[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004144568A - Liquid chromatography device and sample introduction method - Google Patents

Liquid chromatography device and sample introduction method Download PDF

Info

Publication number
JP2004144568A
JP2004144568A JP2002308680A JP2002308680A JP2004144568A JP 2004144568 A JP2004144568 A JP 2004144568A JP 2002308680 A JP2002308680 A JP 2002308680A JP 2002308680 A JP2002308680 A JP 2002308680A JP 2004144568 A JP2004144568 A JP 2004144568A
Authority
JP
Japan
Prior art keywords
branch
flow path
sample
liquid
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002308680A
Other languages
Japanese (ja)
Other versions
JP4012800B2 (en
Inventor
Takanori Anazawa
穴澤 孝典
Tetsuo Takada
高田 哲生
Atsushi Teramae
寺前 敦司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2002308680A priority Critical patent/JP4012800B2/en
Publication of JP2004144568A publication Critical patent/JP2004144568A/en
Application granted granted Critical
Publication of JP4012800B2 publication Critical patent/JP4012800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/10Preparation using a splitter

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micro-liquid chromatography device equipped with a micro-column, capable of introducing a very small quantity of sample into the column and forming a sample adsorption band having a narrow band width, and a sample introduction method into the liquid chromatography device. <P>SOLUTION: This micro-liquid chromatography device 200 has inside a member, a capillary-shaped upstream side passage 3, a liquid injection part 13 positioned at the upstream end of the upstream side passage, an adsorption column 5 having one end connected to the terminal of the upstream side passage, and a downstream side discharge port 14 for discharging liquid passing through the adsorption column. The device is characterized as follows: a branch part 4 is provided on the upstream side passage; a branch passage 7 is provided from the branch part; and the branch passage is connected to the outside of the device through a gas-permeable and liquid-impermeable gas-liquid separator 8. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、微小な吸着カラムに微少量試料を導入することができる微小液体クロマトグラフィーデバイス、及び該液体クロマトグラフィーデバイス中の吸着カラムへの微少量試料の導入方法に関する。
【0002】
【従来の技術】
液体クロマトグラフィーとしては、チューブに粉体状の充填剤を充填したカラムを使用するカラムクロマトグラフィーと、粉体状の充填剤の層を硝子板などの上に形成した薄層クロマトグラフィーが知られているが、加圧して展開液を送液することにより高速分析が可能な点から、カラムクロマトグラフィーが広く使用されている。
カラムクロマトグラフィーの分析速度を更に向上させる試みとして、微小な吸着カラムを使用する方法が検討されている。このようなクロマトグラフィーのカラムとしては、例えば長さ数mm以下、直径を100μm以下のものを使用することも考えられる。このように展開距離を短縮することによって、原理的には分析時間を従来に比して桁違いに短縮でき、また、試料の必要量を桁違いに低下させることが可能であると考えられている。
従来、直径が1000μm以下の吸着カラムを用いた液体クロマトグラフィーが提案されている(例えば、特許文献1参照。)。さらに、吸着カラム(特許文献1におけるキャピラリーカラム)の上流側から分岐流路を設け、展開液(前記特許文献1における移動相)の一部を分岐流路へ分流し、該分岐流路上に圧力調整カラムを有する実施例が紹介されている。しかしながら、この方法によれば、ポンプから送り出され圧力調整カラムへ送られて無駄に捨てられる展開液は、吸着カラムに導入される展開液より多く、前記特許文献1に記載の例では、該吸着カラムへ送り込まれる展開液の500倍もの展開液が無駄に捨てられている。また、捨てる展開液の量を少なくしようとすると、極微少量の試料を吸着カラムへ導入することは困難であり、そのため、吸着カラムは25cmもの長さを必要とした。即ち、極微少量の試料導入が困難であるため、例えばカラム長1cmという微小なカラムクロマトグラフィーは実用化されていなかった。
【0003】
【特許文献1】
特開平11−287791公報。6頁、実施例5。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、微小カラムを備えた微小液体クロマトグラフィーデバイスであって、無駄に捨てる展開液量を減少させながら或いは無くしながら、微少量の試料をカラムへ導入し、バンド幅の狭い試料吸着バンドを形成することのできる微小液体クロマトグラフィーデバイス、及び該液体クロマトグラフィーデバイスへの試料導入方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意検討した結果、微小な液体クロマトグラフィー用吸着カラムへの試料導入路を分岐させ、該導入路に導入された試料の一部のみを該吸着カラムへ導入し、残余試料を分岐流路へ流出する方法に於いて、あらかじめ流路中に充填された気体と、液体である試料や展開液の性質の違いを利用して、展開液を無駄に捨てることなく或いはその量を減じながら、試料を導入することにより、上記課題を解決できることを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明の第一発明である微小液体クロマトグラフィーデバイスは、部材の内部に、毛細管状の上流側流路(3)と、該上流側流路の上流端に位置する液体注入部(13)と、一端が前記上流側流路の末端に接続されている吸着カラム(5)と、前記吸着カラムを通過した液体を排出する下流側排出口(14)を有する微小液体クロマトグラフィーデバイスであって、前記上流側流路上に分岐部(4)を有し、該分岐部から分岐流路(7)が設けられていて、該分岐流路が、気体は透過させるが液体は透過させない気液分離体(8)を介して前記デバイス外に連絡していることを特徴とするものである。
【0007】
また、本発明の第二発明である微小液体クロマトグラフィーデバイスは、部材の内部に、毛細管状の上流側流路(3)と、該上流側流路の上流端に位置する液体注入部(13)と、一端が前記上流側流路の末端に接続されている吸着カラム(5)と、前記吸着カラムを通過した液体を排出する下流側排出口(14)を有する微小液体クロマトグラフィーデバイスであって、前記上流側流路上に分岐部(4)を有し、該分岐部から分岐流路(7)が設けられていて、該分岐流路の末端が前記デバイス内部で閉じられていることを特徴とするものである。
【0008】
また、本発明の第三発明である試料導入方法は、部材の内部に、毛細管状の上流側流路(3)と、該上流側流路の上流端に位置する液体注入部(13)と、一端が前記上流側流路の末端に接続されている吸着カラム(5)と、前記吸着カラムを通過した液体を排出する下流側排出口(14)と、前記上流側流路上に分岐部(4)と、該分岐部から分岐した分岐流路(7)と、該分岐流路の下流端に設けられた該分岐流路を流れる液体の流量を調節するための流量調節部(8)を備えて成る微小液体クロマトグラフィーデバイス(100,200,300,400)の前記吸着カラムに試料を導入する方法であって、前記液体注入部(13)から液体状の試料と展開液をこの順に注入して、該試料の一部を前記吸着カラム(5)に導入し、残余の試料を、あらかじめ気体が充填された前記分岐流路(7)へ流出させることを特徴とするものである。
【0009】
本発明の微小液体クロマトグラフィーデバイスは、液体状の試料を吸着カラムへ導入するための上流側流路上に分岐部を有し、該分岐部から分岐流路が設けられた構造となっているため、液体試料の一部が吸着カラムに導入され、残余試料は分岐流路へ流出される。よって、液体注入部から注入される試料の量は、吸着カラムへ導入する試料の量に比べて多くてよく、取り扱いやすい量に設定することができる。従って、従来困難であった微小量の試料を吸着カラムへ導入することを、容易かつ効果的に行うことができる。
【0010】
また、本発明の微小液体クロマトグラフィーデバイスを用いると、微少量の試料を微小な吸着カラムに導入することができるため、吸着カラムへの試料吸着バンドの幅が狭くなり、短い展開距離で分離可能となって、従来と比較して分析時間を短縮することが可能である。かかる微小液体クロマトグラフィーデバイスは、他のマイクロ流体デバイスへ接続することも可能であり、微小な装置を用いる分析システム、いわゆるマイクロ・トータル・アナリティカル・システム(μ−TAS)に組み込んで使用することも可能である。
【0011】
【発明の実施の形態】
以下、本発明について、詳細に説明する。
本発明の第一発明である微小液体クロマトグラフィーデバイスは、部材の内部に、毛細管状の上流側流路と、該上流側流路の上流端に位置する液体注入部と、一端が前記上流側流路の末端に接続されている吸着カラムと、前記吸着カラムを通過した液体を排出する下流側排出口を有する微小液体クロマトグラフィーデバイスであって、前記上流側流路上に分岐部を有し、該分岐部から分岐流路が設けられていて、該分岐流路が、気体は透過させるが液体は透過させない気液分離体を介して前記デバイス外に連絡していることを特徴とするものである。
【0012】
気体は透過するが液体は透過しない気液分離体としては、例えば本発明者等の出願による特許第1616519号に多孔質の支持体と非多孔質の薄層が積層された構造の気液分離膜を使用することができる。また、気液分離体の他の例としては、試料として水系液体の試料を使用する場合に、気体は透過するが水系液体は透過させない疎水性の多孔質体を用いることも好ましい。
この気液分離体を用いると、気体の透過速度が高くなるため好ましい。気体のみが透過可能な気液分離体を用いることにより、液体状の試料及び展開液を液体注入部から注入する際、上流側流路及び分岐流路中の気体を、気液分離体から排出させることができるが、吸着カラムに導入された残余の試料溶液は気液分離体を透過できずに分岐流路に入り込んだ状態で留まるため、展開液は吸着カラム側に流れてクロマトグラフィーが実施できる。このように、分岐流路から液体を排出させない構造とすることにより、分岐流路側から展開液を無駄に排出することを防ぐことができる。また、試料溶液の導入とクロマトグラフィー測定の切り替え操作を行う必要がないため、操作が単純化される上、切り替えのための機構も不要であり、構造を単純にできるため好ましい。
【0013】
また、本発明の第二発明である微小液体クロマトグラフィーデバイスは、部材の内部に、毛細管状の上流側流路と、該上流側流路の上流端に位置する液体注入部と、一端が前記上流側流路の末端に接続されている吸着カラムと、前記吸着カラムを通過した液体を排出する下流側排出口を有する微小液体クロマトグラフィーデバイスであって、前記上流側流路上に分岐部を有し、該分岐部から分岐流路が設けられていて、該分岐流路の末端が前記デバイス内部で閉じられていることを特徴とする。
【0014】
分岐流路の末端がデバイス内部で閉じられている構造となっていることにより、試料に続いて展開液を液体注入部から注入すると、試料の一部は分岐部から吸着カラム方向に流れて吸着カラムに導入され、試料のうち吸着カラムに導入されなかった部分は分岐流路に充填されていた気体を圧縮しながら全量分岐流路に入り込み、該圧縮された気体の圧力が展開液の注入圧力と釣り合った時点で停止する。その後は、試料によって汚染されていない展開液が前記分岐部から吸着カラムに流入して、液体クロマトグラフィーをおこなうことができる。このような分岐流路の末端を閉じる構造にすることにより、分岐流路側から展開液を無駄に排出することを防ぐことができる。また、試料溶液の導入とクロマトグラフィー測定の切り替え操作を行う必要がないため、操作が単純化される上、切り替えのための機構も不要であり、構造を単純にできるため好ましい。
【0015】
本発明の、第一及び第二発明の液体クロマトグラフィーデバイスにおいて、吸着カラムは、毛細管状の空洞に多孔質体が充填された多孔質カラムであることが好ましい。
吸着カラムは、試料吸着バンドを展開液にて展開し、物質ごとのカラムへの吸着力の差や吸脱着速度の差を利用して分離するクロマトグラフィーを行う分離用カラムであり、クロマトグラフィーの分離用のカラムであれば何ら限定されず、多種類の試料に使用できる汎用吸着カラムや、特定の溶質と親和性の有る物質を担体表面や多孔質表面や流路壁表面に固定した、いわゆるアフィニティー・クロマトグラフィー用カラム等が採用できる。吸着カラムの構造は、粉体を充填した充填カラム、多孔質体を充填した多孔質カラム、キャピラリーカラム等を採用できる。これらの中で、毛細管状の空洞に多孔質体が充填された多孔質カラムであることが、表面積を大きくでき、また、試料や展開液が流れる細孔径を小さくすることが容易で短い展開距離で分離可能となり、且つ、そのように小さな細孔径にしても圧力損失を小さくできるため好ましい。
【0016】
本発明において、前記分岐部は、前記上流側流路の途上に備えられていてもよく、該分岐部から前記吸着カラムの接続位置までの距離により該吸着カラムへの試料導入量を調節することも可能であるが、分岐部は、上流側流路の末端に備えられ、吸着カラムの一端が分岐部に接続されていることが好ましい。これにより、吸着カラムに微小量の試料を狭いバンド幅で導入することができる。
【0017】
また、本発明の第三発明である試料導入方法は、部材の内部に、毛細管状の上流側流路と、該上流側流路の上流端に位置する液体注入部と、一端が前記上流側流路の末端に接続されている吸着カラムと、前記吸着カラムを通過した液体を排出する下流側排出口と、前記上流側流路上に分岐部と、該分岐部から分岐した分岐流路と、該分岐流路の下流端に設けられた該分岐流路を流れる液体の流量を調節するための流量調節部を備えて成る微小液体クロマトグラフィーデバイスの前記吸着カラムに試料を導入する方法であって、前記液体注入部から液体状の試料と展開液をこの順に注入して、該試料の一部を前記吸着カラムに導入し、残余の試料を、あらかじめ気体が充填された前記分岐流路へ流出させることを特徴とする。
【0018】
本第三発明の試料導入方法においては、分岐流路を流れる液体の流量を調節するための流量調節部を、分岐流路の下流端に設けた液体クロマトグラフィーデバイスが用いられる。
流量調節部とは、分岐流路の流路抵抗を調節することにより、分岐流路を流れる液体の流量を調節する機能を有するものである。ここで言う流路抵抗とは、単位圧力で展開液を流したときの流量の逆数である。
流量調節部を設け、分岐流路の流路抵抗を調整することにより、試料を吸着カラムへ導入する量と、分岐流路へ流出させる量の割合を調節することができ、必要な量の試料を効果的に吸着カラムへ導入することができる。また、分岐流路の流路抵抗を調整することにより、分岐流路から流出され無駄に捨てられる展開液の量が少なくなるように調節することができる。
【0019】
流量調節部としては、展開液に対する分岐流路の流路抵抗を前記吸着カラムの流路抵抗の1/10以上に調整するものであることが好ましく、さらに好ましくは1倍以上、特に10倍以上に調整するものであることがより好ましい。流路抵抗が吸着カラムの流路抵抗の1/10より小であると分岐流路から無駄に捨てられる展開液の量が多くなり好ましくない。また、展開液に対する分岐流路の流路抵抗を無限大にするものであってもよい。すなわち、通過可能な展開液の量をゼロとする手段を流量調節部として採用してもよい。
【0020】
展開液に対する流路抵抗が無限大とはならない流量調節部としては、例えば、展開液に対する流路抵抗が吸着カラムの流路抵抗の1/10以上である多孔質体を充填したカラムや、流路抵抗の大きい細いキャピラリーやスリット等を例示できる。この流量調節部を用いると、分岐流路における液体状の試料や展開液の流れを制限できるため、展開液がある程度無駄に排出されはするものの、吸着カラムに圧力をかけて、液体クロマトグラフィー分析を行うことが可能となる。
多孔質流量調節部は、後述するように前記吸着カラムを多孔質体で形成する場合と同様の方法で形成できるし、キャピラリーやスリットは、公知のフォトリソグラフィー法にて部材内に製造可能であるし、部材外にキャピラリーチューブを接続して設けても良い。
【0021】
また、試料溶液や展開液に関する分岐流路の流路抵抗を無限大にする流量調節部としては、例えば、気体は透過するが液体は透過しない気液分離体や、分岐流路に所定の容積を持たせてその末端を閉じる構造、又はバルブ等を用いることができる。
この中でも、気液分離体を流量調節部として採用する、すなわち本発明の第一発明の液体クロマトグラフィーデバイスを用いることが好ましい。
気液分離体としては、疎水性の多孔質体を充填してなる構成を用いることが、気体の透過速度が高く、好ましい。気体のみが透過可能な流量調節部を用いることにより、液体状の試料及び展開液を液体注入部から注入する際、上流側流路及び分岐流路中の気体を、流量調節部から排出させることができるが、吸着カラムに導入された残余の試料溶液は該気液分離体を透過できずに分岐流路に入り込んだ状態で留まるため、展開液は吸着カラム側に流れてクロマトグラフィーが実施できる。このような分岐流路の流路抵抗を無限大にする流量調節部は、分岐流路側から展開液を無駄に排出することを防ぐことができる。これらの中で、気液分離体と、分岐流路の末端を閉じる構造は、試料溶液の導入とクロマトグラフィー測定の切り替え操作を行う必要がないため、操作が単純化され、好ましい。
【0022】
また、流路抵抗を無限大にする流量調節部として、分岐流路に所定の容積を持たせてその末端を閉じる構造を有するもの、すなわち本発明の第二発明の液体クロマトグラフィーデバイスを用いることも好ましい。
分岐流路の末端がデバイス内部で閉じられている構造となっていることにより、試料に続いて展開液を液体注入部から注入すると、試料の一部は分岐部から吸着カラム方向に流れて吸着カラムに導入され、試料のうち吸着カラムに導入されなかった部分は分岐流路に充填されていた気体を圧縮しながら全量分岐流路に入り込み、該圧縮された気体の圧力が展開液の注入圧力と釣り合った時点で停止する。その後は、試料によって汚染されていない展開液が前記分岐部から吸着カラムに流入して、液体クロマトグラフィーをおこなうことができる。このような分岐流路の末端を閉じる構造にすることにより、分岐流路側から展開液を無駄に排出することを防ぐことができる。また、試料溶液の導入とクロマトグラフィー測定の切り替え操作を行う必要がないため、操作が単純化されるため好ましい。さらに、この構造によれば、展開液を導入するためのポンプに脈動があっても、前記圧縮された気体が緩衝材となって、脈動が軽減されるという利点もある。このため、ポンプにダイヤフラム型などの脈動を発するポンプを使用しても分析に与える影響が少なくなり、例えばダイヤフラムポンプが組み込まれたマイクロ流体デバイスに本微小液体クロマトグラフィーデバイスとを一体化することも容易となる。
【0023】
本発明の試料導入方法は、液体注入部から液体状の試料と展開液をこの順に注入して、試料の一部を吸着カラムに導入し、残余の試料を、あらかじめ気体が充填された分岐流路へ流出させることを特徴とする試料導入方法である。
分岐流路にあらかじめ気体が充填されていると、液体注入部から液体状の試料と展開液を注入すると、上流側流路及び分岐流路中に存在する気体(例えば空気)は、気体の粘度が水系液体に比べて2桁程度小さいことから、試料や展開液に押されて上記のような流量調節部を速やかに透過して、デバイス外又はデバイス内の貯液槽等に押し出され、その後は試料溶液、次いで展開液が、圧力差を上述の流路抵抗で除した流量で流通する。従って、展開液を無駄に排出させる割合を少なくしつつ、極微少量の試料を吸着カラムに導入することができる。
【0024】
本発明の試料導入方法において、下流側排出口の圧力を調整しつつ、又は下流側排出口を閉じた状態で、試料を試料注入部に注入することが好ましい。試料を吸着カラムに導入する量と、分岐流路へ流出させる量との割合は、液体状の試料の注入圧力、注入速度、分岐部の位置、後述のように、吸着カラムに充満している流体が気体であるか液体であるか、流量調節部の種類と流路抵抗の値、等で制御することが可能であるが、下流側排出部と分岐流路の圧力バランスを調節して制御することが、自由度が高くかつ再現性も高いため好ましい。前記圧力バランスを調節する方法は、分岐側排出口の圧力を調節しつつ試料を試料注入部に注入することも好ましいが、前記下流側排出口の圧力を調整する方法、又は、前記下流側排出口を開閉する方法が、簡便かつ確実であり、より好ましい。下流側排出口の圧力を調節する手段は任意であるが、例えば、下流側接続口に、加圧気体を配管接続する方法やシリンジを接続する方法を用いることができ、下流側排出口を開閉する手段としては、例えば、下流側排出口に、栓、バルブ、又は、液体が充満しておりピストンが固定されたシリンジを装着又は接続する方法を用いることができる。
【0025】
また、本発明の試料導入方法において、液体状の試料を液体注入部から注入する際、吸着カラムの細孔は気体が充満している状態であっても良いが、展開液などの液体が充満している状態であることが好ましい。吸着カラムに液体を充満させた状態であると、吸着試料量を少なくして試料バンド幅を狭くすることが可能であり、好ましい。この場合、カラムに充満させる液体としては、展開液と混合可能なの液体であることが好ましく、展開液であることがノイズや分解能などの点より好ましい。
【0026】
【実施例】
以下本発明の実施例を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
図1〜3は、本発明の試料導入方法に好適に用いられる液体クロマトグラフィーデバイスの一実施例を示したもので、図1は平面模式図、図2は図1中のA−A線を含む要部断面図であり、図3は図1中のB−B線を含む要部断面図である。
【0027】
図2に示すように、本実施例の液体クロマトグラフィーデバイス100は、平面状の支持体1上に、第一樹脂層2、第二樹脂層11、及び最上層12が順に積層され、これらが一体化されて概略構成されており、全体の外形は板状となっている。
【0028】
支持体1及び最上層12としては、好ましくはポリスチレン板等の透明樹脂製平板が用いられるが、その素材は任意であり、例えば、その他の重合体、ガラス、ステンレススチールなどの金属、水晶などの結晶、炭素、セラミックなどが使用できる。
第一樹脂層2及び第二樹脂層11の素材としては、例えば紫外線等のエネルギー線の照射によって硬化する透明樹脂組成物が好適に用いられる。第一樹脂層2及び第二樹脂層11の各層を構成する素材は互いに異なっていてもよいが、同じ素材で構成されることが好ましい。第一樹脂層2及び第二樹脂層11その素材についても任意であり、上記の他に、感光性ガラスや、前記支持体1及び最上層12の場合と同様のものが使用出来る。前記支持体1及び最上層12と同様の素材を使用する場合には、公知のフォトリソグラフィーなどの方法によって後述の欠損部を形成できる。
【0029】
第一樹脂層2には、層の表面から裏面に貫通する細線状の欠損部が形成されている。また、欠損部の一部は、多孔質体が充填される多孔質体充填部となっている。すなわち、図1等に示すように、直線状欠損部3’、該直線状欠損部3’の末端に接続された多孔質体充填部5’、該多孔質体充填部5’の末端に接続された直線状欠損部6’、前記直線状欠損部3’の末端に位置する分岐部4に接続されたL字状欠損部7’、該L字状欠損部7’の末端に接続された多孔質体充填部8’、及び該多孔質体充填部8’の末端に接続された直線状欠損部9’が形成されている。この第一樹脂層2が、支持体1の上面と第二樹脂層11の下面ではさまれた状態で、前記直線状欠損部3’は上流側流路3となり、前記多孔質体充填部5’は多孔質体が充填されて吸着カラム5に、前記直線状欠損部6’は下流側流路6となるようにされている。また、前記L字状欠損部7’は分岐流路7となり、前記多孔質体充填部8’は多孔質体が充填される等して流量調節部8に、前記直線状欠損部9’は分岐側排出流路9となるようにされている。
【0030】
第二樹脂層11には、層の表面から裏面に貫通する孔13a,14a,15aが形成されている。孔13aは、第一樹脂層2の上流側流路3の上流端3aに連通している。孔14aは、第一樹脂層2の下流側流路6の下流端6bに連通している。孔15aは、第一樹脂層2の分岐側排出流路9の下流端9bに連通している。
【0031】
最上層12には、第二樹脂層11の孔13aと連通する孔13bが形成され、その上に配管接続用のルアーフィッティング13cが接着されて上流側流路3の上流端3aに連通した液体注入部13が形成されている。同様に、孔14aと連通する孔14bが形成され、その上に配管接続用のルアーフィッティング14cが接着されて下流側流路6の下流端6bに連通した下流側排出口14、及び、孔15aと連通する孔15bが形成され、その上に配管接続用のルアーフィッティング15cが接着されて分岐側排出流路9の下流端9bに連通した分岐側排出口15が形成されている。
【0032】
第一樹脂層2及び第二樹脂層11の厚さは、好ましくは3〜1000μm、さらに好ましくは、10〜500μm程度の厚さに形成される。
また、上流側流路3及び下流側流路6の幅は好ましくは、1〜2000μm、さらに好ましくは3〜500μmである。分岐流路7の幅は好ましくは、1〜2000μm、さらに好ましくは、3〜500μmであり、分岐側排出流路の幅は好ましくは、1〜2000μm、さらに好ましくは、3〜500μmである。上記範囲より流路幅が大であると、微小デバイスとしての利点が減少する上、本発明の効果が減少し、流路幅が小であると、製造が困難となる。上記、上流側流路3、下流側流路、及び分岐流路7の幅は互いに異なっていて良いし、また、それぞれ一定幅である必要はない。例えば、分岐流路7は、多孔質体が充填された流量調節部8の部分が他の部分より広幅であってよい。
【0033】
上記の構成により、液体注入部13から供給された液体が、孔13b,13a上流側流路3を経て、分岐部4で分流され、一部は吸着カラム5、下流側流路6、孔14a、14bを経て、下流側排出口14から排出され、分流された他の部分は、分岐流路7、流量調節部8、分岐側排出流路9、孔15a、15bを経て、分岐側排出口15から排出されるようになっている。
上記の4層から成る構成の代わりに、支持体1と第一樹脂層2を一体化して、表面に溝を有する部材として形成しても良い。このような構造は、周知の射出成形、プレス成形、フォトリソグラフィー、マイクロ光造形法により形成できる。また、上記の構成の代わりに、支持体1、第一樹脂層2、第二樹脂層11、最上層12の全てが一体化された構造を、公知のマイクロ光造形法にて一挙に形成することも出来る。
【0034】
本実施例の微小液体クロマトグラフィー100において、吸着カラム5は、毛細管状の空洞である多孔質体充填部5’に多孔質体が充填されて形成されている。該多孔質体は、多孔質体充填部5’より細い直径の多数の細孔が多孔質体を貫通して設けられている、いわゆる連通多孔質体であれば任意である。細孔形状は、例えば互いに連絡した細胞状の空洞から成る海綿(スポンジ)状、共連続ミクロ相分離体の一方の成分を溶出した形状、互いに接触して固着された粉体粒子の間隙として形成された焼結体状、互いに平行な多数の毛細管状やスリット状などの流路の束、不織布又は編織体の繊維の間隙等であり得る。吸着カラム5の上流端と下流端がこのような多孔質体であり、その間は粉体が充填されていても良い。しかしながら、クロマトグラフィーのための吸着カラム5の全体をこのような多孔質体で形成することが、微小なカラムの形成が容易となるため好ましい。
【0035】
前記多孔質体の平均孔径は任意であるが、0.1〜50μmが好ましく、0.5〜20μmが更に好ましい。この範囲未満であると圧力損失が過剰に高くなるため、運転に大きな圧力を要し、クロマトグラフィーデバイスの耐圧を高くする必要が生じる。またこの範囲を超えると、溶質を分離するためには長いカラム長が必要となり、微小な液体クロマトグラフィーデバイスの形成が困難となる。
吸着カラム5の断面積、即ち前記多孔質体が充填されている空洞の断面積は任意であるが、10μm〜10mmが好ましく、100μm〜1mmがさらに好ましい。この範囲未満では製造が困難となり、この範囲を超えると、必要試料量が多くなり、分析の所要時間が長くなるため好ましくない。前記カラムの断面形状は任意である。正方形、長方形などの矩形、スリット状、円、半円、台形、三角形などであり得る。また、前記カラムの長さは任意であり、例えば、1〜10mmであり得る。
【0036】
前記多孔質体の素材は、多孔質体を形成できる素材であれば任意であり、例えば酸化珪素、アルミナ、ガラス、セラミック、炭素、金属、有機重合体(ポリマー)等を例示できる。分析対象により好適な素材を選択できる。これらの中で、有機重合体が、多孔質体の形成が容易であり、表面特性の制御も容易であるために好ましく、中でも、活性エネルギー線硬化性樹脂が、微小な多孔質体の形成が容易であるため特に好ましい。活性エネルギー線硬化性樹脂による多孔質体及びその製造方法は、例えば本発明者等の出願による特開平7−316336に記載のものを使用できる。即ち、多孔質体を形成すべき流路に、エネルギー線重合性化合物と、該化合物は溶解するがその重合体は溶解又は膨潤させない貧溶剤との混合物を充填し、多孔質体と成す部分に紫外線などの活性エネルギー線を照射し、該エネルギー線重合性化合物を重合硬化させると同時に相分離させて多孔質体と成し、非照射部分の未硬化の該化合物を洗浄除去する方法である。エネルギー線重合性化合物としては、例えばアクリロイル基やマレイミド基を有するモノマー又はオリゴマーを好適に使用することが出来る。
前記多孔質体の素材が活性エネルギー線硬化性樹脂以外の物である場合には、例えば、ジルゲル法、湿式相分離法、乾式相分離法、共連続ミクロ相分離体の一方の成分の溶出除去法、粉体の焼結法など、各素材に応じた公知の方法を使用できる。
【0037】
本実施例の微小液体クロマトグラフィーデバイス100において、流量調節部8としては、展開液に対する流路抵抗が前記吸着カラムの流路抵抗の1/10以上である多孔質体を多孔質体充填部8’に充填したものを用いることができる。該流路抵抗の値は、該多孔質体充填部8’の断面積や長さ、及び、底に充填される多孔質体の密度、細孔径などにより調節できる。
【0038】
本実施例のクロマトグラフィーデバイス100の外形は、例えば、2.5cm×7.5cm×厚み約2mmの図1に示されたような板状であるが、形状や寸法はこれに限定されず任意であり、この他に、例えば、柔軟なフィルム状(シート状、リボン状などを含む。以下同様)、チューブ状、その他複雑な形状の成型物などであり得る。しかし、他のマイクロ流体素子との一体化しやすさ及び成形しやすさの面から、フィルム状又は板状であることが好ましい。
【0039】
次に、本実施例の微小液体クロマトグラフィーデバイス100の吸着カラム5に試料を導入する方法を説明する。
微小液体クロマトグラフィーデバイス100の液体注入部13から、上流側流路3へ液体状の試料と展開液をこの順に注入し、注入された試料の一部を分岐部4から吸着カラム5に導入し、残余の試料を分岐流路7へ流出する。
試料の量は極微量で良く、上流側流路3の断面積や吸着カラム5の寸法にもよるが、0.1〜100mmが好ましく、1〜10mmが更に好ましい。
【0040】
液体状の試料およびその後に展開液を液体注入部13から上流側流路3へ注入する方法は任意であり、例えば、大気に解放された液体注入部13にピペットやマイクロシリンジなどによって試料を滴下注入し、その後、液体注入部13に配管を接続して展開液を導入する方法、液体注入部13に接続した配管から、メタリングバルブを用いて一定量の試料を注入すると共に引き続いて展開液を導入する方法等を例示できる。
その他の、液体状の試料および展開液の導入方法としては、液体注入部13が微小液体クロマトグラフィーデバイス100の外部に開口しておらず、同じ部材内に形成された他の構造、例えば、反応槽や濾過機構に接続されている場合には、例えば前記メタリングバルブを使用する場合と同様に、該反応槽や濾過機構内の試料溶液を展開液で押し出して液体注入部13に導入することが出来る。
本発明に於いては、このようにして注入する試料の量は、吸着カラム5に実際に導入される試料の量に比べて多くて良く、取り扱い易い量に設定することが出来る。液体注入部13に注入する試料の量は、例えば0.1〜100mmであり得る。
【0041】
次に、第二実施例として、本発明にかかる液体クロマトグラフィーデバイスの一例を示す。本第二実施例は、図1〜3に示す第一実施例において、多孔質体充填部8’に前記多孔質体を充填するのに代えて、気体は透過するが液体は透過させない気液分離体を装着したものである。このような、気体は透過するが液体は透過させない気液分離体としては、例えば本発明者等の出願による特許第1616519号に多孔質の支持体と非多孔質の薄層が積層された構造の気液分離膜が記載されている。また、気液分離体の他の例としては、試料として水系液体の試料を使用する場合に、気体は透過するが水系液体は透過させない疎水性の多孔質体を用いることも好ましい。例えば、多孔質体充填部8’に、上記疎水性の多孔質体を充填することが好ましい。このような、気体は透過するが水系液体は透過させない疎水性の多孔質体及びその製造方法としては、例えば本発明者等の出願による特開2002−018271に記載されている。疎水性多孔質体の素材は、水との接触角が概ね90度以上であれば任意である。疎水性多孔質体の細孔の孔径は、多孔質体の疎水性の程度と関連するが、液体状の試料が多孔質体を透過しない程度の孔径であれば任意である。多孔質体の疎水性の程度、即ち、細孔表面の疎水性の程度が高いほど、孔径は大きくても良い。多孔質部の細孔の孔径や毛細管等の径は、好ましくは孔径が0.001μm〜2μm、更に好ましくは0.05μm〜0.7μmである。
流量調節部8として気液分離体を使用した場合には、液体注入部13から液体状の試料を導入すると、上流側流路3及び分岐流路7中に存在した気体は該液体状の試料に押されて、流量調節部8から速やかに押し出されるが、該液体状の試料や展開液は流量調節部8を透過出来ないため、分岐流路7を充填して停止する。この時、分岐流路7の容量より少ない量の試料を導入することで、前記試料の吸着カラム5へと導入されなかった部分は分岐流路7に入り込み、該試料によって汚染されていない展開液が自動的に分岐部4から吸着カラム5に流入して、液体クロマトグラフィー分析が行われる。
流量調節部8は、本実施例の板状の部材の外部に形成しても良い。例えば、前記特許第1616519号に記載されている中空糸状の気液分離膜或いは他の疎水性の多孔質中空糸膜を使用し、他端を閉じた該中空糸膜の一端を分岐側排出口15として記載してある部分に接続してもよい。なお、この場合には、該中空糸膜の内側(ボア側)が分岐流路7の一部となり、該中空糸膜の中空糸壁が流量調節部8となり、該中空糸膜の外面全体が分岐側排出口15となる。
【0042】
なお、第一及び第二実施例においては、配管接続のためのフィッティング(接続具)を設けたが、これを省略して、配管が直接接着されていても良い。また、液体注入部13は、微小液体クロマトグラフィーデバイス100の外部に開口しておらず、同じ部材内に形成された他の構造、例えば、反応槽や濾過機構に接続されていても良い。
【0043】
第一及び第二実施例においては、下流側流路6が設けられているが、下流側流路6が設けられず、吸着カラム5の末端が直接デバイス外に開口していたり、マイクロ流体デバイス内の他の構造に連絡していたりしても良い。下流側流路6は、例えば光学的あるいは電気滝な検出部に接続されていても良いし、下流側流路6の一部に例えば紫外・可視吸収測定や蛍光測定などの光学的検出用の窓が設けられていても良い。本発明に於いては前記吸着カラム5の下流側の構造は任意である。
【0044】
次に第三実施例として、図4に本発明に係る液体クロマトグラフィーデバイスの一例の平面模式図を示す。
本実施例にかかるクロマトグラフィーデバイス300は、分岐流路7が所定の容量を有していること、流量調節部8が分岐流路7の末端で流路を閉塞した閉止部となっていること、並びに分岐側排出流路9及び分岐側排出口15が備えられていないこと以外は、上述のクロマトグラフィーデバイス100と同様に構成されている。
【0045】
このクロマトグラフィーデバイス300に液体状の試料及び展開液をこの順に注入すると、上流側流路3及び分岐流路7に充填されていた気体は、展開液によって押された液体状の試料により圧縮されて収縮し、該試料や展開液は、圧縮された容量分だけ、分岐部4を越えて分岐流路7に入り込み、そこに滞留する。分岐流路7の容量を、好適には、導入する液体状試料の量の2〜1000倍、さらに好適には5〜100倍にすることによって、試料の導入量よりも前記気体の圧縮量による体積減少量を大きくし、前記試料の吸着カラム5に導入されなかった部分は全量分岐流路7に入り込み、該試料によって汚染されていない展開液が前記分岐部4から吸着カラム5に流入して、液体クロマトグラフィーが行われる。分岐流路7の容量をこのような値にするには、分岐流路7の長さを長くするか、或いは空気タンクのような空洞を設けることが好ましい。また、上流側流路3及び分岐流路7に炭酸ガスのような、試料や展開液に対して溶解度の高い気体を予め充填しておくことも、分岐流路7の容積が小さくて済むため好ましい。
【0046】
次に、第四実施例として、図5〜6に、本発明の試料導入方法に好適に用いられる液体クロマトグラフィーデバイスを示す。図5は平面模式図、図6は図5中のB−B線を含む要部断面図である。
本実施例のクロマトグラフィーデバイス400は、流量調節部として、分岐流路7の末端を閉じることの出来るバルブ21が備えられ、該バルブ21と分岐側排出口15の間は分岐側排出流路9で結ばれていること以外は、上述のクロマトグラフィーデバイス100と同様に構成されている。
バルブ21は、開閉バルブや流量調節バルブであり、例えば本発明者等の出願による特開2002−086399に開示されている。
バルブ21は、本実施例の板状の部材の外部に形成しても良い。例えば、柔軟なチューブの一端を分岐側排出口15として記載してある部分に接続し、該チューブの途中をピンチコックなどで締めてバルブとしてもよい。なお、この場合には、該チューブの他端が分岐側排出口15となる。
【0047】
本実施例では、バルブ21を開として液体注入部13から試料と展開液をこの順に導入し、試料の全量が分岐部4を通過し、展開液が該分岐部4に達した時点以降に前記バルブ21を閉じると、以後は、導入され展開液は全て吸着カラム5に流れて、クロマトグラフィー分析が成される。
【0048】
上述した微小液体クロマトグラフィーデバイス第一乃至第四の実施例のそれぞれを用いて、試料を吸着カラム5に導入する方法において、いずれの場合にも、下流側排出口14の圧力(下流側流路6が設けられている場合にはその圧力も該圧力と等しくなる)と分岐流路7との圧力のバランスを調節することにより吸着カラム5への試料導入量を調節することができる。例えば、下流側流路6若しくは下流側排出口14の圧力を、大気圧より高く、且つ上流側流路3への試料注入圧力以下の圧力に制御しつつ試料を導入するか、或いは、下流側排出口14を閉じた状態で試料を導入することによって、分岐部4で試料が分流する割合を制御し、吸着カラム5に導入する試料量を制御することも好ましい。これは特に、試料バンド幅を狭くする場合、吸着カラム5がキャピラリーカラムのような圧力損失の小さい吸着カラム5である場合、或いは、流量調節部8が分岐流路7の末端を閉塞した構造であって、分岐流路7の圧力が高くなる場合に有効である。
【0049】
また、前記カラム5の細孔は気体が充満している状態であっても良いし、展開液などの液体が充満している状態であっても良い。この時、充満している気体は任意である。充満している液体も任意であるが、展開液と混合可能な液体であることが好ましく、展開液であることがノイズや分解能などの点で好ましい。上記の流量調節部8の構造それぞれに応じた試料導入方法において好ましい状態を採用できる。一般的には、カラムは液体が充満した状態であることが、試料導入量を少なくして試料バンド幅を狭くすることが可能であり、好ましい。なお、下流側流路6若しくは下流側排出口14の圧力を展開液の導入圧力程度に制御しつつ試料を導入する場合や、下流側排出口14を閉じた状態で試料を導入する場合には、試料が分岐部4を通り過ぎて、分岐部4に展開液が充填された時点で、該圧力を低下させるか、下流側排出口14を開くことによって液体クロマトグラフィーが開始される。
【0050】
以下、本発明のさらに具体的な実施例を説明する。なお、以下の実施例において、数量の単位を表す「部」は、特に断りがない限り「質量部」を表わし、「%」は、「質量%」を表わす。
【0051】
[エネルギー線照射装置]
200wメタルハライドランプが組み込まれた、ウシオ電機株式会社製のマルチライト200型露光装置用光源ユニットを用いた。紫外線強度は50mw/cmである。
【0052】
[測定方法]
実施例中の測定は、以下の方法によって行った。
〔水接触角の測定〕
試料を25℃、湿度60%に24時間静置した後、協和界面科学製接触角度計CA−X型を使用し、室温(24±2℃)にて、安定化時間3分で測定した。
【0053】
[多孔質体の孔径の観察]
本実施例で作製した微小液体クロマトフラフィーデバイスを切断して、多孔質体の断面を日立製作所製800型の走査型電子顕微鏡(SEM)で観察した。
【0054】
[組成物(x)の調製]
活性エネルギー線重合性化合物として、平均分子量約2000の3官能ウレタンアクリレートオリゴマー(大日本インキ化学工業株式会社製の「ユニディックV−4263」)65部、1,6−ヘキサンジオールジアクリレート(第一工業製薬株式会社製の「ニューフロンティアHDDA」)10部、及び、ノニルフェノキシポリエチレングリコール(n=17)アクリレート(第一工業製薬株式会社製の「N−177E」)25部、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン(チバガイギー社製の「イルガキュア184」)5部、並びに、重合遅延剤として2,4−ジフェニル−4−メチル−1−ペンテン(関東化学株式会社製)0.1部を均一に混合して組成物(x)を調製した。
【0055】
[親水性の多孔質体を形成する組成物(y)の調製]
活性エネルギー線重合性化合物として、前記「ユニディックV−4263」16部、前記「ニューフロンティアHDDA」4部、及び前記「N−177E」)2部、
相分離剤(貧溶剤)としてカプリン酸メチル(関東化学社製)74部及びアセトン6部、
紫外線重合開始剤として前記「イルガキュア184」)2部を混合して組成物(y)を調製した。
【0056】
[疎水性の多孔質体を形成する組成物(z)の調製]
活性エネルギー線重合性化合物としてエチレンオキサイド変性ビスフェノールAジアクリレート(第一工業製薬株式会社製の「ニューフロンティアBPE−4」)25部、及び、テトラフルオロプロピルアクリレート(大阪有機化学工業株式会社製の「ビスコート4F」)0.1部、
相分離剤(貧溶剤)としてカプリン酸メチル(関東化学社製)75部、及び、紫外線重合開始剤として前記「イルガキュア184」5部を混合して組成物(y)を調製した。
【0057】
[実施例1]
図1〜3に示す構成の微小液体クロマトグラフィーデバイスを作製し、使用試験を行った。
本実施例では、分岐流路7の末端に、液体は通過可能であるが流路抵抗の大きな多孔質を充填してなる流量調節部8が形成された微小液体クロマトグラフィーデバイス100及び該デバイスへの試料導入方法の例を示す。
【0058】
〔微小液体クロマトグラフィーデバイスの作製〕
ポリスチレン(大日本インキ化学工業社製の「ディックスチレン XC−520」)製の7.5cm×2.5cm×1mmの基板1に、127μmのバーコーターを用いて組成物(x)を塗布し、第一樹脂層2となるべき塗膜を賦形した。次に、フォトマスクを使用して、図1に示された、上流側流路3、分岐部4、カラム5、下流側流路6、分岐流路7、流量調節部8、及び分岐側排出流路9となる部分以外の部分に、紫外線を3秒間照射して、照射部分の塗膜を、流動性は喪失するが粘着性を有する程度に半硬化させた。そして、50%エタノール水溶液にて非照射部の未硬化の組成物(x)を洗浄除去することによって、上流側流路3、分岐部4、カラム5、下流側流路6、分岐流路7、流量調節部8、及び分岐側排出流路9が形成された第一樹脂層2を形成した。
【0059】
次いで、カラム5及び流量調節部8となる溝に組成物(y)を該溝から盛り上がる程度に注入し、カラム5形成部位、及び流量調節部8形成部位に紫外線を20秒間照射して、該照射部の組成物(y)を多孔質状に硬化させた後、エタノールにて洗浄して、多孔質体が各部位を充填して形成されたカラム5(多孔質カラム5)及び多孔質流量調節部8を形成した。
【0060】
別途、一時的な支持体(図示せず)として、厚さ30μmのポリプロピレン製のシート(二村化学工業社製の「二軸延伸ポリプロピレンフィルム「太閤」FOR 30番」、以下OPPシートと称する)に127μmのバーコーターを用いて、組成物(x)を塗布し、紫外線をフォトマスク無しで3秒間照射して、流動性は喪失するが粘着性を有する程度に半硬化させた第二樹脂層11を形成した。この第二樹脂層11を第一樹脂層2に密着・積層して、紫外線をさらに30秒間照射し、第二樹脂層11を硬化させると共に第一樹脂層2に接着し、OPPシートを剥離除去した。
上記と同じ寸法のポリスチレン板製の最上層12にスピンコーターで組成物(x)の50%エタノール溶液を塗布し、風乾後、前記第二樹脂層11のOPPシート剥離面に積層し、紫外線を全面に60秒間照射して、ポリスチレン板製最上層12を第二樹脂層11に接着した。これにより、ポリスチレン基板1、第一樹脂層2、第二樹脂層11、及びポリスチレン板製の最上層12の4層から成り、第一樹脂層2の欠損部として上流側流路3、分岐部4、カラム5、下流側流路6、分岐流路7、流量調節部8、及び分岐側排出流路9が形成された、微小液体クロマトグラフィーデバイス100の前駆体を作製した。
【0061】
上記前駆体の、上流側流路3の上流端3aに相当する位置の最上層12に、2mmのドリルにて孔を穿ち、その上に配管接続用のルアーフィッティング13cを接着して、上流側流路3に連絡した液体注入部13を形成した。同様にして、下流側流路6の末端に下流側排出口14を、さらに、分岐側排出流路9の末端に分岐側排出口15を形成し、微小液体クロマトグラフィーデバイス100を作製した。
該微小液体クロマトグラフィーデバイス100には、液体注入部13から下流側排出口14まで、幅100μmの上流側流路3、幅100μm、長さ5mmの多孔質カラム5、及び、幅100μmの下流側流路6が直線状につながって形成されている。該多孔質カラム5の流入端に接して分岐部4が設けられ、該分岐部4からL字型の幅300μmの分岐流路7が形成されており、その末端に、幅300μm、長さ15mmの多孔質流量調節部8が、さらに流量調節部8の末端から分岐側排出口15まで幅300μmの分岐側排出流路9が形成されている。これらの上流側流路3、分岐部4、多孔質カラム5、下流側流路6、分岐流路7、多孔質流量調節部8、及び分岐側排出流路9の深さ方向の寸法は、いずれの部分においても100μmであった。また、多孔質カラム5と多孔質流量調節部8はどちらも、凝集粒子状で、平均孔径は約1μmであった。
【0062】
〔使用試験〕
先ず、微小液体クロマトグラフィーデバイス100の下流側排出口14から、シリンジ(図示せず)にて手動で蒸留水を注入し、下流側流路6と多孔質カラム5のみに蒸留水を充満させた後、該シリンジを取り外した。次いで、液体注入部13に、ピペット(図示せず)を用いて試料溶液としてフルオレセイン(和光純薬工業株式会社製)の水溶液0.5mmを滴下注入した。その後、液体注入部13に配管(図示せず)を接続し、シリンジポンプ(図示せず)から展開液として蒸留水を一定速度で注入したところ、上流側流路3、分岐部4、及び分岐流路7中に存在した空気は多孔質流量調節部8を通って排出され、試料溶液は上流側流路3を流れて分岐部4に達し、その一部は多孔質カラム5の上流端部5aに吸着され、大部分は分岐部4から分岐流路7へと流れた。該試料溶液の先端が多孔質流量調節部8に到着したときには、試料溶液は分岐部4を既に通過してしまい、分岐部4には展開液が充填されていた。この時点で、蛍光顕微鏡にて蛍光観察すると、多孔質カラム5の入口端部5aにフルオレセインが吸着されているバンド幅は約10μmであった。引き続きシリンジポンプ(図示せず)より展開液を導入すると、該展開液の一部は多孔質カラム5を流れて前記吸着されたフルオレセインを展開し、多孔質カラム5を出て下流側流路6に入り、下流側排出口14から流出した。このとき、下流側流路6の一部を蛍光顕微鏡で観察することにより、フルオレセインの溶出ピークが観察された。他方、分岐部4で分流して分岐流路7に流れた展開液は、試料溶液を押し流し、分岐流路7の末端に形成された多孔質流量調節部8を透過して、分岐側排出流路9を経て分岐側排出口15より流出した。下流側排出口14から排出される液体の量/分岐側排出口15から流出する液体の量の比は、約1/1であった。
【0063】
[実施例2]
本実施例では、分岐流路7上に、気体は透過するが液体は透過しない疎水性の多孔質流量調節部8が形成された微小液体クロマトグラフィーデバイス及び該デバイスの吸着カラム5への試料導入方法の例を示す。
この微小液体クロマトグラフィーデバイス200は、流量調節部8に気体は透過するが液体は透過しない疎水性の多孔質体が充填されていること以外は、図1〜3に示す微小液体クロマトグラフィーデバイス100と同じ構成となっている。
【0064】
〔微小液体クロマトグラフィーデバイスの作製〕
多孔質流量調節部8の素材として組成物(y)の代わりに組成物(z)を使用したこと以外は実施例1と同様にして微小液体クロマトグラフィーデバイス200を作製した。
【0065】
〔使用試験〕
実施例1と同様にして、微小液体クロマトグラフィーデバイス200の下流側流路6と多孔質カラム5部分のみに蒸留水を充満させ、液体注入部13に試料を注入した。その後、実施例1と同様にして液体注入部13からシリンジポンプ(図示せず)にて展開液を一定速度で注入したところ、上流側流路3、分岐部4、及び分岐流路7中に存在した空気は分流流路7の末端に形成された疎水性の多孔質流量調節部8を通って排出され、試料溶液は上流次側流路3を流れて分岐部4に達し、その一部は多孔質カラム5の端部5aに吸着され、他の部分は分岐部4から分岐流路7へと流れた。該試料溶液の先端が多孔質流量調節部8に到着したときには、試料溶液は分岐部4を既に通過してしまい、分岐部4には展開液が充填されていた。この時点で、蛍光顕微鏡にて蛍光観察すると、多孔質カラム5の入口端部5aにフルオレセインが吸着されているバンド幅は約10μmであった。引き続いて、シリンジ(図示せず)より展開液を送り込むと、分岐流路7を流れて疎水性の多孔質流量調節部8に達した試料溶液はそれ以上移動せず、展開液もそれ以上分岐部4から分岐流路7に流入しなかった。他方、導入された展開液は、全量が多孔質カラム5を流れて前記吸着された蛍光物質を展開し、多孔質カラム5を出て下流側流路6に入り、下流側排出口14から流出された。
【0066】
[実施例3]
図4に示す構成の微小液体クロマトグラフィーデバイスを作製し、使用試験を行った。
本実施例では、分岐流路7が所定の容量を持って閉じられている微小液体クロマトグラフィーデバイス300及び該デバイスへの吸着カラム5への試料導入方法の例を示す。
【0067】
〔微小液体クロマトグラフィーデバイスの作製〕
分岐側排出流路9及び分岐側排出口15を有せず、流量調節部8が、分岐流路7の末端で流路を閉塞した閉止部となっていること、並びに、分岐流路7の幅が1mmであること以外は実施例1と同様にして微小液体クロマトグラフィーデバイス300を作製した。
【0068】
〔使用試験〕
実施例1と同様にして、微小液体クロマトグラフィーデバイス300の下流側流路6と多孔質カラム5部分のみに蒸留水を充満させ、液体注入部13に試料を注入した。その後、実施例1と同様にして液体注入部13からシリンジポンプ(図示せず)にて展開液を一定速度で導入したところ、試料溶液は上流側流路3、分岐部4、及び分岐流路7中に存在した空気を圧縮しながら上流側流路3を流れて分岐部4に達し、その一部は多孔質カラム5に吸着され、その他の部分は、分岐流路7に存在した空気をさらに圧縮しながら分岐部4から分岐流路7へと流れた。試料溶液全部が分岐部4を通過し、分岐部4が展開液に置換された時点で、蛍光顕微鏡にて蛍光観察すると、多孔質カラム5の入口端部5aにフルオレセインが吸着されているバンド幅は約30μmであることが認められた。引き続いて、シリンジ(図示せず)より展開液を導入すると、圧縮された空気圧と展開液の導入圧力とが釣り合って分岐流路7の流れが止まり、その後は、導入された展開液の全量が分岐部4から多孔質カラム5へ流れて、吸着されたフルレセインのバンドを展開し、多孔質カラム5を出て下流側流路6に入り、下流側排出口14から流出した。他方、分岐流路7に入った試料溶液と展開液はそのまま滞留していた。
【0069】
[実施例4]
本実施例では、分岐流路7が所定の容量を持って閉じられている微小液体クロマトグラフィーデバイス300への試料注入方法の例を示す。
【0070】
〔微小液体クロマトグラフィーデバイスの作製〕
実施例3で作製した微小液体クロマトグラフィーデバイス300と全く同じ液体クロマトグラフィーデバイス300を作製した。
【0071】
〔使用試験〕
微小液体クロマトグラフィーデバイス300の下流側流路6と多孔質カラム5部分のみに蒸留水を充満させた後、用いたシリンジ(図示せず)を下流側排出口14に固定したままにしておいたこと、及び導入した展開液が分岐部4に達した時点で、該シリンジを除去したこと以外は実施例3と同様の使用試験を行ったところ、多孔質カラム5の入口端部5aに吸着されたフルオレセインのバンド幅は約10μmであったこと以外は、実施例3と同様の結果を得た。
【0072】
[実施例5]
本実施例では、分岐流路7が所定の容量を持って閉じられている微小液体クロマトグラフィーデバイス300への試料注入方法の例を示す。
【0073】
〔微小液体クロマトグラフィーデバイスの作製〕
実施例3で作製した微小液体クロマトグラフィーデバイス300と全く同じ液体クロマトグラフィーデバイス300を作製した。
【0074】
〔使用試験〕
あらかじめ、微小液体クロマトグラフィーデバイス300の下流側流路6と多孔質カラム5に蒸留水を充満させなかったこと以外は、実施例3と同様の使用試験を行ったところ、多孔質カラム5の入口端部5aに吸着されたフルオレセインのバンド幅は約90μmであったこと以外は、実施例3と同様の結果を得た。
【0075】
[実施例6]
本実施例では、分岐流路7が所定の容量を持って閉じられている微小液体クロマトグラフィーデバイス300への試料注入方法の例を示す。
【0076】
〔微小液体クロマトグラフィーデバイスの作製〕
実施例3で作製した微小液体クロマトグラフィーデバイス300と全く同じ液体クロマトグラフィーデバイス300を作製した。
【0077】
〔使用試験〕
空気の入ったシリンジ(図示せず)を下流側排出口14に接続し、液体注入部13から注入した試料が分岐部4に至る直前に、該シリンジを容量の10%だけ圧縮したこと、及び、試料溶液が分岐部4を通過した後に該シリンジを除去したこと以外は、実施例3と同様の使用試験を行ったところ、多孔質カラム5の入口端部5aに吸着されたフルオレセインのバンド幅は約40μmであったこと以外は、実施例3と同様の結果を得た。
【0078】
[実施例7]
図5〜6に示す構成の微小液体クロマトグラフィーデバイスを作製し、使用試験を行った。
本実施例では、流量調節部として開閉バルブ機構21を有する微小液体クロマトグラフィーデバイス400及び該デバイスへの試料注入方法の例を示す。
【0079】
〔微小液体クロマトグラフィーデバイスの作製〕
(1)多孔質流量調節部8を形成しなかったこと、及び、(2)第二樹脂層11の、分岐流路7の末端に対応する部分に、直径0.2mmの鋼球22を組成物(x)を用い、紫外線により硬化させて接着したこと、最上層12に、該鋼球22接着部分を中心として直径5.1mmの孔23を穿ったこと、孔23の上に、内径5.1mm,外形6mm、長さ6mmのポリスチレン製の円筒状のガイド24を接着したこと、及び、ガイド24の中に、直径5mm、長さ10mmのポリスチレン製の円柱25を装着したことによって開閉バルブ機構21を形成したこと、以外は実施例1と同様にして微小液体クロマトグラフィーデバイス400を作製した。
【0080】
〔使用試験〕
実施例1と同様にして、微小液体クロマトグラフィーデバイス400の下流側流路6と多孔質カラム5部分のみに蒸留水を充満させ、液体注入部13に試料溶液1mmを注入した後、液体注入部13からシリンジポンプ(図示せず)にて展開液を一定速度で導入したところ、上流側流路3中に存在した空気は、試料溶液に押されて、開状態のバルブ機構21が設けられた分岐流路7を通って分岐側排出口15から排出され、試料溶液は液体注入部13から分岐流路7を流れて分岐部4に達し、その一部は多孔質カラム5の端部5aに吸着され、他の部分は分岐部4から分岐流路7へと流れた。試料溶液全部が分岐部4を通過した時点で、バルブ機構21の円柱25を、微小流体クロマトグラフィーデバイス400を保持している台(図示せず)付属のクランプ(図示せず)で該デバイス400方向に付勢し、第二樹脂層11の分岐流路7に相対する部分26を変形させて分岐流路7の一部を閉塞させた。この時点で蛍光顕微鏡にて蛍光を観察すると、多孔質カラム5の入口端部5aにバンド幅約10μmでフルオレセインが吸着されていることが認められた。引き続いて、シリンジ(図示せず)から展開液を導入すると、導入された展開液は多孔質カラム5を流れて前記吸着された蛍光物質を展開し、多孔質カラム5を出て下流側流路6に入り、下流側排出口14から流出した。他方、分岐流路7の試料溶液及び展開液は移動しなかった。
【0081】
【発明の効果】
以上説明したように、本発明の微小液体クロマトグラフィーデバイス及び試料導入方法を用いることにより、展開液を無駄に排出する量を減少させ又は無くしながら、微小なカラムに効果的に微小量の試料を導入し、の狭い試料吸着バンドを形成することができる。
【図面の簡単な説明】
【図1】本発明の試料導入方法に好適に用いられる微小液体クロマトグラフィーデバイスの平面模式図である。
【図2】図1に示す微小液体クロマトグラフィーデバイスの要部縦断面図である。
【図3】図1に示す微小液体クロマトグラフィーデバイスの要部縦断面図である。
【図4】本発明にかかるの微小液体クロマトグラフィーデバイスの平面模式図である。
【図5】本発明の試料導入方法に好適に用いられる微小液体クロマトグラフィーデバイスの平面模式図である。
【図6】図5に示す液体クロマトグラフィーデバイスの要部縦断面図である。
【符号の説明】
100  微小液体クロマトグラフィーデバイス
1  基板
2  第一樹脂層
3  上流側流路
4  分岐部
5  吸着カラム
6  下流側流路
7  分岐流路
8  流量調節部
9  分岐側排出流路
11  第二樹脂層
12  最上層
13  液体注入部
14  下流側排出口
15  分岐側排出口
21  バルブ機構
22  鋼球
23  孔
24  筒
25  円柱
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a micro liquid chromatography device capable of introducing a small amount of sample into a minute adsorption column, and a method for introducing a small amount of sample into an adsorption column in the liquid chromatography device.
[0002]
[Prior art]
As liquid chromatography, column chromatography using a column filled with a powdery filler in a tube and thin-layer chromatography in which a layer of a powdery filler is formed on a glass plate or the like are known. However, column chromatography is widely used because high-speed analysis is possible by sending a developing solution under pressure.
As an attempt to further improve the analysis speed of column chromatography, a method using a minute adsorption column has been studied. For example, a column having a length of several mm or less and a diameter of 100 μm or less may be used as such a chromatography column. By shortening the development distance in this way, it is thought that in principle, the analysis time can be shortened by orders of magnitude compared to the conventional method, and the required amount of sample can be reduced by orders of magnitude. I have.
Hitherto, liquid chromatography using an adsorption column having a diameter of 1000 μm or less has been proposed (for example, see Patent Document 1). Further, a branch channel is provided from the upstream side of the adsorption column (the capillary column in Patent Literature 1), and a part of the developing liquid (mobile phase in Patent Literature 1) is diverted to the branch channel, and pressure is adjusted on the branch channel. An embodiment with a column is introduced. However, according to this method, the amount of the developing solution sent out from the pump and sent to the pressure adjustment column and discarded is larger than the amount of the developing solution introduced into the adsorption column. The developing solution 500 times the developing solution sent to the column is wasted. In addition, it is difficult to introduce a very small amount of sample into the adsorption column in order to reduce the amount of the developing solution to be discarded. Therefore, the adsorption column needs to be as long as 25 cm. That is, since it is difficult to introduce a very small amount of sample, a minute column chromatography having a column length of, for example, 1 cm has not been put to practical use.
[0003]
[Patent Document 1]
JP-A-11-287791. Page 6, Example 5.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is a micro-liquid chromatography device having a micro-column, which introduces a very small amount of sample into the column while reducing or eliminating the amount of developing solution to be wasted, thereby reducing the bandwidth. It is an object of the present invention to provide a micro liquid chromatography device capable of forming a sample adsorption band having a narrow width, and a method for introducing a sample into the liquid chromatography device.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-described problems, and as a result, branched a sample introduction path to a minute liquid chromatography adsorption column, and adsorbed only a part of the sample introduced into the introduction path. In the method of introducing the sample into the column and allowing the residual sample to flow out to the branch channel, the developing solution is wasted by utilizing the difference between the gas pre-filled in the channel and the properties of the liquid sample and developing solution. It has been found that the above problems can be solved by introducing a sample without discarding or reducing the amount thereof, and the present invention has been completed.
[0006]
That is, the micro liquid chromatography device according to the first invention of the present invention includes a capillary upstream flow path (3) and a liquid injection section (13) located at the upstream end of the upstream flow path inside the member. ), An adsorption column (5) having one end connected to the end of the upstream channel, and a downstream discharge port (14) for discharging the liquid passing through the adsorption column. And a branch (4) is provided on the upstream side flow path, and a branch flow path (7) is provided from the branch part, and the branch flow path allows gas to permeate but does not transmit liquid. The device is characterized in that the device is in communication with the outside of the device via a separator (8).
[0007]
Further, the micro liquid chromatography device according to the second invention of the present invention includes a capillary upstream flow path (3) and a liquid injection section (13) located at the upstream end of the upstream flow path inside the member. ), An adsorption column (5) having one end connected to the end of the upstream channel, and a downstream discharge port (14) for discharging the liquid passing through the adsorption column. A branch (4) on the upstream flow path, a branch flow path (7) provided from the branch, and a terminal of the branch flow path being closed inside the device. It is a feature.
[0008]
The sample introduction method according to the third invention of the present invention is characterized in that a capillary upstream flow path (3) and a liquid injection section (13) located at the upstream end of the upstream flow path are provided inside the member. An adsorption column (5) having one end connected to the end of the upstream channel, a downstream discharge port (14) for discharging the liquid that has passed through the adsorption column, and a branch ( 4), a branch flow path (7) branched from the branch part, and a flow rate adjusting part (8) provided at the downstream end of the branch flow path for adjusting the flow rate of the liquid flowing through the branch flow path. A method for introducing a sample into said adsorption column of a micro liquid chromatography device (100, 200, 300, 400) provided, wherein a liquid sample and a developing liquid are injected in this order from said liquid injection section (13). Then, a part of the sample is introduced into the adsorption column (5), Samples in which pre-gas, characterized in that to flow out into the branch channel which is filled (7).
[0009]
The micro liquid chromatography device of the present invention has a branch on the upstream flow path for introducing a liquid sample into the adsorption column, and has a structure in which a branch flow path is provided from the branch. A part of the liquid sample is introduced into the adsorption column, and the remaining sample flows out to the branch channel. Therefore, the amount of the sample injected from the liquid injection unit may be larger than the amount of the sample introduced into the adsorption column, and can be set to an amount that is easy to handle. Therefore, it is possible to easily and effectively introduce a minute amount of sample into the adsorption column, which has been difficult in the past.
[0010]
In addition, when the micro liquid chromatography device of the present invention is used, a very small amount of sample can be introduced into a minute adsorption column, so that the width of the sample adsorption band to the adsorption column is narrow, and separation can be performed with a short development distance. As a result, the analysis time can be reduced as compared with the conventional case. Such a micro liquid chromatography device can be connected to another micro fluid device, and can be used by being incorporated into an analysis system using a micro device, a so-called micro total analytical system (μ-TAS). Is also possible.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The micro-liquid chromatography device according to the first invention of the present invention is characterized in that, inside the member, a capillary upstream flow path, a liquid injection portion located at an upstream end of the upstream flow path, and one end of which is the upstream side An adsorption column connected to the end of the flow path, a micro liquid chromatography device having a downstream discharge port for discharging the liquid that has passed through the adsorption column, having a branch on the upstream flow path, A branch flow path is provided from the branch portion, and the branch flow path is connected to the outside of the device via a gas-liquid separator that allows gas to permeate but does not allow liquid to permeate. is there.
[0012]
As a gas-liquid separator that transmits gas but does not transmit liquid, for example, Japanese Patent No. 1616519 filed by the present inventors discloses a gas-liquid separator having a structure in which a porous support and a non-porous thin layer are laminated. A membrane can be used. As another example of the gas-liquid separator, when a water-based liquid sample is used as the sample, it is preferable to use a hydrophobic porous body that allows gas to permeate but does not allow water-based liquid to permeate.
It is preferable to use this gas-liquid separator because the gas permeation rate increases. By using a gas-liquid separator that allows only gas to pass, the gas in the upstream channel and branch channel is discharged from the gas-liquid separator when the liquid sample and developing liquid are injected from the liquid injection unit. However, since the remaining sample solution introduced into the adsorption column cannot penetrate the gas-liquid separator and remains in the branch flow path, the developing solution flows to the adsorption column and chromatography is performed. it can. In this way, by adopting a structure in which the liquid is not discharged from the branch flow path, it is possible to prevent the developing liquid from being wastefully discharged from the branch flow path side. In addition, since there is no need to perform a switching operation between the introduction of the sample solution and the chromatography measurement, the operation is simplified, and a mechanism for switching is not required, and the structure can be simplified, which is preferable.
[0013]
Further, the micro liquid chromatography device according to the second invention of the present invention, inside the member, a capillary upstream flow path, a liquid injection portion located at the upstream end of the upstream flow path, one end is said A micro liquid chromatography device having an adsorption column connected to an end of an upstream flow path and a downstream discharge port for discharging a liquid that has passed through the adsorption column, and having a branch section on the upstream flow path. A branch channel is provided from the branch portion, and a terminal of the branch channel is closed inside the device.
[0014]
Since the end of the branch channel is closed inside the device, when the developing liquid is injected from the liquid injection part following the sample, part of the sample flows from the branch part toward the adsorption column and is adsorbed. The portion introduced into the column and not introduced into the adsorption column of the sample enters the branch flow path while compressing the gas filled in the branch flow path, and the pressure of the compressed gas increases the injection pressure of the developing solution. Stop when balanced. Thereafter, a developing solution not contaminated by the sample flows into the adsorption column from the branch portion, and liquid chromatography can be performed. With such a structure in which the end of the branch channel is closed, it is possible to prevent the developing liquid from being wastefully discharged from the branch channel side. In addition, since there is no need to perform a switching operation between the introduction of the sample solution and the chromatography measurement, the operation is simplified, and a mechanism for switching is not required, and the structure can be simplified, which is preferable.
[0015]
In the liquid chromatography devices of the first and second aspects of the present invention, the adsorption column is preferably a porous column in which a porous body is filled in a capillary cavity.
An adsorption column is a separation column that develops a sample adsorption band with a developing solution and performs chromatography using the difference in adsorption power to the column and the difference in adsorption / desorption speed for each substance. There is no limitation as long as it is a column for separation, and a general-purpose adsorption column that can be used for many types of samples, a so-called fixed material with affinity for a specific solute on the carrier surface, porous surface, or flow channel wall surface An affinity chromatography column or the like can be employed. As the structure of the adsorption column, a packed column filled with powder, a porous column filled with a porous material, a capillary column, or the like can be employed. Among these, a porous column in which a porous body is filled in a capillary cavity can increase the surface area, and it is easy to reduce the pore diameter through which a sample or a developing solution flows, and a short developing distance. This is preferable because the pressure loss can be reduced even if the pore diameter is so small.
[0016]
In the present invention, the branch section may be provided on the way of the upstream flow path, and adjusts a sample introduction amount to the adsorption column by a distance from the branch section to a connection position of the adsorption column. Although it is also possible, the branching section is preferably provided at the end of the upstream flow path, and one end of the adsorption column is preferably connected to the branching section. This allows a very small amount of sample to be introduced into the adsorption column with a narrow bandwidth.
[0017]
Further, the sample introduction method according to the third invention of the present invention is characterized in that, inside the member, a capillary upstream flow path, a liquid injection section located at an upstream end of the upstream flow path, An adsorption column connected to the end of the flow path, a downstream discharge port for discharging the liquid that has passed through the adsorption column, a branch on the upstream flow path, and a branch flow branched from the branch. A method for introducing a sample into the adsorption column of a micro liquid chromatography device comprising a flow rate control unit for controlling a flow rate of a liquid flowing through the branch flow path provided at a downstream end of the branch flow path. The liquid sample and the developing liquid are injected in this order from the liquid injection section, a part of the sample is introduced into the adsorption column, and the remaining sample flows out into the branch channel filled with gas in advance. It is characterized by making it.
[0018]
In the sample introduction method according to the third aspect of the present invention, a liquid chromatography device is used in which a flow rate adjusting unit for adjusting the flow rate of the liquid flowing through the branch flow path is provided at the downstream end of the branch flow path.
The flow rate adjusting section has a function of adjusting the flow rate of the liquid flowing through the branch flow path by adjusting the flow path resistance of the branch flow path. The flow path resistance referred to here is the reciprocal of the flow rate when the developing liquid flows at a unit pressure.
By providing a flow rate control unit and adjusting the flow path resistance of the branch flow path, it is possible to adjust the ratio of the amount of the sample introduced into the adsorption column and the flow rate of the sample flowing out to the branch flow path. Can be effectively introduced into the adsorption column. In addition, by adjusting the flow path resistance of the branch flow path, it is possible to adjust the amount of the developing liquid flowing out of the branch flow path and discarded wastefully.
[0019]
The flow rate adjusting section preferably adjusts the flow path resistance of the branch flow path to the developing liquid to 1/10 or more of the flow path resistance of the adsorption column, more preferably 1 time or more, especially 10 times or more. It is more preferable to adjust the temperature. If the flow path resistance is smaller than 1/10 of the flow path resistance of the adsorption column, the amount of the developing solution wastefully discarded from the branch flow path is not preferable. Further, the flow path resistance of the branch flow path to the developing liquid may be made infinite. That is, means for setting the amount of the developing liquid that can pass through to zero may be adopted as the flow rate adjusting unit.
[0020]
Examples of the flow rate control unit in which the flow path resistance to the developing liquid is not infinite include, for example, a column filled with a porous material having a flow path resistance to the developing liquid that is 1/10 or more of the flow path resistance of the adsorption column, A thin capillary or a slit having a large road resistance can be exemplified. With this flow control unit, the flow of the liquid sample and the developing solution in the branch flow path can be restricted, so that the developing solution is discharged to some extent uselessly. Can be performed.
The porous flow rate controller can be formed by the same method as when the adsorption column is formed of a porous body as described later, and the capillary and the slit can be manufactured in a member by a known photolithography method. Alternatively, a capillary tube may be connected and provided outside the member.
[0021]
Further, as a flow rate adjusting unit for infinitely increasing the flow path resistance of the branch flow path for the sample solution or the developing solution, for example, a gas-liquid separator that transmits gas but does not transmit liquid, or a predetermined volume in the branch flow path And a structure in which the end is closed or a valve or the like can be used.
Among them, it is preferable to employ a gas-liquid separator as the flow rate control unit, that is, to use the liquid chromatography device of the first invention of the present invention.
As the gas-liquid separator, it is preferable to use a structure in which a hydrophobic porous body is filled, since the gas permeation rate is high. By injecting a liquid sample and a developing liquid from the liquid injecting unit by using the flow adjusting unit that allows only gas to flow, the gas in the upstream channel and the branch channel is discharged from the flow adjusting unit. However, since the remaining sample solution introduced into the adsorption column cannot permeate the gas-liquid separator and stays in the branch channel, the developing solution flows to the adsorption column side to perform chromatography. . Such a flow rate adjusting section that makes the flow path resistance of the branch flow path infinite can prevent wasteful discharge of the developing liquid from the branch flow path side. Among them, the gas-liquid separator and the structure that closes the end of the branch flow path are preferable because the operation for introducing the sample solution and the operation for switching between the chromatographic measurement do not need to be performed, so that the operation is simplified.
[0022]
In addition, as the flow rate control unit for making the flow path resistance infinite, a structure having a structure in which the branch flow path has a predetermined volume and closes its end, that is, the liquid chromatography device of the second invention of the present invention is used. Is also preferred.
Since the end of the branch channel is closed inside the device, when the developing liquid is injected from the liquid injection part following the sample, part of the sample flows from the branch part toward the adsorption column and is adsorbed. The portion introduced into the column and not introduced into the adsorption column of the sample enters the branch flow path while compressing the gas filled in the branch flow path, and the pressure of the compressed gas increases the injection pressure of the developing solution. Stop when balanced. Thereafter, a developing solution not contaminated by the sample flows into the adsorption column from the branch portion, and liquid chromatography can be performed. With such a structure in which the end of the branch channel is closed, it is possible to prevent the developing liquid from being wastefully discharged from the branch channel side. Further, there is no need to switch between the introduction of the sample solution and the chromatographic measurement, which is preferable because the operation is simplified. Furthermore, according to this structure, even if there is a pulsation in the pump for introducing the developing liquid, there is also an advantage that the pulsation is reduced by the compressed gas serving as a buffer material. For this reason, even if a pulsating pump such as a diaphragm type is used as the pump, the influence on the analysis is reduced.For example, the microfluidic device incorporating the diaphragm pump may be integrated with the present micro liquid chromatography device. It will be easier.
[0023]
In the sample introduction method of the present invention, a liquid sample and a developing liquid are injected in this order from a liquid injection section, a part of the sample is introduced into an adsorption column, and the remaining sample is subjected to a branch flow previously filled with gas. This is a method for introducing a sample, characterized in that the sample is caused to flow out to a road.
If a liquid sample and a developing liquid are injected from the liquid injection part when the branch channel is previously filled with gas, the gas (for example, air) present in the upstream channel and the branch channel has a viscosity of gas. Is about two orders of magnitude smaller than the aqueous liquid, it is pushed by the sample or developing solution, quickly penetrates the flow rate control unit as described above, and is pushed out of the device or into a liquid storage tank or the like inside the device. Indicates that the sample solution and then the developing solution flow at a flow rate obtained by dividing the pressure difference by the above-described channel resistance. Therefore, it is possible to introduce a very small amount of sample into the adsorption column while reducing the ratio of wasteful discharge of the developing solution.
[0024]
In the sample introduction method of the present invention, it is preferable to inject the sample into the sample injection section while adjusting the pressure of the downstream discharge port or with the downstream discharge port closed. The ratio between the amount of the sample introduced into the adsorption column and the amount of the sample flowing into the branch channel is filled with the injection pressure of the liquid sample, the injection speed, the position of the branch portion, and the adsorption column as described later. Whether the fluid is gas or liquid can be controlled by the type of flow control unit and the value of flow path resistance, etc., but control is performed by adjusting the pressure balance between the downstream discharge unit and the branch flow path Is preferable because of high degree of freedom and high reproducibility. In the method of adjusting the pressure balance, it is preferable to inject the sample into the sample injection unit while adjusting the pressure of the branch-side outlet. However, the method of adjusting the pressure of the downstream-side outlet, or the method of adjusting the downstream-side outlet, is also preferable. The method of opening and closing the outlet is simple and reliable, and is more preferable. The means for adjusting the pressure of the downstream discharge port is optional.For example, a method of connecting a pressurized gas to a pipe or a method of connecting a syringe to the downstream connection port can be used. As a means for performing this, for example, a method of attaching or connecting a stopper, a valve, or a syringe filled with liquid and having a fixed piston at the downstream outlet can be used.
[0025]
In the sample introduction method of the present invention, when a liquid sample is injected from the liquid injection section, the pores of the adsorption column may be in a state of being filled with a gas, but may be filled with a liquid such as a developing solution. It is preferable that it is in the state of doing. When the liquid is filled in the adsorption column, the amount of the adsorbed sample can be reduced to narrow the sample band width, which is preferable. In this case, the liquid to be filled in the column is preferably a liquid that can be mixed with the developing liquid, and the developing liquid is more preferable in terms of noise and resolution.
[0026]
【Example】
Hereinafter, examples of the present invention will be described, but the scope of the present invention is not limited to these examples.
1 to 3 show one embodiment of a liquid chromatography device suitably used in the sample introduction method of the present invention. FIG. 1 is a schematic plan view, and FIG. 2 is a line A-A in FIG. FIG. 3 is a cross-sectional view of a main part including line BB in FIG.
[0027]
As shown in FIG. 2, in the liquid chromatography device 100 of the present embodiment, a first resin layer 2, a second resin layer 11, and an uppermost layer 12 are sequentially laminated on a planar support 1, and these are laminated. It is integrated and schematically configured, and the entire outer shape is plate-shaped.
[0028]
As the support 1 and the uppermost layer 12, a transparent resin flat plate such as a polystyrene plate is preferably used, and the material is arbitrary. For example, other polymers, glass, metals such as stainless steel, quartz, etc. Crystals, carbon, ceramics and the like can be used.
As a material of the first resin layer 2 and the second resin layer 11, for example, a transparent resin composition which is cured by irradiation of energy rays such as ultraviolet rays is suitably used. The materials forming each layer of the first resin layer 2 and the second resin layer 11 may be different from each other, but are preferably made of the same material. The materials for the first resin layer 2 and the second resin layer 11 are also arbitrary. In addition to the above, photosensitive glass and the same materials as those for the support 1 and the uppermost layer 12 can be used. When the same material as that of the support 1 and the uppermost layer 12 is used, a defective portion described later can be formed by a known method such as photolithography.
[0029]
The first resin layer 2 has a thin line-shaped defect penetrating from the front surface to the rear surface of the layer. In addition, a part of the defective part is a porous body filling part in which the porous body is filled. That is, as shown in FIG. 1 and the like, a linear defect 3 ′, a porous material filling portion 5 ′ connected to an end of the linear defect 3 ′, and a porous material filling portion 5 ′ connected to an end of the porous material filling 5 ′ Linear defect 6 ', an L-shaped defect 7' connected to the branch 4 located at the end of the linear defect 3 ', and an L-shaped defect 7' connected to the end of the L-shaped defect 7 ' A porous material filling portion 8 'and a linear defect 9' connected to the end of the porous material filling portion 8 'are formed. In a state where the first resin layer 2 is sandwiched between the upper surface of the support 1 and the lower surface of the second resin layer 11, the linear defect portion 3 ′ becomes the upstream flow path 3, and the porous material filling portion 5 'Is filled with a porous material in the adsorption column 5, and the linear defect 6 ′ is a downstream flow path 6. In addition, the L-shaped defective portion 7 ′ becomes a branch flow path 7, the porous material filling portion 8 ′ is filled with a porous material or the like in the flow rate adjusting portion 8, and the linear defective portion 9 ′ is formed. The branch-side discharge passage 9 is formed.
[0030]
In the second resin layer 11, holes 13a, 14a, and 15a penetrating from the surface of the layer to the back surface are formed. The hole 13 a communicates with the upstream end 3 a of the upstream channel 3 of the first resin layer 2. The hole 14a communicates with the downstream end 6b of the downstream channel 6 of the first resin layer 2. The hole 15a communicates with the downstream end 9b of the branch-side discharge passage 9 of the first resin layer 2.
[0031]
In the uppermost layer 12, a hole 13b communicating with the hole 13a of the second resin layer 11 is formed, on which a luer fitting 13c for connecting a pipe is adhered, and a liquid communicating with the upstream end 3a of the upstream side flow path 3 is formed. An injection part 13 is formed. Similarly, a hole 14b communicating with the hole 14a is formed, on which a luer fitting 14c for connecting a pipe is adhered, and a downstream discharge port 14 communicating with the downstream end 6b of the downstream channel 6, and a hole 15a Is formed, and a luer fitting 15c for pipe connection is adhered thereon to form a branch-side discharge port 15 communicating with the downstream end 9b of the branch-side discharge flow path 9.
[0032]
The thickness of the first resin layer 2 and the second resin layer 11 is preferably 3 to 1000 μm, and more preferably about 10 to 500 μm.
The width of the upstream flow path 3 and the downstream flow path 6 is preferably 1 to 2000 μm, and more preferably 3 to 500 μm. The width of the branch flow path 7 is preferably 1 to 2000 μm, more preferably 3 to 500 μm, and the width of the branch discharge flow path is preferably 1 to 2000 μm, more preferably 3 to 500 μm. If the channel width is larger than the above range, the advantage as a micro device is reduced, and the effect of the present invention is reduced. If the channel width is small, manufacturing becomes difficult. The widths of the upstream flow path 3, the downstream flow path, and the branch flow path 7 may be different from each other, and need not be constant. For example, the branch flow path 7 may be wider at the part of the flow rate control part 8 filled with the porous body than at other parts.
[0033]
With the above-described configuration, the liquid supplied from the liquid injection unit 13 passes through the holes 13b and 13a on the upstream side flow path 3 and is diverted at the branch part 4, and a part of the liquid is supplied to the adsorption column 5, the downstream side flow path 6, and the holes 14a. , 14b, and the other portion that has been discharged and diverted from the downstream discharge port 14 passes through the branch flow path 7, the flow control unit 8, the branch discharge flow path 9, the holes 15a, 15b, and the branch discharge port. 15 is discharged.
Instead of the above four-layer structure, the support 1 and the first resin layer 2 may be integrated to form a member having a groove on the surface. Such a structure can be formed by well-known injection molding, press molding, photolithography, or micro stereolithography. Instead of the above-described configuration, a structure in which the support 1, the first resin layer 2, the second resin layer 11, and the uppermost layer 12 are all integrated is formed at once by a known micro stereolithography method. You can do it.
[0034]
In the micro liquid chromatography 100 of the present embodiment, the adsorption column 5 is formed by filling a porous material into a porous material filling portion 5 'which is a capillary cavity. The porous body is not particularly limited as long as it is a so-called communicating porous body in which a large number of pores having a smaller diameter than the porous body filling portion 5 ′ are provided through the porous body. The pore shape is, for example, a sponge (cell sponge) composed of interconnected cellular cavities, a shape eluted from one component of a co-continuous microphase separator, and a gap formed by powder particles that are fixed in contact with each other. It may be a sintered body formed, a bundle of a large number of capillary tubes or slits parallel to each other, a gap between fibers of a nonwoven fabric or a knitted fabric, or the like. The upstream end and the downstream end of the adsorption column 5 are such porous bodies, and the space between them may be filled with powder. However, it is preferable to form the entirety of the adsorption column 5 for chromatography with such a porous material because formation of a minute column becomes easy.
[0035]
The average pore diameter of the porous body is arbitrary, but is preferably from 0.1 to 50 μm, more preferably from 0.5 to 20 μm. If it is less than this range, the pressure loss becomes excessively high, so that a large pressure is required for the operation and the pressure resistance of the chromatography device needs to be increased. In addition, when it exceeds this range, a long column length is required to separate the solute, and it is difficult to form a minute liquid chromatography device.
The cross-sectional area of the adsorption column 5, that is, the cross-sectional area of the cavity filled with the porous body is arbitrary, 2 -10 mm 2 Is preferably 100 μm 2 ~ 1mm 2 Is more preferred. If the amount is less than this range, the production becomes difficult. If the amount exceeds this range, the required sample amount increases and the time required for analysis becomes longer, which is not preferable. The cross-sectional shape of the column is arbitrary. It may be a rectangle such as a square or a rectangle, a slit, a circle, a semicircle, a trapezoid, a triangle, or the like. The length of the column is arbitrary, and may be, for example, 1 to 10 mm.
[0036]
The material of the porous body is not limited as long as it can form the porous body, and examples thereof include silicon oxide, alumina, glass, ceramic, carbon, metal, and an organic polymer (polymer). A suitable material can be selected depending on the analysis target. Among these, an organic polymer is preferable because the formation of a porous body is easy and the control of surface properties is easy. Among them, the active energy ray-curable resin is preferably used to form a fine porous body. It is particularly preferable because it is easy. As the porous body using the active energy ray-curable resin and the method for producing the same, for example, those described in JP-A-7-316336 filed by the present inventors can be used. That is, the flow path in which the porous body is to be formed is filled with a mixture of the energy ray-polymerizable compound and a poor solvent which dissolves the compound but does not dissolve or swell the polymer, and forms a portion forming the porous body. This is a method of irradiating an active energy ray such as an ultraviolet ray to polymerize and cure the energy ray-polymerizable compound and at the same time, phase-separate to form a porous body, and wash and remove the uncured portion of the uncured compound. As the energy ray polymerizable compound, for example, a monomer or oligomer having an acryloyl group or a maleimide group can be suitably used.
When the material of the porous body is a material other than the active energy ray-curable resin, for example, the elution removal of one component of a zirgel method, a wet phase separation method, a dry phase separation method, and a bicontinuous microphase separation body A known method corresponding to each material, such as a method or a powder sintering method, can be used.
[0037]
In the micro liquid chromatography device 100 according to the present embodiment, the flow rate adjusting unit 8 is a porous material having a flow path resistance to the developing liquid of 1/10 or more of the flow path resistance of the adsorption column. 'Can be used. The value of the channel resistance can be adjusted by the cross-sectional area and length of the porous body filling portion 8 ', the density of the porous body filled at the bottom, the pore diameter, and the like.
[0038]
The outer shape of the chromatography device 100 of the present embodiment is, for example, a plate having a size of 2.5 cm × 7.5 cm × about 2 mm as shown in FIG. 1, but the shape and dimensions are not limited thereto, and are arbitrary. In addition, for example, a flexible film shape (including a sheet shape, a ribbon shape, etc .; the same applies hereinafter), a tube shape, and a molded product having a complicated shape can be used. However, from the viewpoint of easy integration with other microfluidic devices and ease of molding, it is preferable to be in the form of a film or a plate.
[0039]
Next, a method for introducing a sample into the adsorption column 5 of the micro liquid chromatography device 100 according to the present embodiment will be described.
A liquid sample and a developing liquid are injected in this order from the liquid injection section 13 of the micro liquid chromatography device 100 to the upstream flow path 3, and a part of the injected sample is introduced into the adsorption column 5 from the branch section 4. Then, the remaining sample flows out to the branch channel 7.
The amount of the sample may be very small, and depends on the cross-sectional area of the upstream flow path 3 and the dimensions of the adsorption column 5. 3 Is preferably 1 to 10 mm 3 Is more preferred.
[0040]
The method of injecting the liquid sample and the developing liquid thereafter from the liquid injection unit 13 to the upstream flow path 3 is arbitrary. For example, the sample is dropped into the liquid injection unit 13 opened to the atmosphere by a pipette or a micro syringe. Injecting, then, connecting a pipe to the liquid injection unit 13 to introduce the developing solution, injecting a fixed amount of sample from the pipe connected to the liquid injection unit 13 using a metering valve, and subsequently, developing the developing solution. Can be exemplified.
As another method for introducing a liquid sample and a developing liquid, the liquid injection unit 13 does not open to the outside of the micro liquid chromatography device 100, and another structure formed in the same member, for example, a reaction When connected to a tank or a filtration mechanism, for example, as in the case of using the metering valve, the sample solution in the reaction tank or the filtration mechanism is extruded with a developing solution and introduced into the liquid injection unit 13. Can be done.
In the present invention, the amount of the sample to be injected in this way may be larger than the amount of the sample actually introduced into the adsorption column 5 and can be set to an amount that can be easily handled. The amount of the sample to be injected into the liquid injection unit 13 is, for example, 0.1 to 100 mm. 3 Can be
[0041]
Next, as a second embodiment, an example of the liquid chromatography device according to the present invention will be described. The second embodiment is different from the first embodiment shown in FIGS. 1 to 3 in that, instead of filling the porous body filling portion 8 ′ with the porous body, a gas-permeable but liquid-permeable gas-liquid It is equipped with a separator. As such a gas-liquid separator that allows gas to permeate but does not allow liquid to permeate, for example, Japanese Patent No. 1616519 filed by the present inventors has a structure in which a porous support and a non-porous thin layer are laminated. Is described. As another example of the gas-liquid separator, when a water-based liquid sample is used as the sample, it is preferable to use a hydrophobic porous body that allows gas to permeate but does not allow water-based liquid to permeate. For example, it is preferable to fill the porous body filling section 8 'with the hydrophobic porous body. Such a hydrophobic porous body that allows gas to permeate but does not allow aqueous liquid to permeate and a method for producing the same are described in, for example, JP-A-2002-018271 filed by the present inventors. The material of the hydrophobic porous body is arbitrary as long as the contact angle with water is approximately 90 degrees or more. The pore diameter of the pores of the hydrophobic porous body is related to the degree of hydrophobicity of the porous body, but is arbitrary as long as the liquid sample does not pass through the porous body. The pore size may be larger as the degree of hydrophobicity of the porous body, that is, the degree of hydrophobicity of the pore surface is higher. The pore diameter of the pores of the porous portion, the diameter of the capillary, and the like are preferably 0.001 μm to 2 μm, and more preferably 0.05 μm to 0.7 μm.
When a gas-liquid separator is used as the flow rate control unit 8, when a liquid sample is introduced from the liquid injection unit 13, the gas existing in the upstream flow path 3 and the branch flow path 7 is converted into the liquid sample. The liquid sample or developing liquid cannot be transmitted through the flow rate control unit 8 and is quickly stopped by being pushed out of the flow rate control unit 8. At this time, by introducing a sample in an amount smaller than the capacity of the branch channel 7, the portion of the sample not introduced into the adsorption column 5 enters the branch channel 7, and the developing solution not contaminated by the sample. Automatically flows into the adsorption column 5 from the branch portion 4 and liquid chromatography analysis is performed.
The flow rate adjusting section 8 may be formed outside the plate-shaped member of the present embodiment. For example, a hollow fiber-shaped gas-liquid separation membrane or another hydrophobic porous hollow fiber membrane described in Japanese Patent No. 1616519 is used, and one end of the hollow fiber membrane having the other end closed is connected to a branch outlet. 15 may be connected. In this case, the inside (bore side) of the hollow fiber membrane becomes a part of the branch flow path 7, the hollow fiber wall of the hollow fiber membrane becomes the flow rate control unit 8, and the entire outer surface of the hollow fiber membrane becomes It becomes the branch side discharge port 15.
[0042]
In the first and second embodiments, fittings (connecting tools) for connecting pipes are provided. However, the fittings may be omitted and the pipes may be directly bonded. Further, the liquid injection unit 13 does not have to be opened to the outside of the micro liquid chromatography device 100, and may be connected to another structure formed in the same member, for example, a reaction tank or a filtration mechanism.
[0043]
In the first and second embodiments, the downstream flow path 6 is provided, but the downstream flow path 6 is not provided, and the end of the adsorption column 5 is directly opened to the outside of the device, or the microfluidic device Or other structures within it. The downstream flow path 6 may be connected to, for example, an optical or electric waterfall detection unit, or may be connected to a part of the downstream flow path 6 for optical detection such as ultraviolet / visible absorption measurement or fluorescence measurement. Windows may be provided. In the present invention, the structure on the downstream side of the adsorption column 5 is optional.
[0044]
Next, as a third embodiment, FIG. 4 shows a schematic plan view of an example of the liquid chromatography device according to the present invention.
In the chromatography device 300 according to the present embodiment, the branch flow path 7 has a predetermined capacity, and the flow rate control unit 8 is a closing part that closes the flow path at the end of the branch flow path 7. The configuration is the same as that of the above-described chromatography device 100 except that the branch-side discharge channel 9 and the branch-side discharge port 15 are not provided.
[0045]
When the liquid sample and the developing solution are injected in this order into the chromatography device 300, the gas filled in the upstream channel 3 and the branch channel 7 is compressed by the liquid sample pressed by the developing solution. Then, the sample and the developing solution enter the branch channel 7 beyond the branch portion 4 by the compressed volume, and stay there. By setting the capacity of the branch flow path 7 to preferably 2 to 1000 times, more preferably 5 to 100 times the amount of the liquid sample to be introduced, the amount of the gas to be compressed is more than the amount of the introduced sample. The volume reduction amount is increased, and the entire portion of the sample that has not been introduced into the adsorption column 5 enters the branch channel 7, and the developing solution that is not contaminated by the sample flows into the adsorption column 5 from the branch portion 4. , Liquid chromatography is performed. In order to set the capacity of the branch channel 7 to such a value, it is preferable to increase the length of the branch channel 7 or to provide a cavity such as an air tank. In addition, the upstream channel 3 and the branch channel 7 may be pre-filled with a gas having high solubility in the sample or the developing solution, such as carbon dioxide, because the volume of the branch channel 7 may be small. preferable.
[0046]
Next, as a fourth embodiment, FIGS. 5 to 6 show a liquid chromatography device suitably used in the sample introduction method of the present invention. 5 is a schematic plan view, and FIG. 6 is a cross-sectional view of a main part including line BB in FIG.
The chromatography device 400 of the present embodiment is provided with a valve 21 that can close the end of the branch flow path 7 as a flow control unit, and between the valve 21 and the branch discharge port 15 is a branch discharge flow path 9. The configuration is the same as that of the above-described chromatography device 100 except for the connection.
The valve 21 is an opening / closing valve or a flow control valve, and is disclosed in, for example, JP-A-2002-086399 filed by the present inventors.
The valve 21 may be formed outside the plate-shaped member of the present embodiment. For example, one end of a flexible tube may be connected to a portion described as the branch-side discharge port 15, and a portion of the tube may be fastened with a pinch cock or the like to form a valve. In this case, the other end of the tube becomes the branch-side discharge port 15.
[0047]
In the present embodiment, the sample and the developing solution are introduced in this order from the liquid injection unit 13 by opening the valve 21, and the entire amount of the sample passes through the branching unit 4, and after the developing solution reaches the branching unit 4, When the valve 21 is closed, thereafter, all of the introduced and developed liquid flows to the adsorption column 5, and the chromatographic analysis is performed.
[0048]
In the method of introducing a sample into the adsorption column 5 by using each of the above-described first to fourth embodiments of the micro liquid chromatography device, in any case, the pressure of the downstream discharge port 14 (the downstream flow path) 6 is provided, the pressure is also equal to the pressure) and the pressure in the branch channel 7 is adjusted, whereby the amount of sample introduced into the adsorption column 5 can be adjusted. For example, the sample is introduced while controlling the pressure of the downstream channel 6 or the downstream outlet 14 to a pressure higher than the atmospheric pressure and equal to or lower than the sample injection pressure into the upstream channel 3, or By introducing the sample with the outlet 14 closed, it is also preferable to control the rate at which the sample flows in the branching section 4 and to control the amount of the sample introduced into the adsorption column 5. In particular, this is a structure in which the sample band width is narrowed, the adsorption column 5 is an adsorption column 5 having a small pressure loss such as a capillary column, or a structure in which the flow control section 8 closes the end of the branch flow path 7. This is effective when the pressure in the branch channel 7 increases.
[0049]
Further, the pores of the column 5 may be filled with a gas, or may be filled with a liquid such as a developing solution. At this time, the filled gas is arbitrary. The filled liquid is also optional, but is preferably a liquid that can be mixed with the developing liquid, and is preferably a developing liquid in terms of noise, resolution, and the like. A preferable state can be adopted in the sample introduction method corresponding to each of the structures of the flow rate control unit 8 described above. In general, it is preferable that the column is filled with liquid because it is possible to reduce the sample introduction amount and narrow the sample bandwidth. In addition, when introducing the sample while controlling the pressure of the downstream flow path 6 or the downstream discharge port 14 to about the introduction pressure of the developing solution, or when introducing the sample with the downstream discharge port 14 closed. When the sample has passed the branch portion 4 and the developing solution has been filled in the branch portion 4, the liquid chromatography is started by lowering the pressure or opening the downstream discharge port 14.
[0050]
Hereinafter, more specific examples of the present invention will be described. In the following examples, "parts" representing units of quantity represent "parts by mass" unless otherwise specified, and "%" represents "% by mass".
[0051]
[Energy beam irradiation device]
A light source unit for a multi-light 200 type exposure apparatus manufactured by USHIO INC. Incorporating a 200w metal halide lamp was used. UV intensity is 50mw / cm 2 It is.
[0052]
[Measuring method]
The measurements in the examples were performed by the following methods.
(Measurement of water contact angle)
After the sample was allowed to stand at 25 ° C. and 60% humidity for 24 hours, the measurement was performed at room temperature (24 ± 2 ° C.) for 3 minutes using a contact angle meter CA-X manufactured by Kyowa Interface Science.
[0053]
[Observation of pore size of porous body]
The micro liquid chromatography device manufactured in this example was cut, and the cross section of the porous body was observed with a Hitachi 800 scanning electron microscope (SEM).
[0054]
[Preparation of composition (x)]
As the active energy ray polymerizable compound, 65 parts of a trifunctional urethane acrylate oligomer having an average molecular weight of about 2,000 (“Unidick V-4263” manufactured by Dainippon Ink and Chemicals, Inc.), 1,6-hexanediol diacrylate (first 10 parts of "New Frontier HDDA" manufactured by Kogyo Seiyaku Co., Ltd. and 25 parts of nonylphenoxypolyethylene glycol (n = 17) acrylate ("N-177E" manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a photopolymerization initiator 5 parts of 1-hydroxycyclohexylphenyl ketone ("Irgacure 184" manufactured by Ciba Geigy) and 0.1 part of 2,4-diphenyl-4-methyl-1-pentene (manufactured by Kanto Chemical Co., Ltd.) as a polymerization retarder were used. The composition (x) was prepared by uniformly mixing.
[0055]
[Preparation of composition (y) for forming hydrophilic porous body]
As the active energy ray polymerizable compound, 16 parts of the “Unidick V-4263”, 4 parts of the “New Frontier HDDA”, and 2 parts of the “N-177E”),
74 parts of methyl caprate (manufactured by Kanto Chemical Co.) and 6 parts of acetone as a phase separating agent (poor solvent)
A composition (y) was prepared by mixing 2 parts of the above “Irgacure 184”) as an ultraviolet polymerization initiator.
[0056]
[Preparation of composition (z) for forming hydrophobic porous body]
25 parts of ethylene oxide-modified bisphenol A diacrylate (“New Frontier BPE-4” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and tetrafluoropropyl acrylate (“Osaka Organic Chemical Industry Co., Ltd.”) as active energy ray polymerizable compounds VISCOAT 4F ") 0.1 part,
A composition (y) was prepared by mixing 75 parts of methyl caprate (manufactured by Kanto Kagaku) as a phase separator (poor solvent) and 5 parts of “Irgacure 184” as an ultraviolet polymerization initiator.
[0057]
[Example 1]
A micro liquid chromatography device having the configuration shown in FIGS. 1 to 3 was prepared and used.
In the present embodiment, a micro liquid chromatography device 100 having a flow control portion 8 formed at the end of the branch flow channel 7 filled with a porous material through which a liquid can pass but which has a high flow resistance, and the device. The following shows an example of the sample introduction method.
[0058]
[Preparation of micro liquid chromatography device]
The composition (x) was applied to a 7.5 cm × 2.5 cm × 1 mm substrate 1 made of polystyrene (“Dick Styrene XC-520” manufactured by Dainippon Ink and Chemicals, Inc.) using a 127 μm bar coater, A coating film to be the first resin layer 2 was formed. Next, using a photomask, the upstream flow path 3, branch section 4, column 5, downstream flow path 6, branch flow path 7, flow control section 8, and branch discharge shown in FIG. A portion other than the portion serving as the flow path 9 was irradiated with ultraviolet rays for 3 seconds, and the coating film in the irradiated portion was semi-cured to the extent that the fluidity was lost but the film was tacky. Then, the non-irradiated portion of the uncured composition (x) is washed and removed with a 50% aqueous ethanol solution, so that the upstream channel 3, the branch 4, the column 5, the downstream channel 6, and the branch channel 7 are removed. The first resin layer 2 in which the flow control part 8 and the branch-side discharge channel 9 were formed was formed.
[0059]
Next, the composition (y) is injected into the column 5 and the groove serving as the flow rate control unit 8 so that the composition (y) rises from the groove, and the column 5 formation site and the flow rate control unit 8 formation site are irradiated with ultraviolet rays for 20 seconds. After the composition (y) in the irradiated portion is cured in a porous state, the composition is washed with ethanol, and a porous body is filled in each part to form a column 5 (porous column 5) and a porous flow rate. The adjusting part 8 was formed.
[0060]
Separately, as a temporary support (not shown), a 30 μm-thick polypropylene sheet (“biaxially-stretched polypropylene film“ Taiko ”FOR No. 30 manufactured by Nimura Chemical Industry Co., Ltd., hereinafter referred to as an OPP sheet)” is used. The composition (x) was applied using a 127 μm bar coater, and was irradiated with ultraviolet rays for 3 seconds without a photomask, so that the second resin layer 11 was semi-cured to the extent that it lost its fluidity but had tackiness. Was formed. The second resin layer 11 is adhered to and laminated on the first resin layer 2 and irradiated with ultraviolet rays for 30 seconds to cure the second resin layer 11 and adhere to the first resin layer 2 to peel off and remove the OPP sheet. did.
A 50% ethanol solution of the composition (x) is applied to the uppermost layer 12 made of a polystyrene plate having the same dimensions as above using a spin coater, air-dried, and then laminated on the OPP sheet release surface of the second resin layer 11, and ultraviolet rays are applied. The entire surface was irradiated for 60 seconds to bond the uppermost layer 12 made of a polystyrene plate to the second resin layer 11. As a result, the first resin layer 2 is made up of four layers, a polystyrene substrate 1, a first resin layer 2, a second resin layer 11, and a top layer 12 made of a polystyrene plate. 4, a precursor of the micro liquid chromatography device 100 in which the downstream flow path 6, the downstream flow path 6, the branch flow path 7, the flow control section 8, and the branch discharge flow path 9 were formed.
[0061]
A hole is drilled in the uppermost layer 12 of the precursor at a position corresponding to the upstream end 3a of the upstream channel 3 with a 2 mm drill, and a luer fitting 13c for connecting a pipe is adhered on the hole, and The liquid injection part 13 connected to the flow path 3 was formed. Similarly, the downstream discharge port 14 was formed at the end of the downstream flow path 6, and the branch discharge port 15 was formed at the end of the branch discharge flow path 9, thereby producing the micro liquid chromatography device 100.
The micro liquid chromatography device 100 has an upstream flow path 3 having a width of 100 μm, a porous column 5 having a width of 100 μm and a length of 5 mm, and a downstream side having a width of 100 μm from the liquid injection section 13 to a downstream discharge port 14. The channels 6 are formed so as to be linearly connected. A branch part 4 is provided in contact with the inflow end of the porous column 5, and an L-shaped branch flow path 7 having a width of 300 μm is formed from the branch part 4, and the end thereof has a width of 300 μm and a length of 15 mm. And a branch-side discharge flow path 9 having a width of 300 μm is formed from the end of the flow rate control section 8 to the branch-side discharge port 15. The dimensions in the depth direction of the upstream flow path 3, the branch section 4, the porous column 5, the downstream flow path 6, the branch flow path 7, the porous flow rate control section 8, and the branch discharge flow path 9 are as follows. The thickness was 100 μm in each part. Both the porous column 5 and the porous flow rate controller 8 were in the form of aggregated particles and had an average pore diameter of about 1 μm.
[0062]
(Usage test)
First, distilled water was manually injected from a downstream outlet 14 of the micro liquid chromatography device 100 with a syringe (not shown), and only the downstream channel 6 and the porous column 5 were filled with distilled water. Thereafter, the syringe was removed. Next, a 0.5 mm aqueous solution of fluorescein (manufactured by Wako Pure Chemical Industries, Ltd.) was used as a sample solution in the liquid injection unit 13 using a pipette (not shown). 3 Was dropped. Thereafter, a pipe (not shown) is connected to the liquid injection unit 13 and distilled water is injected at a constant speed as a developing liquid from a syringe pump (not shown). The air existing in the flow path 7 is discharged through the porous flow rate control unit 8, and the sample solution flows through the upstream flow path 3 and reaches the branch 4, and a part of the sample solution flows into the upstream end of the porous column 5. Most of the water was adsorbed by 5 a and flowed from the branch portion 4 to the branch channel 7. When the tip of the sample solution arrived at the porous flow rate control unit 8, the sample solution had already passed through the branch unit 4, and the branch unit 4 was filled with the developing solution. At this time, when the fluorescence was observed with a fluorescence microscope, the bandwidth of fluorescein adsorbed at the inlet end 5a of the porous column 5 was about 10 μm. Subsequently, when a developing solution is introduced from a syringe pump (not shown), a part of the developing solution flows through the porous column 5 to develop the adsorbed fluorescein, exits the porous column 5 and exits the downstream channel 6. And flowed out from the downstream discharge port 14. At this time, by observing a part of the downstream channel 6 with a fluorescence microscope, an elution peak of fluorescein was observed. On the other hand, the developing solution split in the branch section 4 and flowing into the branch flow path 7 pushes the sample solution, passes through the porous flow rate control section 8 formed at the end of the branch flow path 7, and flows into the branch side discharge flow. Through the passage 9, it flowed out of the branch outlet 15. The ratio of the amount of the liquid discharged from the downstream side discharge port 14 to the amount of the liquid flowing out from the branch side discharge port 15 was about 1/1.
[0063]
[Example 2]
In the present embodiment, a micro-liquid chromatography device in which a gas is permeable but a liquid is not permeable is formed on the branch channel 7 and a sample is introduced into the adsorption column 5 of the device. Here is an example of the method.
The micro liquid chromatography device 200 shown in FIGS. 1 to 3 is different from the micro liquid chromatography device 100 shown in FIGS. 1 to 3 in that the flow rate control unit 8 is filled with a hydrophobic porous body that is permeable to gas but not liquid. It has the same configuration as.
[0064]
[Preparation of micro liquid chromatography device]
A micro liquid chromatography device 200 was produced in the same manner as in Example 1, except that the composition (z) was used instead of the composition (y) as a material for the porous flow rate control unit 8.
[0065]
(Usage test)
In the same manner as in Example 1, only the downstream channel 6 and the porous column 5 portion of the micro liquid chromatography device 200 were filled with distilled water, and the sample was injected into the liquid injection section 13. After that, when the developing liquid was injected at a constant speed from the liquid injection unit 13 by a syringe pump (not shown) in the same manner as in Example 1, the upstream flow path 3, the branch section 4, and the branch flow path 7 were injected. The existing air is discharged through a hydrophobic porous flow rate control unit 8 formed at the end of the branch flow path 7, and the sample solution flows through the upstream secondary flow path 3 and reaches the branch part 4, and a part thereof. Was adsorbed to the end 5 a of the porous column 5, and the other portion flowed from the branch portion 4 to the branch channel 7. When the tip of the sample solution arrived at the porous flow rate control unit 8, the sample solution had already passed through the branch unit 4, and the branch unit 4 was filled with the developing solution. At this time, when the fluorescence was observed with a fluorescence microscope, the bandwidth of fluorescein adsorbed at the inlet end 5a of the porous column 5 was about 10 μm. Subsequently, when the developing solution is fed from a syringe (not shown), the sample solution flowing through the branch flow path 7 and reaching the hydrophobic porous flow rate control unit 8 does not move any more, and the developing solution also branches further. It did not flow into the branch channel 7 from the part 4. On the other hand, the entire amount of the introduced developing solution flows through the porous column 5 to expand the adsorbed fluorescent substance, exits the porous column 5, enters the downstream flow path 6, and flows out of the downstream discharge port 14. Was done.
[0066]
[Example 3]
A micro-liquid chromatography device having the configuration shown in FIG. 4 was manufactured, and a use test was performed.
In the present embodiment, an example of a micro liquid chromatography device 300 in which the branch channel 7 is closed with a predetermined capacity and a method of introducing a sample into the adsorption column 5 to the device will be described.
[0067]
[Preparation of micro liquid chromatography device]
Without the branch-side discharge channel 9 and the branch-side discharge port 15, the flow rate adjusting portion 8 is a closing portion that closes the flow channel at the end of the branch channel 7. A micro liquid chromatography device 300 was produced in the same manner as in Example 1 except that the width was 1 mm.
[0068]
(Usage test)
In the same manner as in Example 1, only the downstream flow path 6 and the porous column 5 portion of the micro liquid chromatography device 300 were filled with distilled water, and the sample was injected into the liquid injection section 13. Thereafter, the developing solution was introduced at a constant speed from the liquid injection unit 13 by a syringe pump (not shown) in the same manner as in Example 1, and the sample solution was supplied to the upstream channel 3, the branch unit 4, and the branch channel. While flowing through the upstream flow path 3 while compressing the air present in the flow path 7, the air reaches the branch section 4, a part of which is adsorbed by the porous column 5, and the other part is formed by removing the air existing in the branch flow path 7. While flowing further, it flowed from the branch portion 4 to the branch channel 7. When the entire sample solution passes through the branch portion 4 and the branch portion 4 is replaced with the developing solution, when fluorescence observation is performed with a fluorescence microscope, the band width at which the fluorescein is adsorbed at the inlet end 5a of the porous column 5 is obtained. Was found to be about 30 μm. Subsequently, when the developing liquid is introduced from a syringe (not shown), the compressed air pressure balances with the introduction pressure of the developing liquid, and the flow in the branch flow path 7 stops. Thereafter, the total amount of the introduced developing liquid is reduced. The flow from the branching section 4 to the porous column 5 spreads the band of the adsorbed full restain, exits the porous column 5, enters the downstream channel 6, and flows out of the downstream outlet 14. On the other hand, the sample solution and the developing solution that had entered the branch flow path 7 remained as they were.
[0069]
[Example 4]
In this embodiment, an example of a method of injecting a sample into the micro liquid chromatography device 300 in which the branch channel 7 is closed with a predetermined capacity will be described.
[0070]
[Preparation of micro liquid chromatography device]
A liquid chromatography device 300 exactly the same as the micro liquid chromatography device 300 prepared in Example 3 was produced.
[0071]
(Usage test)
After filling only the downstream channel 6 and the porous column 5 portion of the micro liquid chromatography device 300 with distilled water, the used syringe (not shown) was fixed to the downstream outlet 14. When the introduced developing solution reached the branch portion 4, the same usage test as in Example 3 was performed except that the syringe was removed. As a result, the developing solution was adsorbed to the inlet end portion 5a of the porous column 5. The same results as in Example 3 were obtained except that the bandwidth of fluorescein was about 10 μm.
[0072]
[Example 5]
In this embodiment, an example of a method of injecting a sample into the micro liquid chromatography device 300 in which the branch channel 7 is closed with a predetermined capacity will be described.
[0073]
[Preparation of micro liquid chromatography device]
A liquid chromatography device 300 exactly the same as the micro liquid chromatography device 300 prepared in Example 3 was produced.
[0074]
(Usage test)
A use test similar to that of Example 3 was performed except that the downstream flow path 6 of the micro liquid chromatography device 300 and the porous column 5 were not filled with distilled water in advance. The same results as in Example 3 were obtained except that the band width of the fluorescein adsorbed on the end 5a was about 90 μm.
[0075]
[Example 6]
In this embodiment, an example of a method of injecting a sample into the micro liquid chromatography device 300 in which the branch channel 7 is closed with a predetermined capacity will be described.
[0076]
[Preparation of micro liquid chromatography device]
A liquid chromatography device 300 exactly the same as the micro liquid chromatography device 300 prepared in Example 3 was produced.
[0077]
(Usage test)
A syringe (not shown) containing air was connected to the downstream outlet 14, and the syringe injected from the liquid injection unit 13 was compressed by 10% of its volume immediately before reaching the branch unit 4, and A usage test similar to that of Example 3 was performed except that the syringe was removed after the sample solution passed through the branch portion 4, and the bandwidth of the fluorescein adsorbed on the inlet end 5a of the porous column 5 was determined. Was about 40 μm, and the same result as in Example 3 was obtained.
[0078]
[Example 7]
A micro liquid chromatography device having the configuration shown in FIGS.
In the present embodiment, an example of a micro liquid chromatography device 400 having an opening / closing valve mechanism 21 as a flow control unit and a method of injecting a sample into the device will be described.
[0079]
[Preparation of micro liquid chromatography device]
(1) The porous flow rate adjusting portion 8 was not formed, and (2) a steel ball 22 having a diameter of 0.2 mm was formed in a portion of the second resin layer 11 corresponding to the end of the branch channel 7. The object (x) was cured by ultraviolet rays and bonded. A hole 23 having a diameter of 5.1 mm was formed in the uppermost layer 12 around the bonding portion of the steel ball 22. .1 mm, an outer diameter of 6 mm and a length of 6 mm made of a polystyrene cylindrical guide 24 adhered, and a polystyrene cylinder 25 having a diameter of 5 mm and a length of 10 mm was mounted in the guide 24 to open and close the valve. A micro liquid chromatography device 400 was produced in the same manner as in Example 1 except that the mechanism 21 was formed.
[0080]
(Usage test)
In the same manner as in Example 1, only the downstream channel 6 and the porous column 5 portion of the micro liquid chromatography device 400 were filled with distilled water, and the liquid injection section 13 was filled with 1 mm of the sample solution. 3 After injecting the developing solution at a constant speed from the liquid injecting section 13 with a syringe pump (not shown), the air present in the upstream side flow path 3 is pushed by the sample solution, and is opened. The sample solution is discharged from the branch side outlet 15 through the branch channel 7 provided with the valve mechanism 21 of FIG. The other portion flowed from the branch portion 4 to the branch flow path 7 while being adsorbed by the end portion 5 a of the quality column 5. When all the sample solution has passed through the branch 4, the cylinder 25 of the valve mechanism 21 is clamped by a clamp (not shown) attached to a table (not shown) holding the microfluidic chromatography device 400. The portion 26 of the second resin layer 11 facing the branch channel 7 was deformed to close part of the branch channel 7. At this time, when the fluorescence was observed with a fluorescence microscope, it was confirmed that fluorescein was adsorbed at the inlet end 5a of the porous column 5 with a band width of about 10 μm. Subsequently, when a developing solution is introduced from a syringe (not shown), the introduced developing solution flows through the porous column 5 to expand the adsorbed fluorescent substance, exits the porous column 5, and flows out of the downstream column. 6 and flowed out from the downstream outlet 14. On the other hand, the sample solution and the developing solution in the branch channel 7 did not move.
[0081]
【The invention's effect】
As described above, by using the micro liquid chromatography device and the sample introduction method of the present invention, a small amount of sample can be effectively applied to a small column while reducing or eliminating the amount of wasteful discharge of the developing solution. Introduced, a narrow sample adsorption band can be formed.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of a micro liquid chromatography device suitably used in the sample introduction method of the present invention.
FIG. 2 is a longitudinal sectional view of a main part of the micro liquid chromatography device shown in FIG.
FIG. 3 is a longitudinal sectional view of a main part of the micro liquid chromatography device shown in FIG.
FIG. 4 is a schematic plan view of a micro liquid chromatography device according to the present invention.
FIG. 5 is a schematic plan view of a micro liquid chromatography device suitably used in the sample introduction method of the present invention.
FIG. 6 is a longitudinal sectional view of a main part of the liquid chromatography device shown in FIG.
[Explanation of symbols]
100 micro liquid chromatography device
1 substrate
2 First resin layer
3 Upstream channel
4 Branch
5 Adsorption column
6. Downstream channel
7 Branch flow path
8 Flow control section
9 Branch discharge channel
11 Second resin layer
12 Top layer
13 Liquid injection part
14 Downstream outlet
15 Branch outlet
21 Valve mechanism
22 steel ball
23 holes
24 tubes
25 cylinder

Claims (7)

部材の内部に、毛細管状の上流側流路(3)と、該上流側流路の上流端に位置する液体注入部(13)と、一端が前記上流側流路の末端に接続されている吸着カラム(5)と、前記吸着カラムを通過した液体を排出する下流側排出口(14)を有する微小液体クロマトグラフィーデバイスであって、前記上流側流路上に分岐部(4)を有し、該分岐部から分岐流路(7)が設けられていて、該分岐流路が、気体は透過させるが液体は透過させない気液分離体(8)を介して前記デバイス外に連絡していることを特徴とする微小液体クロマトグラフィーデバイス(200)。Inside the member, a capillary upstream flow path (3), a liquid injection section (13) located at the upstream end of the upstream flow path, and one end connected to the end of the upstream flow path. A micro liquid chromatography device having an adsorption column (5) and a downstream discharge port (14) for discharging a liquid that has passed through the adsorption column, the device having a branch (4) on the upstream flow path, A branch channel (7) is provided from the branch portion, and the branch channel communicates with the outside of the device via a gas-liquid separator (8) that allows gas to permeate but does not allow liquid to permeate. A micro liquid chromatography device (200), characterized in that: 部材の内部に、毛細管状の上流側流路(3)と、該上流側流路の上流端に位置する液体注入部(13)と、一端が前記上流側流路の末端に接続されている吸着カラム(5)と、前記吸着カラムを通過した液体を排出する下流側排出口(14)を有する微小液体クロマトグラフィーデバイスであって、前記上流側流路上に分岐部(4)を有し、該分岐部から分岐流路(7)が設けられていて、該分岐流路の末端が前記デバイス内部で閉じられていることを特徴とする微小液体クロマトグラフィーデバイス(300)。Inside the member, a capillary upstream flow path (3), a liquid injection section (13) located at the upstream end of the upstream flow path, and one end connected to the end of the upstream flow path. A micro liquid chromatography device having an adsorption column (5) and a downstream discharge port (14) for discharging a liquid that has passed through the adsorption column, the device having a branch (4) on the upstream flow path, A micro liquid chromatography device (300), wherein a branch channel (7) is provided from the branch portion, and an end of the branch channel is closed inside the device. 前記吸着カラム(5)が、毛細管状の空洞に多孔質体が充填された多孔質カラムである請求項1又は2に記載の微小液体クロマトグラフィーデバイス。The micro liquid chromatography device according to claim 1 or 2, wherein the adsorption column (5) is a porous column in which a capillary is filled with a porous body. 前記分岐部(4)が、前記上流側流路(3)の末端に備えられ、前記吸着カラム(5)の一端が該分岐部に接続されている請求項1乃至3のいずれかに記載の微小液体クロマトグラフィーデバイス。The said branch part (4) is provided in the terminal of the said upstream side flow path (3), The one end of the said adsorption | suction column (5) is connected to the said branch part, The one in any one of Claims 1-3. Micro liquid chromatography device. 部材の内部に、毛細管状の上流側流路(3)と、該上流側流路の上流端に位置する液体注入部(13)と、一端が前記上流側流路の末端に接続されている吸着カラム(5)と、前記吸着カラムを通過した液体を排出する下流側排出口(14)と、前記上流側流路上に分岐部(4)と、該分岐部から分岐した分岐流路(7)と、該分岐流路の下流端に設けられた該分岐流路を流れる液体の流量を調節するための流量調節部(8)を備えて成る微小液体クロマトグラフィーデバイス(100,200,300,400)の前記吸着カラムに試料を導入する方法であって、前記液体注入部(13)から液体状の試料と展開液をこの順に注入して、該試料の一部を前記吸着カラム(5)に導入し、残余の試料を、あらかじめ気体が充填された前記分岐流路(7)へ流出させることを特徴とする試料導入方法。Inside the member, a capillary upstream flow path (3), a liquid injection section (13) located at the upstream end of the upstream flow path, and one end connected to the end of the upstream flow path. An adsorption column (5), a downstream discharge port (14) for discharging liquid passing through the adsorption column, a branch (4) on the upstream flow path, and a branch flow path (7) branched from the branch part. ), And a flow rate control unit (8) provided at the downstream end of the branch flow path for controlling the flow rate of the liquid flowing through the branch flow path (8). 400) The method of introducing a sample into the adsorption column according to 400), wherein a liquid sample and a developing solution are injected in this order from the liquid injection section (13), and a part of the sample is removed from the adsorption column (5). The remaining sample is introduced into the branch previously filled with gas. Sample introduction method for causing to flow out to the road (7). 請求項5に記載の試料導入方法であって、前記下流側排出口(14)の圧力を調整しつつ、又は、前記下流側排出口を閉じた状態で、試料を前記液体注入部(13)に注入することにより、試料を前記吸着カラム(5)に導入する量と前記分岐流路(7)へ流出させる量との割合を制御する試料導入方法。The sample introduction method according to claim 5, wherein the sample is introduced into the liquid injection section (13) while adjusting the pressure of the downstream outlet (14) or with the downstream outlet closed. A sample introduction method for controlling the ratio of the amount of the sample introduced into the adsorption column (5) and the amount of the sample introduced into the branch channel (7) by injecting the sample into the branch column (5). 前記吸着カラム(5)に液体を充満させた状態で、前記液体注入部(13)に試料を注入する請求項5又は6に記載の試料導入方法。The sample introduction method according to claim 5 or 6, wherein a sample is injected into the liquid injection section (13) in a state where the adsorption column (5) is filled with a liquid.
JP2002308680A 2002-10-23 2002-10-23 Liquid chromatography device and sample introduction method Expired - Fee Related JP4012800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308680A JP4012800B2 (en) 2002-10-23 2002-10-23 Liquid chromatography device and sample introduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308680A JP4012800B2 (en) 2002-10-23 2002-10-23 Liquid chromatography device and sample introduction method

Publications (2)

Publication Number Publication Date
JP2004144568A true JP2004144568A (en) 2004-05-20
JP4012800B2 JP4012800B2 (en) 2007-11-21

Family

ID=32454759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308680A Expired - Fee Related JP4012800B2 (en) 2002-10-23 2002-10-23 Liquid chromatography device and sample introduction method

Country Status (1)

Country Link
JP (1) JP4012800B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055843A (en) * 2004-08-20 2006-03-02 Internatl Business Mach Corp <Ibm> Optical micro plug for multichannel and multilayer pharmaceutical device
JP2007121130A (en) * 2005-10-28 2007-05-17 Fujirebio Inc Microfluidic device and manufacturing method thereof
WO2007077627A1 (en) * 2006-01-06 2007-07-12 Kawamura Institute Of Chemical Research Substance separating device and method of substance separation
US7700745B2 (en) 2003-02-28 2010-04-20 Japan Science And Technology Agency Method for separating carbohydrate in glycoside-linkage-having compound, carbohydrate separating system, carbohydrate separating reagent kit, standard sample for carbohydrate separation, and evaluation system
WO2013183721A1 (en) * 2012-06-06 2013-12-12 日産化学工業株式会社 Fluorine-containing hyperbranched polymer and epoxy resin composition containing same
JP2014519611A (en) * 2011-06-09 2014-08-14 ウオーターズ・テクノロジーズ・コーポレイシヨン Reduction of dispersion due to vias in planar microfluidic separators
JP2014524586A (en) * 2011-08-22 2014-09-22 ウオーターズ・テクノロジーズ・コーポレイシヨン Microfluidic device with dried blood spots (DBS) card interface
JP2014240065A (en) * 2013-05-15 2014-12-25 公立大学法人大阪府立大学 Flow channel structure and production method of flow channel structure
CN106680404A (en) * 2017-02-22 2017-05-17 厦门色谱分析仪器有限公司 Liquid-phase chromatographic distribution apparatus based on microfluidic chip
CN113454447A (en) * 2018-11-22 2021-09-28 株式会社理学 Single crystal X-ray structure analysis system
CN115290425A (en) * 2022-10-10 2022-11-04 山东中医药大学附属医院 A detection device and method for simulating knee cartilage load

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700745B2 (en) 2003-02-28 2010-04-20 Japan Science And Technology Agency Method for separating carbohydrate in glycoside-linkage-having compound, carbohydrate separating system, carbohydrate separating reagent kit, standard sample for carbohydrate separation, and evaluation system
JP2006055843A (en) * 2004-08-20 2006-03-02 Internatl Business Mach Corp <Ibm> Optical micro plug for multichannel and multilayer pharmaceutical device
JP2007121130A (en) * 2005-10-28 2007-05-17 Fujirebio Inc Microfluidic device and manufacturing method thereof
WO2007077627A1 (en) * 2006-01-06 2007-07-12 Kawamura Institute Of Chemical Research Substance separating device and method of substance separation
JP2014519611A (en) * 2011-06-09 2014-08-14 ウオーターズ・テクノロジーズ・コーポレイシヨン Reduction of dispersion due to vias in planar microfluidic separators
US9709535B2 (en) 2011-08-22 2017-07-18 Waters Technologies Corporation Microfluidic device with dried blood spots (Dbs) card interface
JP2014524586A (en) * 2011-08-22 2014-09-22 ウオーターズ・テクノロジーズ・コーポレイシヨン Microfluidic device with dried blood spots (DBS) card interface
US10024826B2 (en) 2011-08-22 2018-07-17 Waters Technologies Corporation Analysis of dried blood spot samples in a microfluidic system with dilution of extracted samples
WO2013183721A1 (en) * 2012-06-06 2013-12-12 日産化学工業株式会社 Fluorine-containing hyperbranched polymer and epoxy resin composition containing same
JPWO2013183721A1 (en) * 2012-06-06 2016-02-01 日産化学工業株式会社 Fluorine-containing hyperbranched polymer and epoxy resin composition containing the same
US9920143B2 (en) 2012-06-06 2018-03-20 Nissan Chemical Industries, Ltd. Fluorine-containing highly branched polymer and epoxy resin composition containing the same
JP2014240065A (en) * 2013-05-15 2014-12-25 公立大学法人大阪府立大学 Flow channel structure and production method of flow channel structure
CN106680404A (en) * 2017-02-22 2017-05-17 厦门色谱分析仪器有限公司 Liquid-phase chromatographic distribution apparatus based on microfluidic chip
CN106680404B (en) * 2017-02-22 2022-08-23 厦门色谱分析仪器有限公司 Liquid chromatogram diverging device based on micro-fluidic chip
CN113454447A (en) * 2018-11-22 2021-09-28 株式会社理学 Single crystal X-ray structure analysis system
CN115290425A (en) * 2022-10-10 2022-11-04 山东中医药大学附属医院 A detection device and method for simulating knee cartilage load

Also Published As

Publication number Publication date
JP4012800B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JP4012800B2 (en) Liquid chromatography device and sample introduction method
US6499499B2 (en) Flow control in multi-stream microfluidic devices
US7010964B2 (en) Pressurized microfluidic devices with optical detection regions
US7220334B2 (en) Method of manufacturing microdevice having laminated structure
JP3856763B2 (en) Manufacturing method of microfluidic device
JP2002018271A (en) Micro chemical device
JP3777112B2 (en) Microfluidic device and manufacturing method thereof
JP2016164961A (en) Liquid discharging device, nanoimprint device, liquid-containing tank for nanoimprint, method for manufacturing hardened material pattern, method for manufacturing optical component, method for manufacturing circuit board, and method for manufacturing imprint mold
CN101358912A (en) Three-dimensional microfluidic chip with in situ polymerized butyl methacrylate pretreated monolithic column
KR20030038739A (en) Very small chemical device and flow rate adjusting method therefor
JP2006058112A (en) Trace sample measuring device, trace sample measuring instrument, and trace sample measuring method
JP2000246092A (en) Production of microchemical device
JP2002102681A (en) Minute chemical device having heating/deairing mechanism
US20040092033A1 (en) Systems and methods for preparing microfluidic devices for operation
JP2002066999A (en) Extremely small valve mechanism and manufacturing method of the same
JP2007218838A (en) Micro sample inlet method and microfluidic device
JP2001088098A (en) Micro chemical device with depressurized liquid feeding mechanism
JP4039481B2 (en) Method for manufacturing microfluidic device having porous part
JP2007216226A (en) Micronozzle, its manufacturing method, spotting method, and spotter
JP2003084001A (en) Micro fluid device having micro valve mechanism, micro valve mechanism driving apparatus therefor, and flow control method
JP2000288381A (en) Manufacture of microchemical device
JP2007014854A (en) Filtration filter, manufacturing method of filtration filter, and hemofiltration method
JP2002086399A (en) Micro-device having lamination structure and manufacturing method for it
JP2004058214A (en) Channel connecting method, member for channel connection, microfluidic device, and connecting structure of microfluidic device
JP2003136500A (en) Method of manufacturing micro fluid device having resin diaphragm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees