【0001】
【発明の属する技術分野】
本発明は、レーザー光が透過する透明、半透明または薄く着色したシート材の融着方法および成形品に関する。
【0002】
【従来の技術】
シート材の融着方法としては、一般に、ヒートシール法、インパルスシール法、高周波シール法がある(例えば、非特許文献1参照。)。
【0003】
ヒートシール法とは、加熱した金型でシート材を挟み込んで、シート材の一部を溶融状態とし融着させる方法である。この方法では、加熱した金型で溶融させながら押圧するため、シート材が変形し、バリが出やすいという問題がある。
【0004】
インパルスシール法は、一般に、表面にヒータが装着された圧着板でシート材を挟み押圧する工程と、ヒータに通電することによりシート材を融着する工程と、通電を止めシート材を冷却しシート材を取り出す工程とを有している。この方法は、複数の工程を有するため時間がかかり、特に、加熱されたシート材を冷却するのに比較的長い時間がかかる。したがって、この方法では、特に、連続してシート材の融着を行う場合の生産性が良くないという問題があった。
【0005】
また、高周波シール法は、電極間に重ね合わせたシート材を設置した状態で、高周波を発振させ、前記シート材を加圧して融着させる方法である。この方法では、高周波誘電を利用するため、シート材が極性の低い材料で構成されたものである場合、前記シート材を確実に融着させるのが困難となる。すなわち、この方法では、シート材の材質が限られ、シート材の選択の幅が狭くなるという問題があった。一方、レーザー光を用いた熱可塑性樹脂の融着方法も知られている(例えば、特許文献1、2、3参照。)。これらの方法では、成形品の一部にレーザー光吸収材料が残存することとなり、外観悪化や、溶出物の安全性等が懸念される。
【0006】
【非特許文献1】
高分子学会編「プラスチック加工技術ハンドブック」日刊工業新聞社発行、1995年、p.1270−1275
【特許文献1】
特開平4−157082号公報
【特許文献2】
特開2001−191412号公報
【特許文献3】
特開平9−182796号公報
【0007】
【発明が解決しようとする課題】
本発明の目的は、レーザー光透過性シート材を単純な工程で確実に融着し、シート材の融着後にバリが生じにくい、シート材の融着方法および成形品を提供することにある。
【0008】
【課題を解決するための手段】
このような目的は、下記(1)〜(13)の本発明により達成される。
【0009】
(1) レーザー光の照射により発熱する発熱部材と、前記レーザー光を透過する光透過性部材との間に、前記発熱部材側から、熱融着性シート材の融着部と、前記熱融着性シート材と融着する融着部材の融着部とを重ね合わせた状態で設置し、
前記光透過性部材を介して、前記発熱部材に前記レーザー光を照射することにより、前記熱融着性シート材と前記融着部材とを融着させることを特徴とする融着方法。これにより、単純な工程で着実に融着させることができ、かつシール部のバリの発生を抑制することができる。
【0010】
(2) 前記光透過性部材は、前記融着部材の融着部を押圧する押圧部を有するものである上記(1)に記載の融着方法。これにより、前記熱融着性シート材と前記融着部材との融着強度を高くすることができる。
【0011】
(3) 前記押圧部は、凸形状のものである上記(2)に記載の融着方法。これにより、荷重部分の面積が小さくなり、小さい押圧力で、高い融着強度を得ることができる。
【0012】
(4) 前記熱融着性シート材は、単一層シート材、または、溶融温度が実質的に単一の積層シート材である上記(1)ないし(3)のいずれかに記載の融着方法。これにより、シール部のバリの発生抑制に高い効果を得ることができる。
【0013】
(5) 前記融着部材は、シート材である上記(1)ないし(4)のいずれかに記載の融着方法。これにより、装置の構成が複雑、大型化せず、必要とするレーザー光出力を小さくすることができる。
【0014】
(6) 前記融着部材は、前記熱融着性シート材と同一の構成である上記(1)ないし(5)のいずれかに記載の融着方法。これにより、二つの部分の材料の溶融温度が同一であり、溶融時の樹脂の相溶性を高くすることができる。
【0015】
(7) 前記融着部材は、前記熱融着性シート材の他の部分である上記(1)ないし(6)のいずれかに記載の融着方法。これにより、二つの部分の材料の溶融温度が同一であり、溶融時の樹脂の相溶性を高くすることができる。
【0016】
(8) 前記光透過性部材は、球体形状またはローラー形状のものである上記(1)ないし(7)のいずれかに記載の融着方法。これにより、複雑な形状のシール部であっても、容易に形成することができる。
【0017】
(9) 前記発熱部材のうち、少なくとも前記レーザー光が照射される部位は、室温付近における熱伝導率が350W・m−1・K−1以下の材料で構成されるものである上記(1)ないし(8)のいずれかに記載の融着方法。これにより、レーザー光の照射により発生する熱が効率的に熱融着性シート材に伝わり、所定の範囲を確実に融着させることができる。
【0018】
(10) 前記発熱部材の表面の少なくとも一部に、前記シート材との融着を防止する表面処理を施した上記(1)ないし(9)のいずれかに記載の融着方法。これにより、後述する成形品の生産性を向上させることができる。
【0019】
(11) 前記シート材は、主としてポリオレフィン系樹脂で構成されたものである上記(1)ないし(10)のいずれかに記載の融着方法。これにより、高周波シール法が適用できないという制限にもかかわらず、単純な工程で確実に融着させることができる。
【0020】
(12) 上記(1)ないし(11)のいずれかに記載の融着方法により、融着されたことを特徴とする成形品。これにより、バリの発生を十分に抑制しつつ、かつ単純な工程で成形品を形成することができる。
【0021】
(13) 医療用に用いられる上記(12)に記載の成形品。これにより、バリを原因とする異物の発生、成形不良等を抑制することができる。特に、異物等が問題になる、医療用の成形品に好適に利用できる。
【0022】
【発明の実施の形態】
以下、本発明のレーザー光透過性シート材の融着方法の好適な実施形態について、添付図面を参照しつつ説明する。
【0023】
本発明の融着方法は、熱融着性シート材と融着部材とを融着するものである。融着部材としては、後述するように、シート形状、板状、チューブ状(管状)等、透明、半透明または薄く着色したもので、レーザー光を透過するものであれば、いかなる形状のものを用いてもよい。融着部材がシート形状である場合、バリや変形を改善する効果が高く、本発明の好適な対象である。以下の説明では、融着部材として、シート形状を有するもの(シート材)を用いる構成について説明する。
【0024】
図1は、本発明のシート材の融着方法の第1実施形態における各部材の設置構成を示す断面図、図2は、本実施形態における光透過性部材1Aのシート材との接触面側から見た平面図、図3は、本実施形態により得られるバッグ6の平面図である。
【0025】
図1に示すように、本実施形態のシート材の融着方法では、レーザー光を透過する光透過性部材1Aと、レーザー光の照射により発熱する発熱部材2Aとの間に、熱融着性シート材(以下単に「シート材」という)31と、該シート材31と融着する融着部材としてのシート材32とを設置した状態で、後述する押圧部10の領域に対し、レーザー光照射装置4よりレーザー光を照射させる。ここで、シート材31は、発熱部材2Aと接触するように設置され、シート材32は、光透過性部材1A側と接触するように設置される。
【0026】
図1に示すように、光透過性部材1Aは、シート材32を押圧する凸形状の押圧部10を有している。
【0027】
光透過性部材1Aを構成する材料としては、後述するレーザー光41が透過し得るものであれば、いかなるものを用いてもよい。このような材料としては、例えば、石英ガラス、青板ガラス、耐熱ガラス、耐圧ガラス等のガラス、アクリル系樹脂、ポリカーボネート樹脂等の樹脂等が挙げられるが、なかでも、耐圧ガラスが好ましい。耐圧ガラスは、光の透過性に優れ、特に優れた機械的強度耐久性を有している。
【0028】
光透過性部材1Aは、後述するレーザー光41の透過率が80%以上であるのが好ましく、90%以上であるのがより好ましい。
【0029】
上記レーザー光41の透過率が前記下限値未満であると、レーザー光41が後述する発熱部材2Aに充分に届かず、このため、レーザー光41の照射による発熱部材2Aの発熱が不充分となり、シール部33を形成するのが困難となる場合がある。また、光透過性部材1A自体が過度に発熱してしまう場合がある。
【0030】
図1に示すように、押圧部10は、後述するシート材32の融着すべき部分(融着部)を押圧し、シート材31とシート材32とを密着させる機能を有する。このような状態にすることにより、後述するレーザー照射による融着の際、例えば、シート材の浮きや、形成されるシール部33への空気の残存等を防止し、シート材31とシート材32とを確実に融着させることができる。また、シート材表面の多少の凹凸が平均化され、形成されるシール部33の透明性が向上する。
【0031】
押圧部10は、図2に示すように、光透過性部材1Aの外周に沿って形成され、シート材31およびシート材32の融着すべき部分(シール部33)の形状に対応したものである。このような形状にすることにより、上記のような問題点をより効果的に防止することができる。
【0032】
図1中、H1で示す押圧部の高さは、0.1〜1.0mmであるのが好ましく、0.1〜0.5mmであるのがより好ましい。
【0033】
上記押圧部の高さH1が前記下限値未満であると、シール部の押圧力が弱く、剥離等のシール不良となる可能性がある。
【0034】
一方、上記押圧部の高さH1が前記上限値を超えると、シール部が肉薄となり、シール部が破断する可能性がある。
【0035】
また、押圧部10の形状は、上記形状に限定されず、例えば、角がなく滑らな形状のもの等であってもよい。
【0036】
発熱部材2Aは、後に詳述するように、レーザー光41の照射により、発熱するものである。
