[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004143451A - Polyproylene based resin composition, polyproylene based resin foaming particle and in-mold molded product using the same - Google Patents

Polyproylene based resin composition, polyproylene based resin foaming particle and in-mold molded product using the same Download PDF

Info

Publication number
JP2004143451A
JP2004143451A JP2003339215A JP2003339215A JP2004143451A JP 2004143451 A JP2004143451 A JP 2004143451A JP 2003339215 A JP2003339215 A JP 2003339215A JP 2003339215 A JP2003339215 A JP 2003339215A JP 2004143451 A JP2004143451 A JP 2004143451A
Authority
JP
Japan
Prior art keywords
propylene
polymer
polypropylene resin
based polymer
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003339215A
Other languages
Japanese (ja)
Other versions
JP4499394B2 (en
Inventor
Toru Wada
和田 亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2003339215A priority Critical patent/JP4499394B2/en
Publication of JP2004143451A publication Critical patent/JP2004143451A/en
Application granted granted Critical
Publication of JP4499394B2 publication Critical patent/JP4499394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide polyproplylene based resin foaming particles imparting an in-mold molded article excellent in surface external appearance and mechanical properties together with reduced permanent distortion, to provide the in-mold molded article and to provide the optimum polypropylene based resin composition as the base resin of the polypropylene based resin foaming particles. <P>SOLUTION: The polypropylene based resin composition comprises [A] 5-95 wt.% of a polypropylene based resin satisfying following requirements (a) and (b) and [B] 95-5 wt.% of a polypropylene based resin satisfying following requirement (a). The requirement (a):the polypropylene based polymer comprises 100-85 mol.% of structural unit obtained from propylene and 0-15 mol.% of structural unit obtained from ethylene or an α-olefin, the requirement (b) the polymer has 0.5-2.0% of position irregular units based on 2, 1-insertion, and 0.005-0.4% of position irregular units based on 1, 3-insertion. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は,低い成形温度にて表面外観及び機械的物性が優れた型内成形体を得ることができるポリプロピレン系樹脂発泡粒子,及びその型内成形体,並びに上記ポリプロピレン系樹脂発泡粒子の基材樹脂として最適なポリプロピレン系樹脂組成物に関する。 The present invention relates to an expanded polypropylene resin particle capable of obtaining an in-mold molded article having excellent surface appearance and mechanical properties at a low molding temperature, a molded article in the mold, and a base material of the expanded polypropylene resin particle. The present invention relates to a polypropylene resin composition most suitable as a resin.

 ポリプロピレン系樹脂発泡粒子から得られる型内発泡成形体は,ポリスチレン系樹脂発泡粒子による成形体に比較して,耐薬品性,耐衝撃性,圧縮歪回復性等に優れていることから,自動車等のバンパー芯材や各種包装資材等として好適に使用されている。 In-mold foamed articles obtained from polypropylene-based resin foamed particles have excellent chemical resistance, impact resistance, compression strain recovery, etc. as compared with molded articles made of polystyrene-based resin foamed particles, and are therefore used in automobiles, etc. Is suitably used as a bumper core material and various packaging materials.

 上記ポリプロピレン系樹脂発泡粒子は,基材樹脂としてのポリプロピレン系樹脂組成物と発泡剤とを含有してなる。
 上記ポリプロピレン系樹脂組成物としては,その発泡適性等の面から,主としてプロピレンにエチレンや1−ブテン等のα−オレフィンを共重合させたプロピレン−α−オレフィンランダム共重合体等が用いられている。しかし,これらは共重合体であるがゆえに,重合体そのものの力学物性が低い。
 そこで,上記ポリプロピレン系樹脂組成物の力学物性を向上させるために,共重合体中のコモノマー含量を低くする方法や,あるいはプロピレン−α−オレフィンランダム共重合体に直鎖状ポリエチレンを混合する方法(特許文献1参照)が提案されていた。しかし,このような方法によっても,成形体の力学物性を向上させるには限界があった。
The expanded polypropylene resin particles contain a polypropylene resin composition as a base resin and a foaming agent.
As the polypropylene resin composition, a propylene-α-olefin random copolymer obtained by copolymerizing propylene with an α-olefin such as ethylene or 1-butene is mainly used from the viewpoint of foaming suitability. . However, since these are copolymers, the mechanical properties of the polymer itself are low.
Therefore, in order to improve the mechanical properties of the polypropylene resin composition, a method of lowering the comonomer content in the copolymer, or a method of mixing linear polyethylene with a propylene-α-olefin random copolymer ( Patent Document 1) has been proposed. However, even with such a method, there is a limit in improving the mechanical properties of the molded body.

 一方,ポリプロピレンは,本来それ自体が剛性等の力学特性が優れる合成樹脂である。そのため,ポリプロピレン単独重合体により発泡粒子を得ることができれば,剛性が充分に高い発泡粒子成形体を得ることができる。しかし,ポリプロピレン単独重合体からなる発泡粒子によって成形体を得ようとする場合には,発泡温度範囲や,成形範囲が非常に狭く,これら条件を精密に制御することは極めて困難である。そのため,得られた成形体には粒子間の融着不良が生じたり,成形体表面の外観が悪くなる等の不具合が生ずるという問題があった。それ故,実際の工業的生産においては,ポリプロピレン単独重合体より発泡成形体を得ることはできなかった。 On the other hand, polypropylene is a synthetic resin that originally has excellent mechanical properties such as rigidity. Therefore, if foamed particles can be obtained from a homopolymer of polypropylene, a foamed molded article having sufficiently high rigidity can be obtained. However, when a molded article is to be obtained from foamed particles composed of a polypropylene homopolymer, the foaming temperature range and the molding range are very narrow, and it is extremely difficult to precisely control these conditions. For this reason, the obtained molded article has a problem that defects such as defective fusion between particles occur and appearance of the molded article surface is deteriorated. Therefore, in actual industrial production, a foamed molded article could not be obtained from a polypropylene homopolymer.

 ところが,近年になって,いわゆるメタロセン系触媒を用いて得られたシンジオタクチック構造を有するポリプロピレンを発泡体の基材樹脂として用いる方法が提案された(特許文献2参照)。この提案により,プロピレン単独重合体による発泡体の製造が可能となった。
 しかし,シンジオタクチック構造を有するポリプロピレンは,アイソタクチック構造を有するポリプロピレンに比較して融点が低く,機械的物性が劣るという問題があった。
However, in recent years, a method has been proposed in which polypropylene having a syndiotactic structure obtained using a so-called metallocene catalyst is used as a base resin of a foam (see Patent Document 2). This proposal has made it possible to produce foams made of propylene homopolymer.
However, polypropylene having a syndiotactic structure has a problem that the melting point is lower and mechanical properties are inferior to polypropylene having an isotactic structure.

 また,後述する特許文献3においては,メタロセン系重合触媒を用いて重合されたアイソタクチックポリプロピレン系樹脂を基材樹脂とするポリプロピレン系樹脂発泡粒子が提案されている。
 この場合には,発泡粒子の気泡径が比較的均一となるという特徴があるが,かかる発泡粒子を用いて得られる成形体は圧縮永久歪が大きいという問題があり,更なる改良が望まれていた。
Patent Document 3 described below proposes expanded polypropylene resin particles using an isotactic polypropylene resin polymerized using a metallocene polymerization catalyst as a base resin.
In this case, there is a feature that the cell diameter of the expanded particles is relatively uniform. However, there is a problem that a molded article obtained by using such expanded particles has a large compression set, and further improvement is desired. Was.

特開昭57−90027号公報(特許請求の範囲)JP-A-57-90027 (Claims) 特開平4−224832号公報(特許請求の範囲)JP-A-4-224832 (Claims) 特開平6−240041号公報(請求項1)JP-A-6-240041 (Claim 1)

 本発明は,かかる従来の問題点に鑑みてなされたもので,低い成形温度にて表面外観及び機械的物性が優れると共に圧縮永久歪が小さい型内成形体を得ることができるポリプロピレン系樹脂発泡粒子,及びその型内成形体,並びに上記ポリプロピレン系樹脂発泡粒子の基材樹脂として最適なポリプロピレン系樹脂組成物を提供しようとするものである。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and it is an object of the present invention to provide a foamed polypropylene resin particle having excellent surface appearance and mechanical properties at a low molding temperature and capable of obtaining an in-mold molded product having a small compression set. It is an object of the present invention to provide a polypropylene resin composition which is most suitable as a base resin for foamed polypropylene resin particles, and a molded article thereof.

 第1の発明は,下記のプロピレン系重合体[A]5〜95重量%と,下記のプロピレン系重合体[B]95〜5重量%(ただし,プロピレン系重合体(A)とプロピレン系重合体[B]との合計量は100重量%である)とを含有することを特徴とするポリプロピレン系樹脂組成物にある。
 プロピレン系重合体[A]:下記の要件(a)及び(b)を有する,プロピレン系重合体。
(a)プロピレンから得られる構造単位が100〜85モル%,エチレン及び/又は炭素数4〜20のα−オレフィンから得られる構造単位が0〜15モル%存在すること(ただし,プロピレンから得られる構造単位と,エチレン及び/又は炭素数4〜20のα−オレフィンから得られる構造単位との合計量は100モル%である)。
(b)13C−NMRにて測定したときの,全プロピレン挿入中のプロピレンモノマー単位の2,1−挿入に基づく位置不規則単位の割合が0.5〜2.0%であり,かつプロピレンモノマー単位の1,3−挿入に基づく位置不規則単位の割合が0.005〜0.4%であること。
 プロピレン系重合体[B]:上記要件(a)及び(b)のうち要件(a)だけを有するプロピレン系重合体。
In the first invention, the following propylene-based polymer [A] is 5 to 95% by weight, and the following propylene-based polymer [B] is 95 to 5% by weight (provided that the propylene-based polymer (A) and the propylene-based (The total amount with the coalescing [B] is 100% by weight).
Propylene-based polymer [A]: A propylene-based polymer having the following requirements (a) and (b).
(A) 100 to 85 mol% of structural units obtained from propylene, and 0 to 15 mol% of structural units obtained from ethylene and / or an α-olefin having 4 to 20 carbon atoms (provided that propylene is obtained from propylene) The total amount of the structural units and the structural units obtained from ethylene and / or an α-olefin having 4 to 20 carbon atoms is 100 mol%).
(B) the ratio of the position irregular units based on the 2,1-insertion of the propylene monomer units in the total propylene insertion is 0.5 to 2.0%, as measured by 13C-NMR, and the propylene monomer The ratio of the position irregular units based on the 1,3-insertion of the unit is 0.005 to 0.4%.
Propylene-based polymer [B]: A propylene-based polymer having only the requirement (a) among the requirements (a) and (b).

 本発明のポリプロピレン系樹脂組成物は,上記(a)及び(b)の要件を有するプロピレン系重合体[A]5〜95重量%と,上記(a)及び(b)のうち要件(a)だけを有するプロピレン系重合体[B]95〜5重量%とを含有している。そのため,上記ポリプロピレン系樹脂組成物は,機械的物性及び加工性に優れている。 The polypropylene resin composition of the present invention comprises 5 to 95% by weight of a propylene polymer [A] having the above requirements (a) and (b), and the requirement (a) of the above (a) and (b). 95% by weight of a propylene-based polymer [B] having only Therefore, the polypropylene resin composition is excellent in mechanical properties and workability.

 また,本発明のポリプロピレン系樹脂組成物は,これを基材樹脂として発泡粒子を作製すると,機械的物性に優れると共に成形時の発泡性(二次発泡性)に優れた発泡粒子を得ることができる。そのため,この発泡粒子を成形すると,表面外観及び機械的物性が優れる上,圧縮永久歪の小さな型内成形体を得ることができる。即ち,本発明のポリプロピレン系樹脂組成物は,ポリプロピレン系樹脂発泡粒子の最適な基材樹脂として利用することができる。 Further, when the polypropylene resin composition of the present invention is used as a base resin to produce expanded particles, it is possible to obtain expanded particles having excellent mechanical properties and excellent expandability during molding (secondary expandability). it can. Therefore, when the expanded particles are molded, an in-mold molded product having excellent surface appearance and mechanical properties and small compression set can be obtained. That is, the polypropylene-based resin composition of the present invention can be used as an optimal base resin for expanded polypropylene-based resin particles.

 なお,ここに基材樹脂とは,発泡粒子を構成する基本となる樹脂成分を意味する。発泡粒子は,この基材樹脂と必要に応じて添加する他のポリマー成分或いは,発泡剤,触媒中和剤,滑剤,結晶核剤,その他の添加剤等の添加物からなる。但し,他のポリマー成分や添加物は,本発明の目的を阻害しない範囲内で,できる限り少量であることが望ましい。
 即ち,プロピレン系重合体[A]とプロピレン系重合体[B]の合計量を100重量部とした場合,他のポリマー成分の添加量は40重量部以下にすることが好ましい。より好ましくは,30重量部以下がよく,さらに好ましくは15重量部以下がよい。また,もっとも好ましくは5重量部以下がよい。
 また,プロピレン系重合体[A]とプロピレン系重合体[B]の合計量を100重量部とした場合,上記添加物の添加量(発泡剤のように最終的に気散してなくなるものは除く)は,添加物の使用目的にもよるが40重量部以下が好ましい。より好ましくは,30重量部以下がよく,さらに好ましくは0〜15重量部がよい。
Here, the base resin means a basic resin component constituting the expanded particles. The foamed particles are composed of the base resin and other polymer components to be added as required, or additives such as a foaming agent, a catalyst neutralizing agent, a lubricant, a crystal nucleating agent, and other additives. However, it is desirable that other polymer components and additives be as small as possible within a range not to impair the object of the present invention.
That is, when the total amount of the propylene-based polymer [A] and the propylene-based polymer [B] is 100 parts by weight, the addition amount of the other polymer components is preferably 40 parts by weight or less. More preferably, the amount is 30 parts by weight or less, and even more preferably 15 parts by weight or less. Most preferably, the amount is 5 parts by weight or less.
When the total amount of the propylene-based polymer [A] and the propylene-based polymer [B] is 100 parts by weight, the additive amount of the above-mentioned additive (for the foaming agent, the one that eventually disappears, such as a foaming agent, Is excluded), but is preferably 40 parts by weight or less, depending on the purpose of use of the additive. More preferably, the amount is 30 parts by weight or less, and even more preferably 0 to 15 parts by weight.

 第2の発明は,上記第1の発明のポリプロピレン系樹脂組成物を基材樹脂として含有することを特徴とするポリプロピレン系樹脂発泡粒子にある(請求項5)。 2 A second invention resides in expanded polypropylene resin particles containing the polypropylene resin composition of the first invention as a base resin (claim 5).

 本発明においては,上記第1の発明のポリプロピレン系樹脂組成物を基材樹脂として用いているので,機械的物性に優れると共に成形時の発泡性に優れたポリプロピレン系樹脂発泡粒子を得ることができる。また,このポリプロピレン系樹脂発泡粒子を用いれば,圧縮強度,引張強度等の機械的物性,及び表面外観に優れた型内成形体を得ることができる。 In the present invention, since the polypropylene resin composition of the first invention is used as a base resin, expanded polypropylene resin particles having excellent mechanical properties and excellent foamability during molding can be obtained. . Further, by using the expanded polypropylene resin particles, it is possible to obtain an in-mold molded article having excellent mechanical properties such as compressive strength and tensile strength, and excellent surface appearance.

 第3の発明は,ポリプロピレン系樹脂発泡粒子を成形型内において成形してなり,密度0.5〜0.008g/cm3を有する型内成形体であって,
 かつ上記ポリプロピレン系樹脂発泡粒子は,上記第2の発明のものを用いてなることを特徴とする型内成形体にある(請求項7)。
The third invention is a molded article in a mold having a density of 0.5 to 0.008 g / cm 3 , wherein the foamed polypropylene resin particles are molded in a molding die.
In addition, the foamed polypropylene-based resin particles are formed in the mold according to the second aspect of the present invention (claim 7).

 本発明の型内成形体は,上記第2の発明のポリプロピレン系樹脂発泡粒子を用いて型内成形してなり,かつ上記密度を有している。
 そのため,上記型内成形体は,圧縮強度,引張強度等の機械的物性に優れていると共に,平滑性,光沢性のような表面外観にも優れるものとなる。
 尚,上記型内成形体の密度とは,JIS K7222(1999年)で定義される見掛け全体密度を意味する。
The in-mold molded article of the present invention is formed by in-mold molding using the expanded polypropylene resin particles of the second invention, and has the above density.
Therefore, the in-mold molded article has excellent mechanical properties such as compressive strength and tensile strength, and also has excellent surface appearance such as smoothness and gloss.
In addition, the density of the in-mold molded body means an apparent overall density defined by JIS K7222 (1999).

 請求項1の発明において,上記ポリプロピレン系樹脂組成物は,プロピレン系重合体[A]とプロピレン系重合体[B]とを含有してなる。まず,上記プロピレン系重合体[A]は,上記要件(a)及び(b)を有するプロピレン系重合体である。以下に,プロピレン系重合体[A]について説明する。 In the first aspect of the invention, the polypropylene resin composition contains a propylene polymer [A] and a propylene polymer [B]. First, the propylene-based polymer [A] is a propylene-based polymer having the above requirements (a) and (b). Hereinafter, the propylene-based polymer [A] will be described.

 まず,上記要件(a)は,プロピレンから得られる構造単位が100〜85モル%,エチレン及び/又は炭素数4〜20のα−オレフィンから得られる構造単位が0〜15モル%存在することにある。
 ここで,プロピレンから得られる構造単位と,エチレン及び/又は炭素数4〜20のα−オレフィンから得られる構造単位との合計量は100モル%である。
 したがって,要件(a)を満たすプロピレン系重合体としては,プロピレン単独重合体(100モル%)よりなるもの,或いはプロピレンと,エチレン及び/又は炭素数4〜20のα−オレフィンとの共重合体よりなるものがある。
First, the requirement (a) is that 100 to 85 mol% of the structural unit obtained from propylene and 0 to 15 mol% of the structural unit obtained from ethylene and / or an α-olefin having 4 to 20 carbon atoms are present. is there.
Here, the total amount of the structural units obtained from propylene and the structural units obtained from ethylene and / or an α-olefin having 4 to 20 carbon atoms is 100 mol%.
Therefore, the propylene-based polymer satisfying the requirement (a) may be a propylene homopolymer (100 mol%) or a copolymer of propylene with ethylene and / or an α-olefin having 4 to 20 carbon atoms. There are things that consist of

 上記プロピレンと共重合されるコモノマーのエチレン及び/又は炭素数4〜20のα−オレフィンとしては,具体的には,エチレン,1−ブテン,1−ペンテン,1−ヘキセン,1−オクテン,4−メチル−1−ブテン等を挙げることができる。 Specific examples of the comonomer ethylene and / or an α-olefin having 4 to 20 carbon atoms copolymerized with propylene include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4- Methyl-1-butene and the like can be mentioned.

 また,本発明では,上記プロピレン系重合体[A]として,本発明の目的を阻害しない範囲内において,従来チーグラー/ナッタ触媒においては重合が困難であった他のモノマーをプロピレンに共重合させたものを使用することができる。この場合,上記他のモノマーから得られる構造単位は,上記プロピレン系重合体[A]中で0.01〜20モル%が好ましく,0.05〜10モル%がより好ましい。
 そして,このようなプロピレン系重合体を含有してなる上記ポリプロピレン系樹脂組成物は,発泡粒子を製造するための基材樹脂として用いることができる。
Further, in the present invention, as the propylene-based polymer [A], other monomers which have been conventionally difficult to polymerize with a Ziegler / Natta catalyst are copolymerized with propylene as long as the object of the present invention is not impaired. Things can be used. In this case, the structural unit obtained from the other monomer is preferably 0.01 to 20 mol%, more preferably 0.05 to 10 mol% in the propylene-based polymer [A].
The polypropylene resin composition containing such a propylene polymer can be used as a base resin for producing expanded particles.

 こうした上記他のモノマーとしては,例えば,シクロペンテン,ノルボルネン,1,4,5,8−ジメタノ−1,2,3,4,4a,8,8a,5−オクタヒドロナフタレン等の環状オレフィン,5−メチル−1,4−ヘキサジエン,7−メチル−1,6−オクタジエン等の非共役ジエン,スチレン,ジビニルベンゼン等の芳香族不飽和化合物などの一種又は二種以上を挙げることができる。 Such other monomers include, for example, cycloolefins such as cyclopentene, norbornene, 1,4,5,8-dimethano-1,2,3,4,4a, 8,8a, 5-octahydronaphthalene, Examples thereof include one or more non-conjugated dienes such as methyl-1,4-hexadiene and 7-methyl-1,6-octadiene, and aromatic unsaturated compounds such as styrene and divinylbenzene.

 本発明で用いるプロピレン系重合体[A]は,上記要件(a),即ちプロピレン系重合体中のプロピレンから得られる構造単位を85モル%〜100モル%含有するプロピレン系(共)重合体樹脂であり,エチレン及び/又は炭素数4〜20のα−オレフィン(コモノマー)から得られる構造単位が0〜15モル%の割合で含有されていることが必要である。 The propylene-based polymer [A] used in the present invention is the above-mentioned requirement (a), that is, a propylene-based (co) polymer resin containing 85 to 100 mol% of a structural unit obtained from propylene in the propylene-based polymer. It is necessary that a structural unit obtained from ethylene and / or an α-olefin having 4 to 20 carbon atoms (comonomer) is contained in a proportion of 0 to 15 mol%.

 コモノマーの構造単位の割合が15モル%を越える場合には,上記ポリプロピレン系樹脂組成物の曲げ強度,引張強度などの機械的物性が大きく低下してしまう。そして,上記ポリプロピレン系樹脂組成物を基材樹脂として発泡粒子を作製しても,所望の発泡粒子を得ることができない。さらに,該発泡粒子を成形しても機械的強度と圧縮回復性に優れた,所望の型内成形体を得ることができない。 (4) When the proportion of the structural unit of the comonomer exceeds 15 mol%, mechanical properties such as bending strength and tensile strength of the polypropylene resin composition are significantly reduced. Even if foamed particles are produced using the above-mentioned polypropylene resin composition as a base resin, desired foamed particles cannot be obtained. Furthermore, even if the foamed particles are molded, a desired in-mold molded article excellent in mechanical strength and compression recovery cannot be obtained.

 次に,上記要件(b)に示すように,上記プロピレン系重合体[A]は,13C−NMRにて測定したときの,全プロピレン挿入中のプロピレンモノマー単位の2,1−挿入に基づく位置不規則単位の割合が0.5〜2.0%であり,かつプロピレンモノマー単位の1,3−挿入に基づく位置不規則単位の割合が0.005〜0.4%のものである。
 この要件(b)はプロピレン系重合体の位置不規則単位の割合に関するものであり,かかる不規則単位は,プロピレン系重合体の結晶性を低下させる作用を有し,発泡適性を高める効果を示す。
Next, as shown in the requirement (b), the propylene-based polymer [A] has a position based on the 2,1-insertion of the propylene monomer unit in the total propylene insertion as measured by 13C-NMR. The proportion of irregular units is 0.5 to 2.0%, and the proportion of positional irregular units based on 1,3-insertion of propylene monomer units is 0.005 to 0.4%.
This requirement (b) relates to the proportion of the positionally irregular units in the propylene-based polymer, and such irregular units have the effect of lowering the crystallinity of the propylene-based polymer and exhibit the effect of increasing foaming suitability. .

 上記2,1−挿入に基づく位置不規則単位の割合が0.5%未満の場合には,本発明のポリプロピレン系樹脂組成物は,これを基材樹脂としたポリプロピレン系樹脂発泡粒子を型内成形するとき,得られる型内成形体の圧縮永久歪を小さくする効果が劣るという問題がある。一方,2.0%を越える場合には,基材樹脂としてのポリプロピレン系樹脂組成物の機械的物性,例えば曲げ強度や引張強度等が低下するため,発泡粒子及びそれから得られる型内成形体の強度が低くなるという問題がある。 If the proportion of the irregular units based on the 2,1-insertion is less than 0.5%, the polypropylene-based resin composition of the present invention contains expanded polypropylene-based resin particles using the same as a base resin. When molding, there is a problem that the effect of reducing the compression set of the obtained molded article in the mold is inferior. On the other hand, if it exceeds 2.0%, the mechanical properties of the polypropylene-based resin composition as a base resin, such as bending strength and tensile strength, are reduced, so that the expanded particles and the in-mold molded product obtained therefrom are reduced. There is a problem that strength is reduced.

 また,上記1,3−挿入に基づく位置不規則単位の割合が0.005%未満の場合には,本発明のポリプロピレン系樹脂組成物は,これを基材樹脂としたポリプロピレン系樹脂発泡粒子を型内成形するとき,得られる型内成形体の圧縮永久歪を小さくする効果が劣るという問題がある。一方,0.4%を越える場合には,基材樹脂としてのポリプロピレン系樹脂組成物の機械的物性,例えば曲げ強度や引張強度が低下するため,発泡粒子及びそれから得られる型内成形体の強度が低くなるという問題がある。 When the proportion of the irregular units based on the 1,3-insertion is less than 0.005%, the polypropylene-based resin composition of the present invention uses expanded polypropylene-based resin particles using the same as a base resin. When performing in-mold molding, there is a problem that the effect of reducing the compression set of the obtained in-mold molded product is poor. On the other hand, if it exceeds 0.4%, the mechanical properties of the polypropylene-based resin composition as the base resin, such as bending strength and tensile strength, are reduced, so that the strength of the foamed particles and the in-mold molded product obtained therefrom is reduced. Is low.

 上記要件(b)における2,1−挿入に基づく位置不規則単位及び1,3−挿入に基づく位置不規則単位は,いずれも,これらの単位をその構造中に含有するポリプロピレン系樹脂の結晶性を低下させる効果を有する。さらに具体的には,これらの位置不規則単位は,ポリプロピレン系樹脂に対して,その融点を低下させる作用と,その結晶化度を低下させる作用とを有している。 In the above requirement (b), the positional irregularity unit based on the 2,1-insertion and the positional irregularity unit based on the 1,3-insertion are both crystalline properties of the polypropylene resin containing these units in its structure. Has the effect of reducing More specifically, these regio-irregular units have a function of lowering the melting point and a function of lowering the crystallinity of the polypropylene resin.

 これら2つの作用は,かかるポリプロピレン系樹脂を発泡に供した場合に,その発泡適性を高める効果を示すと共に得られる発泡体の圧縮永久歪を小さくする効果を示す。また,上記の位置不規則単位を有するプロピレン系重合体[A]は,後述するプロピレン系重合体[B]との相溶性に優れるため両者を溶融混練した場合,非常によく混ざり合う。そのような樹脂組成物は,プロピレン系重合体[A]の上記した特長に加え,発泡粒子に加工して型内成形した場合に二次発泡性が良好であるという効果を奏する。 These two effects show that when such a polypropylene resin is subjected to foaming, the foaming suitability is enhanced and the compression set of the foam obtained is reduced. The propylene-based polymer [A] having the above-mentioned positionally irregular units has excellent compatibility with the propylene-based polymer [B] described below, and therefore, when both are melt-kneaded, they mix very well. Such a resin composition, in addition to the above-mentioned features of the propylene-based polymer [A], has an effect of having good secondary foamability when processed into foamed particles and molded in a mold.

 但し,ポリプロピレン系樹脂に含まれる位置不規則単位の割合が高すぎると,基材樹脂の融点や結晶化度が低下している度合いが高いがために,かかる樹脂をプロピレン系重合体[A]として使用して発泡に供した場合には,得られる発泡樹脂粒子中の気泡径が粗大になってしまう,といった問題が生ずるおそれがあり,その場合には,かかる発泡樹脂粒子から得られる成形体の外観が損なわれる,という問題がある。さらに,上述した如く,かかる発泡粒子から得られる型内成形体の強度が低くなるという問題も生ずる。 However, if the proportion of the positionally irregular units contained in the polypropylene resin is too high, the melting point and crystallinity of the base resin are highly reduced, so that such a resin is used as the propylene polymer [A]. If the foamed resin particles are used for foaming, there may be a problem that the bubble diameter in the obtained foamed resin particles becomes large. In such a case, the molded article obtained from the foamed resin particles may be used. There is a problem that the appearance of the is impaired. Further, as described above, there is a problem that the strength of the in-mold molded article obtained from such expanded particles is reduced.

 ここで,プロピレン系重合体中のプロピレンから得られる構造単位,エチレン及び/又は炭素数4〜20のα−オレフィンから得られる構造単位の分率,及び後述するアイソタクチックトリアッド分率は,13C−NMR法を用いて測定される値である。
 13C−NMRスペクトルの測定法は,例えば下記の通りである。
 即ち,直径10mmφのNMR用サンプル管内に,350〜500mg程度の試料を入れ,溶媒としてo−ジクロロベンゼン約2.0ml及びロック用に重水素化ベンゼン約0.5mlを用いて完全に溶解させた後,130℃にてプロトン完全デカップル条件下に測定した。
Here, the fraction of the structural unit obtained from propylene in the propylene-based polymer, the fraction of the structural unit obtained from ethylene and / or an α-olefin having 4 to 20 carbon atoms, and the fraction of an isotactic triad described below are: This is a value measured using the 13C-NMR method.
The method of measuring the 13C-NMR spectrum is, for example, as follows.
That is, about 350 to 500 mg of a sample was placed in a sample tube for NMR having a diameter of 10 mmφ, and completely dissolved using about 2.0 ml of o-dichlorobenzene as a solvent and about 0.5 ml of deuterated benzene for rock. Thereafter, the measurement was performed at 130 ° C. under the condition of complete proton decoupling.

 測定条件としては,フリップアングル65deg,パルス間隔 5T1以上(但し,T1はメチル基のスピン格子緩和時間の内の最長の値)を選択した。プロピレン系重合体に於いては,メチレン基及びメチン基のスピン格子緩和時間はメチル基のそれよりも短い為,この測定条件では全ての炭素の磁化の回復は99%以上である。
 なお,13C−NMR法での位置不規則単位の検出感度は,通常0.01%程度であるが,積算回数を増加することにより,これを高めることが可能である。
As the measurement conditions, a flip angle of 65 deg and a pulse interval of 5T1 or more (where T1 is the longest value among the spin lattice relaxation times of the methyl group) were selected. In the propylene-based polymer, the spin lattice relaxation time of the methylene group and the methine group is shorter than that of the methyl group. Therefore, under these measurement conditions, the recovery of the magnetization of all carbons is 99% or more.
In addition, the detection sensitivity of the position irregular unit in the 13C-NMR method is usually about 0.01%, but it can be increased by increasing the number of integrations.

 また,上記測定におけるケミカルシフトは,頭−尾結合しておりメチル分岐の方向が同一であるプロピレン単位5連鎖の第3単位目のメチル基のピークを21.8ppmとして設定し,このピークを基準として他の炭素ピークのケミカルシフトを設定した。 The chemical shift in the above measurement was determined by setting the peak of the methyl group in the third unit of the five propylene units having 5 head-to-tail bonds and the same direction of methyl branching as 21.8 ppm. The chemical shifts of other carbon peaks were set.

 この基準を用いると,下記式[化1]中のPPP[mm]で示されるプロピレン単位3連鎖中の第2単位目のメチル基に基づくピークは21.3〜22.2ppmの範囲に,PPP[mr]で示されるプロピレン単位3連鎖中の第2単位目のメチル基に基づくピークは20.5〜21.3ppmの範囲に,PPP[rr]で示されるプロピレン単位3連鎖中の第2単位目のメチル基に基づくピークは19.7〜20.5ppmの範囲に現れる。 Using this criterion, the peak based on the methyl group of the second unit in the 3 chains of propylene units represented by PPP [mm] in the following formula [Chemical Formula 1] falls within the range of 21.3 to 22.2 ppm, and The peak based on the methyl group of the second unit in the three chains of propylene units represented by [mr] is in the range of 20.5 to 21.3 ppm, and the second unit in the three chains of propylene units represented by PPP [rr] The peak based on the methyl group of the eye appears in the range of 19.7 to 20.5 ppm.

 ここで,PPP[mm],PPP[mr],及びPPP[rr]はそれぞれ下記のように示される。 Here, PPP [mm], PPP [mr], and PPP [rr] are indicated as follows, respectively.

Figure 2004143451
Figure 2004143451

 更に,本発明において,上記プロピレン系重合体[A]は,プロピレンの2,1−挿入及び1,3−挿入に基づく位置不規則単位を含む下記の部分構造(Ι)及び(ΙΙ)を特定量含有するものである。 Further, in the present invention, the propylene-based polymer [A] has the following partial structures (Ι) and (ΙΙ) containing regiorandom units based on 2,1-insertion and 1,3-insertion of propylene. Content.

Figure 2004143451
Figure 2004143451

 この様な部分構造は,例えばメタロセン系触媒を用いて重合反応を行った場合に,プロピレン重合体の重合時に発生する位置不規則性により生ずると考えられている。
 即ち,プロピレンモノマーは,通常,メチレン側が触媒中の金属成分と結合する方式,すなわち,いわゆる「1,2−挿入」にて反応するが,希には,「2,1−挿入」や「1,3−挿入」を起こすことがある。「2,1−挿入」は,「1,2−挿入」とは付加方向が逆となる反応形式であり,ポリマー鎖中に上記の部分構造(Ι)で表される構造単位を形成する。
It is considered that such a partial structure is caused by positional irregularities that occur during the polymerization of a propylene polymer, for example, when a polymerization reaction is performed using a metallocene catalyst.
That is, the propylene monomer usually reacts in a manner in which the methylene side is bonded to the metal component in the catalyst, that is, a so-called “1,2-insertion”. , 3-insertion ". “2,1-insertion” is a reaction type in which the addition direction is opposite to “1,2-insertion”, and forms a structural unit represented by the above partial structure (Ι) in a polymer chain.

 また,「1,3−挿入」とは,プロピレンモノマーのC−1とC−3とでポリマー鎖中に取り込まれるものであり,その結果として直鎖状の構造単位,すなわち上記の部分構造(ΙΙ)を生ずるものである。 The term "1,3-insertion" means that the propylene monomer is incorporated into the polymer chain by C-1 and C-3, and as a result, a linear structural unit, that is, the above partial structure ( ΙΙ).

 上記の各位置不規則単位の割合が本発明の範囲にあるプロピレン系重合体[A]は,適当な触媒を選定することにより得ることができる。具体的には,例えばヒドロアズレニル基を配位子として有するメタロセン系重合触媒等を用いて得ることができる。ここで,上記メタロセン系重合触媒とは,メタロセン構造を有する遷移金属化合物成分と,助触媒成分とからなるものである。各位置不規則単位の割合は,重合に用いる触媒の金属錯体成分の化学構造によって異なるが,一般には重合温度が高い方が大きくなる傾向にある。本発明においては,プロピレン系重合体[A]における各位置不規則単位の割合を上記特定の範囲にするため,重合温度は0〜80℃にすることが好ましい。 The propylene-based polymer [A] in which the proportion of each of the above-mentioned positionally irregular units falls within the range of the present invention can be obtained by selecting an appropriate catalyst. Specifically, for example, it can be obtained using a metallocene-based polymerization catalyst having a hydroazulenyl group as a ligand. Here, the metallocene-based polymerization catalyst is composed of a transition metal compound component having a metallocene structure and a promoter component. Although the proportion of each regio-irregular unit differs depending on the chemical structure of the metal complex component of the catalyst used for the polymerization, generally, the higher the polymerization temperature, the larger the tendency. In the present invention, the polymerization temperature is preferably from 0 to 80 ° C. in order to keep the proportion of each position irregular unit in the propylene-based polymer [A] within the above specific range.

 尚,金属錯体成分は,これをそのまま触媒成分として用いることもできるが,無機あるいは有機の,顆粒状ないしは微粒子状の固体である微粒子状担体に,上記金属錯体成分が担持された固体状触媒として用いてもよい。
 微粒子状担体に金属錯体成分を担持させる場合,金属錯体成分の担持量は,担体1gあたり0.001〜10mmolであることが好ましく,より好ましくは,0.001〜5mmolであることがよい。
The metal complex component can be used as it is as a catalyst component, but it can be used as a solid catalyst in which the above metal complex component is supported on an inorganic or organic fine-grained carrier that is a granular or fine solid. May be used.
When the metal complex component is supported on the fine particle carrier, the amount of the metal complex component supported is preferably 0.001 to 10 mmol, more preferably 0.001 to 5 mmol per 1 g of the carrier.

 また,上記のヒドロアズレニル基を配位子として有するメタロセン触媒の中でも,金属原子として,チタン,ジルコニウム,ハフニウムを用いた触媒が好ましく,なかでも,ジルコニウムを有する錯体が,重合活性が高いという点で好ましい。
 また,上記メタロセン系触媒の中でも,ジルコニウムジクロリド型の錯体が好適に使用されるが,その中でも,特に架橋型錯体を用いることが好ましい。
 具体的には,メチレンビス{1,1’−(2−メチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,メチレンビス{1,1’−(2−エチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,メチレンビス{1,1’−(4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,メチレンビス{1,1’−(4−ナフチルジヒドロアズレニル)}ジルコニウムジクロリド,エチレンビス{1,1’−(2−メチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,エチレンビス{1,1’−(2−エチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,エチレンビス{1,1’−(4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,エチレンビス{1,1’−(4−ナフチルジヒドロアズレニル)}ジルコニウムジクロリド,イソプロピリデンビス{1,1’−(2−メチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,イソプロピリデンビス{1,1’−(2−エチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,イソプロピリデンビス{1,1’−(4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,イソプロピリデンビス{1,1’−(4−ナフチルジヒドロアズレニル)}ジルコニウムジクロリド,ジメチルシリレンビス{1,1’−(2−メチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,ジメチルシリレンビス{1,1’−(2−エチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,ジメチルシリレンビス{1,1’−(4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,ジメチルシリレンビス{1,1’−(4−ナフチルジヒドロアズレニル)}ジルコニウムジクロリド,ジフェニルシリレンビス{1,1’−(2−メチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,ジフェニルシリレンビス{1,1’−(2−エチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,ジフェニルシリレンビス{1,1’−(4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,ジフェニルシリレンビス{1,1’−(4−ナフチルジヒドロアズレニル)}ジルコニウムジクロリド,等が例示できる。
 これらの中でも特に,ジメチルシリレンビス{1,1’−(2−メチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリド,及びジメチルシリレンビス{1,1’−(2−エチル−4−フェニルジヒドロアズレニル)}ジルコニウムジクロリドを用いることが好ましい。この場合には,上記の各位置不規則単位の割合を容易に本発明の範囲内にコントロールすることができると共に,後述する要件(d)を満足する(アイソタクチックトリアッド分率が97%以上の)プロピレン重合体を容易に得ることができる。
Among the above metallocene catalysts having a hydroazulenyl group as a ligand, catalysts using titanium, zirconium, and hafnium as metal atoms are preferable. Among them, complexes having zirconium are preferable because of high polymerization activity. .
Among the above metallocene catalysts, zirconium dichloride type complexes are preferably used, and among them, it is particularly preferable to use a crosslinked type complex.
Specifically, methylenebis {1,1 ′-(2-methyl-4-phenyldihydroazulenyl)} zirconium dichloride, methylenebis {1,1 ′-(2-ethyl-4-phenyldihydroazulenyl)} zirconium dichloride , Methylenebis {1,1 '-(4-phenyldihydroazulenyl)} zirconium dichloride, methylenebis {1,1'-(4-naphthyldihydroazulenyl)} zirconium dichloride, ethylenebis {1,1 '-(2- Methyl-4-phenyldihydroazulenyl) zirconium dichloride, ethylenebis {1,1 ′-(2-ethyl-4-phenyldihydroazulenyl)} zirconium dichloride, ethylenebis {1,1 ′-(4-phenyldihydro (Azulenyl) zirconium dichloride, ethylenebis 1,1, '-(4 Naphthyldihydroazulenyl) {zirconium dichloride, isopropylidenebis} 1,1 ′-(2-methyl-4-phenyldihydroazulenyl)} zirconium dichloride, isopropylidenebis {1,1 ′-(2-ethyl-4- Phenyldihydroazulenyl)} zirconium dichloride, isopropylidenebis {1,1 ′-(4-phenyldihydroazulenyl)} zirconium dichloride, isopropylidenebis {1,1 ′-(4-naphthyldihydroazulenyl)} zirconium dichloride , Dimethylsilylenebis {1,1 '-(2-methyl-4-phenyldihydroazulenyl)} zirconium dichloride, dimethylsilylenebis {1,1'-(2-ethyl-4-phenyldihydroazulenyl)} zirconium dichloride , Dimethylsilylene bis {1,1 ′-(4-phenyldihydroazulenyl)} zirconium dichloride, dimethylsilylenebis {1,1 ′-(4-naphthyldihydroazulenyl)} zirconium dichloride, diphenylsilylenebis {1,1 ′-(2 -Methyl-4-phenyldihydroazulenyl) {zirconium dichloride, diphenylsilylenebis} 1,1 ′-(2-ethyl-4-phenyldihydroazulenyl)} zirconium dichloride, diphenylsilylenebis {1,1 ′-(4 -Phenyldihydroazulenyl) zirconium dichloride, diphenylsilylene bis {1,1 '-(4-naphthyldihydroazulenyl)} zirconium dichloride, and the like.
Among them, dimethylsilylenebis {1,1 ′-(2-methyl-4-phenyldihydroazulenyl)} zirconium dichloride and dimethylsilylenebis {1,1 ′-(2-ethyl-4-phenyldihydroazulene) are particularly preferable. (Nyl)} It is preferable to use zirconium dichloride. In this case, the proportion of each of the above-mentioned positional irregular units can be easily controlled within the range of the present invention, and the requirement (d) described later is satisfied (the isotactic triad fraction is 97%). The above) propylene polymer can be easily obtained.

 また,上記助触媒成分としては,メチルアルミノキサン,イソブチルアルミノキサン,メチルイソブチルアルミノキサン等のアルミノキサン類,トリフェニルボラン,トリス(ペンタフルオロフェニル)ボラン,塩化マグネシウム等のルイス酸,ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート等のイオン性化合物が例示できる。また,これらの助触媒成分を,他の有機アルミニウム化合物,例えば,トリメチルアルミニウム,トリエチルアルミニウム,トリイソブチルアルミニウム等のトリアルキルアルミニウムと併用して共存下に用いることも可能である。 Examples of the co-catalyst component include aluminoxanes such as methylaluminoxane, isobutylaluminoxane and methylisobutylaluminoxane; Lewis acids such as triphenylborane, tris (pentafluorophenyl) borane and magnesium chloride; and dimethylaniliniumtetrakis (pentafluorophenyl). And ionic compounds such as borate. It is also possible to use these cocatalyst components in combination with other organoaluminum compounds, for example, trialkylaluminums such as trimethylaluminum, triethylaluminum, and triisobutylaluminum.

 本発明に係わるプロピレン系重合体の全ポリマー連鎖中のmm分率は,次の[数1]式で表される。ところで,部分構造(ΙΙ)では,1,3−挿入の結果として,プロピレンモノマーに由来するメチル基が1個相当分だけ消失している。 Mm The mm fraction in the entire polymer chain of the propylene-based polymer according to the present invention is represented by the following [Equation 1]. By the way, in the partial structure (ΙΙ), as a result of 1,3-insertion, one methyl group derived from a propylene monomer has disappeared.

Figure 2004143451
Figure 2004143451

 この式において,ΣΙCH3は全メチル基(ケミカルシフトの19〜22ppmのピーク全て)の面積を示す。また,A<1>,A<2>,A<3>,A<4>,A<5>,A<6>,A<7>,A<8>及びA<9>は,それぞれ,42.3ppm,35.9ppm,38.6ppm,30.6ppm,36.0ppm,31.5ppm,31.0ppm,37.2ppm,27.4ppmのピークの面積であり,部分構造(Ι)及び(ΙΙ)で示した炭素の存在量比を示す。
 また,全プロピレン挿入に対する2,1−挿入したプロピレンの割合,及び1,3−挿入したプロピレンの割合は,下記の式で計算した。
In this formula, ΣΙCH 3 indicates the area of all methyl groups (all peaks at 19 to 22 ppm of chemical shift). A <1>, A <2>, A <3>, A <4>, A <5>, A <6>, A <7>, A <8>, and A <9> are The peak areas at 42.3 ppm, 35.9 ppm, 38.6 ppm, 30.6 ppm, 36.0 ppm, 31.5 ppm, 31.0 ppm, 37.2 ppm, and 27.4 ppm, and the partial structures (Ι) and (ΙΙ) ) Indicates the abundance ratio of carbon.
Further, the ratio of 2,1-inserted propylene and the ratio of 1,3-inserted propylene relative to the total propylene insertion were calculated by the following equations.

Figure 2004143451
Figure 2004143451

 次に,上記プロピレン系重合体[A]は,該重合体の融点をTm[℃],また,該重合体をフィルムに成形した場合の水蒸気透過度をY[g/m2/24hr]とした場合に,TmとYとが次の関係式(1)を満足するものであることが好ましい。
 (−0.20)・Tm+35≦Y≦(−0.33)・Tm+60・・式(1)
Next, the propylene polymer [A] is the melting point of the polymer Tm [° C.], also the water vapor permeability in the case of forming the polymer into a film and Y [g / m 2 / 24hr ] In this case, it is preferable that Tm and Y satisfy the following relational expression (1).
(−0.20) Tm + 35 ≦ Y ≦ (−0.33) Tm + 60 Equation (1)

 上記水蒸気透過度は,JIS K7129(1992年)「プラスチックフィルム及びシートの水蒸気透過度試験方法」により測定することができる。この測定においては,試験方法は赤外センサー法が採用され,また試験条件としては,試験温度40±0.5℃,相対湿度(90±2)%RHが採用される。 The above water vapor permeability can be measured according to JIS K7129 (1992) “Test Method for Water Vapor Permeability of Plastic Films and Sheets”. In this measurement, an infrared sensor method is employed as a test method, and a test temperature of 40 ± 0.5 ° C. and a relative humidity (90 ± 2)% RH are employed as test conditions.

 上記式(1)の範囲内にあるプロピレン系重合体[A]は,適度の水蒸気透過性を示す。適度の水蒸気透過性は,型内成形時において,成形に使用される飽和スチームの発泡粒子内への浸透を助長し,これにより発泡粒子の二次発泡性が高まり,発泡粒子間の空隙のない又は少ない型内成形体の製造が容易となる。
 また,ポリプロピレン系樹脂発泡粒子の製造方法としては,樹脂粒子を水に分散させつつ発泡剤を含浸させた後,高温高圧下から低圧下に放出して発泡粒子化する方法が一般的であるが,この際,適度の水蒸気透過性は,樹脂粒子への水及び発泡剤の浸透を行いやすくする。その結果,樹脂粒子内における水及び発泡剤の分散が均一となり,得られる発泡粒子の気泡径を均一にし,また,発泡倍率を向上させることができる。
 上記水蒸気透過度(Y)がプロピレン系重合体の融点(Tm)との関係で表現されているのは,発泡粒子の製造時の発泡温度や型内成形時の飽和スチーム温度が,一般的に基材樹脂であるプロピレン系重合体の融点(Tm)が高いほど高くなり,融点(Tm)が低いほど低くなることに基づいている。
The propylene-based polymer [A] in the range of the above formula (1) shows a moderate water vapor permeability. Moderate water vapor permeability facilitates the penetration of saturated steam used for molding into the foamed particles during in-mold molding, thereby increasing the secondary foamability of the foamed particles and eliminating voids between the foamed particles. Alternatively, the production of a small number of in-mold molded articles becomes easy.
In addition, as a method for producing expanded polypropylene resin particles, a method is generally used in which resin particles are dispersed in water and impregnated with a foaming agent, and then released from high temperature and high pressure to low pressure to form expanded particles. In this case, the appropriate water vapor permeability facilitates penetration of water and a foaming agent into the resin particles. As a result, the dispersion of the water and the foaming agent in the resin particles becomes uniform, the cell diameter of the foamed particles obtained becomes uniform, and the expansion ratio can be improved.
The water vapor permeability (Y) is expressed in relation to the melting point (Tm) of the propylene-based polymer because the foaming temperature during the production of foamed particles and the saturated steam temperature during in-mold molding are generally This is based on the fact that the higher the melting point (Tm) of the propylene polymer as the base resin, the higher the melting point (Tm), and the lower the melting point (Tm), the lower the melting point (Tm).

 上記水蒸気透過度(Y)が[(−0.20)・Tm+35]を下回る場合には,基材樹脂への水蒸気や発泡剤の浸透性が劣るようになり,逆に[(−0.33)・Tm+60]を上回る場合には,基材樹脂への水蒸気の浸透性が良くなり過ぎて,いずれにしても,発泡粒子の製造過程で樹脂粒子内における水や発泡剤の分散が不均一となりやすく,得られる発泡粒子の気泡径の均一性が低下するおそれがある。特に,上記水蒸気透過度(Y)が[(−0.33)・Tm+60]を上回る場合は,得られる発泡粒子内に粗大気泡が混在するおそれがある。 When the water vapor permeability (Y) is lower than [(−0.20) · Tm + 35], the permeability of the water vapor and the foaming agent to the base resin becomes poor, and conversely, [(−0.33) ) .Tm + 60], the permeability of water vapor to the base resin becomes too good. In any case, the dispersion of water and the foaming agent in the resin particles during the production process of the foamed particles becomes uneven. And the uniformity of the cell diameter of the obtained expanded particles may be reduced. In particular, when the water vapor permeability (Y) exceeds [(−0.33) · Tm + 60], coarse bubbles may be mixed in the obtained expanded particles.

 融点(Tm)と水蒸気透過度(Y)とが式(1)の関係を満たす様なプロピレン系重合体は,該重合体を製造するにあたって,適当な触媒を選定することにより得ることができる。具体的には,上記メタロセン系触媒の中でも,架橋型ビス{1,1’−(4―ヒドロアズレニル)}ジルコニウムジクロリドを金属錯体成分として用いることにより,好適に得ることが出来る。かかる金属錯体成分の好ましい例は,前述した通りである。 プ ロ ピ レ ン A propylene-based polymer having a melting point (Tm) and a water vapor permeability (Y) satisfying the relationship of the formula (1) can be obtained by selecting an appropriate catalyst in producing the polymer. Specifically, among the above-mentioned metallocene-based catalysts, it can be suitably obtained by using bridged bis {1,1 '-(4-hydroazulenyl)} zirconium dichloride as a metal complex component. Preferred examples of such a metal complex component are as described above.

 また,本発明において,プロピレン系重合体[A]の上記融点(Tm)は,125℃〜165℃が一般的であるが,130℃〜160℃が好ましく,133℃〜158℃がより好ましい。
 尚,上記融点(Tm)は,JIS K7121(1987年)に記載の「一定の熱処理を行った後,融解温度を測定する場合」を採用し(試験片の状態調節における加熱速度と冷却速度は,いずれも,毎分10℃を採用),熱流束DSC装置を使用し,加熱速度毎分10℃にてDSC曲線を描かせ,得られたDSC曲線上の融解ピークの頂点が採用される。尚,複数の頂点が観測された場合には,高温側のベースラインを基準に融解ピークの頂点が最も高いものが採用され,最も高い融解ピークの頂点が複数ある場合はそれらの相加平均値が採用される。
In the present invention, the melting point (Tm) of the propylene-based polymer [A] is generally from 125 ° C to 165 ° C, preferably from 130 ° C to 160 ° C, more preferably from 133 ° C to 158 ° C.
The melting point (Tm) described in JIS K7121 (1987) is used to determine the melting temperature after performing a certain heat treatment. , Each adopts 10 ° C. per minute), a DSC curve is drawn at a heating rate of 10 ° C. per minute using a heat flux DSC apparatus, and the top of the melting peak on the obtained DSC curve is adopted. If multiple peaks are observed, the peak with the highest melting peak is used based on the baseline on the high-temperature side. If there are multiple peaks with the highest melting peak, their arithmetic mean values are used. Is adopted.

 次に,上記第1の発明における,上記プロピレン系重合体[B]について説明する。
 上記プロピレン系重合体[B]は,上記の要件(a)及び(b)のうち要件(a)だけを有するプロピレン系重合体である。即ち,上記プロピレン系重合体[B]は,プロピレンから得られる構造単位が100〜85モル%,エチレン及び/又は炭素数4〜20のα−オレフィンから得られる構造単位が0〜15モル%存在するという要件(a)を満たし,上記要件(b)については満足しないものである。上記プロピレン系重合体[B]は,通常,上記(1)式も満足しない。このようなプロピレン系重合体[B]は,例えばチーグラー/ナッタ触媒等を用いて得ることができる。
 上記要件(a)は,上記プロピレン系重合体[A]の要件[a]と同様である。
Next, the propylene-based polymer [B] in the first invention will be described.
The propylene-based polymer [B] is a propylene-based polymer having only the requirement (a) among the requirements (a) and (b). That is, in the propylene-based polymer [B], 100 to 85 mol% of structural units obtained from propylene and 0 to 15 mol% of structural units obtained from ethylene and / or an α-olefin having 4 to 20 carbon atoms are present. That is, the requirement (a) is satisfied, but the requirement (b) is not satisfied. The propylene-based polymer [B] usually does not satisfy the above formula (1). Such a propylene-based polymer [B] can be obtained using, for example, a Ziegler / Natta catalyst or the like.
The requirement (a) is the same as the requirement [a] for the propylene-based polymer [A].

 上記プロピレン系重合体[A]に対して,上記プロピレン系重合体[B]を混合してなる樹脂組成物を基材樹脂として用いて得られる樹脂発泡粒子は,上記プロピレン系重合体[A]を単独で用いて得られる樹脂発泡粒子に比べて,型内成形に於ける二次発泡性に優れ,したがって,成形体の表面外観が優れるものになるという特徴がある。 The foamed resin particles obtained by using a resin composition obtained by mixing the propylene polymer [B] with the propylene polymer [A] as a base resin are the propylene polymer [A]. Compared with the resin foam particles obtained by using the resin alone, the secondary foamability in in-mold molding is excellent, and therefore, the surface appearance of the molded article is excellent.

 この理由は必ずしも定かではないが,以下の如き機構によるものと推測される。
 すなわち,上記プロピレン系重合体[A]は,一般に狭い分子量分布を有し,一方,上記プロピレン系重合体[B]は,一般に広い分子量分布を有する。したがって,上記プロピレン系重合体[A]に対して,上記プロピレン系重合体[B]を混合してなる樹脂組成物は広い分子量分布を有するものとなる。
The reason for this is not necessarily clear, but is presumed to be due to the following mechanism.
That is, the propylene-based polymer [A] generally has a narrow molecular weight distribution, while the propylene-based polymer [B] generally has a wide molecular weight distribution. Therefore, the resin composition obtained by mixing the propylene-based polymer [B] with the propylene-based polymer [A] has a wide molecular weight distribution.

 また,樹脂粒子を発泡させて発泡粒子を製造する過程とは,樹脂部分を延伸する過程と見なすことができるため,樹脂が配向される過程と考えることができる。この配向の度合が高い場合には,配向した部分は,発泡粒子が加熱されたときに二次発泡を抑制する方向に作用すると考えられる。逆に,配向の程度が低いほど,型内成形においては二次発泡性が高くなると考えられる。
 そして,一般に分子量分布が広い場合には,それが狭い場合に比べて配向される度合が低い。このことから,上記プロピレン系重合体[A]に対して,上記プロピレン系重合体[B]を混合してなる樹脂組成物を用いて得られるポリプロピレン系樹脂発泡粒子は,上記プロピレン系重合体[A]を単独で用いて得られる樹脂発泡粒子に比して,二次発泡力が高くなるものと推定される。
Also, the process of expanding the resin particles to produce the expanded particles can be regarded as a process of stretching the resin portion, and thus can be considered as a process of orienting the resin. When the degree of this orientation is high, the oriented portion is considered to act in a direction to suppress secondary foaming when the foamed particles are heated. Conversely, the lower the degree of orientation, the higher the secondary foamability in in-mold molding.
In general, when the molecular weight distribution is broad, the degree of orientation is lower than when the molecular weight distribution is narrow. From this, the expanded polypropylene resin particles obtained by using the resin composition obtained by mixing the propylene polymer [A] with the propylene polymer [B] are the same as the propylene polymer [A]. It is presumed that the secondary foaming power is higher than that of the foamed resin particles obtained by using [A] alone.

 また,上記プロピレン系重合体[A]と上記プロピレン系重合体[B]を混合してなる樹脂組成物を基材樹脂として用いて得られる樹脂発泡粒子は,上記プロピレン系重合体[B]を単独で用いて得られる樹脂発泡粒子に比べて,低温での成形が可能であり,更に得られる成形体の力学的特性,例えば,圧縮強度や曲げ強度に優れるという特徴がある。 In addition, resin foamed particles obtained by using a resin composition obtained by mixing the propylene-based polymer [A] and the propylene-based polymer [B] as a base resin are the propylene-based polymer [B]. Compared to the resin foam particles obtained by using alone, they can be molded at a lower temperature, and are further characterized by excellent mechanical properties such as compressive strength and bending strength.

 上記プロピレン系重合体[A]と上記プロピレン系重合体[B]との配合比は,上記プロピレン系重合体[A]5〜95重量%に対して,上記プロピレン系重合体[B]95〜5重量%(ただし,プロピレン系重合体[A]とプロピレン系重合体[B]との合計量は100重量%である)の範囲であることが必要である。
 プロピレン系重合体[A]の配合比が5重量%未満である場合には,プロピレン系重合体[B]が主たる成分であるために,得られる発泡粒子中の気泡径が小さなものとなる傾向があり,その力学特性が不十分となるおそれがある。また,かかる発泡樹脂粒子を型内成形するには高温の水蒸気が必要となるおそれがある。
 一方,プロピレン系重合体[A]の配合比が95重量%を越える場合には,得られるポリプロピレン系樹脂発泡粒子は,その二次発泡性が不十分となるおそれがある。
The mixing ratio of the propylene-based polymer [A] and the propylene-based polymer [B] is 5 to 95% by weight of the propylene-based polymer [A] and 95 to 95% by weight of the propylene-based polymer [B]. It is necessary to be in the range of 5% by weight (however, the total amount of the propylene-based polymer [A] and the propylene-based polymer [B] is 100% by weight).
When the blending ratio of the propylene-based polymer [A] is less than 5% by weight, since the propylene-based polymer [B] is a main component, the bubble diameter in the obtained expanded particles tends to be small. And its mechanical properties may be insufficient. In addition, high-temperature steam may be required for in-mold molding of such expanded resin particles.
On the other hand, if the blending ratio of the propylene-based polymer [A] exceeds 95% by weight, the obtained foamed polypropylene-based resin particles may have insufficient secondary expandability.

 上記プロピレン系重合体[A]と上記プロピレン系重合体[B]との配合比は,好ましくは,上記プロピレン系重合体[A]10〜80重量%に対して,上記プロピレン系重合体[B]90〜20重量%(ただし,プロピレン系重合体[A]とプロピレン系重合体[B]との合計量は100重量%)がよく,さらに好ましくは,上記プロピレン系重合体[A]20〜80重量%に対して,上記プロピレン系重合体[B]80〜20重量%(ただし,プロピレン系重合体[A]とプロピレン系重合体[B]との合計量は100重量%)がよい。 The mixing ratio of the propylene polymer [A] and the propylene polymer [B] is preferably 10 to 80% by weight of the propylene polymer [A] and the propylene polymer [B]. 90 to 20% by weight (however, the total amount of the propylene-based polymer [A] and the propylene-based polymer [B] is 100% by weight), and more preferably the propylene-based polymer [A] is 20 to 20% by weight. The propylene-based polymer [B] is preferably 80 to 20% by weight relative to 80% by weight (however, the total amount of the propylene-based polymer [A] and the propylene-based polymer [B] is 100% by weight).

 本発明においては,上記プロピレン系重合体[A]は,更に下記の要件(d)を有することが好ましい(請求項2)。
(d)頭−尾結合からなるプロピレン単位連鎖部における,13C−NMRで測定したときのアイソタクチックトリアッド分率は97%以上であること。
 この場合には,上記ポリプロピレン系樹脂組成物を基材樹脂として用いて得られる発泡粒子中の気泡径の均一性が,より高くなるという効果を得ることができる。
In the present invention, the propylene-based polymer [A] preferably further has the following requirement (d) (claim 2).
(D) The isotactic triad fraction in the propylene unit chain portion composed of head-to-tail bonds, as measured by 13C-NMR, is 97% or more.
In this case, the effect that the uniformity of the cell diameter in the foamed particles obtained by using the above-mentioned polypropylene-based resin composition as the base resin can be further improved can be obtained.

 即ち,樹脂組成物の構成成分であるプロピレン系重合体[A]として,既に述べた要件(a)及び(b)に加えて,更に頭−尾結合からなるプロピレン単位連鎖部の,13C−NMR(核磁気共鳴法)で測定したアイソタクチックトリアッド分率(即ち,ポリマー鎖中の任意のプロピレン単位3連鎖のうち,各プロピレン単位が頭−尾で結合し,かつプロピレン単位中のメチル分岐の方向が同一であるプロピレン単位3連鎖の割合)が97%以上であるものを用いる。 That is, in addition to the requirements (a) and (b) described above, a 13C-NMR of a propylene unit chain portion composed of a head-to-tail bond is further defined as a propylene polymer [A] which is a constituent component of the resin composition. Isotactic triad fraction measured by (nuclear magnetic resonance method) (that is, among three arbitrary propylene units in a polymer chain, each propylene unit is linked head-to-tail, and methyl branching in the propylene unit) (The proportion of three propylene units in the same direction) is 97% or more.

 なお,アイソタクチックトリアッド分率を,以下適宜,mm分率と記載する。mm分率が97%未満の場合には,上記ポリプロピレン系樹脂組成物の機械的物性が低下する。そのため,これを基材樹脂として用いて得られる発泡粒子からなる成形体の機械的物性も低下するおそれがある。
 なお,更に好ましくは,上記mm分率は98%以上である。
The isotactic triad fraction is hereinafter referred to as the mm fraction as appropriate. When the mm fraction is less than 97%, the mechanical properties of the polypropylene resin composition are reduced. Therefore, there is a possibility that the mechanical properties of a molded article made of foamed particles obtained by using this as a base resin may also be reduced.
In addition, more preferably, the mm fraction is 98% or more.

 次に,上記プロピレン系重合体[A]は,更に下記の要件(e)を有することが好ましい(請求項3)。
(e)メルトフローレートが0.5〜100g/10分であること。
Next, the propylene polymer [A] preferably further has the following requirement (e) (claim 3).
(E) The melt flow rate is 0.5 to 100 g / 10 minutes.

 この場合には,工業的に有用な製造効率を保ちつつ上記ポリプロピレン系樹脂組成物を生産することができる。さらに,これを基材樹脂として用いて得られる発泡粒子からなる成形体は,その力学物性が優れるという効果を得ることができる。 In this case, the polypropylene resin composition can be produced while maintaining industrially useful production efficiency. Further, a molded article made of expanded particles obtained by using this as a base resin can have the effect of having excellent mechanical properties.

 上記メルトフローレート(MFR)が,0.5g/10分未満の場合には,上記ポリプロピレン系樹脂組成物の製造効率,なかでも後述する溶融混練を行う際の生産性が低下するおそれがある。また,MFRが上記の100g/10分を超える場合には,得られるポリプロピレン系樹脂組成物を基材樹脂として用いた発泡粒子をさらに成形して得られる成形体の圧縮強度,引張強度などの力学物性が低くなるおそれがある。なお,好ましくは,1.0〜50g/10分,更には1.0〜30g/10分である。上記MFRとは,JIS K6921−2(1997年)の表3に記載された条件に従って測定されたメルトマスフローレイトを意味する。 If the melt flow rate (MFR) is less than 0.5 g / 10 minutes, the production efficiency of the polypropylene-based resin composition, especially the productivity when performing the melt-kneading described below, may be reduced. When the MFR exceeds 100 g / 10 minutes, the dynamic properties such as the compressive strength and the tensile strength of the molded product obtained by further molding the expanded particles using the obtained polypropylene resin composition as the base resin are obtained. Physical properties may be reduced. In addition, Preferably, it is 1.0 to 50 g / 10 minutes, Furthermore, it is 1.0 to 30 g / 10 minutes. The above-mentioned MFR means a melt mass flow rate measured according to the conditions described in Table 3 of JIS K6921-2 (1997).

 次に,上記ポリプロピレン系樹脂組成物は,示差走査熱量計による測定で,実質上単独の融解ピークを示すことが好ましい(請求項4)。
 「示差走査熱量計による測定で,実質上単独の融解ピークを示す」とは,上記融点(Tm)を測定する方法と同じ方法にて上記ポリプロピレン系樹脂組成物の融点を測定した場合において,1つの融解ピークとして観察されることを意味する場合のみならず,複数の融解ピークが観察された場合であっても,隣合う融解ピークの頂点間の温度差(高温側融解ピークの頂点−低温側融解ピークの頂点)が7℃以内の場合をも包含するが,その温度差は5℃以内であることが好ましく,3℃以内であることがより好ましい。
Next, the polypropylene-based resin composition preferably exhibits a substantially single melting peak as measured by a differential scanning calorimeter (claim 4).
"A melting point measured by a differential scanning calorimeter shows a substantially single melting peak" means that when the melting point of the polypropylene resin composition is measured by the same method as the method for measuring the melting point (Tm), 1 In addition to the case where two melting peaks are observed, even when multiple melting peaks are observed, the temperature difference between the apexes of adjacent melting peaks (the apex of the hot side melting peak-the low temperature side) The temperature difference is preferably within 5 ° C, more preferably within 3 ° C.

 ただし,この場合において,その温度差は,プロピレン系重合体[A]及びプロピレン系重合体[B]の融点をそれぞれ単独で測定した際に得られる,それぞれの融解ピークの頂点の差(高温側融解ピークの頂点−低温側融解ピークの頂点)よりも小さくなければならない。
 上記の隣合う融解ピークの頂点間の温度差が小さいほど,上記プロピレン系重合体[A]と上記プロピレン系重合体[B]とが相互に高いレベルで溶解していることを意味し,樹脂組成物としての均一性が高いことを示す。その結果,かかるポリプロピレン系樹脂組成物を基材樹脂として用いて得られる発泡樹脂粒子においては,型内成形時の二次発泡性に優れるものとなる。
 尚,本発明において,上記プロピレン系重合体[B]の融点は,使用される上記プロピレン系重合体[A]の融点と同じであっても構わないが,両重合体の融点は2℃以上離れていることが好ましく,3℃以上離れていることが好ましく,5〜30℃離れていることがより好ましい。
However, in this case, the temperature difference is the difference between the tops of the respective melting peaks (high-temperature side) obtained when the melting points of the propylene-based polymer [A] and the propylene-based polymer [B] are measured independently. (The peak of the melting peak−the peak of the low-temperature melting peak).
The smaller the temperature difference between the vertexes of the adjacent melting peaks, the higher the level of the propylene-based polymer [A] and the higher the propylene-based polymer [B] are. This shows that the composition has high uniformity. As a result, foamed resin particles obtained by using such a polypropylene-based resin composition as a base resin have excellent secondary foamability during in-mold molding.
In the present invention, the melting point of the propylene polymer [B] may be the same as the melting point of the propylene polymer [A] used, but the melting points of both polymers are 2 ° C. or more. It is preferably separated, more preferably 3 ° C or more, more preferably 5 to 30 ° C.

 なお,本発明にかかるポリプロピレン系樹脂組成物は,これを基材樹脂としてポリプロピレン系樹脂発泡粒子を得るための材料などとして用いられる。さらに,このポリプロピレン系樹脂発泡粒子を成形型内に充填して,加熱することにより発泡させて,型内成形体を得ることもできる。 The polypropylene-based resin composition according to the present invention is used as a material for obtaining expanded polypropylene-based resin particles using this as a base resin. Furthermore, the polypropylene resin foamed particles can be filled in a mold and heated to expand the foam to obtain a molded article in the mold.

 次に,上記第2の発明(請求項5)において,上記ポリプロピレン系樹脂発泡粒子は,下記の要件(f)を満足する発泡剤を用いて発泡していることが好ましい(請求項6)。
(f)上記発泡剤の臨界温度をTc[℃]とした場合に,Tcが下記の式(2)を満足すること。
  −90℃≦Tc≦400℃          式(2)
Next, in the second invention (Claim 5), it is preferable that the expanded polypropylene resin particles are foamed using a foaming agent satisfying the following requirement (f) (Claim 6).
(F) When the critical temperature of the foaming agent is Tc [° C.], Tc satisfies the following expression (2).
-90 ° C ≦ Tc ≦ 400 ° C Equation (2)

 この場合には,得られるポリプロピレン系樹脂発泡粒子の気泡径が均一となる傾向があり,その結果として,かかる発泡粒子を用いて得られる型内発泡成形体の力学的特性が良好となる。 (4) In this case, the foamed polypropylene resin particles obtained tend to have a uniform cell diameter, and as a result, the mechanical properties of the in-mold foam molded product obtained using such foamed particles are improved.

 Tcが−90℃未満の場合には,得られるポリプロピレン系樹脂発泡粒子の気泡径の不均一さが顕著となるおそれがある。その理由は必ずしも定かではないが,発泡が急激に進行することに起因すると推定される。
 一方,400℃を越える場合には,高倍率,例えば嵩密度が0.1g/cm3以下のポリプロピレン系樹脂発泡粒子を得ることが極めて困難となるおそれがある。
If Tc is less than -90 ° C, the resulting foamed polypropylene resin particles may have remarkable unevenness in cell diameter. The reason for this is not necessarily clear, but is presumed to be due to the rapid progress of foaming.
On the other hand, when the temperature exceeds 400 ° C., it may be extremely difficult to obtain high magnification, for example, expanded polypropylene resin particles having a bulk density of 0.1 g / cm 3 or less.

 上記発泡剤の具体例としては,次の通りである。尚,物質名の後に臨界温度(℃)を併記する。メタン(−82),エタン(32),プロパン(97),ブタン(152),イソブタン(135),ペンタン(197),ヘキサン(235),シクロペンタン(239),シクロヘキサン(280),等の鎖状または環状低級脂肪族炭化水素類,ジクロロジフルオロメタン(112),トリクロロモノフルオロメタン(198)等のハロゲン化炭化水素類,二酸化炭素(31)等の無機ガス等が挙げられる。 具体 Specific examples of the above foaming agents are as follows. The critical temperature (° C) is also described after the substance name. Chains of methane (-82), ethane (32), propane (97), butane (152), isobutane (135), pentane (197), hexane (235), cyclopentane (239), cyclohexane (280), etc. And halogenated hydrocarbons such as dichlorodifluoromethane (112) and trichloromonofluoromethane (198), and inorganic gases such as carbon dioxide (31).

 また,上記の式(2)を満足する発泡剤の中でも,更に,下記の式(3)を満足する場合には,特にこれら発泡剤を取扱うにあたり,特殊な設備や装置を必要としないという利点がある。
  0℃≦Tc≦300℃               式(3)
Further, among the foaming agents satisfying the above formula (2), when the following formula (3) is further satisfied, there is an advantage that special equipment and apparatus are not required particularly for handling these foaming agents. There is.
0 ° C ≦ Tc ≦ 300 ° C Equation (3)

 更に,下記式(4)を満足する場合には,前項に述べた工業的有用性に加え,得られる発泡粒子の気泡径が極めて均一になるという効果がある。
  30℃≦Tc≦200℃              式(4)
 なお,上記発泡剤は,単独で使用してもよいし,また複数の発泡剤を組み合わせて用いてもよい。
Further, when the following expression (4) is satisfied, in addition to the industrial utility described in the preceding section, there is an effect that the bubble diameter of the obtained expanded particles becomes extremely uniform.
30 ° C ≦ Tc ≦ 200 ° C Equation (4)
The above-mentioned foaming agents may be used alone or in combination with a plurality of foaming agents.

 また,上記発泡剤として,窒素,酸素,空気,二酸化炭素,水といったいわゆる無機ガスを発泡剤の全部として又は主成分として(発泡剤全体の50モル%以上,好ましくは70モル%以上,より好ましくは90モル%以上。)使用した場合には,最終的な型内発泡成形体のエネルギー吸収量を高めることができる。これらの無機ガスの中でも,発泡粒子の見かけ密度の安定性,環境負荷やコストなどを考慮した場合,窒素,空気,二酸化炭素が特に好ましい。 Further, as the foaming agent, a so-called inorganic gas such as nitrogen, oxygen, air, carbon dioxide, and water is used as the foaming agent as a whole or as a main component (50 mol% or more of the entire foaming agent, preferably 70 mol% or more, more preferably Is 90 mol% or more.) When used, the energy absorption of the final in-mold foam molded article can be increased. Among these inorganic gases, nitrogen, air, and carbon dioxide are particularly preferable in consideration of the stability of the apparent density of the expanded particles, the environmental load, the cost, and the like.

 次に,上記第2の発明の上記ポリプロピレン系樹脂発泡粒子においては,プロピレン系重合体[A]とプロピレン系重合体[B]とからなる上記ポリプロピレン系樹脂組成物の基材樹脂に対し,前記の通り,本発明の効果を損なわない範囲であれば,他のポリマー成分や添加剤を混合することができる。 Next, in the expanded polypropylene resin particles of the second invention, the above-mentioned base resin of the polypropylene resin composition comprising the propylene polymer [A] and the propylene polymer [B] is used. As described above, other polymer components and additives can be mixed as long as the effects of the present invention are not impaired.

 上記,他のポリマー成分としては,例えば高密度ポリエチレン,低密度ポリエチレン,エチレンとα−オレフィン(炭素数4以上)の共重合体である直鎖状低密度ポリエチレン等のエチレン系樹脂;ポリブテン樹脂;エチレン−プロピレン系ゴム;エチレン−プロピレン−ジエン系ゴム;スチレン−ジエンブロック共重合体やスチレン−ジエンブロック共重合体のエチレン系二重結合の少なくとも一部を水素添加により飽和してなる水素添加ブロック共重合体等のスチレン系熱可塑性エラストマー;これら樹脂,エラストマー或いはゴムのアクリル酸系モノマーによるグラフト変成体等が挙げられる。本発明ではこれら樹脂,エラストマー,ゴム或いはそれら変成物を単独で又は2以上を組み合わせて使用することができる。 Examples of the other polymer component include ethylene resins such as high-density polyethylene, low-density polyethylene, and linear low-density polyethylene which is a copolymer of ethylene and an α-olefin (having 4 or more carbon atoms); polybutene resin; Ethylene-propylene rubber; Ethylene-propylene-diene rubber; hydrogenated block obtained by saturating at least a part of the ethylene-based double bond of styrene-diene block copolymer or styrene-diene block copolymer by hydrogenation Styrene-based thermoplastic elastomers such as copolymers; and graft-modified products of these resins, elastomers or rubbers with acrylic acid-based monomers. In the present invention, these resins, elastomers, rubbers or modified products thereof can be used alone or in combination of two or more.

 上記添加剤としては,発泡核剤,着色剤,帯電防止剤,滑剤等の各種の添加剤を添加することができる。これらは,通常,後述する溶融混練の際に一緒に添加されて樹脂粒子中に含有される。
 上記発泡核剤としては,タルク,炭酸カルシウム,シリカ,酸化チタン,石膏,ゼオライト,ホウ砂,ホウ酸亜鉛,水酸化アルミニウム等の無機化合物の他,カーボン,リン酸系核剤,フェノール系核剤,アミン系核剤等の有機系核剤が挙げられる。これら各種添加剤の添加量は,その添加目的により異なるが,本発明の基材樹脂100重量部に対して15重量部以下であり,好ましくは8重量部以下,更には5重量部以下が最も好ましい。
As the above additives, various additives such as a foam nucleating agent, a coloring agent, an antistatic agent, a lubricant and the like can be added. These are usually added together at the time of melt kneading described later and contained in the resin particles.
Examples of the foam nucleating agent include inorganic compounds such as talc, calcium carbonate, silica, titanium oxide, gypsum, zeolite, borax, zinc borate, and aluminum hydroxide, as well as carbon, phosphoric acid nucleating agents, and phenolic nucleating agents. And organic nucleating agents such as amine nucleating agents. The amount of these various additives varies depending on the purpose of the addition, but is not more than 15 parts by weight, preferably not more than 8 parts by weight, more preferably not more than 5 parts by weight based on 100 parts by weight of the base resin of the present invention. preferable.

 本発明において,上記基材樹脂としてのプロピレン系重合体[A]とプロピレン系重合体[B]とを混合するとき,及び,上記基材樹脂への上記その他の成分を混合するときには,固体混合により行うこともできるが,一般には溶融混練が利用される。即ち,例えばロール,スクリュー,バンバリーミキサー,ニーダー,ブレンダー,ミル等の各種混練機を使って,上記プロピレン系重合体同士,または上記基材樹脂とその他の成分等とを所望の温度で混練し,混練後は,発泡粒子の製造に適した大きさの樹脂粒子に成形する。 In the present invention, when mixing the propylene-based polymer [A] and the propylene-based polymer [B] as the base resin and when mixing the other components into the base resin, solid mixing is performed. However, in general, melt kneading is used. That is, using a kneader such as a roll, a screw, a Banbury mixer, a kneader, a blender, or a mill, the above-mentioned propylene-based polymers or the above-mentioned base resin and other components are kneaded at a desired temperature. After kneading, it is formed into resin particles having a size suitable for the production of expanded particles.

 また,押出機内で溶融混練した後に,押出機先端に取り付けた微小穴を有する口金より混練物を紐状に押出し,引取機を備えた切断機で規定の重量または大きさに切断し樹脂粒子を得る方法が好ましい。
 また,一般に,樹脂粒子1個の重量が0.1〜20mgであれば発泡粒子の製造に支障はない。樹脂粒子1個の重量が0.2〜10mgの範囲にあって,更に粒子間の重量のばらつきが少であれば,発泡粒子の製造が容易になり,得られる発泡粒子の密度ばらつきも小となり,成形型内等への発泡樹脂粒子の充填性が良好となる。
After melt-kneading in the extruder, the kneaded material is extruded in a string form from a mouthpiece having micro holes attached to the tip of the extruder, and cut into a specified weight or size with a cutter equipped with a take-off machine to reduce the resin particles. The method of obtaining is preferred.
Generally, if the weight of one resin particle is 0.1 to 20 mg, there is no problem in the production of foamed particles. If the weight of one resin particle is in the range of 0.2 to 10 mg and the variation in the weight between the particles is small, the production of the expanded particles becomes easy, and the density variation of the obtained expanded particles also becomes small. In addition, the filling property of the foamed resin particles into the molding die and the like is improved.

 発泡粒子を得る方法としては,樹脂粒子に揮発性発泡剤を含浸した後,加熱発泡する方法,具体的には,例えば,特公昭49−2183号公報,同56−1344号公報,西ドイツ特開第1285722号公報,同第2107683号公報などに記載の方法を使用することができる。 As a method for obtaining foamed particles, a method of impregnating a resin particle with a volatile foaming agent and then heating and foaming, specifically, for example, Japanese Patent Publication Nos. 49-2183 and 56-1344, West German Patent The methods described in Japanese Patent Nos. 1857722 and 2107683 can be used.

 樹脂粒子に発泡剤を含浸した後,加熱発泡させる場合,密閉し開放できる圧力容器に揮発性発泡剤と共に樹脂粒子を入れ,基材樹脂の軟化温度以上に加熱すると共に,樹脂粒子に揮発性発泡剤を含浸させる。その後,密閉容器内の内容物を密閉容器から低圧の雰囲気に放出した後,乾燥処理する。これにより,発泡粒子が得られる。 When the resin particles are impregnated with a foaming agent and then heat-foamed, put the resin particles together with the volatile foaming agent in a pressure vessel that can be sealed and opened, and heat the resin particles above the softening temperature of the base resin, as well as volatile foaming the resin particles. Impregnate the agent. After that, the contents in the closed container are released from the closed container to a low-pressure atmosphere, and then the drying process is performed. Thereby, foamed particles are obtained.

 本発明のポリプロピレン系樹脂発泡粒子は,示差走査熱量測定によって求められるDSC曲線(但し,発泡粒子2〜4mgを示差走査熱量計によって10℃/分の昇温速度で20℃から200℃まで昇温した時に得られるDSC曲線)において,基材樹脂に固有の吸熱ピークに加え,更にそれよりも高温の吸熱ピークを示すことが好ましい。 The expanded polypropylene particles of the present invention have a DSC curve obtained by differential scanning calorimetry (provided that 2 to 4 mg of expanded particles are heated from 20 ° C to 200 ° C by a differential scanning calorimeter at a rate of 10 ° C / min). In the DSC curve obtained at the time of the above, it is preferable to show an endothermic peak at a higher temperature in addition to the endothermic peak inherent to the base resin.

 上記DSC曲線に基材樹脂に固有の吸熱ピークに加え,更にそれよりも高温の吸熱ピークが現れる発泡粒子は,例えば特開2002−200635号公報等に記載された方法で製造することが可能であり,上記樹脂粒子を発泡させる際の条件,具体的には低圧の雰囲気に放出するまでの温度,圧力,時間等を制御することにより得られる。 In addition to the endothermic peak specific to the base resin in the DSC curve, an expanded particle in which an endothermic peak having a higher temperature than the endothermic peak can be produced by a method described in, for example, JP-A-2002-200635. Yes, it can be obtained by controlling the conditions for foaming the resin particles, specifically, the temperature, pressure, time, etc., until the resin particles are released into a low-pressure atmosphere.

 尚,前記の密閉容器内の内容物を密閉容器から低圧の雰囲気に放出して発泡粒子を製造する方法において,樹脂粒子中に予め分解型発泡剤を練り込んでおけば圧力容器中に発泡剤を配合しなくとも,上記発泡粒子を得ることが可能である。
 上記分解型発泡剤としては,樹脂粒子の発泡温度で分解してガスを発生するものであれば使用することができる。具体的には,たとえば重炭酸ナトリウム,炭酸アンモニウム,アジド化合物,アゾ化合物等が挙げられる。
In the method of producing foamed particles by discharging the contents in the closed container from the closed container to a low-pressure atmosphere, if the decomposable foaming agent is kneaded in the resin particles in advance, the foaming agent is contained in the pressure container. The above-mentioned expanded particles can be obtained without blending.
As the decomposable foaming agent, any one that decomposes at the foaming temperature of the resin particles to generate gas can be used. Specific examples include sodium bicarbonate, ammonium carbonate, azide compounds, azo compounds and the like.

 また,加熱発泡時には,樹脂粒子の分散媒として,水,アルコールなどを使用することが好ましい。更に樹脂粒子が分散媒に均一に分散する様に,酸化アルミニウム,第三リン酸カルシウム,ピロリン酸マグネシウム,酸化亜鉛,カオリン,アムスナイト,マイカ,クレーなどの難水溶性の無機物質,ポリビニルピロリドン,ポリビニルアルコール,メチルセルロースなどの水溶性高分子系保護コロイド剤,ドデシルベンゼンスルホン酸ナトリウム,アルカンスルホン酸ナトリウム等のアニオン性界面活性剤を単独または2以上混合して使用するのが好ましい。 (4) At the time of heating and foaming, it is preferable to use water, alcohol, or the like as a dispersion medium for the resin particles. In addition, aluminum oxide, tribasic calcium phosphate, magnesium pyrophosphate, zinc oxide, kaolin, amsunite, mica, clay, and other poorly water-soluble inorganic substances, polyvinylpyrrolidone, and polyvinyl alcohol so that the resin particles are uniformly dispersed in the dispersion medium. It is preferable to use a water-soluble polymer-based protective colloid agent such as methyl cellulose and anionic surfactants such as sodium dodecylbenzenesulfonate and sodium alkanesulfonate alone or as a mixture of two or more.

 更に,上記分散媒には,分散剤の分散力を強化する(分散剤の添加量を少なくしても容器内で樹脂粒子の融着を防止する)分散強化剤を添加してもよい。特に,見かけ密度が100g/L以上という低発泡の発泡粒子を製造する場合には,分散強化剤を使用することが好ましい。
 このような分散強化剤としては,40℃の水100ccに対して少なくとも1mg以上溶解し得る無機物質であって,該化合物の陰イオンまたは陽イオンの少なくとも一方が2価または3価のものを用いることができる。このような無機物質としては,たとえば,塩化マグネシウム,硝酸マグネシウム,硫酸マグネシウム,塩化アルミニウム,硝酸アルミニウム,硫酸アルミニウム,塩化鉄,硫酸鉄,硝酸鉄等が例示される。
Further, a dispersion enhancer that enhances the dispersing power of the dispersant (prevents fusion of the resin particles in the container even when the amount of the dispersant is reduced) may be added to the dispersion medium. In particular, when producing low-expanded foamed particles having an apparent density of 100 g / L or more, it is preferable to use a dispersion enhancer.
As such a dispersion enhancer, an inorganic substance which can be dissolved in at least 1 mg or more in 100 cc of water at 40 ° C. and in which at least one of the anion and cation of the compound is divalent or trivalent, is used. be able to. Examples of such an inorganic substance include magnesium chloride, magnesium nitrate, magnesium sulfate, aluminum chloride, aluminum nitrate, aluminum sulfate, iron chloride, iron sulfate, and iron nitrate.

 低圧の雰囲気に樹脂粒子を放出する際には,当該放出を容易にするため,前記と同様な無機ガス又は揮発性発泡剤を外部より密閉容器に導入することにより密閉容器内の圧力を一定に保持することが好ましい。 When releasing resin particles into a low-pressure atmosphere, in order to facilitate the release, the same inorganic gas or volatile foaming agent as described above is introduced into the closed container from outside to keep the pressure in the closed container constant. It is preferable to hold.

 上記した方法によって得られたポリプロピレン系樹脂発泡粒子は,大気圧下で熟成した後,必要に応じて気泡内圧を高めてから,水蒸気や熱風を用いて加熱することによって,より高発泡倍率の発泡粒子とすることが可能である。 The expanded polypropylene resin particles obtained by the above-described method are aged under atmospheric pressure, and after increasing the internal pressure of the cells as necessary, are heated with steam or hot air to form expanded particles having a higher expansion ratio. It can be a particle.

 次に,本発明のポリプロピレン系樹脂発泡粒子は,様々な条件の金型を使用して成形される。例えば,大気圧または減圧下の凹凸一対の金型よりなるキャビティー内へポリプロピレン系樹脂発泡粒子を充填した後に,金型キャビティー体積を5〜70%減少する様に圧縮し,次いでスチーム等の熱媒をキャビティー内に導入してポリプロピレン系樹脂発泡粒子を加熱融着させる圧縮成型法が挙げられる(例えば特公昭46−38359号公報)。 Next, the expanded polypropylene resin particles of the present invention are molded using dies under various conditions. For example, after filling foamed polypropylene resin particles into a cavity composed of a pair of cavities and depressions under atmospheric pressure or reduced pressure, the cavities are compressed so as to reduce the volume of the cavities by 5 to 70%. A compression molding method in which a heat medium is introduced into the cavity and the polypropylene-based resin foam particles are heated and fused is exemplified (for example, Japanese Patent Publication No. 46-38359).

 また,揮発性発泡剤または無機ガスの1種または2種以上で予め発泡樹脂粒子を処理して発泡樹脂粒子の二次発泡力を高め,次いでその二次発泡力を保持しつつ大気圧または減圧下の凹凸一対の金型よりなるキャビティー内に発泡樹脂粒子を充填した後,金型キャビティー内に熱媒を導入して発泡樹脂粒子を加熱融着させる加圧熟成法もある(例えば特公昭51−22951号公報)。 In addition, the foaming resin particles are preliminarily treated with one or more of a volatile foaming agent or an inorganic gas to increase the secondary foaming force of the foaming resin particles, and then the atmospheric pressure or the pressure is reduced while maintaining the secondary foaming force. There is also a pressure aging method in which, after filling the foamed resin particles into a cavity formed by a pair of lower concave and convex molds, a heating medium is introduced into the mold cavity and the foamed resin particles are heated and fused. JP-B-51-22951).

 また,圧縮ガスにより大気圧以上に加圧した金型キャビティーに,当該圧力以上に加圧した発泡樹脂粒子を充填した後,金型キャビティー内にスチーム等の熱媒を導入して発泡樹脂粒子を加熱融着させる圧縮充填法もある(例えば特公平4−46217号公報)。 Also, after filling the foamed resin particles pressurized above the atmospheric pressure into the mold cavity pressurized by the compressed gas or more, the foamed resin is introduced by introducing a heat medium such as steam into the mold cavity. There is also a compression filling method of heating and fusing the particles (for example, Japanese Patent Publication No. 4-46217).

 更に,特殊な条件にて得られる二次発泡力の高い発泡樹脂粒子を使用して大気圧または減圧下の凹凸一対の金型よりなるキャビティー内に発泡樹脂粒子を充填し,次いで,金型キャビティー内にスチーム等の熱媒を導入して発泡樹脂粒子を加熱融着させる常圧充填法もある(例えば特公平6−49795号公報)。また,上記の方法の組合わせによっても成形できる(例えば特公平6−22919号公報参照)。 Further, using foamed resin particles having a high secondary foaming power obtained under special conditions, the foamed resin particles are filled into a cavity formed by a pair of concave and convex molds under atmospheric pressure or reduced pressure. There is also a normal pressure filling method in which a heat medium such as steam is introduced into the cavity to heat and fuse the foamed resin particles (for example, Japanese Patent Publication No. 6-49795). It can also be formed by a combination of the above methods (for example, see Japanese Patent Publication No. Hei 6-22919).

 また,上記発泡成形体には,必要に応じてフィルムをラミネートすることができる。ラミネートするフィルムは特に制限が無く,例えば,OPS(2軸延伸ポリスチレンシート),耐熱OPS,HIPSなどのポリスチレン系樹脂フィルム,CPP(無延伸ポリプロピレンフィルム),OPP(2軸延伸ポリプロピレンフィルム)等のポリプロピレン系樹脂のフィルムあるいはポリエチレン系樹脂フィルム,ポリエステル系樹脂フィルム等が用いられる。 フ ィ ル ム Furthermore, a film can be laminated on the above-mentioned foamed molded article as required. The film to be laminated is not particularly limited. For example, polystyrene resin films such as OPS (biaxially oriented polystyrene sheet), heat-resistant OPS and HIPS, and polypropylene such as CPP (unoriented polypropylene film) and OPP (biaxially oriented polypropylene film) A resin film, a polyethylene resin film, a polyester resin film, or the like is used.

 また,ラミネートするフィルムの厚さには制限はないが,通常は15μm〜150μmのフィルムが用いられる。これらのフィルムには必要に応じて印刷が施されてもよい。また,ラミネートを行う場合,発泡粒子の加熱融着成形と同時に行ってもよい。また,一旦成形した成形体にラミネートを行ってもよい。尚,必要に応じてホットメルト系の接着剤を用いてラミネーションを行うこともできる。 Although the thickness of the film to be laminated is not limited, a film of 15 μm to 150 μm is usually used. These films may be printed as needed. When lamination is performed, it may be performed simultaneously with the heat fusion molding of the expanded particles. Moreover, you may laminate | stack on the molded object once molded. In addition, lamination can also be performed using a hot-melt adhesive as needed.

 次に,上記第3の発明の型内成形体において,上記型内成形体の密度は0.008〜0.5g/cm3である。型内成形体の密度が0.5g/cm3より大きくなると,軽量性,衝撃吸収性,断熱性といった発泡体の好ましい特性が充分に発揮されなくなり,低発泡倍率であるがゆえにコスト上の不利を招くおそれがある。
 一方,密度が0.008g/cm3よりも小さくなると,独立気泡率が小さくなる傾向にあり,曲げ強度,圧縮強度等の機械的物性が不充分となるおそれがある。
 本発明の型内成形体は,例えば包装容器,玩具,自動車部品,ヘルメット芯材,緩衝包装材等に好適である。
Next, in the in-mold molded product of the third invention, the density of the in-mold molded product is 0.008 to 0.5 g / cm 3 . If the density of the in-mold molded body is more than 0.5 g / cm 3 , favorable characteristics of the foam such as light weight, shock absorption, and heat insulation cannot be sufficiently exhibited, and the low foaming ratio results in a disadvantage in cost. May be caused.
On the other hand, if the density is less than 0.008 g / cm 3 , the closed cell ratio tends to be small, and mechanical properties such as bending strength and compressive strength may be insufficient.
The in-mold molded product of the present invention is suitable for, for example, packaging containers, toys, automobile parts, helmet core materials, cushioning packaging materials, and the like.

 次に,本発明の実施例につき説明する。 Next, embodiments of the present invention will be described.

[プロピレン系重合体の製造]
 まず,ポリプロピレン系樹脂組成物を構成するプロピレン系重合体[A]及び[B]を,下記の製造例1〜8に示す方法で合成した。
[Production of propylene-based polymer]
First, propylene polymers [A] and [B] constituting the polypropylene resin composition were synthesized by the methods shown in Production Examples 1 to 8 below.

製造例1
(i)[ジメチルシリレンビス{1,1’−(2−メチル−4−フェニル−4−ヒドロアズレニル)}ジルコニウムジクロリド]の合成
 以下の反応は全て不活性ガス雰囲気で行い,また,反応には予め乾燥精製した溶媒を用いた。
Production Example 1
(I) Synthesis of [dimethylsilylenebis {1,1 ′-(2-methyl-4-phenyl-4-hydroazulenyl)} zirconium dichloride] The following reactions were all carried out in an inert gas atmosphere. A dried and purified solvent was used.

(a)ラセミ・メソ混合物の合成
 特開昭62−207232号公報に記載の方法に従って合成した2−メチルアズレン2.22gをヘキサン30mLに溶解し,フェニルリチウムのシクロヘキサン−ジエチルエーテル溶液15.6mL(1.0当量)を0℃にて少量ずつ添加した。
 この溶液を室温で1時間撹拌した後,−78℃に冷却し,テトラヒドロフラン30mLを加えた。
(A) Synthesis of racemic-meso mixture 2.22 g of 2-methylazulene synthesized according to the method described in JP-A-62-207232 was dissolved in 30 mL of hexane, and 15.6 mL of a cyclohexane-diethyl ether solution of phenyllithium (15.6 mL). 1.0 eq) at 0 ° C. in small portions.
The solution was stirred at room temperature for 1 hour, cooled to -78 ° C, and 30 mL of tetrahydrofuran was added.

 次いで,ジメチルジクロロシラン0.95mLを加えた後,室温まで昇温し,更に50℃で90分間加熱した。この後,塩化アンモニウム飽和水溶液を加え,有機層を分離後,硫酸ナトリウムで乾燥し,溶媒を減圧下に留去した。 Next, 0.95 mL of dimethyldichlorosilane was added, the temperature was raised to room temperature, and the mixture was further heated at 50 ° C. for 90 minutes. Thereafter, a saturated aqueous solution of ammonium chloride was added, the organic layer was separated, dried over sodium sulfate, and the solvent was distilled off under reduced pressure.

 得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン−:ジクロロメタン=5:1)で精製することにより,ビス{1,1’−(2−メチル−4−フェニル−1,4−ジヒドロアズレニル)ジメチルシラン1.48gを得た。
 上記で得られたビス{1,1’−(2−メチル−4−フェニル−1,4−ジヒドロアズレニル)ジメチルシラン786mgをジエチルエーテル15mLに溶解し,−78℃でn−ブチルリチウムのヘキサン溶液(1.68mol/L)1.98mLを滴加し,徐々に室温に昇温し,その後室温にて12時間撹拌した。溶媒を減圧留去して得られた固体をヘキサンで洗浄し,減圧乾固した。
The resulting crude product was purified by silica gel column chromatography (hexane-: dichloromethane = 5: 1) to give bis {1,1 '-(2-methyl-4-phenyl-1,4-dihydroazulenyl). 1.) 1.48 g of dimethylsilane were obtained.
786 mg of bis {1,1 ′-(2-methyl-4-phenyl-1,4-dihydroazulenyl) dimethylsilane obtained above is dissolved in 15 mL of diethyl ether, and n-butyllithium hexane is added at −78 ° C. 1.98 mL of a solution (1.68 mol / L) was added dropwise, and the temperature was gradually raised to room temperature, followed by stirring at room temperature for 12 hours. The solid obtained by evaporating the solvent under reduced pressure was washed with hexane and dried under reduced pressure.

 更に,トルエン−ジエチルエーテル混合溶媒(40:1)を20mL加え,−60℃にて四塩化ジルコニウム325mgを加え,徐々に昇温して室温で15分間撹拌した。
 得られた溶液を減圧下に濃縮し,ヘキサンを加えて再沈殿させることにより,ジメチルシリレンビス{1,1’−(2−メチル−4−フェニル−4−ヒドロアズレニル)}ジルコニウムジクロリドよりなる,ラセミ/メソ混合物150mgを得た。
Further, 20 mL of a toluene-diethyl ether mixed solvent (40: 1) was added, 325 mg of zirconium tetrachloride was added at -60 ° C, and the mixture was gradually heated and stirred at room temperature for 15 minutes.
The obtained solution is concentrated under reduced pressure, and hexane is added to cause reprecipitation, whereby dimethylsilylenebis {1,1 ′-(2-methyl-4-phenyl-4-hydroazulenyl)} zirconium dichloride is obtained. / Meso mixture 150 mg was obtained.

(b)ラセミ体の分離
 上記の反応を繰り返して得たラセミ/メソ混合物887mgをガラス容器に入れ,ジクロロメタン30mLに溶解し,高圧水銀ランプで30分間光照射した。その後ジクロロメタンを減圧下に留去し,黄色固体を得た。
 この固体にトルエン7mLを添加して撹拌後,静置することにより,黄色固体が沈殿として分離した。上澄みを除去し,固体を減圧乾固して,ジメチルシリレンビス{1,1’−(2−メチル−4−フェニル−4−ヒドロアズレニル)}ジルコニウムジクロリドよりなる,ラセミ体を437mg得た。
(B) Separation of a racemic body 887 mg of a racemic / meso mixture obtained by repeating the above reaction was placed in a glass container, dissolved in 30 mL of dichloromethane, and irradiated with light from a high-pressure mercury lamp for 30 minutes. Thereafter, dichloromethane was distilled off under reduced pressure to obtain a yellow solid.
To this solid, 7 mL of toluene was added, stirred, and allowed to stand, whereby a yellow solid was separated as a precipitate. The supernatant was removed, and the solid was dried under reduced pressure to give 437 mg of a racemate comprising dimethylsilylenebis {1,1 '-(2-methyl-4-phenyl-4-hydroazulenyl)} zirconium dichloride.

(ii)触媒の合成
(a)触媒担体の処理
 脱塩水135mLと硫酸マグネシウム16gをガラス製容器に入れ,撹拌し溶液とした。この溶液にモンモリロナイト(クニミネ工業製「クニピア−F」)22.2gを加えた後,昇温し,80℃で1時間保持した。
 次いで,脱塩水300mLを加えた後に濾過により,固形分を分離した。この固形分に,脱塩水46mLと硫酸23.4g及び硫酸マグネシウム29.2gを加えた後,昇温し,加熱還流下に2時間処理した後,脱塩水200mLを加え,濾過した。
 更に脱塩水400mLを加えて濾過する,という操作を2回実施した。その後,固体を100℃で乾燥し,触媒担体としての化学処理モンモリロナイトを得た。
(Ii) Synthesis of catalyst (a) Treatment of catalyst carrier 135 mL of demineralized water and 16 g of magnesium sulfate were placed in a glass container, and stirred to form a solution. 22.2 g of montmorillonite ("Kunipia-F" manufactured by Kunimine Industries) was added to this solution, and then the temperature was raised and the temperature was maintained at 80 ° C for 1 hour.
Then, after adding 300 mL of demineralized water, the solid content was separated by filtration. After adding 46 mL of demineralized water, 23.4 g of sulfuric acid, and 29.2 g of magnesium sulfate to the solid content, the mixture was heated, treated with heating under reflux for 2 hours, added with 200 mL of demineralized water, and filtered.
Further, an operation of adding 400 mL of deionized water and filtering was performed twice. Thereafter, the solid was dried at 100 ° C. to obtain a chemically treated montmorillonite as a catalyst carrier.

(b)触媒成分の調製
 内容積1リットルの撹拌式オートクレーブ内をプロピレンで十分に置換した後,脱水ヘプタン230mLを導入し,系内温度を40℃に保持した。
 ここに,上記にて調製した,触媒担体としての化学処理モンモリロナイト10gを200mLのトルエンに懸濁させて添加した。
(B) Preparation of catalyst component After sufficiently replacing the inside of a 1-liter stirred autoclave with propylene, 230 mL of dehydrated heptane was introduced, and the system temperature was maintained at 40 ° C.
Here, 10 g of the chemically treated montmorillonite as a catalyst carrier prepared above was suspended in 200 mL of toluene and added.

 更に,別容器中に調製した,ジメチルシリレンビス{1,1’−(2−メチル−4−フェニル−4−ヒドロアズレニル)}ジルコニウムジクロリドのラセミ体(0.15mmol)と,トリイソブチルアルミニウム(3mmol)とを,トルエン(計20mL)中にて混合したものをオートクレーブ内に添加した。 Furthermore, racemic (0.15 mmol) of dimethylsilylenebis {1,1 ′-(2-methyl-4-phenyl-4-hydroazulenyl)} zirconium dichloride and triisobutylaluminum (3 mmol) prepared in separate containers. Was mixed in toluene (20 mL in total) and added to the autoclave.

 その後,プロピレンを10g/hrの速度で120分間導入し,更にその後に120分間,重合反応を継続した後,窒素雰囲気下に溶媒を留去,乾燥して固体触媒成分を得た。この触媒成分は,固体成分1gあたり,1.9gの重合体を含有するものであった。 (5) Thereafter, propylene was introduced at a rate of 10 g / hr for 120 minutes, and thereafter, the polymerization reaction was continued for 120 minutes. Thereafter, the solvent was distilled off and dried under a nitrogen atmosphere to obtain a solid catalyst component. This catalyst component contained 1.9 g of polymer per 1 g of solid component.

(iii)プロピレンの重合(プロピレン系重合体Aの製造)
 内容積200Lの撹拌式オートクレーブ内をプロピレンで十分に置換した後,十分に脱水した液化プロピレン45kgを導入した。これに,トリイソブチルアルミニウムのヘキサン溶液500mL(0.12mol),及び水素(3NL)を導入し,オートクレーブ内を70℃に昇温した。
 その後,上記固体触媒成分(1.7g)をアルゴンで圧入して重合を開始させ,3時間重合反応を行った。
(Iii) Polymerization of propylene (production of propylene polymer A)
After sufficiently replacing the inside of a stirred autoclave having an internal volume of 200 L with propylene, 45 kg of sufficiently dehydrated liquefied propylene was introduced. To this, 500 mL (0.12 mol) of a hexane solution of triisobutylaluminum and hydrogen (3NL) were introduced, and the inside of the autoclave was heated to 70 ° C.
Thereafter, the solid catalyst component (1.7 g) was press-injected with argon to start polymerization, and a polymerization reaction was performed for 3 hours.

 その後,反応系にエタノール100mLを圧入して反応を停止させ,残存ガス成分をパージすることで,14.1kgのポリマーを得た。
 このポリマーは,プロピレンから得られる構造単位が100モル%であり,即ちプロピレン単独重合体である。これは上記要件(a)を満たす。
Thereafter, 100 mL of ethanol was injected into the reaction system to stop the reaction, and the remaining gas components were purged to obtain 14.1 kg of a polymer.
This polymer has 100 mol% of structural units obtained from propylene, that is, it is a propylene homopolymer. This satisfies the requirement (a).

 また,このポリマーはMFR(メルトフローレート)=10g/10分,アイソタクチックトリアッド分率が99.7%,融点(Tm)が146℃であり,上記要件(d)及び(e)を満たしている。さらに,2,1−挿入に基づく位置不規則単位の割合が1.32%,1,3−挿入に基づく位置不規則単位の割合が0.08%であり,上記要件(b)を満たしている。
 以下,ここで得られたポリプロピレン系重合体を「ポリマー1」と称する。
This polymer has an MFR (melt flow rate) of 10 g / 10 min, an isotactic triad fraction of 99.7%, and a melting point (Tm) of 146 ° C., and satisfies the above requirements (d) and (e). Meets Furthermore, the ratio of the position irregular units based on the 2,1-insertion is 1.32%, and the ratio of the position irregular units based on the 1,3-insertion is 0.08%, which satisfies the requirement (b). I have.
Hereinafter, the obtained polypropylene-based polymer is referred to as “polymer 1”.

(iv)水蒸気透過度の測定
 上記で得られたポリマー1を厚み25ミクロンのフィルムに成形し,JIS K7129に記載の方法に従って水蒸気透過度Yを測定した(以下の製造例も同じ)結果,10.5(g/m2/24hr)であった。
 なお,ポリマー1は,上記のように融点Tmが146℃であるため,上記式(1)からYは5.8≦Y≦11.8の範囲内にあるべきところ,その範囲内に入っていた。
(Iv) Measurement of Water Vapor Permeability The polymer 1 obtained above was formed into a film having a thickness of 25 μm, and the water vapor permeability Y was measured according to the method described in JIS K7129 (the same applies to the following production examples). was .5 (g / m 2 / 24hr ).
In addition, since the melting point Tm of the polymer 1 is 146 ° C. as described above, from the above formula (1), Y should be within the range of 5.8 ≦ Y ≦ 11.8. Was.

製造例2(プロピレン系重合体[A]の製造,プロピレン単独重合)
 内容積200Lの撹拌式オートクレーブ内をプロピレンで十分に置換した後,十分に脱水した液化プロピレン45kgを導入した。これに,トリイソブチルアルミニウムのヘキサン溶液500mL(0.12mol),及び水素(3NL)を導入し,オートクレーブ内を40℃に昇温した。
 その後,上記固体触媒成分(3.0g)をアルゴンで圧入して重合を開始させ,3時間重合反応を行った。
Production Example 2 (Production of propylene-based polymer [A], propylene homopolymerization)
After sufficiently replacing the inside of a stirred autoclave having an internal volume of 200 L with propylene, 45 kg of sufficiently dehydrated liquefied propylene was introduced. To this, 500 mL (0.12 mol) of a hexane solution of triisobutylaluminum and hydrogen (3 NL) were introduced, and the inside of the autoclave was heated to 40 ° C.
Thereafter, the solid catalyst component (3.0 g) was injected with argon to start polymerization, and a polymerization reaction was performed for 3 hours.

 その後,反応系にエタノール100mLを圧入して反応を停止させ,残存ガス成分をパージすることで,4.4kgのポリマーを得た。
 このポリマーは,プロピレンから得られる構造単位が100モル%であり,即ちプロピレン単独重合体である。これは,上記要件(a)を満たす。
Thereafter, 100 mL of ethanol was injected into the reaction system to stop the reaction, and the remaining gas components were purged to obtain 4.4 kg of a polymer.
This polymer has 100 mol% of structural units obtained from propylene, that is, it is a propylene homopolymer. This satisfies the requirement (a).

 また,このポリマーはMFR=2,アイソタクチックトリアッド分率が99.8%,融点(Tm)が152℃であり,上記要件(d)及び(e)を満たしている。さらに,2,1−挿入に基づく位置不規則単位の割合が0.89%,1,3−挿入に基づく位置不規則単位の割合が0.005%であり,上記要件(b)を満たしている。
 以下,ここで得られた重合体を「ポリマー2」と称する。
Further, this polymer has MFR = 2, an isotactic triad fraction of 99.8%, and a melting point (Tm) of 152 ° C., and satisfies the requirements (d) and (e). Further, the ratio of the position irregular units based on the 2,1-insertion is 0.89%, and the ratio of the position irregular units based on the 1,3-insertion is 0.005%, which satisfies the requirement (b). I have.
Hereinafter, the obtained polymer is referred to as “polymer 2”.

 また,上記ポリマー2について,上記ポリマー1と同様にして,フィルムに成形したときの水蒸気透過度Yを調べたところ,9.5(g/m2/24hr)であった。
 なお,ポリマー2は,上記のように融点Tmが152℃であるため,上記式(1)からYは4.6≦Y≦9.8の範囲内にあるべきところ,その範囲内に入っていた。
As for the polymer 2, as in the polymer 1 was examined the water vapor transmission rate Y when molded into a film was 9.5 (g / m 2 / 24hr ).
In addition, since the melting point Tm of the polymer 2 is 152 ° C. as described above, from the above formula (1), Y should be within the range of 4.6 ≦ Y ≦ 9.8, but is within the range. Was.

製造例3(プロピレン系重合体[A]の製造,プロピレン/エチレン共重合)
 内容積200Lの撹拌式オートクレーブ内をプロピレンで十分に置換した後,精製したn−ヘプタン60Lを導入し,トリイソブチルアルミニウムのヘキサン溶液500mL(0.12mol)を添加し,オートクレーブ内を70℃に昇温した。その後,上記固体触媒成分(9.0g)を添加し,プロピレンとエチレンの混合ガス(プロピレン:エチレン=97.5:2.5;但し重量比)を圧力が0.7MPaとなるように導入して重合を開始させ,本条件下に3時間重合反応を行った。
Production Example 3 (Production of propylene polymer [A], propylene / ethylene copolymerization)
After sufficiently replacing the inside of a 200 L stirred autoclave with propylene, 60 L of purified n-heptane was introduced, 500 mL (0.12 mol) of a hexane solution of triisobutylaluminum was added, and the inside of the autoclave was heated to 70 ° C. Warmed up. Thereafter, the solid catalyst component (9.0 g) was added, and a mixed gas of propylene and ethylene (propylene: ethylene = 97.5: 2.5; weight ratio) was introduced so that the pressure became 0.7 MPa. To initiate polymerization, and a polymerization reaction was carried out under these conditions for 3 hours.

 その後,反応系にエタノール100mLを圧入して反応を停止させ,残存ガス成分をパージすることで,9.3kgのポリマーを得た。
 このポリマーには,プロピレンから得られる構造単位が97.0モル%,エチレンから得られる構造単位が3.0モル%存在している。これは,上記要件(a)を満たす。
Thereafter, 100 mL of ethanol was injected into the reaction system to stop the reaction, and the remaining gas components were purged to obtain 9.3 kg of a polymer.
This polymer contains 97.0 mol% of structural units obtained from propylene and 3.0 mol% of structural units obtained from ethylene. This satisfies the requirement (a).

 また,このポリマーはMFR=14,エチレン含量=2.0wt%,アイソタクチックトリアッド分率が99.2%,融点(Tm)が141℃であり,上記要件(d)及び(e)を満たしている。さらに,2,1−挿入に基づく位置不規則単位の割合が1.06%,1,3−挿入に基づく位置不規則単位の割合が0.16%であり,上記要件(b)を満たしている。
 以下,ここで得られた重合体を「ポリマー3」と称する。
This polymer had MFR = 14, ethylene content = 2.0 wt%, isotactic triad fraction of 99.2%, and melting point (Tm) of 141 ° C., satisfying the above requirements (d) and (e). Meets Further, the ratio of the position irregular units based on the 2,1-insertion is 1.06%, and the ratio of the position irregular units based on the 1,3-insertion is 0.16%, which satisfies the requirement (b). I have.
Hereinafter, the obtained polymer is referred to as “polymer 3”.

 また,ポリマー3について,上記ポリマー1及びポリマー2と同様にして,フィルムに成形した後の水蒸気透過度Yを調べたところ,12.0(g/m2/24hr)であった。
 なお,ポリマー3は,上記のように融点Tmが141℃であるため,上記式(1)からYは6.8≦Y≦13.5の範囲内にあるべきところ,その範囲内に入っていた。
Further, the polymer 3, in the same manner as in the polymer 1 and polymer 2, was examined water vapor transmission rate Y after molding into a film was 12.0 (g / m 2 / 24hr ).
In addition, since the melting point Tm of the polymer 3 is 141 ° C. as described above, from the above formula (1), Y should be within the range of 6.8 ≦ Y ≦ 13.5, but should be within the range. Was.

製造例4(プロピレン系重合体[A]の製造,プロピレン/1−ブテン共重合)
 内容積200Lの撹拌式オートクレーブ内をプロピレンで十分に置換した後,精製したn−ヘプタン60Lを導入し,トリイソブチルアルミニウムのヘキサン溶液500mL(0.12mol)を添加し,オートクレーブ内を70℃に昇温した。その後,上記固体触媒成分(9.0g)を添加し,プロピレンと1−ブテンの混合ガス(プロピレン:1−ブテン=90:10)を圧力が0.6MPaとなるように導入して重合を開始させ,本条件下に3時間重合反応を行った。
Production Example 4 (Production of propylene-based polymer [A], propylene / 1-butene copolymerization)
After sufficiently replacing the inside of a 200 L stirred autoclave with propylene, 60 L of purified n-heptane was introduced, 500 mL (0.12 mol) of a hexane solution of triisobutylaluminum was added, and the inside of the autoclave was heated to 70 ° C. Warmed up. Thereafter, the solid catalyst component (9.0 g) was added, and a mixed gas of propylene and 1-butene (propylene: 1-butene = 90: 10) was introduced so that the pressure became 0.6 MPa, to start polymerization. Then, a polymerization reaction was carried out under these conditions for 3 hours.

 その後,反応系にエタノール100mLを圧入して反応を停止させ,残存ガス成分をパージすることで,8.6kgのポリマーを得た。
 このポリマーには,プロピレンから得られる構造単位が95.4モル%,1−ブテンから得られる構造単位が4.6モル%存在している。これは上記要件(a)を満たしている。
Thereafter, 100 mL of ethanol was injected into the reaction system to stop the reaction, and the remaining gas components were purged to obtain 8.6 kg of a polymer.
This polymer contains 95.4 mol% of a structural unit obtained from propylene and 4.6 mol% of a structural unit obtained from 1-butene. This satisfies the requirement (a).

 また,このポリマーはMFR=6,1−ブテン含量=6.0wt%,融点(Tm)が142℃,アイソタクチックトリアッド分率が99.3%であり,上記要件(d)及び(e)を満たしている。さらに,2,1−挿入に基づく位置不規則単位の割合が1.23%,1,3−挿入に基づく位置不規則単位の割合が0.09%であり,上記要件(b)を満たしている。ここで得られた重合体を「ポリマー4」と称する。 This polymer had MFR = 6,1-butene content = 6.0 wt%, a melting point (Tm) of 142 ° C., an isotactic triad fraction of 99.3%, and the above requirements (d) and (e). ). Furthermore, the ratio of the position irregular units based on the 2,1-insertion is 1.23%, and the ratio of the position irregular units based on the 1,3-insertion is 0.09%, which satisfies the requirement (b). I have. The polymer obtained here is referred to as “Polymer 4”.

 ポリマー4を上記ポリマー1〜3と同様にしてフィルムに成形し,水蒸気透過度Yを調べたところ,11.5(g/m2/24hr)であった。
 なお,ポリマー4は,上記のように融点Tmが142℃であるため,上記式(1)からYは6.6≦Y≦13.1の範囲内にあるべきところ,その範囲内に入っていた。
Polymer 4 was formed into a film in the same manner as in the polymer 1 to 3, were examined water vapor transmission rate Y, it was 11.5 (g / m 2 / 24hr ).
In addition, since the melting point Tm of the polymer 4 is 142 ° C. as described above, from the above formula (1), Y should be within the range of 6.6 ≦ Y ≦ 13.1. Was.

製造例5(プロピレン系重合体[B]の製造,プロピレン単独重合)
 内容積200Lの撹拌式オートクレーブ内をプロピレンで十分に置換した後,精製したn−ヘプタン60Lを導入し,ジエチルアルミニウムクロリド(45g),丸紅ソルベー社製三塩化チタン触媒11.5gをプロピレン雰囲気下に導入した。更に気相部の水素濃度を7.0容量%に保持しながら,オートクレーブ内温60℃にて,プロピレンを9kg/hrの速度にて4時間にわたり,オートクレーブ内に導入した。
Production Example 5 (Production of propylene polymer [B], propylene homopolymerization)
After sufficiently replacing the inside of a 200 L stirred autoclave with propylene, 60 L of purified n-heptane was introduced, and 11.5 g of diethylaluminum chloride (45 g) and a titanium trichloride catalyst manufactured by Marubeni Solvay Co., Ltd. were placed in a propylene atmosphere. Introduced. Further, while maintaining the hydrogen concentration in the gas phase at 7.0% by volume, propylene was introduced into the autoclave at an internal temperature of 60 ° C. at a rate of 9 kg / hr for 4 hours.

 プロピレン導入を停止した後,更に1時間反応を継続し,反応系にブタノール100mLを添加して反応を停止させ,残存ガス成分をパージすることで,26kgのポリマーを得た。ここで得られたポリマーを「ポリマー5」と称する。
 このポリマーは,プロピレンから得られる構造単位が100モル%であり,即ちプロピレン単独重合体である。これは,上記要件(a)を満たす。
After stopping the introduction of propylene, the reaction was further continued for 1 hour, the reaction was stopped by adding 100 mL of butanol to the reaction system, and the remaining gas components were purged to obtain 26 kg of a polymer. The polymer obtained here is referred to as “Polymer 5”.
This polymer has 100 mol% of structural units obtained from propylene, that is, it is a propylene homopolymer. This satisfies the requirement (a).

 このポリマーは,MFR=7,融点(Tm)165℃,アイソタクチックトリアッド分率が97.6%,2,1−挿入に基づく位置不規則単位の割合が0%,1,3−挿入に基づく位置不規則単位の割合が0%であった。
 即ち,このものは,上記要件(b)を満足しないものである。
This polymer had an MFR of 7, a melting point (Tm) of 165 ° C., an isotactic triad fraction of 97.6%, a proportion of regiorandom units based on 2,1-insertion of 0%, and 1,3-insertion. Was 0%.
That is, this one does not satisfy the requirement (b).

 ポリマー5について,上記ポリマー1〜4と同様にして,フィルムに成形した後の水蒸気透過度Yを調べたところ,7.8(g/m2/24hr)であった。
 なお,ポリマー5は,上記のように融点Tmが165℃であるため,上記式(1)からYは2.0≦Y≦5.6の範囲内にあるべきところ,その範囲内に入っていない。
For Polymer 5, in the same manner as in the above polymers 1 to 4, were examined water vapor transmission rate Y after molding into a film was 7.8 (g / m 2 / 24hr ).
Since the melting point Tm of the polymer 5 is 165 ° C. as described above, from the above formula (1), Y should be within the range of 2.0 ≦ Y ≦ 5.6, but should be within the range. Absent.

製造例6(プロピレン系重合体[B]の製造,プロピレン/エチレン共重合)
 内容積200Lの撹拌式オートクレーブ内をプロピレンで十分に置換した後,精製したn−ヘプタン60Lを導入し,ジエチルアルミニウムクロリド(40g),丸紅ソルベー社製三塩化チタン触媒7.5gをプロピレン雰囲気下に導入した。更に気相部の水素濃度を7.0容量%に保持しながら,オートクレーブ内温60℃にて,プロピレンとエチレンの混合ガス(プロピレン:エチレン=97.5:2.5;但し重量比)を圧力が0.7MPaとなるように導入した。
Production Example 6 (Production of propylene-based polymer [B], propylene / ethylene copolymerization)
After sufficiently replacing the inside of a 200 L stirred autoclave with propylene, 60 L of purified n-heptane was introduced, and diethyl aluminum chloride (40 g) and 7.5 g of Marubeni Solvay's titanium trichloride catalyst were placed in a propylene atmosphere. Introduced. Further, while maintaining the hydrogen concentration in the gas phase at 7.0% by volume, a mixed gas of propylene and ethylene (propylene: ethylene = 97.5: 2.5; weight ratio) was applied at an internal temperature of the autoclave of 60 ° C. The pressure was introduced so as to be 0.7 MPa.

 混合ガス導入を停止した後,更に1時間反応を継続し,反応系にブタノール100mLを添加して反応を停止させ,残存ガス成分をパージすることで,32kgのポリマーを得た。本ポリマーを「ポリマー6」と称する。
 このポリマーには,プロピレンから得られる構造単位が96.1モル%,エチレンから得られる構造単位が3.9モル%存在している。これは,上記要件(a)を満たす。
After stopping the introduction of the mixed gas, the reaction was further continued for 1 hour, the reaction was stopped by adding 100 mL of butanol to the reaction system, and the residual gas component was purged to obtain 32 kg of a polymer. This polymer is referred to as “polymer 6”.
This polymer contains 96.1 mol% of structural units obtained from propylene and 3.9 mol% of structural units obtained from ethylene. This satisfies the requirement (a).

 また,このポリマー6はMFR=12,融点(Tm)146℃,アイソタクチックトリアッド分率が96%,2,1−挿入に基づく位置不規則単位の割合が0%,1,3−挿入に基づく位置不規則単位の割合が0%であった。
 即ち,ポリマー6は,上記要件(b)を満足しないものである。
Further, this polymer 6 had MFR = 12, melting point (Tm) of 146 ° C., an isotactic triad fraction of 96%, a proportion of position irregular units based on 2,1-insertion of 0%, and 1,3-insertion. Was 0%.
That is, the polymer 6 does not satisfy the requirement (b).

 また,ポリマー6について,上記ポリマー1〜5と同様にして,フィルムに成形した後の水蒸気透過度Yを調べたところ,15.0(g/m2/24hr)であった。
 なお,ポリマー6は,融点Tmが146℃であるため,上記式(1)からYは5.8≦Y≦11.8の範囲内にあるべきところ,その範囲内に入っていない。
Further, the polymer 6, in the same manner as in the above polymers 1 to 5, were examined water vapor transmission rate Y after molding into a film was 15.0 (g / m 2 / 24hr ).
In addition, since the melting point Tm of the polymer 6 is 146 ° C., from the above formula (1), Y should be within the range of 5.8 ≦ Y ≦ 11.8, but does not fall within the range.

製造例7(プロピレン系重合体[B]の製造,プロピレン単独重合)
 特開平6−240041号公報の実施例中の[基材樹脂の製造1]に記載の方法を適用して実施した。
 すなわち,内容積200Lの撹拌式オートクレーブ内をプロピレンで十分に置換した後,精製したn−ヘプタン60Lを導入し,東ソーアクゾ社製のメチルアルモキサン(平均オリゴマー度16)を120g,特開平4−268307号公報に記載の方法で合成したrac−ジメチルシリレンビス(2−メチルインデニル)ジルコニウムジクロリド(150mg)をプロピレン雰囲気下に導入した。更に気相部の水素濃度を0.5容量%に保持しながら,オートクレーブ内温40℃にて,プロピレンを7kg/hrの速度にて3時間にわたり,オートクレーブ内に導入した。
Production Example 7 (Production of propylene polymer [B], propylene homopolymerization)
The method was carried out by applying the method described in [Production of base resin 1] in the examples of JP-A-6-240041.
That is, after thoroughly replacing the inside of a 200 L stirred autoclave with propylene, 60 L of purified n-heptane was introduced, and 120 g of methylalumoxane (average degree of oligomer 16) manufactured by Tosoh Akzo Co., Ltd. was used. Rac-Dimethylsilylenebis (2-methylindenyl) zirconium dichloride (150 mg) synthesized by the method described in Japanese Patent No. 268307 was introduced in a propylene atmosphere. Further, while maintaining the hydrogen concentration in the gas phase at 0.5% by volume, propylene was introduced into the autoclave at an internal temperature of 40 ° C. at a rate of 7 kg / hr for 3 hours.

 プロピレン導入を停止した後,更に1時間反応を継続し,反応系にブタノール100mLを添加して反応を停止させ,残存ガス成分をパージすることで,9.4kgのポリマーを得た。本ポリマーを「ポリマー7」と称する。
 このポリマー7は,MFR=9,融点(Tm)150℃,アイソタクチックトリアッド分率が94.4%,2,1−挿入に基づく位置不規則単位の割合が0.25%,1,3−挿入に基づく位置不規則単位の割合は検出限界以下,すなわち0.005%未満であった。即ち,このものは,上記要件(b)を満足しないものである。
 なお,後述する表2においては,ポリマー7の1,3挿入に基づく位置不規則単位の割合は0%として表記した。
After stopping the introduction of propylene, the reaction was further continued for 1 hour, the reaction was stopped by adding 100 mL of butanol to the reaction system, and the residual gas component was purged to obtain 9.4 kg of a polymer. This polymer is referred to as “polymer 7”.
This polymer 7 had an MFR = 9, a melting point (Tm) of 150 ° C., an isotactic triad fraction of 94.4%, a proportion of positional irregular units based on 2,1-insertion of 0.25%, and 1,1. 3- The proportion of regio-irregular units due to insertion was below the detection limit, ie less than 0.005%. That is, this one does not satisfy the requirement (b).
In Table 2, which will be described later, the ratio of the position irregular units based on the 1,3 insertion of the polymer 7 is shown as 0%.

 また,ポリマー7について,上記ポリマー1〜6と同様にして,フィルムに成形した後の水蒸気透過度Yを調べたところ,4.8(g/m2/24hr)であった。
 なお,このポリマー7は,融点Tmが150℃であるため,上記式(1)からYは5.0≦Y≦10.5の範囲内にあるべきところ,その範囲外であった。
Also, for the polymer 7, in the same manner as in the above polymers 1 to 6, were examined water vapor transmission rate Y after molding into a film was 4.8 (g / m 2 / 24hr ).
In addition, since the melting point Tm of this polymer 7 is 150 ° C., Y should be within the range of 5.0 ≦ Y ≦ 10.5 from the above formula (1), but it was outside the range.

製造例8(プロピレン系重合体[B]の製造,プロピレン単独重合)
 内容積200Lの撹拌式オートクレーブ内をプロピレンで十分に置換した後,精製したn−ヘプタン60Lを導入し,東ソーアクゾ社製のメチルアルモキサン(平均オリゴマー度16)を120g,公知の方法[エイチ.ヤマザキ他(H.Yamazaki et.al),「ケミストリー レターズ」(“Chemistry Letters”),日本国,1989年,第18巻,p.1853]で合成したrac−ジメチルシリレンビス(3−メチルシクロペンタジエニル)ジルコニウムジクロリド(100mg)をプロピレン雰囲気下に導入した。更に気相部の水素濃度を0.5容量%に保持しながら,オートクレーブ内温40℃にて,プロピレンを7kg/hrの速度にて3時間にわたり,オートクレーブ内に導入した。
Production Example 8 (Production of propylene-based polymer [B], propylene homopolymerization)
After sufficiently replacing the inside of a 200 L stirred autoclave with propylene, 60 L of purified n-heptane was introduced, and 120 g of methylalumoxane (average degree of oligomer: 16) manufactured by Tosoh Akzo Co., Ltd. was used. H. Yamazaki et al., "Chemistry Letters", Japan, 1989, Vol. 18, p. 1853], rac-dimethylsilylenebis (3-methylcyclopentadienyl) zirconium dichloride (100 mg) was introduced under a propylene atmosphere. Further, while maintaining the hydrogen concentration in the gas phase at 0.5% by volume, propylene was introduced into the autoclave at an internal temperature of 40 ° C. at a rate of 7 kg / hr for 3 hours.

 プロピレン導入を停止した後,更に1時間反応を継続し,反応系にブタノール100mLを添加して反応を停止させ,残存ガス成分をパージすることで,5.6kgのポリマーを得た。本ポリマーを「ポリマー8」と称する。
 このポリマー8は,MFR=20,融点141℃,アイソタクチックトリアッド分率が91.5%,2,1−挿入に基づく位置不規則単位の割合が2.1%,1,3−挿入に基づく位置不規則単位の割合は0.45%であった。
 即ち,このものは,上記要件(b)を満足しないものである。
After stopping the introduction of propylene, the reaction was further continued for 1 hour, the reaction was stopped by adding 100 mL of butanol to the reaction system, and the residual gas component was purged to obtain 5.6 kg of a polymer. This polymer is referred to as "polymer 8".
This polymer 8 has an MFR = 20, a melting point of 141 ° C., an isotactic triad fraction of 91.5%, a proportion of regiorandom units based on 2,1-insertion of 2.1%, and 1,3-insertion. Was 0.45%.
That is, this one does not satisfy the requirement (b).

 また,ポリマー8について,上記ポリマー1〜7と同様にして,フィルムに成形した後の水蒸気透過度Yを調べたところ,13.8(g/m2/24hr)であった。
 なお,このポリマー8は,融点Tmが141℃であるため,上記式(1)からYは6.8≦Y≦13.5の範囲内にあるべきところ,その範囲外であった。
 以上の製造例1〜8の結果を表1及び表2に示す。
Also, for the polymer 8, in the same manner as in the above polymers 1 to 7, were examined water vapor transmission rate Y after molding into a film was 13.8 (g / m 2 / 24hr ).
In addition, since the melting point Tm of this polymer 8 is 141 ° C., from the above formula (1), Y should be within the range of 6.8 ≦ Y ≦ 13.5, but was out of the range.
Tables 1 and 2 show the results of Production Examples 1 to 8 described above.

Figure 2004143451
Figure 2004143451

Figure 2004143451
Figure 2004143451

 表1からも知られるごとく,ポリマー1〜ポリマー4は,上記要件(a)及び(b)を満たし,上記プロピレン系重合体[A]に相当するものである。また,ポリマー1〜ポリマー4は,上記要件(d)及び(e)をも満足する。
 一方,表2より,ポリマー5〜ポリマー8は,上記要件(a)を満たしているが,上記要件(b)を満足していないことが分かる。即ち,ポリマー5〜ポリマー8は,上記プロピレン系重合体[B]に相当するものである。
As can be seen from Table 1, Polymer 1 to Polymer 4 satisfy the above requirements (a) and (b) and correspond to the propylene-based polymer [A]. Polymers 1 to 4 also satisfy the above requirements (d) and (e).
On the other hand, Table 2 shows that Polymer 5 to Polymer 8 satisfy the above requirement (a) but do not satisfy the above requirement (b). That is, the polymers 5 to 8 correspond to the propylene-based polymer [B].

 次に,上記製造例1〜8により得られた各種プロピレン系重合体(ポリマー1〜8)を用いて,ポリプロピレン系樹脂組成物及びポリプロピレン系樹脂発泡粒子を製造し,さらに該ポリプロピレン系樹脂発泡粒子を用いて型内成形体を作製した実施例につき説明する。 Next, using the various propylene-based polymers (polymers 1 to 8) obtained in Production Examples 1 to 8, a polypropylene-based resin composition and expanded polypropylene-based resin particles were produced. An example in which an in-mold molded body was manufactured using the method will be described.

実施例1
 製造例1で得たポリマー1(プロピレン系重合体[A])と製造例5で得たポリマー5(プロピレン系重合体[B])とを90:10(重量比)で混合し,この混合物に酸化防止剤(吉富製薬(株)製 商品名「ヨシノックスBHT」0.05wt%,及びチバガイギー製 商品名「イルガノックス1010」0.10wt%)を加えて65mmφ単軸押出機で直径1mmのストランド状に押し出し,水槽にて冷却後,長さ2mmにカットして,ポリプロピレン系樹脂組成物の細粒ペレットを得た。
Example 1
The polymer 1 (propylene polymer [A]) obtained in Production Example 1 and the polymer 5 (propylene polymer [B]) obtained in Production Example 5 were mixed at a ratio of 90:10 (weight ratio), and this mixture was used. Antioxidant (Yoshinox BHT, manufactured by Yoshitomi Pharmaceutical Co., Ltd., 0.05% by weight, and Ciba Geigy, product name "Irganox 1010," 0.10% by weight) was added to a 1 mm diameter strand using a 65 mmφ single screw extruder. After being extruded into a shape, cooled in a water tank, and cut into a length of 2 mm, fine pellets of a polypropylene resin composition were obtained.

 こうして得られたポリプロピレン系樹脂組成物のDSC測定を行ったところ,一つの吸熱ピークを示し,ピーク温度(融点)は153℃であった。 ポ リ プ ロ ピ レ ン The DSC measurement of the polypropylene resin composition thus obtained showed one endothermic peak, and the peak temperature (melting point) was 153 ° C.

 次に,このポリプロピレン系樹脂組成物を基材樹脂として用いて,ポリプロピレン系樹脂発泡粒子を以下のようにして作製する。
 まず,ペレット状のポリプロピレン系樹脂組成物1000gを水2500g,第三リン酸カルシウム200g,ドデシルベンゼンスルホン酸ナトリウム0.2gと共に内容積5リットルのオートクレーブに入れ,更に上記発泡剤としてのイソブタン120gを加えて,140℃迄60分間で昇温した後,この温度で30分間保持した。
Next, using this polypropylene resin composition as a base resin, foamed polypropylene resin particles are produced as follows.
First, 1000 g of the polypropylene resin composition in the form of pellets was put into an autoclave having an internal volume of 5 liters together with 2500 g of water, 200 g of tribasic calcium phosphate and 0.2 g of sodium dodecylbenzenesulfonate, and 120 g of isobutane as the above foaming agent was added. After the temperature was raised to 140 ° C. for 60 minutes, it was kept at this temperature for 30 minutes.

 その後,オートクレーブ内の圧力をゲージ圧2.3MPaに保持するために外部より圧縮窒素ガスを加えながら,オートクレーブ底部のバルブを開き内容物を大気下へ放出した。
 以上の操作によりポリプロピレン系樹脂発泡粒子を得た。
 また,このポリプロピレン系樹脂発泡粒子を乾燥後,嵩密度を測定したところ,42g/Lであった。また,ポリプロピレン系樹脂発泡粒子の気泡は,その平均径が250μmであり,非常に均一なものであった。
Thereafter, the valve at the bottom of the autoclave was opened and the contents were discharged to the atmosphere while compressed nitrogen gas was externally added to maintain the pressure in the autoclave at a gauge pressure of 2.3 MPa.
Through the above operation, expanded polypropylene resin particles were obtained.
After drying the expanded polypropylene resin particles, the bulk density was measured and found to be 42 g / L. The foamed particles of the expanded polypropylene resin particles had a very uniform average diameter of 250 μm.

 なお,上記ポリプロピレン系樹脂発泡粒子の平均径は,無作為に選んだ発泡粒子のほぼ中心部を通るように切断した発泡粒子の断面を顕微鏡にて観察して得られる顕微鏡写真又はこの断面を画面上に映し出し,無作為に50点の気泡について各気泡の直径(最大長さ)を測定し,その平均値を示したものである。 The average diameter of the expanded particles of the polypropylene resin is determined by observing a cross section of the expanded particles cut through a substantially central portion of a randomly selected expanded particle using a microscope or a microscopic photograph obtained by observing the cross section. The diameter (maximum length) of each bubble was measured for 50 bubbles randomly, and the average value was shown.

 次に,上記ポリプロピレン系樹脂発泡粒子を用いて,以下のように型内成形体を作製する。
 まず,上記で得られたポリプロピレン系樹脂発泡粒子をホッパーにより圧縮空気を用いて逐次的にアルミニウム製の成形用金型に圧縮しながら充填した。その後,金型のチャンバにゲージ圧0.30MPaのスチーム(下記の表中では「成形蒸気圧」と表示)を通じて加熱成形し,型内成形体を得た。
Next, an in-mold molded article is prepared using the expanded polypropylene resin particles as follows.
First, the foamed polypropylene resin particles obtained as described above were filled with a hopper using a compressed air while being sequentially compressed into a molding die made of aluminum. Thereafter, the mixture was heated and molded into a mold chamber through steam having a gauge pressure of 0.30 MPa (indicated as “molding vapor pressure” in the table below) to obtain an in-mold molded product.

 この型内成形体は密度0.060g/cm3(60g/L),縦300mm,横300mm,厚み50mmであり,表面の間隙も少なく,凹凸も無い表面外観が優れた成形体であった。また,型内成形体の中央部より破断し,その断面の融着度を測定したところ,90%であった。 This molded article in the mold had a density of 0.060 g / cm 3 (60 g / L), a length of 300 mm, a width of 300 mm, and a thickness of 50 mm, had few gaps on the surface, and had an excellent surface appearance without irregularities. In addition, the molded body was broken at the center of the molded body, and the fusion degree of the cross section was measured to be 90%.

 なお,上記融着度は,成形体を割断し,その断面における粒子破壊の数と粒子間破壊の数とを目視にて計測し,両者の合計数に対する粒子破壊の数の割合で表した。 (4) The degree of fusion was determined by dividing the molded body, visually measuring the number of particle fractures and the number of interparticle fractures in the cross section, and expressed as a ratio of the number of particle fractures to the total number of both.

 また,同一成形条件で成形した別の成形体から,縦50mm,横50mm,厚さ25mmの試験片を作成し,JIS K7220(1999年)に従って,試験片温度23℃,圧縮速度10mm/分の条件にて圧縮試験を実施したところ,50%圧縮時(50%歪時と同義)の応力が7.5kgf/cm2であった。更に,同じ大きさの試験片を用い,同じくJIS K6767(1976年)に記載の方法により,圧縮永久歪を測定したところ,11%であった。 Further, a test piece having a length of 50 mm, a width of 50 mm and a thickness of 25 mm was prepared from another molded body molded under the same molding conditions, and the specimen temperature was 23 ° C. and the compression speed was 10 mm / min in accordance with JIS K7220 (1999). When a compression test was carried out under the conditions, the stress at the time of 50% compression (same as at the time of 50% strain) was 7.5 kgf / cm 2 . Further, using a test piece of the same size, the compression set was measured by the method described in JIS K6767 (1976), and it was 11%.

 また,同一成形条件で成形した別の成形体から,縦50mm,横50mm,厚み25mmの試験片を作製し,JIS K7220(1999年)に従って,試験片温度23℃,圧縮速度10mm/分の条件にて圧縮試験を行って図1に示すような応力−歪線図を得て,下記式(5)により単位体積当たりのエネルギー吸収量を求め,これをJ(ジュール)/L(リッター)単位に換算することによって成形体のエネルギー吸収量を求めたところ,276J/Lであった。
 単位体積当たりのエネルギー吸収量(kgf/cm/cm3)=50%歪時の応力(kgf/cm2)×50%歪時までのエネルギー吸収効率×0.5(cm/cm)・・・式(5)
 尚,式(5)中の「50%歪時までのエネルギー吸収効率」とは,図1中の「OABの面積(斜線部の面積)/四角形OABCの面積」で表される面積割合である。
 これらの結果を下記の表3に示す。
Also, a test piece having a length of 50 mm, a width of 50 mm and a thickness of 25 mm was prepared from another molded article formed under the same molding conditions, and the test specimen temperature was 23 ° C. and the compression speed was 10 mm / min in accordance with JIS K7220 (1999). A stress-strain diagram as shown in FIG. 1 is obtained by performing a compression test, and the amount of energy absorption per unit volume is obtained by the following equation (5). This is expressed in J (joules) / L (liter) units. The energy absorption of the molded article was calculated by converting to 276 J / L.
Energy absorption per unit volume (kgf / cm / cm 3 ) = Stress at 50% strain (kgf / cm 2 ) × Energy absorption efficiency up to 50% strain × 0.5 (cm / cm) Equation (5)
The “energy absorption efficiency up to 50% strain” in the equation (5) is an area ratio represented by “area of OAB (area of hatched portion) / area of square OABC” in FIG. .
The results are shown in Table 3 below.

実施例2〜8及び比較例1〜5
 次に,ポリプロピレン系樹脂発泡粒子の基材樹脂として用いるポリプロピレン系樹脂組成物の組成を変え,他は実施例1と同様にして,ポリプロピレン系樹脂発泡粒子及び型内成形体を作製した。
 基材樹脂としては,上記製造例1〜8で得た「ポリマー1」〜「ポリマー8」を表3又は表4に記載の組成にて配合したポリプロピレン系樹脂組成物を使用した。
 その他は,実施例1と同様にして,上記ポリピロピレン系樹脂組成物を用いてポリプロピレン系樹脂発泡粒子及び型内成形体を作製し,これらの評価を行った。
 その結果を表3及び表4に示した。尚,表3〜表5における成形体外観の評価基準は次の通りである。
 ○ 表面の間隙が少なく,凹凸も無い表面外観が優れた成形体。
 △ 表面の間隙がやや認められる又は表面凹凸がやや認められる表面外観が多少劣る成形体。
 × 表面の間隙が多い又は表面凹凸が多い表面外観不良の成形体。
Examples 2 to 8 and Comparative Examples 1 to 5
Next, foamed polypropylene resin particles and in-mold molded articles were produced in the same manner as in Example 1 except that the composition of the polypropylene resin composition used as the base resin of the expanded polypropylene resin particles was changed.
As the base resin, a polypropylene-based resin composition prepared by blending “Polymer 1” to “Polymer 8” obtained in Production Examples 1 to 8 with the composition shown in Table 3 or Table 4 was used.
Except for the above, in the same manner as in Example 1, foamed polypropylene resin particles and in-mold molded articles were produced using the above-mentioned polypropylene resin composition, and these were evaluated.
The results are shown in Tables 3 and 4. The evaluation criteria for the appearance of the molded body in Tables 3 to 5 are as follows.
○ A molded product with small surface gaps and excellent surface appearance without irregularities.
Δ: A molded article with a slightly inferior surface appearance in which gaps on the surface are slightly recognized or surface irregularities are slightly recognized.
× A molded article having a poor surface appearance with many gaps on the surface or many irregularities on the surface.

Figure 2004143451
Figure 2004143451

Figure 2004143451
Figure 2004143451

実施例9
 製造例3で得たポリマー3(プロピレン系重合体[A])と製造例5で得たポリマー5(プロピレン系重合体[B])とを65:35(重量比)で混合し,他は実施例1と同様にして,ポリプロピレン系樹脂組成物の細粒ペレットを得た。
Example 9
The polymer 3 (propylene polymer [A]) obtained in Production Example 3 and the polymer 5 (propylene polymer [B]) obtained in Production Example 5 were mixed at a weight ratio of 65:35. In the same manner as in Example 1, fine pellets of the polypropylene resin composition were obtained.

 次に,このポリプロピレン系樹脂組成物を基材樹脂として用いて,ポリプロピレン系樹脂発泡粒子を以下のようにして作製する。
 まず,ペレット状のポリプロピレン系樹脂組成物100kgを,水220L,ドデシルベンゼンスルホン酸ナトリウム(界面活性剤)5g,カオリン(分散剤)300g,粉末硫酸アルミニウム10g(分散強化剤)と共に内容積400Lのオートクレーブに入れて密閉した。続いて,発泡剤としての炭酸ガスをオートクレーブ内圧力が0.49MPa(ゲージ圧)となるように圧入した後,攪拌しながら162℃まで昇温した。
Next, using this polypropylene resin composition as a base resin, foamed polypropylene resin particles are produced as follows.
First, an autoclave having an internal volume of 400 L was prepared by adding 100 kg of a pellet-shaped polypropylene resin composition together with 220 L of water, 5 g of sodium dodecylbenzenesulfonate (surfactant), 300 g of kaolin (dispersant), and 10 g of powdered aluminum sulfate (dispersion enhancer). And sealed. Subsequently, carbon dioxide gas as a blowing agent was injected so that the internal pressure of the autoclave became 0.49 MPa (gauge pressure), and the temperature was raised to 162 ° C. while stirring.

 次いで,オートクレーブの内圧力が3.14MPa(ゲージ圧)になるまで炭酸ガスを圧入しつつその温度で15分間保持した。その後,オートクレーブの一端を開放してオートクレーブ内容物を大気圧下に放出して発泡粒子を得た。尚,樹脂粒子をオートクレーブから放出する間のオートクレーブ内圧力が,放出直前のオートクレーブ内圧力に保たれるように,オートクレーブ内に窒素ガスを供給しながら放出を行った。得られた発泡粒子を水洗し遠心分離機にかけたのち,24時間大気圧下に放置して養生した後,発泡粒子の嵩密度等を測定した。
 また,得られた発泡粒子について実施例1と同様にして気泡径を測定した。これらの結果を表5に示す。
Then, the temperature was maintained at that temperature for 15 minutes while injecting carbon dioxide gas until the internal pressure of the autoclave became 3.14 MPa (gauge pressure). Thereafter, one end of the autoclave was opened, and the contents of the autoclave were discharged under atmospheric pressure to obtain expanded particles. The discharge was performed while supplying nitrogen gas into the autoclave so that the pressure in the autoclave during discharge of the resin particles from the autoclave was maintained at the pressure in the autoclave immediately before release. After the obtained foamed particles were washed with water and centrifuged, they were allowed to cure under atmospheric pressure for 24 hours, and then the bulk density and the like of the foamed particles were measured.
The cell diameter of the obtained expanded particles was measured in the same manner as in Example 1. Table 5 shows the results.

 次に,上記ポリプロピレン系樹脂発泡粒子を用いて,実施例1と同様にして型内成形体を作製し,得られた成形体について,表面外観,融着度,50%圧縮時の応力,圧縮永久歪,エネルギー吸収量等の評価を行った。その結果を表5に示す。 Next, an in-mold molded article was prepared using the foamed polypropylene resin particles in the same manner as in Example 1, and the resulting molded article was subjected to surface appearance, degree of fusion, stress at 50% compression, and compression. Evaluation of permanent set, energy absorption, etc. was performed. Table 5 shows the results.

Figure 2004143451
Figure 2004143451

 表3及び表5より知られるごとく,本発明にかかる実施例1〜9は,いずれもポリプロピレン系樹脂発泡粒子の気泡が非常に均一で,またそれを用いた型内成形体は,低い成形蒸気圧で加熱されたにもかかわらず,融着度も高く,更に表面外観も優れていることが分る。また,機械的物性についても圧縮強度(50%圧縮時の応力)が高く,圧縮永久歪が小さいものであった。
 また,発泡剤としてイソブタンを使用した実施例8と二酸化炭素を使用した実施例9との比較より,両者は同じ組成物を使用して同じ密度の成形体を得たものであるが,二酸化炭素を使用した実施例9の方が得られた成形体のエネルギー吸収量に優れていることが分かる。
As can be seen from Tables 3 and 5, in Examples 1 to 9 according to the present invention, the foams of the foamed polypropylene resin particles were very uniform, and the in-mold molded articles using the same had low molding steam. Despite heating under pressure, the degree of fusion was high and the surface appearance was also excellent. Also, the mechanical properties were high in compressive strength (stress at 50% compression) and small in compression set.
Also, from a comparison between Example 8 using isobutane as a blowing agent and Example 9 using carbon dioxide, both obtained molded articles having the same density using the same composition. It can be seen that the molded article obtained in Example 9 was more excellent in energy absorption.

 これに対して,表4に示す通り,上記製造例1にて得られたポリマー1を単独で用いた場合には,得られたポリプロピレン系樹脂発泡粒子を用いて成形した型内成形体の表面外観が多少劣る部分と著しく劣る不良部分を含むものであった(比較例3)。
 また,上記製造例5により得たポリマー5を単独で用いた場合には,得られたポリプロピレン系樹脂発泡粒子は,気泡のバラツキが大きく,そのポリプロピレン系樹脂発泡粒子を用いて成形した型内成形体は,内部の融着度が低く,更に型内成形体の表面外観が悪く,圧縮強度(50%圧縮時の応力)についても不十分なものであった(比較例4)。
On the other hand, as shown in Table 4, when the polymer 1 obtained in the above Production Example 1 was used alone, the surface of the in-mold molded article molded using the obtained polypropylene-based resin expanded particles was used. It contained a part with a slightly inferior appearance and a defective part with a very poor appearance (Comparative Example 3).
When the polymer 5 obtained in Production Example 5 was used alone, the obtained expanded polypropylene resin particles had a large variation in air bubbles, and were molded in a mold using the expanded polypropylene resin particles. The body had a low degree of internal fusion, the surface appearance of the in-mold formed body was poor, and the compressive strength (stress at 50% compression) was insufficient (Comparative Example 4).

 また,ポリマー7とポリマー5とを混合してなる比較例1は,プロピレン重合体[A]を含有しないため,得られたポリプロピレン系樹脂発泡粒子は,気泡のバラツキが大きいものとなった。そして,このポリプロピレン系樹脂発泡粒子を用いて成形した型内成形体は,内部の融着度が低く,更に型内成形体の表面外観が悪く,圧縮強度(50%圧縮時の応力)の割りに圧縮永久歪が大きいものであった。
 また,ポリマー8とポリマー5とを混合してなる比較例2は,プロピレン重合体[A]を含有しないため,得られたポリプロピレン系樹脂発泡粒子には,粗大気泡が存在した。そして,このポリプロピレン系樹脂発泡粒子を用いて成形した型内成形体は,表面外観がやや悪く,圧縮強度(50%圧縮時の応力)についても不十分なものであった。
In Comparative Example 1 in which the polymer 7 and the polymer 5 were mixed, because the propylene polymer [A] was not contained, the obtained polypropylene-based resin expanded particles had large variations in cells. The in-mold molded article molded using the expanded polypropylene resin particles has a low degree of internal fusion, furthermore the surface appearance of the in-mold molded article is poor, and the compressive strength (stress at 50% compression) is low. Had a large compression set.
In Comparative Example 2 in which the polymer 8 and the polymer 5 were mixed, since the propylene polymer [A] was not contained, coarse bubbles were present in the obtained expanded polypropylene resin particles. The in-mold molded article molded using the expanded polypropylene resin particles had a slightly poor surface appearance and insufficient compressive strength (stress at 50% compression).

 更に,ポリマー7を単独で用いた比較例5は,プロピレン重合体[A]を含有しないため,得られたポリプロピレン系樹脂発泡粒子は,気泡のバラツキが大きいものとなった。そして,このポリプロピレン系樹脂発泡粒子を用いて成形した型内成形体は,表面外観がやや悪く,圧縮強度(50%圧縮時の応力)の割りに圧縮永久歪が大きいものであった。 (4) Further, Comparative Example 5, which used Polymer 7 alone, did not contain the propylene polymer [A], so that the foamed polypropylene resin particles obtained had large variations in cells. The in-mold molded article molded using the expanded polypropylene resin particles had a slightly poor surface appearance and a large compression set relative to the compressive strength (stress at 50% compression).

 尚,製造例1と製造例2は,同じメタロセン系重合触媒を使用してプロピレン単独重合体を製造した例を示すが,得られたプロピレン単独重合体の性質が異なる。この理由は,重合温度の相違に基づくものである。即ち,重合温度が高い製造例1の方が得られるプロピレン単独重合体の各位置不規則単位の割合が高い。
 また,製造例5及び6は,メタロセン系重合触媒とは異なるチーグラー/ナッタ触媒を使用したことにより,得られたプロピレン系重合体に位置不規則単位が形成されなかった例を示すものである。
Production Example 1 and Production Example 2 show examples in which a propylene homopolymer was produced using the same metallocene polymerization catalyst, but the properties of the obtained propylene homopolymer were different. The reason for this is based on the difference in polymerization temperature. That is, in Production Example 1 having a higher polymerization temperature, the proportion of each position irregular unit in the propylene homopolymer obtained is higher.
Further, Production Examples 5 and 6 show examples in which no regioregular units were formed in the obtained propylene-based polymer by using a Ziegler / Natta catalyst different from the metallocene-based polymerization catalyst.

 また,製造例7は,製造例1とは異なるメタロセン系重合触媒を使用してプロピレン単独重合体を製造して例を示すが,公知文献に記載された条件では各位置不規則単位の割合が本発明の範囲を下回ることが分かる。なお,製造例7においては,重合温度が40℃であったが,重合温度を例えば70℃又はそれ以上に高めた場合には,得られるプロピレン単独重合体は位置不規則単位が本発明の範囲内に入ると予想されるが,その一方で,[mm]分率は製造例7のプロピレン単独重合体よりも更に低下するものと予想される。
 また,製造例8は,製造例1及び製造例7とは異なるメタロセン系重合触媒を使用してプロピレン単独重合体を製造した例を示すが,使用されたメタロセン系重合触媒の金属錯体成分が適当でなかったため各位置不規則単位の割合が本発明の範囲を上回ったものである。
Production Example 7 shows an example in which a propylene homopolymer is produced using a metallocene-based polymerization catalyst different from that of Production Example 1. However, under the conditions described in the known literature, the proportion of each position irregular unit is reduced. It can be seen that this is below the scope of the present invention. In Production Example 7, the polymerization temperature was 40 ° C., but when the polymerization temperature was increased to, for example, 70 ° C. or higher, the propylene homopolymer obtained had a position irregular unit within the range of the present invention. However, the [mm] fraction is expected to be lower than that of the propylene homopolymer of Production Example 7.
Production Example 8 shows an example in which a propylene homopolymer was produced using a metallocene polymerization catalyst different from Production Examples 1 and 7, and the metal complex component of the metallocene polymerization catalyst used was not suitable. Therefore, the proportion of each position irregular unit exceeded the range of the present invention.

実施例1にかかる,50%歪時エネルギー吸収量を説明するための応力−歪線図。FIG. 4 is a stress-strain diagram for explaining the energy absorption at 50% strain according to the first embodiment.

Claims (7)

 下記のプロピレン系重合体[A]5〜95重量%と,下記のプロピレン系重合体[B]95〜5重量%(ただし,プロピレン系重合体(A)とプロピレン系重合体[B]との合計量は100重量%である)とを含有することを特徴とするポリプロピレン系樹脂組成物。
 プロピレン系重合体[A]:下記の要件(a)及び(b)を有する,プロピレン系重合体。
(a)プロピレンから得られる構造単位が100〜85モル%,エチレン及び/又は炭素数4〜20のα−オレフィンから得られる構造単位が0〜15モル%存在すること(ただし,プロピレンから得られる構造単位と,エチレン及び/又は炭素数4〜20のα−オレフィンから得られる構造単位との合計量は100モル%である)。
(b)13C−NMRにて測定したときの,全プロピレン挿入中のプロピレンモノマー単位の2,1−挿入に基づく位置不規則単位の割合が0.5〜2.0%であり,かつプロピレンモノマー単位の1,3−挿入に基づく位置不規則単位の割合が0.005〜0.4%であること。
 プロピレン系重合体[B]:上記要件(a)及び(b)のうち要件(a)だけを有するプロピレン系重合体。
5 to 95% by weight of the following propylene-based polymer [A] and 95 to 5% by weight of the following propylene-based polymer [B] (provided that the propylene-based polymer (A) and the propylene-based polymer [B] The total amount is 100% by weight).
Propylene-based polymer [A]: A propylene-based polymer having the following requirements (a) and (b).
(A) 100 to 85 mol% of structural units obtained from propylene, and 0 to 15 mol% of structural units obtained from ethylene and / or an α-olefin having 4 to 20 carbon atoms (provided that propylene is obtained from propylene) The total amount of the structural units and the structural units obtained from ethylene and / or an α-olefin having 4 to 20 carbon atoms is 100 mol%).
(B) the ratio of the position irregular units based on the 2,1-insertion of the propylene monomer units in the total propylene insertion is 0.5 to 2.0%, as measured by 13C-NMR, and the propylene monomer The ratio of the position irregular units based on the 1,3-insertion of the unit is 0.005 to 0.4%.
Propylene-based polymer [B]: A propylene-based polymer having only the requirement (a) among the requirements (a) and (b).
 請求項1において,上記プロピレン系重合体[A]は,更に下記の要件(d)を有することを特徴とするポリプロピレン系樹脂組成物。
(d)頭−尾結合からなるプロピレン単位連鎖部における,13C−NMRで測定したときのアイソタクチックトリアッド分率は97%以上であること。
2. The polypropylene resin composition according to claim 1, wherein the propylene polymer [A] further has the following requirement (d).
(D) The isotactic triad fraction in the propylene unit chain portion composed of head-to-tail bonds, as measured by 13C-NMR, is 97% or more.
 請求項1又は2において,上記プロピレン系重合体[A]は,更に下記の要件(e)を有することを特徴とするポリプロピレン系樹脂組成物。
(e)メルトフローレートが0.5〜100g/10分であること。
3. The polypropylene resin composition according to claim 1, wherein the propylene polymer [A] further has the following requirement (e).
(E) The melt flow rate is 0.5 to 100 g / 10 minutes.
 請求項1〜3のいずれか一項において,上記ポリプロピレン系樹脂組成物は,示差走査熱量計による測定で,実質上単独の融解ピークを示すことを特徴とするポリプロピレン系樹脂組成物。 <4> The polypropylene resin composition according to any one of claims 1 to 3, wherein the polypropylene resin composition exhibits a substantially single melting peak as measured by a differential scanning calorimeter.  請求項1〜4のいずれか一項に記載のポリプロピレン系樹脂組成物を基材樹脂として含有することを特徴とするポリプロピレン系樹脂発泡粒子。 (5) Foamed polypropylene resin particles containing the polypropylene resin composition according to any one of claims 1 to 4 as a base resin.  請求項5において,上記ポリプロピレン系樹脂発泡粒子は,下記の要件(f)を満足する発泡剤を用いて発泡していることを特徴とするポリプロピレン系樹脂発泡粒子。
(f)上記発泡剤の臨界温度をTc[℃]とした場合に,Tcが下記の式(2)を満足すること。
  −90℃≦Tc≦400℃          式(2)
6. The expanded polypropylene resin particles according to claim 5, wherein the expanded polypropylene resin particles are expanded using a blowing agent satisfying the following requirement (f).
(F) When the critical temperature of the foaming agent is Tc [° C.], Tc satisfies the following expression (2).
-90 ° C ≦ Tc ≦ 400 ° C Equation (2)
 ポリプロピレン系樹脂発泡粒子を成形型内において成形してなり,密度0.008〜0.5g/cm3を有する型内成形体であって,
 かつ上記ポリプロピレン系樹脂発泡粒子は,上記請求項5又は6に記載のものを用いてなることを特徴とする型内成形体。
An in-mold molded article obtained by molding expanded polypropylene resin particles in a mold and having a density of 0.008 to 0.5 g / cm 3 .
7. A molded article in a mold, characterized in that the expanded polypropylene resin particles are formed by using the one according to claim 5 or 6.
JP2003339215A 2002-09-30 2003-09-30 Polypropylene resin expanded particles and in-mold molded body using the same Expired - Fee Related JP4499394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339215A JP4499394B2 (en) 2002-09-30 2003-09-30 Polypropylene resin expanded particles and in-mold molded body using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002286899 2002-09-30
JP2003339215A JP4499394B2 (en) 2002-09-30 2003-09-30 Polypropylene resin expanded particles and in-mold molded body using the same

Publications (2)

Publication Number Publication Date
JP2004143451A true JP2004143451A (en) 2004-05-20
JP4499394B2 JP4499394B2 (en) 2010-07-07

Family

ID=32473281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339215A Expired - Fee Related JP4499394B2 (en) 2002-09-30 2003-09-30 Polypropylene resin expanded particles and in-mold molded body using the same

Country Status (1)

Country Link
JP (1) JP4499394B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096805A (en) * 2004-09-28 2006-04-13 Kaneka Corp Polypropylene base resin prefoamed particle and in-mold foamed product
JP2010043209A (en) * 2008-08-15 2010-02-25 Kaneka Corp Manufacturing method of pre-expanded particle of polypropylene resin, and pre-expanded particle of polypropylene resin
WO2010087111A1 (en) 2009-01-27 2010-08-05 株式会社カネカ Polypropylene resin pre-foamed particle and method for producing same, and polypropylene resin in-mold foaming molded article
JP2011137172A (en) * 2011-03-07 2011-07-14 Kaneka Corp Polypropylene resin preliminary foamed particle, in-mold foamed molding, and production method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245914A (en) * 1993-02-23 1994-09-06 Matsushita Electric Works Ltd Method and device for estimating and utilizing normal number of pulses
JPH08208909A (en) * 1994-12-06 1996-08-13 Mitsui Petrochem Ind Ltd Polypropylene composition
WO1999028374A1 (en) * 1997-12-01 1999-06-10 Jsp Corporation Expandable polypropylene resin beads and products of in-mold expansion
JPH11302471A (en) * 1998-04-21 1999-11-02 Japan Polychem Corp Injection of propylene based resin composition
JPH11302470A (en) * 1998-04-21 1999-11-02 Japan Polychem Corp Propylene resin film
JPH11349780A (en) * 1998-06-05 1999-12-21 Mitsubishi Chemical Corp Propylene-based polymer composition
JP2001240711A (en) * 2000-03-01 2001-09-04 Japan Polychem Corp Thermally shrinkable stretched polypropylene film
JP2003147157A (en) * 2001-11-09 2003-05-21 Japan Polychem Corp Polypropylene resin composition
JP2003147158A (en) * 2001-11-09 2003-05-21 Japan Polychem Corp Polypropylene resin composition
JP2003327740A (en) * 2002-05-13 2003-11-19 Jsp Corp Polypropylene resin foaming particle and in-mold molded product using the same
WO2003095539A1 (en) * 2002-05-13 2003-11-20 Jsp Corporation Expandable polypropylene resin particle and molded object obtained therefrom by in-mold molding

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245914A (en) * 1993-02-23 1994-09-06 Matsushita Electric Works Ltd Method and device for estimating and utilizing normal number of pulses
JPH08208909A (en) * 1994-12-06 1996-08-13 Mitsui Petrochem Ind Ltd Polypropylene composition
WO1999028374A1 (en) * 1997-12-01 1999-06-10 Jsp Corporation Expandable polypropylene resin beads and products of in-mold expansion
JPH11302471A (en) * 1998-04-21 1999-11-02 Japan Polychem Corp Injection of propylene based resin composition
JPH11302470A (en) * 1998-04-21 1999-11-02 Japan Polychem Corp Propylene resin film
JPH11349780A (en) * 1998-06-05 1999-12-21 Mitsubishi Chemical Corp Propylene-based polymer composition
JP2001240711A (en) * 2000-03-01 2001-09-04 Japan Polychem Corp Thermally shrinkable stretched polypropylene film
JP2003147157A (en) * 2001-11-09 2003-05-21 Japan Polychem Corp Polypropylene resin composition
JP2003147158A (en) * 2001-11-09 2003-05-21 Japan Polychem Corp Polypropylene resin composition
JP2003327740A (en) * 2002-05-13 2003-11-19 Jsp Corp Polypropylene resin foaming particle and in-mold molded product using the same
WO2003095539A1 (en) * 2002-05-13 2003-11-20 Jsp Corporation Expandable polypropylene resin particle and molded object obtained therefrom by in-mold molding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096805A (en) * 2004-09-28 2006-04-13 Kaneka Corp Polypropylene base resin prefoamed particle and in-mold foamed product
JP2010043209A (en) * 2008-08-15 2010-02-25 Kaneka Corp Manufacturing method of pre-expanded particle of polypropylene resin, and pre-expanded particle of polypropylene resin
WO2010087111A1 (en) 2009-01-27 2010-08-05 株式会社カネカ Polypropylene resin pre-foamed particle and method for producing same, and polypropylene resin in-mold foaming molded article
US8598241B2 (en) 2009-01-27 2013-12-03 Kaneka Corporation Polypropylene resin pre-foamed particle and method for producing same, and polypropylene resin in-mold foaming molded article
JP2011137172A (en) * 2011-03-07 2011-07-14 Kaneka Corp Polypropylene resin preliminary foamed particle, in-mold foamed molding, and production method thereof

Also Published As

Publication number Publication date
JP4499394B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
KR100916981B1 (en) Expandable polypropylene resin particle and molded object obtained therefrom by in-mold molding
EP2487199B1 (en) Polypropylene resin expanded particles and polypropylene resin in-mold expanded molded body
JP3204424B2 (en) Polypropylene resin foam particles
EP1566255B1 (en) Thick foam molding and process for production thereof
JP6093604B2 (en) Polypropylene resin expanded particles and molded articles thereof
JP4272016B2 (en) Polypropylene resin expanded particles and in-mold molded body using the same
JP2004176047A (en) Polypropylene-based resin foamed particle and in-mold processed product by using the same
JP3904551B2 (en) Polypropylene resin composition, expanded particles and in-mold molded product
JP4282439B2 (en) Polypropylene resin expanded particles and in-mold molded body using the same
JP5503123B2 (en) Styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and expanded molded articles
JP2005146017A (en) Polyproylene resin expanded particle and in-mold molded product using the same
JP3904550B2 (en) Polypropylene resin composition, expanded particles and in-mold molded product
JP4499394B2 (en) Polypropylene resin expanded particles and in-mold molded body using the same
JP4334924B2 (en) Method for producing in-mold foam molding
JP2004211065A (en) Shock-absorbing material and shock absorber
JP4282438B2 (en) Method for producing in-mold foam molding
JP5749039B2 (en) POLYPROPYLENE RESIN FOAM PARTICLE, POLYPROPYLENE RESIN IN-MOLD FOAM MOLDED PRODUCT, AND METHOD FOR PRODUCING POLYPROPYLENE RESIN FOAM
EP1593475A1 (en) Continuous production of foam molding from expanded polyolefin resin beads
JP4430375B2 (en) Polypropylene resin foam molding
JP2003327740A (en) Polypropylene resin foaming particle and in-mold molded product using the same
JP2004211066A (en) Shock-absorbing material and shock absorber
JP2005240025A (en) Thick-walled foam molded product and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4499394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees