
BACKGROUND ART In recent years, a grid body of a lead storage battery has been used from a casting method to an expanding method for the purpose of improving productivity. In the expanding method, generally, a slit is formed in a lead-calcium alloy sheet, and the slit is developed to form a mesh.
[0003]
Among the expanding methods, the reciprocating method has been generally used. In this reciprocating expansion method, a slit is formed in the lead alloy sheet by intermittently feeding the lead alloy sheet into a reciprocating mold, and the strand that is sandwiched between the slits at the tip of the mold becomes a sheet. In the width direction to form a mesh.
[0004]
For this reason, in order to improve the production speed of the mesh, it is necessary to increase the number of blades of the mold or to increase the press speed. However, in such a method, there is a problem that the weight of the mold is increased, a press machine with a larger output is required, and the equipment becomes larger and the running cost is increased. Therefore, as a means for further improving the productivity, a rotary expanding method as described in Patent Document 1 is being adopted. In this method, a sheet is passed between a pair of cutter rolls 3 and 3 'in which a disc-shaped cutter 2 having a convex processing blade 1 as shown in FIG. 1 is formed at intervals as shown in FIG. To form a staggered slit in the sheet. According to this method, the production speed can be relatively easily increased by increasing the rotation speed of the cutter roll.
[0005]
The pair of cutter rolls 3 and 3 ′ are arranged such that the convex processing blades 1 face each other, and the sheet 4 is sheared by the overlapping of the convex processing blades 1, and the intermittent slit 5 as shown in FIG. A plurality of strips are formed in parallel according to the number of disk-shaped cutters 2. Flat portions 7 are formed between the convex processing blades 1, and the flat portions 7 correspond to the intermittent portions 6. In order to develop the expanded mesh by expanding the slits 5, it is necessary to alternately cut the intermittent portions 6 between the slits 5 so that the slits 5 are staggered.
[0006]
In the rotary expanding method described in Patent Document 1, in order to cut the intermittent portion 6 alternately, as shown in FIG. 4, a thin portion 8 is alternately provided in a thickness direction on a flat portion 7 between the convex processing blades 1. Then, in the cutter roll pairs 3 and 3 'shown in FIG. 2, the flat portions 7 are arranged so as to overlap each other. FIG. 5 is a cross-sectional view showing a state in which the cutter roll pairs 3 and 3 ′ are arranged so as to overlap with each other. A portion where the thin portions 8 face each other forms a relief portion 9, and an intermittent portion corresponding to the relief portion 9. 8 is not cut. On the other hand, a portion where the opposite surfaces 10 of the thin portion 8 overlap each other forms a shear portion, and the intermittent portion 6 corresponding to the shear portion is cut. In this way, the intermittent portions 6 are alternately cut to form a staggered slit in the sheet.
[0007]
In this way, the staggered slits 11 are formed on the sheet 4 as shown in FIG. When the AA ′ cross section of the sheet 4 is viewed, as shown in FIG. 7, the linear portion 12 surrounded by the staggered slits 11 has an arc shape in the vertical direction according to the tip shape of the convex processing blade 1. It protrudes.
[0008]
Thereafter, the expanded mesh 13 as shown in FIG. 8 is formed by expanding the sheet 4 in the width direction. This expanded mesh is composed of the striated portions 12 and the knots 13 connecting the striated portions 12 to each other. The node 13 corresponds to the intermittent portion 6 remaining without being cut.
[0009]
In such a rotary expanding system, an expanded network can be formed at a relatively high speed. However, as shown in FIG. 5, the knot portion 14 is deformed when the intermittent portion 6 is sheared, and the stress is concentrated. Further, as shown in FIG. 7, since the linear portions 12 protrude in an arc shape in the vertical direction of the surface of the sheet 4 and then are developed in the sheet width direction, the linear portions 12 are twisted. This twist causes stress to be applied to the striated portion 12 itself, but the stress also concentrates on the knot portion 14 which is a fulcrum of the striated portion 12.
[0010]
When such an expanded mesh is used as a grid of a lead-acid battery, the nodal portion 14 where the stress during the expanding process is concentrated is corroded, or is broken by the tensile force due to the expansion of the positive electrode active material, and the life is shortened relatively early. There was a problem of reaching.
[0011]
Such a phenomenon that the node 14 of the grid is corroded is caused by the number of the negative electrode plates in the electrode plate group constituting the unit cell in the automotive lead-acid battery or the battery which is frequently used particularly in a high temperature environment. Is remarkable in a storage battery having the same number of positive electrode plates or one less than the number of positive electrode plates. In the case of such an electrode plate group configuration, one or both of the two electrode plates (hereinafter, referred to as end plates) located at both ends of the electrode plate group are positive electrode plates.
[0012]
Such an end plate is a positive electrode plate, and the configuration in which the positive electrode end plate is in direct contact with the inner wall of the battery case, that is, the negative electrode plate is stored in a bag-shaped separator, or is not a bag-shaped separator, but a leaf-shaped separator It has been found that, in the case of using a positive electrode plate, the probability that the volume of the positive electrode end plate expands due to corrosion and the nodal portion breaks to lower the battery capacity is larger than that of the other positive electrode plates that are not end plates.
[0013]
In the case of the positive electrode plate sandwiched between the negative electrode plates, both sides of the positive electrode plate are relatively uniformly pressed by the compression force in the thickness direction of the positive electrode plate due to expansion of the positive electrode active material and the negative electrode active material. When the end plate is a positive electrode plate, it is presumed that since both surfaces of the electrode plate are not evenly sandwiched, disconnection of the nodal portion occurs and the battery capacity tends to decrease.
[0014]
[Patent Document 1]
JP-A-3-204126
[Problems to be solved by the invention]
The present invention suppresses disconnection of the grid body and a decrease in battery capacity due to disconnection of the grid body generated in the lead storage battery using the expanded mesh by the rotary expand system having excellent productivity as described above, and has a long life. It is intended to provide a lead storage battery.
[0016]
[Means for Solving the Problems]
In order to solve the above-described problems, a plurality of intermittent slits are formed in a sheet made of lead or a lead alloy according to the present invention in parallel, and the linear portions formed between the slits are vertically moved with respect to the sheet surface. A lead-acid battery provided with an expanded lattice body formed by projecting the sheet in the direction and expanding and expanding the sheet in the width direction, and in a knot portion and a striated portion of the mesh forming the expand lattice body, the sheet width direction of the knot portion Is a lead storage battery characterized in that the tensile strength of the lead-acid battery is equal to or higher than the tensile strength in the length direction of the striated portion.
[0017]
The invention according to claim 2 of the present invention is directed to a lead-acid battery according to claim 1, wherein the number of negative electrodes is equal to or less than the number of positive electrodes.
[0018]
Further, the invention according to claim 3 of the present invention relates to the lead storage battery according to claim 1 or 2, further comprising a positive electrode plate which is in direct contact with the inner wall of the battery case.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The configuration of the lead storage battery according to the embodiment of the present invention will be described.
[0020]
The grid body used in the lead storage battery according to the present invention is formed by a rotary expanding method, and thus has a twist in the linear portion as shown in FIG. Although various methods have been described as a method for producing a lattice body by the rotary expanding method, the lattice body can be produced by a method as shown in Patent Document 1 exemplified in the related art. The expanded mesh by the rotary expanding method has a plurality of slits intermittently formed in a sheet serving as a lattice material in parallel, and the slit intermittent portions are alternately cut, and the linear portions located between the slits are formed into an arc shape in the vertical direction. After being protruded, an expanded mesh obtained by expanding the sheet in the width direction, that is, a direction substantially orthogonal to the slit is used as at least the positive electrode grid.
[0021]
In the present invention, as shown in FIG. 9, the tensile strength in the sheet width direction (W direction in FIG. 9) of the knot portion 16 constituting the lattice body 15 is Tn, and the length direction of the striated portion of the striated portion 17 ( Ts ≦ Tn, where Ts is the tensile strength in the direction (L direction in FIG. 9). Various methods can be adopted to obtain such a configuration. For example, this can be achieved by increasing the length of the intermittent portion 6 shown in FIG. As another method, the volume of the escape portion 9 is increased by making the thin portion 8 thinner, and the stress applied to the knot portion 16 is reduced. As still another method, in the overlapping of the cutter roll pair shown in FIG. 5, the overlapping amount (C dimension in FIG. 5) of the flat portions 7 is set to 0 or the flat portions 7 facing each other as shown in FIG. By separating only a minimal amount of about 0.1 to 0.3 mm, the deformation of the node 16 can be suppressed to a minimum. In particular, when the flat portions 17 are separated from each other, the intermittent portion 6 is not completely cut, but is easily cut by the spreading process in the sheet width direction, and the sheet is spread.
[0022]
The lead storage battery of the present invention can be obtained by using the grid body 15 thus obtained at least as a positive grid body, and thereafter configuring the lead storage battery by a conventional method. As the sheet material, conventionally used calcium necessary to secure a sheet strength of about 0.03 to 0.10% by mass and a favorable effect on sheet corrosion resistance of about 0.20 to 2.00% by mass are required. A rolled sheet which is a Pb-Ca-Sn alloy containing tin enough to secure the rolling structure and has a rolled structure suitable for expanding by rolling can be used.
[0023]
In the lead storage battery of the present invention obtained in this way, the disconnection of the nodal portion 16 which has conventionally occurred remarkably in the rotary expanded grid can be suppressed, and a lead storage battery having stable life characteristics can be obtained.
[0024]
Such a configuration of the present invention is preferably applied to a lead storage battery in which the number of negative electrodes constituting the electrode group is equal to or less than the number of positive electrodes. In a lead-acid battery having such an electrode configuration, one or both of the end plates serve as positive plates, and both surfaces of the positive plate serving as an end plate are not pressed by the negative plates. As a result, the volume expansion due to corrosion of the positive electrode plate becomes an end plate and becomes significantly larger than that of the positive electrode plate, and the nodes of the lattice body are easily disconnected, and the frequency of the battery capacity is extremely rapidly reduced. By applying the configuration of the present invention to a lead storage battery having a simple electrode plate configuration, the effects of the present invention can be more remarkably obtained.
[0025]
In addition, in the case where one of the end plates of the electrode plate group is a positive electrode plate, particularly in a lead-acid battery in which the positive electrode plate is in direct contact with the inner wall of the battery case, the inner wall of the battery case is smooth. The disconnection of the knot is further promoted by further increasing the volume expansion of the extreme plate. Therefore, it is preferable to apply the configuration of the present invention to a lead storage battery in which the positive electrode plate is in direct contact with the inner wall of the battery case. Such a configuration corresponds to a configuration in which only the negative electrode plate is housed in a bag-shaped separator, or a configuration in which a leaf-shaped separator is used instead of a bag-shaped separator.
[0026]
【Example】
Rolled sheet having a total thickness of 1.0 mm, made of a Pb-0.07% by mass Ca-1.60% by mass Sn alloy, and having a Pb-7% by mass Sb-5% by mass Sn alloy layer formed on its surface with a thickness of 10 μm. Was prepared, and a positive electrode grid body was prepared by the rotary expanding method described in the embodiment of the invention. Note that, by changing the amount of superposition of the flat portion 7 of the disc-shaped cutter used for the expanding process, the knot portion 16 constituting the lattice body 15 shown in FIG. 9 in the sheet width direction (W direction in FIG. 9). The tensile strength was Tn, and the tensile strength in the length direction of the striated portion 17 (L direction in FIG. 9) was prepared by changing Ts variously. Using these positive electrode grids, a 55D23 type lead-acid battery defined by JIS-D5301 was created with the configuration shown in Table 1. As the separator, a bag-shaped separator made of microporous polyethylene was used, and either the positive electrode plate or the negative electrode plate was housed in the bag-shaped separator.
[0027]
[Table 1]
Figure 2004146179
[0028]
For each battery shown in Table 1, a light load life test specified in JIS-D5301 was performed in a gas phase atmosphere at 75 ° C. with the discharge time changed from 4 minutes to 1 minute. The results are shown in Table 1. As shown in Table 1, the batteries 1, 4, 7, and 10 according to the conventional example had a shorter life than the battery according to the example of the present invention. When these conventional batteries were disassembled and examined, disconnection occurred at the nodal portion of the positive electrode grid. In particular, this phenomenon was remarkable in the batteries 4 and 10 in which the positive electrode plate was in direct contact with the inner wall of the container.
[0029]
On the other hand, the batteries 5, 6, 11 and 12 according to the configuration of the present invention had extremely excellent life characteristics even when they were configured to directly contact the inner wall of the battery case.
[0030]
【The invention's effect】
As described above, according to the configuration of the present invention, a lead storage battery using a rotary expanded grid body having excellent productivity suppresses a disconnection that has been conventionally remarkably generated particularly at a node of a positive grid, This is extremely useful industrially because it can suppress a decrease in capacity due to this and can provide a long-life lead-acid battery with good productivity at low cost.
[Brief description of the drawings]
FIG. 1 shows a disk-shaped cutter. FIG. 2 shows a pair of cutter rolls. FIG. 3 shows a slit formed on a sheet by a convex processing blade. FIG. 4 shows a convex processing blade. FIG. 5 is a view showing a cross section of a pair of cutter rolls. FIG. 6 is a view showing a slit formed on a sheet. FIG. 7 is a view showing a cross section of a sheet having a staggered slit. FIG. 8 is a view showing an expanded mesh. FIG. 9 is a view showing a grid of a lead storage battery of the present invention. FIG. 10 is a view showing a manufacturing process of a grid of a lead storage battery of the present invention.
DESCRIPTION OF SYMBOLS 1 Convex processing blade 2 Disc-shaped cutter 3, 3 ′ Cutter roll 4 Sheet 5 Slit 6 Intermittent part 7 Flat part 8 Thin part 9 Escape part 10 Opposite surface 11 Staggered slit 12 Line part 13 Expanded mesh 14 Knot part 15 Grid Body 16 Knot 17 Striated

Claims (3)

鉛もしくは鉛合金で構成されたシートに断続したスリットを平行に複数条形成するとともに、スリット間に形成された線条部を前記シート面に対して上下方向に突出させ、前記シートを幅方向に展開伸張して形成したエキスパンド格子体を備えた鉛蓄電池であって、前記エキスパンド格子体を構成する網目の結節部と線条部において、前記結節部の前記シート幅方向の引張強度を前記線条部の長さ方向の引張強度以上としたことを特徴とする鉛蓄電池。A plurality of slits intermittently formed in a sheet made of lead or a lead alloy are formed in parallel with each other, and the linear portions formed between the slits are projected vertically with respect to the sheet surface, and the sheet is made to extend in the width direction. A lead-acid battery provided with an expanded lattice formed by expanding and expanding, wherein at a knot portion and a striated portion of a mesh forming the expanded lattice member, the tensile strength of the knot portion in the sheet width direction is set to the linear value. A lead-acid battery characterized by having a tensile strength in the longitudinal direction of the portion or more. 負極板の枚数を正極板の枚数以下としたことを特徴とする請求項1記載の鉛蓄電池。2. The lead-acid battery according to claim 1, wherein the number of the negative plates is equal to or less than the number of the positive plates. 電槽内壁に直接接触する正極板を備えたことを特徴とする請求項1もしくは2に記載の鉛蓄電池。The lead-acid battery according to claim 1, further comprising a positive electrode plate that directly contacts an inner wall of the battery case.
JP2002309345A 2002-10-24 2002-10-24 Lead acid storage battery Pending JP2004146179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002309345A JP2004146179A (en) 2002-10-24 2002-10-24 Lead acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002309345A JP2004146179A (en) 2002-10-24 2002-10-24 Lead acid storage battery

Publications (1)

Publication Number Publication Date
JP2004146179A true JP2004146179A (en) 2004-05-20

Family

ID=32455197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309345A Pending JP2004146179A (en) 2002-10-24 2002-10-24 Lead acid storage battery

Country Status (1)

Country Link
JP (1) JP2004146179A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7632598B2 (en) 2004-12-24 2009-12-15 Kabushiki Kaisha Toshiba Fuel cell with polymer-based fuel absorbing member
WO2020008500A1 (en) * 2018-07-02 2020-01-09 日立化成株式会社 Lattice body, electrode plate, lead storage battery, and methods for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7632598B2 (en) 2004-12-24 2009-12-15 Kabushiki Kaisha Toshiba Fuel cell with polymer-based fuel absorbing member
WO2020008500A1 (en) * 2018-07-02 2020-01-09 日立化成株式会社 Lattice body, electrode plate, lead storage battery, and methods for manufacturing same

Similar Documents

Publication Publication Date Title
JP3358508B2 (en) Expanded grid for lead-acid battery
JP4599940B2 (en) Lead acid battery
JP4288730B2 (en) Lead storage battery manufacturing method and lead storage battery grid manufacturing apparatus
JP2004146179A (en) Lead acid storage battery
JP4062817B2 (en) Lead acid battery and manufacturing method thereof
JP2011181491A (en) Electrode plate for lead storage battery, and lead storage battery using the same
JP4385441B2 (en) Lead acid battery
JP2000357518A (en) Grid for lead-acid battery and its manufacture
JP4686810B2 (en) Lead acid battery
JP4834912B2 (en) Manufacturing method of storage battery grid and manufacturing method of lead storage battery using storage battery grid manufactured by the manufacturing method
JP4380184B2 (en) Storage battery grid and lead storage battery using the same
JP4239303B2 (en) Lead acid battery
JP4385557B2 (en) Expanded grid for battery and lead-acid battery using the same
JP4904632B2 (en) Lead acid battery
JP4876328B2 (en) Battery grid manufacturing equipment for storage batteries
JP4006888B2 (en) Manufacturing method of lead acid battery
JPS6055954B2 (en) Manufacturing method of expanded lattice for lead-acid battery plates
JP2000348732A (en) Lead-acid battery and manufacture therefor
JP4224756B2 (en) Lead acid battery
JP2003132897A (en) Method for manufacturing expand type electrode plate for positive electrode
JP2001110426A (en) Manufacturing method for rolled lead alloy sheet for lattice body of lead accumulator and manufacturing method for lead accumulator using the rolled lead alloy sheet
JP2003163008A (en) Lead storage battery
JP4069674B2 (en) Manufacturing method of expanded grid for lead-acid battery
JP2001135318A (en) Lattice for sealed lead battery and method for producing the same
JP4894105B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415