【0037】
発熱部材2Aは、少なくとも一部がレーザー光41の照射により発熱する材料で構成されたものであれば、いかなる材料で構成されるものであってもよい。このような材料としては、例えば、鉄、ニッケル、ステンレス鋼、銅、真鍮、アルミニウム、チタン等の各種金属、セラミックまたはこれらを含む合金等が挙げられる。
【0038】
また、発熱部材2Aは、上記材料の表面に、黒色、褐色、濃青色、濃緑色、その他暗色の表面加工を施したもの等であってもよい。黒色等の表面加工としては、例えば、黒色の耐熱塗料の塗布、黒色金属のめっき等が挙げられる。
【0039】
また、発熱部材2Aは、レーザー光41の吸収率が、50%以上の材料で構成されるものが好ましい。上記発熱部材2Aは、黒色テフロンコート(「テフロン」は登録商標です)された材料が特に好ましい。
【0040】
また、発熱部材2Aは、室温付近での熱伝導率が、350W・m−1・K−1以下の材料で構成されるものが好ましく、17W・m−1・K−1以下の材料で構成されるものがより好ましい。
【0041】
上記熱伝導率が前記上限値を超えると、レーザー光41の照射により発生する熱が発熱部材2A中で拡散してしまい、シール幅が広くなり、シート材31、シート材32の材質等によっては、押圧部10に対応する形状のシール部33を形成するのが困難となる場合がある。
【0042】
さらに、発熱部材2Aの表面には、例えば、熱融着性シート材との融着を防止する表面処理等を施してもよい。このような表面処理としては、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)等)等でのコーティング等が挙げられる。
【0043】
また、発熱部材2Aは、連続使用による温度上昇を防止するため、温度調節されていることが好ましい。前記温度調節の範囲は、常温から80℃であるのが好ましい。調節方式は、特に限定されないが、例えば、温水を利用したチラー方式や、ヒータを利用したヒート温調方式等が挙げられる。
【0044】
前述した光透過性部材1Aと発熱部材2Aとの間に設置するシート材31は、熱融着性を有し、レーザー光41が透過し得る材料であれば、いかなる材料でもよい。このような材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブタジエン、エチレン−酢酸ビニル共重合体(EVA)のようなポリオレフィン、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)のようなポリエステル、軟質ポリ塩化ビニル、ポリ塩化ビニリデン、シリコーン、ポリウレタン、ポリアミドエラストマー等の各種熱融着性エラストマーあるいはこれらを任意に組み合わせたもの(ブレンド樹脂、ポリマーアロイ等)が挙げられる。このなかでは、ポリオレフィンが好ましい。ポリオレフィンは、高周波シール法の適用の困難性が高く、本発明の適用により、加工の幅を拡げることができるからである。
【0045】
また、シート材31は、単一の層で構成されたもの(単一層シート材)であってもよいし、複数の層が積層された積層体(積層シート材)であってもよいが、単一層シート材、または、溶融温度が実質的に単一の(各層の溶融温度が同一または近い値であり、加熱により、ほぼ同時に溶融状態となる)積層シート材であることが好ましい。このとき、特に、本発明の効果が大きく発揮される。
【0046】
また、シート材31の平均厚さは、その層構成や用いる素材の特性(柔軟性、強度、水蒸気透過性、耐熱性等)等に応じて適宜決定され、特に限定されない。
【0047】
上記シート材31のレーザー光41の吸収率が、20%以下であるのが好ましく、10%以下であるのがより好ましい。
【0048】
シート材32としては、例えば、前述したシート材31と同様のものを用いることができる。
【0049】
シート材32は、シート材31と、ほぼ同じ構成のものであってもよいし、異なる構成のものであってもよいが、シート材31と同じ構成のものであるのが好ましい。これにより、シート材31と、シート材32の溶融温度が同じか近い値になり、また、溶融時の相溶性も良いので、形成されるシール部33のシール強度が向上する。
【0050】
また、シート材31とシート材32との構成が異なる場合でも、シート材31とシート材32の少なくとも接触する部分(融着部)が、同じ材質であるのが好ましい。これにより、上記と同様の効果を得ることができる。この例としては、単一層からなるシート材31と、複数の層からなる積層体としてのシート材32とを融着させる場合、シート材32を構成する層のうち、シート材31と接触する層が、シート材31を構成する材質と同じ材質で構成されたものが挙げられる。また、材質が異なる場合でも、それらの融点が同じか、または、できるだけ近いものが、シール強度向上のために、好ましい。
【0051】
また、シート材31とシート材32の厚さは、ほぼ同じものでも、異なるものでもよい。
【0052】
また、シート材31とシート材32の剛性(可撓性)は、ほぼ同じものでも、異なるものでもよい。
【0053】
また、シート材31とシート材32の透明度(レーザー光の吸収率)は、ほぼ同じものでも、異なるものでもよい。
【0054】
また、シート材31とシート材32の気体透過性(ガスバリア性)は、ほぼ同じものでも、異なるものでもよい。
【0055】
前述の押圧部10の圧力の条件については、シート材31、シート材32の材質や厚さ、光透過性部材1Aの材質等の条件により異なるが、0.5〜2.0MPaであることが好ましい。上記圧力が前記下限値未満であると、シート材31、シート材32の材質によっては、確実に融着できない可能性がある。一方、上記圧力が前記上限値を超えると、シート材31、シート材32の材質によっては、融着部分がつぶれ、シール部33が変形しやすくなる。
【0056】
このように押圧部10でシート材を押圧した状態で、押圧部10、シート材31、シート材32を介して、レーザー光照射装置4より発熱部材2Aにレーザー光41を照射する。発熱部材2Aは、レーザー光41が照射された部位で発熱する。発熱部材2Aに接触しているシート材31は、この熱により溶融状態となり、押圧部10の圧力により、シート材32と融着するものである。
【0057】
本発明の方法において使用されるレーザー光41としては、ルビーレーザー、半導体レーザー、YAGレーザー、ガラスレーザー、YVO4レーザー、Ne−Heレーザー、Arレーザー、CO2レーザーが挙げられる。なかでも、室温で連続発振を容易に行うことができ、低い照射エネルギー領域における制御性の良さ等からYAGレーザーが好ましく用いられる。
【0058】
レーザー光41の照射条件については、上記シート材の材質や厚さ、および発熱部材2Aの材質等により若干異なるが、例えば、YAGレーザーの場合、エネルギー強度は20〜80W程度であることが好ましい。
【0059】
前記レーザー光41のビーム径は、特に限定されず、上記シート材の材質や厚さ、および発熱部材2Aの材質等により若干異なるが、0.5〜3.0mm程度が好ましく、1.0〜2.0mm程度がより好ましい。
【0060】
本実施形態のシート材の融着方法では、前記レーザー光41の照射部位を経時的に変化させる(走査させる)ことにより、シート材31とシート材32とが融着される。これにより、図3に示すように、所望の形状(パターン形状)のシール部33を形成させることができる。なお、融着されない部分は、非シール部34となる。
【0061】
また、レーザー光41の照射により発熱する発熱部材2Aの領域は、一部に限定されるので、発熱部材2Aの発熱により溶融されるシート材31の領域もレーザー光41の照射部位に限定される。このため、本実施形態では、シート材の溶融部が、これよりも広い面積の発熱していない(溶融部位を含み、かつ、溶融部位より広い面積の平面部を有している)発熱部材2Aにより押さえられるため、溶融部位の発熱部材2Aと接触する側における押圧力が分散され、溶融部位の周囲にバリが出るのが抑えられるのである。
【0062】
さらに、本実施形態のシート材の融着方法では、発熱、融着、冷却の一連の工程が、レーザー光41の移動(走査)とともに連続して行われ、これにより、シート材31、シート材32を単純な工程(短時間)で確実に融着させることが可能となる。
【0063】
以下に、レーザー光41の走査方法の一例を挙げ、説明する。
レーザー光照射装置4は、図3中の横方向(図中、矢印Aで示す方向)にレーザー光41を走査させることができるものである。
【0064】
レーザー光照射装置4は、前記レーザー光41の照射部位を、図3中の矢印Aで示す方向に向かって、直線的に走査(主走査)させる。ここで、点35Aは主走査開始点、点36Aは主走査終了点、点37および点38はシール部33と非シール部34との境界点である。
【0065】
点35Aから点36Aへ走査させる間に、形成されるシール部のパターンに対応して、レーザー光41の照射が制御される。すなわち、点35Aと点37との間では、レーザー光41を照射させ、点37と点38との間ではレーザー光41を照射させず、点38と点36Aとの間では、レーザー光41を照射させる。点36Aに達したら、レーザー光41の照射をやめ、主走査開始点35Aに戻る。
【0066】
前記主走査を行った後、前記主走査方向と垂直の方向に、すなわち、図3における上方向(図中、矢印Bで示す方向)に、シート材を所定の距離だけ移動させることにより、レーザー光照射部位を移動(副走査)させる。ここで、副走査時のシート材の移動距離は、通常、ビーム径に対応する。このとき、シート材31、シート材32は、光透過性部材1Aと発熱部材2Aとで挟持・固定された状態で移動する。
【0067】
このような副走査を行った後、前記と同様に主走査を行う。主走査、副走査を繰り返し行うことにより、レーザー光41の照射パターンに対応する形状のシール部33が形成され、本発明の成形品としてのバッグ6が得られる。本発明により得られるバッグ6は、例えば、輸液バッグ、栄養剤バッグ、血液バッグ等の医療用容器等に好適に用いることができる。なお、バッグ6は、このような医療用バッグに限定されず、いかなる用途のものであってもよい。
【0068】
また、本実施形態では、角のあるシート材を用いて長方形のバッグを形成させたが、例えば、角のないシート材を用いてバッグを形成させてもよいし、長方形に形成させた後に、角を切り落としてバッグを形成させてもよい。
【0069】
また、図3に示す構成では、シート材の縁部を融着するものであるが、例えば、さらに、縁部以外の非シール部34の一部を帯状に融着することにより、複数の空間を有する複室容器を形成することができる。
【0070】
また、本発明の方法および成形品は、このようなバッグに適用する場合に限定されず、いかなるものであってもよい。例えば、各種包材、特に、内部に例えば、シリンジ、カテーテル、手術器具のような医療器具が、収納された包材の形成または該包材の開口封止に適用することができる。
【0071】
また、本実施形態では、レーザー光41を主走査方向に走査させ、シート材を移動させることによりレーザー光41を副走査方向に走査させる方法について説明したが、例えば、シート材を移動させずに、レーザー光41を主走査および副走査させるような方法でもよいし、図3中の縦方向に主走査させ、かつ、横方向に副走査させる方法等でもよい。
【0072】
次に、本発明のシート材の融着方法の第2実施形態について説明する。以下、第2実施形態のシート材の融着方法について、前記第1実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
【0073】
図4は、本発明のシート材の融着方法の第2実施形態における、各部材の設置構成を示す断面図、図5は、本実施形態により得られるバッグ6の平面図である。
【0074】
図4に示すように、本実施形態のシート材の融着方法では、レーザー光41を透過する球体形状の光透過性部材1Bと、レーザー光41の照射により発熱する発熱部材2Aとの間に、シート材31と、該シート材31と融着する融着部材としてのシート材32とを設置した状態で、光透過性部材1Bと前記シート材とを介して、レーザー光照射装置4より、発熱部材2Aにレーザー光41を照射させる。ここで、シート材31は、発熱部材2Aと接触するように設置され、シート材32は、光透過性部材1B側と接触するように設置される。
【0075】
図4に示す光透過性部材1Bは、支持部材5Aにより支持され、転動可能となっている。また、光透過性部材1Bは、シート材32と接触する押圧部10により、シート材32を押圧するものである。押圧部10は、光透過性部材1Bの転動に伴い、シート材32の表面を相対的に移動する。
【0076】
レーザー光照射装置4は、押圧部10に追従して移動するものである。また、レーザー光照射装置4より発射されたレーザー光41は、光透過性部材1Bの中心11と押圧部10を介して、前記発熱部材2Aに照射される。
【0077】
光透過性部材1Bの構成材料、レーザー光41の透過率は、前述した第1実施形態の光透過性部材1Aの構成材料、レーザー光41の透過率と同様である。
【0078】
本実施形態のシート材の融着方法では、光透過性部材1Bの転動により押圧部10をシート材に対し相対的に移動させ、レーザー光照射装置4からレーザー光41を発熱部材1Aの押圧部10に対応した部位に照射させることにより、シート材31とシート材32とが融着される。これにより、図3に示すように、所望の形状のシール部33を形成させることができる。なお、融着されない部分は、非シール部34となる。
【0079】
さらに、本実施形態のシート材の融着方法では、発熱、融着、冷却の一連の工程が、レーザー光41の移動、すなわち、押圧部10の移動とともに連続して行われ、これにより、シート材31、シート材32を単純な工程(短時間)で確実に融着させることが可能となる。
【0080】
押圧部10の移動方法の一例としては、押圧部10を、レーザー光照射装置4とともに、シート材上を二次元的に移動させ、シール部33のパターンに対応して、レーザー光41の照射を制御する方法が挙げられる。すなわち、融着すべき領域ではレーザー光41を照射させ、融着しない領域ではレーザー光41を照射させない。
【0081】
例えば、まず、押圧部10でシート材を押圧しつつ、押圧部10をシート材の横方向に移動させる。押圧部10が、左右方向移動の端部まで移動したら、押圧部10を図3中の下方向に移動させる。この移動距離は、通常、ビーム径に対応する。
【0082】
その後、押圧部10を、順次移動させ、前述と同様に、レーザー光照射装置4は、シール部33のパターンに沿って、レーザー光41の照射を制御する。このように、押圧部10の移動、すなわち、レーザー光41の移動により、レーザー光41の照射パターンに対応する形状のシール部33が形成される。
【0083】
また、押圧部10を、レーザー光照射装置4とともに、シート材上のシール部33に対応する領域のみを順次移動させてもよい。この間、押圧部10に追従するレーザー光照射装置4は、押圧部10に対しレーザー光41を照射し続ける。
【0084】
このように、押圧部10の移動、すなわち、レーザー光41のシール部33に対応する領域内の移動により、シート材31とシート材32とが順次融着されていき、シール部33が形成される。
【0085】
本実施形態では、押圧部10を移動させる方法について説明したが、例えば、シート材を移動させる方法、押圧部10とシート材との両方を移動させる方法等でもよい。
【0086】
次に、本発明のシート材の融着方法の第3実施形態について説明する。以下、第3実施形態のシート材の融着方法について、前記第1〜第2実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
【0087】
図5は、本発明のシート材の融着方法の第3実施形態における、各部材の設置構成を示す断面図である。
【0088】
図5に示すように、本実施形態のシート材の融着方法では、レーザー光41を透過するローラー形状の光透過性部材1Cと、レーザー光41の照射により発熱する発熱部材2Aとの間に、シート材31と、該シート材31と融着する融着部材としてのシート材32とを設置した状態で、光透過性部材1Cと前記シート材とを介して、レーザー光照射装置4より、前記発熱部材2Aにレーザー光41を照射させる。ここで、シート材31は、発熱部材2Aと接触するように設置され、シート材32は、光透過性部材1C側と接触するように設置される。
【0089】
図5に示す光透過性部材1Cは、支持部材5Bにより支持され、回転軸12を中心に転動可能である。また、光透過性部材1Cは、前記シート材32と接触する押圧部10において押圧するものである。押圧部10は、光透過性部材1Cの転動に伴い、シート材32の表面を相対的に移動する。
【0090】
レーザー光照射装置4は、押圧部10の移動に追従して移動するものである。また、レーザー光照射装置4より発射されるレーザー光41は、光透過性部材1Cの回転軸12と押圧部10とを介して、前記発熱部材2Aに照射される。
【0091】
光透過性部材1Cの構成材料、レーザー光41の透過率は、前述した第1〜第2実施形態の光透過性部材の構成材料、レーザー光41の透過率と同様である。
【0092】
本実施形態のシート材の融着方法では、光透過性部材1Cの転動により押圧部10をシート材に対し相対的に移動させ、レーザー光照射装置4からレーザー光41を発熱部材1Aの押圧部10に対応した部位に照射させることにより、シート材31とシート材32とが融着される。これにより、図3に示すように、所望の形状のシール部33を形成させることができる。なお、融着されない部分は、非シール部34となる。
【0093】
さらに、本実施形態のシート材の融着方法では、発熱、融着、冷却の一連の工程が、レーザー光41の移動、すなわち、押圧部10の移動とともに連続して行われ、これにより、シート材31、シート材32を単純な工程(短時間)で確実に融着させることが可能となる。
【0094】
以下に、押圧部10の移動方法の一例を挙げ、説明する。
押圧部10は、図3中、点35Aと点36Aとの間を押圧しており、レーザー光照射装置4は、図3中の横方向(図中、矢印Aで示す方向)にレーザー光41を走査させることができるものである。
【0095】
レーザー光照射装置4は、レーザー光41を、図3中の矢印Aで示す方向に向かって、直線的に走査(主走査)させる。ここで、点35Aは主走査開始点、点36Aは主走査終了点、点37および点38はシール部33と非シール部34との境界点である。
【0096】
点35Aから点36Aへ走査させる間に、形成されるシール部のパターンに対応して、レーザー光41の照射が制御される。すなわち、点35Aと点37との間ではレーザー光41を照射させ、点37と点38との間ではレーザー光41を照射せず、点38と点36Aとの間ではレーザー光41を照射させる。点36Aに達したら、レーザー光41の照射をやめ、主走査開始点35Aに戻る。
【0097】
前記主走査を行った後、主走査方向と垂直の方向に、すなわち、図3における上方向(図中、矢印Bで示す方向)に、シート材を所定の距離だけ移動(副走査)させる。これにより、光透過性部材1Cが回転軸12を中心に回転し、新たな押圧部を生じる。ここで、副走査時のシート材の移動距離は、通常、ビーム径に対応する。このとき、シート材31、シート材32は、光透過性部材1Cと発熱部材2Aとで挟持・固定された状態で移動する。
【0098】
副走査を行った後、前記と同様に新たな押圧部に対応する部位に対し主走査を行う。このように主走査、副走査を繰り返し行うことにより、レーザー光41の照射パターンに対応する形状のシール部33が形成される。
【0099】
一例では、シート材を移動させる方法について説明したが、例えば、シート材を固定し、押圧部を移動させる方法等でもよい。
【0100】
また、本実施形態では、光透過性部材1Cが、シート材の端から端までを押圧する構成について説明したが、例えば、ローラー形状の光透過性部材が、シート材の幅方向の一部を押圧するものであってもよい。例えば、図6に示すように、光透過性部材1Dが、凸形状の押圧部10を備えており、この押圧部10でシート材の一部を押圧するものであってもよい。この場合、光透過性部材1Dの回転軸12を中心とした転動と、支持部材5Cの回転軸51を中心とした回転とによって、シート材の表面をシール部の形状に対応するように、移動させることが好ましい。
【0101】
次に、本発明のシート材の融着方法の第4実施形態について説明する。以下、第4実施形態のシート材の融着方法について、前記第1〜第3実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
【0102】
図7は、本発明のシート材の融着方法の第4実施形態における、各部材の設置構成を示す断面図、図8は、本実施形態における発熱部材2Bのシート材との接触面側から見た平面図である。
【0103】
図7に示すように、本実施形態のシート材の融着方法では、レーザー光41を透過する光透過性部材1Eと、レーザー光41の照射により発熱する発熱部材2Bとの間に、シート材31と、該シート材31と融着する融着部材としてのシート材32とを設置した状態で、後述する押圧部20に対し、レーザー光照射装置4よりレーザー光41を照射させる。ここで、シート材31は、発熱部材2Bと接触するように設置され、シート材32は、光透過性部材1E側と接触するように設置される。
【0104】
光透過性部材1Eの構成材料、レーザー光41の透過率は、前述した第1〜第3実施形態の光透過性部材の構成材料、レーザー光41の透過率と同様である。
【0105】
また、発熱部材2Bの構成材料、熱伝導率は、前述した第1〜第3実施形態の発熱部材の構成材料、熱伝導率と同様である。
【0106】
図7に示すように、発熱部材2Bは、シート材31を押圧する凸形状の押圧部20を有している。押圧部20は、シート材31を押圧し、シート材31とシート材32とを密着させる機能を有する。このような状態にすることにより、後述するレーザー照射による融着の際、例えば、シート材の浮きや、形成されるシール部33への空気の残存等を防止し、シート材31とシート材32とを確実に融着させることができる。
【0107】
押圧部20は、図8に示すように、発熱部材2Bの外周に沿って形成され、シール部33の形状に対応したものである。このような形状にすることにより、上記のような問題点をより効果的に防止することができる。
【0108】
図7中、H2で示す押圧部の高さは、0.1〜1.0mmであるのが好ましく、0.1〜0.5mmであるのがより好ましい。
【0109】
上記押圧部の高さH2が前記下限値未満であると、シール部の押圧力が弱く、剥離等のシール不良となる可能性がある。
【0110】
一方、上記押圧部の高さH2が前記上限値を超えると、シール部が肉薄となり、シール部が破断する可能性がある。
【0111】
また、押圧部20の形状は、上記形状に限定されず、例えば、角がなく滑らな形状のもの等であってもよい。また、発熱部材2Bの表面に凹凸がなく、発熱部材2Bの全面で押圧するものであってもよい。
【0112】
前述の押圧部20の圧力の条件については、シート材31、シート材32の材質や厚さ、発熱部材2Bの材質等により若干異なるが、0.5〜2.0MPaであることが好ましい。上記圧力が前記下限値未満であると、シート材31、シート材32の材質によっては、確実に融着できない可能性がある。一方、上記圧力が前記上限値を超えると、シート材31、シート材32の材質によっては、融着部分がつぶれ、シール部33が変形しやすくなる。
【0113】
このように押圧部20でシート材を押圧した状態で、光透過性部材1E、シート材31、シート材32を介して、レーザー光照射装置4より発熱部材2Bにレーザー光41を照射する。発熱部材2Bは、レーザー光41が照射された部位で発熱する。発熱部材2Bに接触しているシート材31は、この熱により溶融状態となり、押圧部20の圧力により、シート材32と融着するものである。
【0114】
本実施形態のシート材の融着方法では、前記レーザー光41の照射部位を経時的に変化させる(走査させる)ことにより、シート材31とシート材32とが融着される。これにより、図3に示すように、所望の形状のシール部33を形成させることができる。なお、融着されない部分は、非シール部34となる。
【0115】
さらに、本実施形態のシート材の融着方法では、発熱、融着、冷却の一連の工程が、レーザー光41の移動(走査)とともに連続して行われ、これにより、シート材31、シート材32を単純な工程(短時間)で確実に融着させることが可能となる。
レーザー光41の走査方法は、第1実施形態と同様に行うことができる。
【0116】
以上、本発明のシート材の融着方法および成形品の好適な実施形態について説明したが、本発明はこれに限定されるものではい。
【0117】
例えば、上記実施形態では、光透過性部材と発熱部材のいずれか一方が、凸形状の押圧部を有するものについて説明したが、光透過性部材と発熱部材のいずれも、凸形状の押圧部を有するものであってもよい。
【0118】
また、上記実施形態では、2枚の同一または異なる構成のシート材を単に重ね合わせて融着させる方法について説明したが、これに限定されるものではない。例えば、2枚のうちの一方のシート材を2つに折り重ね、もう一方のシート材と重ね合わせて融着させる方法でもよいし、2枚のうちの一方のシート材を2つに折り重ね、その折り重ねた間にもう一方のシート材を挟持して融着させる方法等でもよい。また、2枚のシート材を両方とも折り重ねた状態で融着させる方法でもよい。
また、シート材は、2枚に限らず、1枚でも3枚以上でもよい。
【0119】
1枚のシート材を用いる方法としては、例えば、1枚のシート材を2つに折り重ねて融着させる方法(融着部材が、熱融着性シート材の他の部分であるシート材の融着方法)、1枚のシート材を3つ以上に折り重ねて融着させる方法等がある。
【0120】
また、3枚以上のシート材を用いる方法としては、例えば、3枚以上の同一または異なる構成のシート材を単に重ね合わせて融着させる方法、3枚以上のシート材のうち少なくとも1枚を2つ以上に折り重ね、他のシート材と重ねて融着させる方法等がある。シート材を3重またはそれ以上重ねて融着することにより、複室容器を形成することもできる。
【0121】
また、前述した実施形態では、袋状のバッグを形成させる方法について説明したが、袋状のものを形成させる方法に限定されない。例えば、この方法は、開口を封止するために用いてもよいし、帯状のシート材同士をつなぐために用いてもよい。
【0122】
上記実施形態では、融着部材として、シート形状を有するものを用いる構成について説明したが、融着部材は、例えば、ブロック状(塊状)、シート材31より厚みの大きい板状等の形状を有するものであってもよい。
【0123】
【発明の効果】
以上述べたように、本発明の方法によれば、レーザー光が透過する透明・半透明あるいは薄く着色したシート材を単純な工程(短時間)で確実に融着させることができ、かつ、シート材の融着後にシール部にバリを生じにくくさせることができる。
【0124】
また、本発明では、レーザー光41の照射パターンにより形成されるシール部の形状を制御することができるので、複雑な形状のシール部であっても、容易に形成することができる。さらに、異なる形状のシール部でも、連続して形成させることができる。
【図面の簡単な説明】
【図1】本発明のシート材の融着方法の第1実施形態における各部材の設置構成を示す断面図である。
【図2】第1実施形態における光透過性部材のシート材との接触面側から見た平面図である。
【図3】本発明のシート材の融着方法により得られるバッグの平面図である。
【図4】本発明のシート材の融着方法の第2実施形態における各部材の設置構成を示す断面図である。
【図5】本発明のシート材の融着方法の第3実施形態における各部材の設置構成を示す断面図である。
【図6】本発明のシート材の融着方法のローラーの形状を説明するための図である。
【図7】本発明のシート材の融着方法の第4実施形態における各部材の設置構成を示す断面図である。
【図8】第4実施形態における発熱部材のシート材と接触する面側から見た平面図である。
【符号の説明】
1A、1B、1C、1D、1E 光透過性部材
10 押圧部
11 中心点
12 回転軸
2A、2B 発熱部材
20 押圧部
31、32 シート材
33 シール部
34 非シール部
35A、36A 点
37、38 点
4 レーザー光照射装置
41 レーザー光
5A、5B、5C 支持部材
51 回転軸
6 バッグ
A 主走査方向
B 副走査方向
H1 押圧部の高さ
H2 押圧部の高さ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for fusing a transparent, translucent or thinly colored sheet material through which laser light passes, and a molded product.
[0002]
[Prior art]
As a method of fusing the sheet material, there are generally a heat sealing method, an impulse sealing method, and a high frequency sealing method (for example, see Non-Patent Document 1).
[0003]
The heat sealing method is a method in which a sheet material is sandwiched between heated dies, and a part of the sheet material is melted and bonded. In this method, since the sheet material is pressed while being melted by a heated mold, there is a problem that the sheet material is deformed and burrs are easily generated.
[0004]
The impulse sealing method generally includes a step of sandwiching and pressing a sheet material with a pressure plate having a heater mounted on the surface, a step of fusing the sheet material by energizing the heater, and stopping the energization to cool the sheet material. Removing the material. This method is time-consuming because it has a plurality of steps, and in particular, it takes a relatively long time to cool the heated sheet material. Therefore, this method has a problem that productivity is not particularly good when the sheet materials are continuously fused.
[0005]
The high-frequency sealing method is a method in which high-frequency oscillation is performed in a state where a sheet material superposed between electrodes is installed, and the sheet material is pressed and fused. In this method, since high-frequency dielectric is used, it is difficult to reliably fuse the sheet material when the sheet material is made of a material having low polarity. That is, in this method, there is a problem that the material of the sheet material is limited, and the selection range of the sheet material is narrowed. On the other hand, a fusion method of a thermoplastic resin using a laser beam is also known (for example, see Patent Documents 1, 2, and 3). In these methods, the laser light-absorbing material remains in a part of the molded article, and there is a concern about deterioration of appearance, safety of eluted substances, and the like.
[0006]
[Non-patent document 1]
"Plastic Processing Technology Handbook", edited by The Society of Polymer Science, Nikkan Kogyo Shimbun, 1995, p. 1270-1275
[Patent Document 1]
JP-A-4-157082
[Patent Document 2]
JP 2001-191412 A
[Patent Document 3]
JP-A-9-182796
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a sheet material fusing method and a molded product in which a laser beam transmitting sheet material is reliably fused by a simple process, and burrs are not easily generated after the fusion of the sheet material.
[0008]
[Means for Solving the Problems]
Such an object is achieved by the following (1) to (13) of the present invention.
[0009]
(1) a heat-fusible sheet material-fused portion between the heat-generating member that generates heat by laser light irradiation and a light-transmissive member that transmits the laser light; The adhesive sheet material and the fusion part of the fusion member to be fused are installed in a superposed state,
A fusing method, wherein the heat-fusible sheet material and the fusing member are fused by irradiating the laser beam to the heat-generating member via the light-transmitting member. Thereby, fusion can be performed steadily by a simple process, and generation of burrs at the seal portion can be suppressed.
[0010]
(2) The fusing method according to the above (1), wherein the light transmitting member has a pressing portion that presses a fusing portion of the fusing member. Thereby, the fusion strength between the heat-fusible sheet material and the fusion member can be increased.
[0011]
(3) The fusing method according to (2), wherein the pressing portion has a convex shape. Thereby, the area of the load portion is reduced, and a high welding strength can be obtained with a small pressing force.
[0012]
(4) The fusing method according to any one of (1) to (3), wherein the heat-fusible sheet material is a single-layer sheet material or a laminated sheet material having a substantially single melting temperature. . Thereby, a high effect can be obtained in suppressing the generation of burrs in the seal portion.
[0013]
(5) The fusing method according to any one of (1) to (4), wherein the fusing member is a sheet material. This makes it possible to reduce the required laser light output without increasing the complexity and size of the device.
[0014]
(6) The fusing method according to any one of (1) to (5), wherein the fusing member has the same configuration as the heat-fusible sheet material. Thereby, the melting temperatures of the materials of the two parts are the same, and the compatibility of the resin at the time of melting can be increased.
[0015]
(7) The fusing method according to any one of (1) to (6), wherein the fusing member is another part of the heat-fusible sheet material. Thereby, the melting temperatures of the materials of the two parts are the same, and the compatibility of the resin at the time of melting can be increased.
[0016]
(8) The fusion method according to any one of the above (1) to (7), wherein the light transmitting member has a spherical shape or a roller shape. Thereby, even a seal portion having a complicated shape can be easily formed.
[0017]
(9) At least a portion of the heat generating member to which the laser beam is irradiated has a thermal conductivity of 350 W · m near room temperature. -1 ・ K -1 The fusion method according to any one of the above (1) to (8), comprising the following material. Thereby, the heat generated by the irradiation of the laser beam is efficiently transmitted to the heat-fusible sheet material, and the predetermined range can be reliably fused.
[0018]
(10) The fusing method according to any one of (1) to (9), wherein at least a part of the surface of the heat generating member is subjected to a surface treatment for preventing fusion with the sheet material. Thereby, the productivity of the molded article described later can be improved.
[0019]
(11) The fusing method according to any one of (1) to (10), wherein the sheet material is mainly formed of a polyolefin-based resin. Thus, fusion can be reliably performed by a simple process despite the limitation that the high frequency sealing method cannot be applied.
[0020]
(12) A molded article characterized by being fused by the fusion method according to any one of (1) to (11). Thereby, a molded article can be formed by a simple process while sufficiently suppressing the generation of burrs.
[0021]
(13) The molded article according to (12), which is used for medical use. Thereby, it is possible to suppress the generation of foreign matters, molding defects, and the like due to burrs. In particular, it can be suitably used for a molded article for medical use, in which foreign matter or the like becomes a problem.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the method for fusing a laser light transmitting sheet material of the present invention will be described with reference to the accompanying drawings.
[0023]
The fusing method of the present invention is a method for fusing a heat-fusible sheet material to a fusing member. As described below, the fusing member may be of any shape, such as sheet, plate, tube (tubular), transparent, translucent, or thinly colored, as long as it transmits laser light. May be used. When the fusing member is in the form of a sheet, the effect of improving burrs and deformation is high, which is a preferable object of the present invention. In the following description, a configuration using a sheet-shaped member (sheet material) as the fusing member will be described.
[0024]
FIG. 1 is a cross-sectional view showing an installation configuration of each member in a first embodiment of a method for fusing a sheet material according to the present invention, and FIG. FIG. 3 is a plan view of the bag 6 obtained according to the present embodiment.
[0025]
As shown in FIG. 1, in the method for fusing a sheet material according to the present embodiment, a heat-fusible member 1A that transmits laser light and a heat-generating member 2A that generates heat by irradiation with laser light are used. In a state where a sheet material (hereinafter, simply referred to as “sheet material”) 31 and a sheet material 32 serving as a fusion member that fuses with the sheet material 31 are installed, laser light irradiation is performed on a region of a pressing portion 10 described later. The laser beam is irradiated from the device 4. Here, the sheet material 31 is installed so as to be in contact with the heat generating member 2A, and the sheet material 32 is installed so as to be in contact with the light transmitting member 1A side.
[0026]
As shown in FIG. 1, the light transmissive member 1 </ b> A has a convex pressing portion 10 that presses the sheet material 32.
[0027]
Any material may be used as the material of the light transmitting member 1A as long as it can transmit a laser beam 41 described later. Examples of such a material include glass such as quartz glass, blue plate glass, heat-resistant glass, and pressure-resistant glass, and resins such as acrylic resin and polycarbonate resin. Of these, pressure-resistant glass is preferable. The pressure-resistant glass has excellent light transmittance, and particularly has excellent mechanical strength durability.
[0028]
The light transmitting member 1A preferably has a transmittance of a laser beam 41 described later of 80% or more, more preferably 90% or more.
[0029]
When the transmittance of the laser light 41 is less than the lower limit, the laser light 41 does not sufficiently reach the heat generating member 2A described later, and therefore, the heat generation of the heat generating member 2A due to the irradiation of the laser light 41 becomes insufficient, It may be difficult to form the seal portion 33. Further, the light transmissive member 1A itself may generate excessive heat.
[0030]
As shown in FIG. 1, the pressing portion 10 has a function of pressing a portion (fused portion) of the sheet material 32 to be described later, which is to be fused, and bringing the sheet material 31 into close contact with the sheet material 32. By adopting such a state, at the time of fusion by laser irradiation to be described later, for example, the floating of the sheet material and the air remaining on the formed seal portion 33 are prevented, and the sheet material 31 and the sheet material 32 are prevented. Can be surely fused. Further, some irregularities on the surface of the sheet material are averaged, and the transparency of the formed seal portion 33 is improved.
[0031]
As shown in FIG. 2, the pressing portion 10 is formed along the outer periphery of the light transmitting member 1 </ b> A, and corresponds to the shape of a portion (seal portion 33) of the sheet material 31 and the sheet material 32 to be fused. is there. By adopting such a shape, the above problems can be more effectively prevented.
[0032]
In FIG. 1, H 1 The height of the pressing portion indicated by is preferably 0.1 to 1.0 mm, and more preferably 0.1 to 0.5 mm.
[0033]
The height H of the pressing portion 1 Is less than the lower limit, the pressing force of the seal portion is weak, and there is a possibility that the seal may be defective such as peeling.
[0034]
On the other hand, the height H of the pressing portion 1 If the value exceeds the upper limit, the seal portion becomes thin, and the seal portion may be broken.
[0035]
The shape of the pressing portion 10 is not limited to the above shape, and may be, for example, a smooth shape without corners.
[0036]
The heat generating member 2A generates heat when irradiated with the laser beam 41, as described later in detail.
[0037]
The heating member 2A may be made of any material as long as at least a part thereof is made of a material that generates heat by irradiation with the laser beam 41. Examples of such materials include various metals such as iron, nickel, stainless steel, copper, brass, aluminum, and titanium, ceramics, and alloys containing these.
[0038]
Further, the heat generating member 2A may be a material obtained by subjecting the surface of the above-mentioned material to black, brown, dark blue, dark green, or other dark surface treatment. Examples of the surface treatment of black or the like include application of black heat-resistant paint, plating of black metal, and the like.
[0039]
The heat generating member 2A is preferably made of a material having an absorptance of the laser beam 41 of 50% or more. The heating member 2A is particularly preferably a material coated with black Teflon ("Teflon" is a registered trademark).
[0040]
The heat generating member 2A has a thermal conductivity of about 350 W · m near room temperature. -1 ・ K -1 The following materials are preferable, and 17 W · m -1 ・ K -1 Those composed of the following materials are more preferable.
[0041]
When the thermal conductivity exceeds the upper limit, the heat generated by the irradiation of the laser beam 41 is diffused in the heat generating member 2A, the seal width is widened, and depending on the material of the sheet material 31, the sheet material 32 and the like. In some cases, it is difficult to form the seal portion 33 having a shape corresponding to the pressing portion 10.
[0042]
Further, the surface of the heat generating member 2A may be subjected to, for example, a surface treatment for preventing fusion with the heat-fusible sheet material. Examples of such a surface treatment include coating with a fluororesin (polytetrafluoroethylene (PTFE) or the like) or the like.
[0043]
The temperature of the heat generating member 2A is preferably adjusted in order to prevent a rise in temperature due to continuous use. The range of the temperature control is preferably from room temperature to 80 ° C. Although the adjustment method is not particularly limited, for example, a chiller method using hot water, a heat temperature control method using a heater, and the like are exemplified.
[0044]
The sheet material 31 provided between the light transmitting member 1A and the heat generating member 2A described above may be any material as long as it has a heat-fusing property and can transmit the laser beam 41. Examples of such a material include polyethylene, polypropylene, polybutadiene, polyolefins such as ethylene-vinyl acetate copolymer (EVA), polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), and flexible polychlorinated polyester. Examples include various heat-fusible elastomers such as vinyl, polyvinylidene chloride, silicone, polyurethane, and polyamide elastomers, or any combination thereof (blended resin, polymer alloy, etc.). Of these, polyolefins are preferred. This is because polyolefin has a high difficulty in applying the high frequency sealing method, and the application of the present invention can expand the processing range.
[0045]
Further, the sheet material 31 may be a single-layer sheet material (single-layer sheet material) or a laminate in which a plurality of layers are laminated (laminated sheet material). It is preferable to use a single-layer sheet material or a laminated sheet material having a substantially single melting temperature (the melting temperatures of the respective layers are the same or close to each other and are almost simultaneously melted by heating). At this time, the effect of the present invention is particularly greatly exhibited.
[0046]
The average thickness of the sheet material 31 is appropriately determined according to the layer configuration and the characteristics (flexibility, strength, water vapor permeability, heat resistance, and the like) of the material used, and is not particularly limited.
[0047]
The absorptance of the sheet material 31 for the laser beam 41 is preferably 20% or less, more preferably 10% or less.
[0048]
As the sheet material 32, for example, the same material as the above-described sheet material 31 can be used.
[0049]
The sheet member 32 may have substantially the same configuration as the sheet member 31 or may have a different configuration, but preferably has the same configuration as the sheet member 31. As a result, the melting temperatures of the sheet material 31 and the sheet material 32 become the same or close to each other, and the compatibility at the time of melting is good, so that the sealing strength of the formed seal portion 33 is improved.
[0050]
Further, even when the sheet material 31 and the sheet material 32 have different configurations, it is preferable that at least a portion (fused portion) of the sheet material 31 and the sheet material 32 that comes into contact is the same material. Thereby, the same effect as described above can be obtained. As an example of this, when the sheet material 31 composed of a single layer and the sheet material 32 as a laminated body composed of a plurality of layers are fused, a layer that is in contact with the sheet material 31 among the layers constituting the sheet material 32 However, there is a material made of the same material as the material constituting the sheet material 31. Further, even when the materials are different, those having the same or as close melting points as possible are preferable for improving the sealing strength.
[0051]
The thicknesses of the sheet material 31 and the sheet material 32 may be substantially the same or different.
[0052]
The rigidity (flexibility) of the sheet material 31 and the sheet material 32 may be substantially the same or different.
[0053]
The transparency (absorption rate of laser light) of the sheet material 31 and the sheet material 32 may be substantially the same or different.
[0054]
The gas permeability (gas barrier property) of the sheet material 31 and the sheet material 32 may be substantially the same or different.
[0055]
The condition of the pressure of the pressing portion 10 described above varies depending on conditions such as the material and thickness of the sheet material 31 and the sheet material 32 and the material of the light transmitting member 1A, but may be 0.5 to 2.0 MPa. preferable. If the pressure is less than the lower limit, there is a possibility that the sheet material 31 and the sheet material 32 cannot be reliably fused depending on the material. On the other hand, if the pressure exceeds the upper limit, the fused portion is crushed depending on the material of the sheet material 31 and the sheet material 32, and the seal portion 33 is easily deformed.
[0056]
In a state where the sheet material is pressed by the pressing unit 10 as described above, the laser light irradiating device 4 irradiates the heating member 2A with the laser light 41 via the pressing unit 10, the sheet material 31, and the sheet material 32. The heat-generating member 2A generates heat at a portion irradiated with the laser light 41. The sheet material 31 that is in contact with the heat generating member 2A is brought into a molten state by this heat, and is fused with the sheet material 32 by the pressure of the pressing portion 10.
[0057]
The laser beam 41 used in the method of the present invention includes ruby laser, semiconductor laser, YAG laser, glass laser, YVO 4 Laser, Ne-He laser, Ar laser, CO 2 A laser. Above all, a YAG laser is preferably used because continuous oscillation can be easily performed at room temperature and controllability in a low irradiation energy region is excellent.
[0058]
The irradiation conditions of the laser light 41 slightly vary depending on the material and thickness of the sheet material, the material of the heat generating member 2A, and the like. For example, in the case of a YAG laser, the energy intensity is preferably about 20 to 80 W.
[0059]
The beam diameter of the laser light 41 is not particularly limited, and slightly varies depending on the material and thickness of the sheet material, the material of the heat generating member 2A, and the like, but is preferably about 0.5 to 3.0 mm, and is preferably about 1.0 to 3.0 mm. About 2.0 mm is more preferable.
[0060]
In the method for fusing the sheet material of the present embodiment, the sheet material 31 and the sheet material 32 are fused by changing (scanning) the irradiation area of the laser light 41 with time. Thereby, as shown in FIG. 3, the seal portion 33 having a desired shape (pattern shape) can be formed. In addition, the part which is not fused becomes the non-seal part 34.
[0061]
In addition, since the area of the heat generating member 2A that generates heat by the irradiation of the laser light 41 is limited to a part, the area of the sheet material 31 that is melted by the heat generation of the heat generating member 2A is also limited to the irradiated area of the laser light 41. . For this reason, in the present embodiment, the heat-generating member 2A in which the melted portion of the sheet material does not generate heat in a wider area than the heat-generating member (including the melted portion and having a flat portion having an area larger than the melted portion). As a result, the pressing force on the side of the melting portion that comes into contact with the heat generating member 2A is dispersed, so that burrs around the melting portion are suppressed.
[0062]
Furthermore, in the sheet material fusing method of the present embodiment, a series of steps of heat generation, fusing, and cooling are continuously performed along with the movement (scanning) of the laser light 41, whereby the sheet material 31, the sheet material 32 can be reliably fused in a simple process (short time).
[0063]
Hereinafter, an example of a scanning method of the laser beam 41 will be described.
The laser beam irradiation device 4 can scan the laser beam 41 in the horizontal direction in FIG. 3 (the direction indicated by the arrow A in the figure).
[0064]
The laser light irradiation device 4 linearly scans (main-scans) the irradiation part of the laser light 41 in a direction indicated by an arrow A in FIG. Here, the point 35A is a main scanning start point, the point 36A is a main scanning end point, and the points 37 and 38 are boundary points between the seal portion 33 and the non-seal portion 34.
[0065]
While scanning from the point 35A to the point 36A, the irradiation of the laser light 41 is controlled in accordance with the pattern of the formed seal portion. That is, the laser beam 41 is irradiated between the points 35A and 37, the laser beam 41 is not irradiated between the points 37 and 38, and the laser beam 41 is irradiated between the points 38 and 36A. Irradiate. When the point 36A is reached, the irradiation of the laser beam 41 is stopped, and the process returns to the main scanning start point 35A.
[0066]
After performing the main scanning, the laser is moved by a predetermined distance in the direction perpendicular to the main scanning direction, that is, in the upward direction in FIG. 3 (the direction indicated by arrow B in the figure). The light irradiation part is moved (sub-scan). Here, the moving distance of the sheet material during the sub-scanning usually corresponds to the beam diameter. At this time, the sheet material 31 and the sheet material 32 move while being sandwiched and fixed between the light transmitting member 1A and the heat generating member 2A.
[0067]
After performing such sub-scanning, main scanning is performed in the same manner as described above. By repeatedly performing the main scanning and the sub-scanning, a seal portion 33 having a shape corresponding to the irradiation pattern of the laser light 41 is formed, and the bag 6 as a molded product of the present invention is obtained. The bag 6 obtained by the present invention can be suitably used, for example, for medical containers such as infusion bags, nutritional supplement bags, and blood bags. Note that the bag 6 is not limited to such a medical bag, and may be of any use.
[0068]
Further, in the present embodiment, a rectangular bag is formed using a sheet material having corners.However, for example, a bag may be formed using a sheet material having no corners, or after forming a rectangular shape, Corners may be cut off to form a bag.
[0069]
In the configuration shown in FIG. 3, the edges of the sheet material are fused. For example, a plurality of spaces may be formed by further fusing a part of the non-seal portion 34 other than the edges in a band shape. Can be formed.
[0070]
Further, the method and the molded article of the present invention are not limited to the case where the present invention is applied to such a bag, and may be any. For example, various packaging materials, in particular, medical instruments such as syringes, catheters, and surgical instruments inside can be applied to the formation of the stored packaging material or the opening sealing of the packaging material.
[0071]
Further, in the present embodiment, the method of scanning the laser light 41 in the sub-scanning direction by scanning the laser light 41 in the main scanning direction and moving the sheet material has been described, for example, without moving the sheet material. Alternatively, a method of causing the laser beam 41 to perform main scanning and sub-scanning, a method of performing main scanning in the vertical direction in FIG. 3, and a method of performing sub-scanning in the horizontal direction may be used.
[0072]
Next, a second embodiment of the sheet material fusing method of the present invention will be described. Hereinafter, the method of fusing the sheet material of the second embodiment will be described focusing on the differences from the first embodiment, and the description of the same items will be omitted.
[0073]
FIG. 4 is a cross-sectional view illustrating an installation configuration of each member in the second embodiment of the sheet material fusing method of the present invention, and FIG. 5 is a plan view of a bag 6 obtained by the present embodiment.
[0074]
As shown in FIG. 4, in the method of fusing the sheet material according to the present embodiment, a sphere-shaped light transmitting member 1 </ b> B that transmits the laser light 41 and a heating member 2 </ b> A that generates heat by irradiation with the laser light 41. In a state where the sheet material 31 and the sheet material 32 as a fusing member to be fused with the sheet material 31 are installed, the laser light irradiation device 4 passes through the light transmitting member 1B and the sheet material, The heating member 2A is irradiated with the laser beam 41. Here, the sheet material 31 is installed so as to be in contact with the heat generating member 2A, and the sheet material 32 is installed so as to be in contact with the light transmitting member 1B side.
[0075]
The light transmissive member 1B shown in FIG. 4 is supported by the support member 5A and is capable of rolling. The light-transmissive member 1 </ b> B presses the sheet material 32 by the pressing portion 10 that contacts the sheet material 32. The pressing portion 10 relatively moves on the surface of the sheet material 32 as the light transmitting member 1B rolls.
[0076]
The laser beam irradiation device 4 moves following the pressing portion 10. Further, the laser light 41 emitted from the laser light irradiation device 4 is applied to the heating member 2A via the center 11 of the light transmitting member 1B and the pressing portion 10.
[0077]
The constituent material of the light transmitting member 1B and the transmittance of the laser light 41 are the same as the constituent material of the light transmitting member 1A and the transmittance of the laser light 41 of the first embodiment described above.
[0078]
In the method of fusing the sheet material according to the present embodiment, the pressing portion 10 is relatively moved with respect to the sheet material by rolling of the light transmitting member 1B, and the laser light 41 is pressed from the laser light irradiation device 4 to the heating member 1A. By irradiating a part corresponding to the part 10, the sheet material 31 and the sheet material 32 are fused. As a result, as shown in FIG. 3, a seal portion 33 having a desired shape can be formed. In addition, the part which is not fused becomes the non-seal part 34.
[0079]
Furthermore, in the method of fusing the sheet material of the present embodiment, a series of steps of heat generation, fusing, and cooling are performed continuously with the movement of the laser beam 41, that is, with the movement of the pressing unit 10, whereby the sheet The material 31 and the sheet material 32 can be reliably fused in a simple process (short time).
[0080]
As an example of a method of moving the pressing unit 10, the pressing unit 10 is moved two-dimensionally on a sheet material together with the laser beam irradiation device 4, and irradiation of the laser beam 41 is performed in accordance with the pattern of the seal unit 33. There is a control method. That is, the laser beam 41 is irradiated to the region to be fused, and the laser beam 41 is not irradiated to the region not to be fused.
[0081]
For example, first, the pressing unit 10 is moved in the lateral direction of the sheet material while pressing the sheet material. When the pressing unit 10 moves to the end of the left-right movement, the pressing unit 10 is moved downward in FIG. This moving distance usually corresponds to the beam diameter.
[0082]
Thereafter, the pressing unit 10 is sequentially moved, and the laser beam irradiation device 4 controls the irradiation of the laser beam 41 along the pattern of the seal unit 33 in the same manner as described above. As described above, the movement of the pressing portion 10, that is, the movement of the laser light 41 forms the seal portion 33 having a shape corresponding to the irradiation pattern of the laser light 41.
[0083]
Further, the pressing unit 10 may be sequentially moved only in a region corresponding to the seal unit 33 on the sheet material together with the laser beam irradiation device 4. During this time, the laser beam irradiation device 4 that follows the pressing unit 10 keeps irradiating the pressing unit 10 with the laser light 41.
[0084]
As described above, the sheet member 31 and the sheet member 32 are sequentially fused by the movement of the pressing part 10, that is, the movement of the laser beam 41 in the area corresponding to the seal part 33, and the seal part 33 is formed. You.
[0085]
In the present embodiment, the method of moving the pressing unit 10 has been described. However, for example, a method of moving the sheet material, a method of moving both the pressing unit 10 and the sheet material, or the like may be used.
[0086]
Next, a third embodiment of the sheet material fusing method of the present invention will be described. Hereinafter, the method of fusing the sheet material of the third embodiment will be described focusing on the differences from the first and second embodiments, and the description of the same matters will be omitted.
[0087]
FIG. 5 is a cross-sectional view showing an installation configuration of each member in the third embodiment of the sheet material fusing method of the present invention.
[0088]
As shown in FIG. 5, in the sheet fusing method of the present embodiment, between the roller-shaped light transmitting member 1 </ b> C transmitting the laser light 41 and the heat generating member 2 </ b> A generating heat by the irradiation of the laser light 41. In a state where the sheet material 31 and the sheet material 32 as a fusing member to be fused with the sheet material 31 are installed, the laser light irradiating device 4 passes through the light transmitting member 1C and the sheet material. The heating member 2A is irradiated with a laser beam 41. Here, the sheet material 31 is installed so as to be in contact with the heat generating member 2A, and the sheet material 32 is installed so as to be in contact with the light transmitting member 1C side.
[0089]
The light transmissive member 1C shown in FIG. 5 is supported by the support member 5B, and can roll about the rotation shaft 12. Further, the light-transmissive member 1C is pressed by the pressing portion 10 that comes into contact with the sheet material 32. The pressing portion 10 relatively moves on the surface of the sheet material 32 as the light transmitting member 1C rolls.
[0090]
The laser beam irradiation device 4 moves following the movement of the pressing unit 10. In addition, the laser light 41 emitted from the laser light irradiation device 4 is applied to the heating member 2A via the rotating shaft 12 of the light transmitting member 1C and the pressing portion 10.
[0091]
The constituent material of the light transmitting member 1C and the transmittance of the laser light 41 are the same as the constituent material of the light transmitting member and the transmittance of the laser light 41 of the first and second embodiments described above.
[0092]
In the method of fusing the sheet material of the present embodiment, the pressing unit 10 is moved relatively to the sheet material by rolling of the light transmitting member 1C, and the laser light 41 is pressed from the laser light irradiation device 4 to the heating member 1A. By irradiating a part corresponding to the part 10, the sheet material 31 and the sheet material 32 are fused. As a result, as shown in FIG. 3, a seal portion 33 having a desired shape can be formed. In addition, the part which is not fused becomes the non-seal part 34.
[0093]
Furthermore, in the method of fusing the sheet material of the present embodiment, a series of steps of heat generation, fusing, and cooling are performed continuously with the movement of the laser beam 41, that is, with the movement of the pressing unit 10, whereby the sheet The material 31 and the sheet material 32 can be reliably fused in a simple process (short time).
[0094]
Hereinafter, an example of a method of moving the pressing unit 10 will be described.
The pressing part 10 presses between the point 35A and the point 36A in FIG. 3, and the laser light irradiation device 4 moves the laser light 41 in the lateral direction (the direction indicated by the arrow A in the figure) in FIG. Can be scanned.
[0095]
The laser beam irradiation device 4 linearly scans (main-scans) the laser beam 41 in the direction indicated by the arrow A in FIG. Here, the point 35A is a main scanning start point, the point 36A is a main scanning end point, and the points 37 and 38 are boundary points between the seal portion 33 and the non-seal portion 34.
[0096]
While scanning from the point 35A to the point 36A, the irradiation of the laser light 41 is controlled in accordance with the pattern of the formed seal portion. That is, the laser beam 41 is applied between the points 35A and 37, the laser beam 41 is not applied between the points 37 and 38, and the laser beam 41 is applied between the points 38 and 36A. . When the point 36A is reached, the irradiation of the laser beam 41 is stopped, and the process returns to the main scanning start point 35A.
[0097]
After performing the main scanning, the sheet material is moved (sub-scanning) by a predetermined distance in a direction perpendicular to the main scanning direction, that is, in an upward direction in FIG. 3 (a direction indicated by an arrow B in the figure). As a result, the light transmitting member 1C rotates about the rotation shaft 12, and a new pressing portion is generated. Here, the moving distance of the sheet material during the sub-scanning usually corresponds to the beam diameter. At this time, the sheet material 31 and the sheet material 32 move while being sandwiched and fixed between the light transmitting member 1C and the heat generating member 2A.
[0098]
After performing the sub-scanning, the main scanning is performed on the portion corresponding to the new pressing portion in the same manner as described above. By repeatedly performing the main scanning and the sub-scanning in this manner, a seal portion 33 having a shape corresponding to the irradiation pattern of the laser light 41 is formed.
[0099]
In one example, the method of moving the sheet material has been described. However, for example, a method of fixing the sheet material and moving the pressing portion may be used.
[0100]
Further, in the present embodiment, the configuration in which the light transmissive member 1C presses from one end to the other end of the sheet material has been described. It may be one that presses. For example, as shown in FIG. 6, the light transmissive member 1D may include a pressing portion 10 having a convex shape, and the pressing portion 10 may press a part of the sheet material. In this case, the rolling of the light transmitting member 1D about the rotation axis 12 and the rotation of the support member 5C about the rotation axis 51 cause the surface of the sheet material to correspond to the shape of the seal portion. It is preferable to move.
[0101]
Next, a fourth embodiment of the sheet material fusing method of the present invention will be described. Hereinafter, the method of fusing the sheet material of the fourth embodiment will be described focusing on the differences from the first to third embodiments, and the description of the same items will be omitted.
[0102]
FIG. 7 is a cross-sectional view showing the installation configuration of each member in a fourth embodiment of the sheet material fusing method of the present invention, and FIG. 8 is a view from the contact surface side of the heat generating member 2B with the sheet material in this embodiment. FIG.
[0103]
As shown in FIG. 7, in the sheet fusing method of the present embodiment, the sheet material is interposed between the light transmitting member 1E that transmits the laser light 41 and the heat generating member 2B that generates heat by the irradiation of the laser light 41. In a state where the sheet material 31 and the sheet material 32 as a fusion member that fuses with the sheet material 31 are installed, the pressing unit 20 described later is irradiated with the laser light 41 from the laser light irradiation device 4. Here, the sheet material 31 is installed so as to be in contact with the heat generating member 2B, and the sheet material 32 is installed so as to be in contact with the light transmitting member 1E side.
[0104]
The constituent material of the light transmitting member 1E and the transmittance of the laser light 41 are the same as the constituent material of the light transmitting member and the transmittance of the laser light 41 of the first to third embodiments described above.
[0105]
The constituent material and thermal conductivity of the heat generating member 2B are the same as the constituent material and thermal conductivity of the heat generating member of the first to third embodiments described above.
[0106]
As shown in FIG. 7, the heat generating member 2 </ b> B has a convex pressing portion 20 that presses the sheet material 31. The pressing portion 20 has a function of pressing the sheet material 31 and bringing the sheet material 31 into close contact with the sheet material 32. By adopting such a state, at the time of fusion by laser irradiation to be described later, for example, the floating of the sheet material and the air remaining on the formed seal portion 33 are prevented, and the sheet material 31 and the sheet material 32 are prevented. Can be surely fused.
[0107]
As shown in FIG. 8, the pressing portion 20 is formed along the outer periphery of the heat generating member 2 </ b> B, and corresponds to the shape of the seal portion 33. By adopting such a shape, the above problems can be more effectively prevented.
[0108]
In FIG. 7, H 2 The height of the pressing portion indicated by is preferably 0.1 to 1.0 mm, and more preferably 0.1 to 0.5 mm.
[0109]
The height H of the pressing portion 2 Is less than the lower limit, the pressing force of the seal portion is weak, and there is a possibility that the seal may be defective such as peeling.
[0110]
On the other hand, the height H of the pressing portion 2 If the value exceeds the upper limit, the seal portion becomes thin, and the seal portion may be broken.
[0111]
Further, the shape of the pressing portion 20 is not limited to the above shape, and may be, for example, a shape having no corners and a smooth shape. Further, the heat generating member 2B may be pressed without any irregularities on the entire surface of the heat generating member 2B.
[0112]
The condition of the pressure of the pressing portion 20 described above slightly varies depending on the material and thickness of the sheet material 31 and the sheet material 32, the material of the heat generating member 2B, and the like, but is preferably 0.5 to 2.0 MPa. If the pressure is less than the lower limit, there is a possibility that the sheet material 31 and the sheet material 32 cannot be reliably fused depending on the material. On the other hand, if the pressure exceeds the upper limit, the fused portion is crushed depending on the material of the sheet material 31 and the sheet material 32, and the seal portion 33 is easily deformed.
[0113]
In a state where the sheet material is pressed by the pressing portion 20 as described above, the heating member 2B is irradiated with the laser light 41 from the laser light irradiation device 4 via the light transmitting member 1E, the sheet material 31, and the sheet material 32. The heat generating member 2B generates heat at a portion irradiated with the laser light 41. The sheet material 31 that is in contact with the heat generating member 2B is brought into a molten state by this heat, and is fused with the sheet material 32 by the pressure of the pressing portion 20.
[0114]
In the method for fusing the sheet material of the present embodiment, the sheet material 31 and the sheet material 32 are fused by changing (scanning) the irradiation area of the laser light 41 with time. As a result, as shown in FIG. 3, a seal portion 33 having a desired shape can be formed. In addition, the part which is not fused becomes the non-seal part 34.
[0115]
Furthermore, in the sheet material fusing method of the present embodiment, a series of steps of heat generation, fusing, and cooling are continuously performed along with the movement (scanning) of the laser light 41, whereby the sheet material 31, the sheet material 32 can be reliably fused in a simple process (short time).
The scanning method of the laser beam 41 can be performed in the same manner as in the first embodiment.
[0116]
As described above, the preferred embodiments of the sheet material fusing method and the molded product of the present invention have been described, but the present invention is not limited to these.
[0117]
For example, in the above embodiment, one of the light transmitting member and the heat generating member has a convex pressing portion, but both the light transmitting member and the heat generating member have a convex pressing portion. May be provided.
[0118]
Further, in the above-described embodiment, a method has been described in which two sheet materials having the same or different configurations are simply overlapped and fused, but the present invention is not limited to this. For example, a method may be used in which one of the two sheets is folded into two, and the other sheet is overlapped and fused, or one of the two sheets is folded into two. Alternatively, a method of sandwiching and fusing another sheet material between the folded sheets may be used. Alternatively, a method of fusing the two sheet materials in a state where both are folded may be used.
The number of sheet materials is not limited to two, and may be one or three or more.
[0119]
As a method of using one sheet material, for example, a method of folding one sheet material into two pieces and fusing them (the fusing member is a sheet material that is another part of the heat-fusible sheet material) (Fusing method) There is a method of folding one sheet material into three or more sheets and fusing them.
[0120]
As a method using three or more sheet materials, for example, a method in which three or more sheet materials having the same or different configurations are simply overlapped and fused together, and at least one of the three or more sheet materials is For example, there is a method in which the sheet is folded more than one, and is overlapped and fused with another sheet material. A multi-chamber container can also be formed by fusing three or more sheet materials and fusing them.
[0121]
In the above-described embodiment, a method of forming a bag-shaped bag has been described. However, the present invention is not limited to a method of forming a bag-shaped bag. For example, this method may be used to seal an opening, or may be used to connect strip-shaped sheet materials.
[0122]
In the above embodiment, the configuration in which a sheet-shaped member is used as the fusion member has been described, but the fusion member has, for example, a block shape (lump shape) or a plate shape having a thickness greater than the sheet material 31. It may be something.
[0123]
【The invention's effect】
As described above, according to the method of the present invention, a transparent, translucent or lightly colored sheet material through which laser light is transmitted can be reliably fused in a simple step (short time), and It is possible to make it difficult for burrs to be generated in the seal portion after the material is fused.
[0124]
Further, according to the present invention, since the shape of the seal portion formed by the irradiation pattern of the laser light 41 can be controlled, the seal portion having a complicated shape can be easily formed. Furthermore, it is possible to continuously form seal portions having different shapes.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an installation configuration of each member in a first embodiment of a sheet material fusing method of the present invention.
FIG. 2 is a plan view of the light-transmitting member according to the first embodiment as viewed from a contact surface side with a sheet material.
FIG. 3 is a plan view of a bag obtained by the sheet material fusing method of the present invention.
FIG. 4 is a cross-sectional view showing an installation configuration of each member according to a second embodiment of the sheet material fusing method of the present invention.
FIG. 5 is a cross-sectional view showing an installation configuration of each member in a third embodiment of the sheet material fusing method of the present invention.
FIG. 6 is a diagram for explaining the shape of a roller in the method of fusing a sheet material according to the present invention.
FIG. 7 is a cross-sectional view illustrating an installation configuration of each member according to a fourth embodiment of the sheet material fusing method of the present invention.
FIG. 8 is a plan view of a heat-generating member according to a fourth embodiment, as viewed from a surface in contact with a sheet material.
[Explanation of symbols]
1A, 1B, 1C, 1D, 1E Light transmitting member
10 Pressing part
11 center point
12 Rotary axis
2A, 2B Heating member
20 Pressing part
31, 32 sheet material
33 Seal part
34 Non-sealed part
35A, 36A points
37, 38 points
4 Laser light irradiation device
41 Laser light
5A, 5B, 5C Supporting member
51 Rotary axis
6 bags
A Main scanning direction
B Sub-scanning direction
H 1 Pressing part height
H 2 Pressing part height