[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004039690A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2004039690A
JP2004039690A JP2002191088A JP2002191088A JP2004039690A JP 2004039690 A JP2004039690 A JP 2004039690A JP 2002191088 A JP2002191088 A JP 2002191088A JP 2002191088 A JP2002191088 A JP 2002191088A JP 2004039690 A JP2004039690 A JP 2004039690A
Authority
JP
Japan
Prior art keywords
thin film
film transistor
semiconductor device
inter
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002191088A
Other languages
Japanese (ja)
Inventor
Mutsumi Kimura
木村 睦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002191088A priority Critical patent/JP2004039690A/en
Publication of JP2004039690A publication Critical patent/JP2004039690A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an inexpensive semiconductor device which has high performance and a high degree of integration, operates at a high speed on a low drive voltage, and is low in power consumption. <P>SOLUTION: A bulk semiconductor device 12 is formed on a semiconductor substrate 11, a thin film transistor 14 is formed as interposing an inter-element insulating film 13 between itself and the semiconductor device 12, and the semiconductor device 12 is electrically connected to the thin film transistor 14 through a contact hole 15 formed in the inter-element insulating film 13. Or, the first thin film transistor is formed on the insulating substrate, the second thin film transistor is formed so as to interpose the inter-layer insulating film between itself and the first thin film transistor, and the first thin film transistor is electrically connected to the second thin film transistor through the contact hole formed in the inter-element insulating film. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
半導体素子、特に、高性能、高集積度、高速動作、低駆動電圧、低消費電力、低コストなどを実現する、半導体素子に関する。
【0002】
【背景技術】
半導体素子の3次元化は、高集積度、高速動作などを実現する、ひとつの有望な技術である(小柳光正、もたい秀樹、Semiconductor FPD World 2002、pp. 36)。従来、半導体技術の3次元化は、半導体基板上にバルク半導体素子を形成し、その基板を積層することによるものが多かった。
【0003】
一方、最近、薄膜トランジスタの特性向上が目覚しい。特に、レーザー結晶化薄膜トランジスタでは、バルク半導体素子に匹敵する特性のものが現れ始めている(H. Watakabe and T. Sameshima, “Defect reductoin technologies used to fabricate high performance poly−Si TFTs”, AM−LCD ’02, Tokyo, Japan, TFT2−3, to be presented, July 2002)。
【0004】
【発明が解決しようとする課題】
従来の半導体技術の3次元化技術、すなわち、半導体基板上にバルク半導体素子を形成しその基板を積層する技術では、おのおのの基板の厚さがかなりあるため、寄生容量や配線遅延が発生し、高速動作、低駆動電圧、低消費電力などを実現することは難しかった。また、おのおのの基板がかなり高価であるため、低コストを実現するのも難しかった。そこで、本発明の目的は、高性能、高集積度、高速動作、低駆動電圧、低消費電力、低コストの半導体素子を実現することである。
【0005】
【課題を解決するための手段】
請求項1記載の本発明は、半導体基板上にバルク半導体素子が形成され、素子間絶縁膜をはさんで薄膜トランジスタが形成され、バルク半導体素子は素子間絶縁膜に開孔されたコンタクトホールを介して薄膜トランジスタと導通していることを特徴とする、半導体素子である。
【0006】
請求項2記載の本発明は、請求項1記載の半導体素子において、薄膜トランジスタのさらに上層に、単層あるいは複数層の薄膜トランジスタが形成されていることを特徴とする、半導体素子である。
【0007】
請求項3記載の本発明は、絶縁体基板上に第1層めの薄膜トランジスタが形成され、素子間絶縁膜をはさんで第2層めの薄膜トランジスタが形成され、第1層めの薄膜トランジスタは素子間絶縁膜に開孔されたコンタクトホールを介して第2層めの薄膜トランジスタと導通していることを特徴とする、半導体素子である。
【0008】
請求項4記載の本発明は、請求項3記載の半導体素子において、第2層めの薄膜トランジスタのさらに上層に、単層あるいは複数層の薄膜トランジスタが形成されていることを特徴とする、半導体素子である。
【0009】
請求項1から4記載の半導体素子によれば、高性能、高集積度、高速動作、低駆動電圧、低消費電力、低コストの半導体素子を実現することが可能となる。背景技術に書いたとおり、最近、薄膜トランジスタの特性向上が目覚しく、高性能の半導体素子を実現することが可能となる。また、従来の半導体技術の3次元化技術と同じく、高集積度の半導体素子を実現することが可能となる。また、素子間絶縁膜は薄膜であるので、高速動作、低駆動電圧、低消費電力の半導体素子を実現することが可能となる。また、使用する基板は1枚でよいので、低コストの半導体素子を実現することが可能となる。なお、薄膜トランジスタの製造工程は低温化が可能であるため、下層にダメージを与えない。
【0010】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を説明する。
【0011】
図1は、本発明の第1の実施例の半導体素子を示す図である。
【0012】
本実施例の半導体素子では、請求項1記載のとおり、半導体基板11上にバルク半導体素子12が形成され、素子間絶縁膜13をはさんで薄膜トランジスタ14が形成され、バルク半導体素子12は素子間絶縁膜13に開孔されたコンタクトホール15を介して薄膜トランジスタ14と導通している。また、請求項2記載のとおり、薄膜トランジスタ14のさらに上側に、上層の薄膜トランジスタ16が形成されている。なお、本実施例では、最下層のバルク半導体素子12の上に、薄膜トランジスタ14と上層の薄膜トランジスタ16とで2層の薄膜トランジスタが形成されいてるが、単層であっても、3層以上であってもよい。
【0013】
図2は、本発明の第2の実施例の半導体素子を示す図である。
【0014】
本実施例の半導体素子では、請求項3記載のとおり、絶縁体基板21上に第1層めの薄膜トランジスタ22が形成され、素子間絶縁膜23をはさんで第2層めの薄膜トランジスタ24が形成され、第1層めの薄膜トランジスタ22は素子間絶縁膜23に開孔されたコンタクトホール25を介して第2層めの薄膜トランジスタ24と導通している。また、請求項4記載のとおり、第2層めの薄膜トランジスタ24のさらに上側に、上層の薄膜トランジスタ26が形成されている。なお、本実施例では、最下層の第1層めの薄膜トランジスタ22の上に、第2層めの薄膜トランジスタ24と上層の薄膜トランジスタ26とでは2層の薄膜トランジスタが形成されいてるが、単層であっても、3層以上であってもよい。
【0015】
図3は、本発明の薄膜トランジスタの製造方法の例を示す図である。ここでは、レーザー結晶化多結晶薄膜トランジスタを例にとって説明する。第1の実施例および第2の実施例の薄膜トランジスタは、本製造方法により形成されている。まず、基板31上に、SiHを用いたPECVDや、Siを用いたLPCVDにより、非晶質シリコン膜を成膜する。レーザー33を照射することにより、非晶質シリコン膜は結晶化し、多結晶シリコン膜32となる(図3(a))。多結晶シリコン膜32をパターニングした後、ゲート絶縁膜34を成膜し、ゲート電極35を成膜およびパターニングする(図3(b))。リンやボロンなどの不純物をゲート電極35を用いて自己整合的に多結晶シリコン膜32に打ち込み、活性化し、CMOS構造のソース領域およびドレイン領域36を形成する。層間絶縁膜37を成膜し、コンタクトホールを開穴し、ソース電極およびドレイン電極38を成膜およびパターニングする(図3(c))。本図に示すとおり、下層に、第1の実施例のように、バルク半導体素子12や薄膜トランジスタ14があるとき、また、第2の実施例のように、第1層めの薄膜トランジスタ22や第2層めの薄膜トランジスタ24があるときは、このコンタクトホールを開穴し、ソース電極およびドレイン電極36を形成するときに、下層と導通させることにより、余分な工程を増やすことなく、所望の構造を得ることができる。
【0016】
本製造工程は、最高温度が400度程度であり、下層に、第1の実施例のように、バルク半導体素子12や薄膜トランジスタ14があっても、また、第2の実施例のように、第1層めの薄膜トランジスタ22や第2層めの薄膜トランジスタ24があっても、ダメージを与えない。
【図面の簡単な説明】
【図1】本発明の第1の実施例の半導体素子を示す図。
【図2】本発明の第2の実施例の半導体素子を示す図。
【図3】本発明の薄膜トランジスタの製造方法の例を示す図。
【符号の説明】
11 半導体基板
12 バルク半導体素子
13 素子間絶縁膜
14 薄膜トランジスタ
15 コンタクトホール
16 上層の薄膜トランジスタ
21 絶縁体基板
22 第1層めの薄膜トランジスタ
23 素子間絶縁膜
24 第2層めの薄膜トランジスタ
25 コンタクトホール
26 上層の薄膜トランジスタ
31 基板
32 多結晶シリコン膜
33 レーザー
34 ゲート絶縁膜
35 ゲート電極
36 ソース領域およびドレイン領域
37 層間絶縁膜
38 ソース電極およびドレイン電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor element, and more particularly to a semiconductor element that achieves high performance, high integration, high-speed operation, low driving voltage, low power consumption, low cost, and the like.
[0002]
[Background Art]
A three-dimensional semiconductor device is one promising technology for realizing a high degree of integration and high-speed operation (Mitsumasa Koyanagi, Hideki Motai, Semiconductor FPD World 2002, pp. 36). Conventionally, three-dimensional semiconductor technology has often been achieved by forming a bulk semiconductor element on a semiconductor substrate and laminating the substrate.
[0003]
On the other hand, recently, the characteristics of thin film transistors have been remarkably improved. In particular, in the case of laser crystallized thin film transistors, those having characteristics comparable to those of bulk semiconductor devices have begun to appear (H. Wakabebe and T. Sameshima, “Defect reduce technology used to fabricate high-performance TFT-based TFT-LCD-based TFT-LCD-based TFT-LCD-based TFT-LCD). , Tokyo, Japan, TFT2-3, to be presented, July 2002).
[0004]
[Problems to be solved by the invention]
In the three-dimensional technology of the conventional semiconductor technology, that is, a technology of forming a bulk semiconductor element on a semiconductor substrate and laminating the substrates, a parasitic capacitance and a wiring delay occur because each substrate has a considerable thickness, It has been difficult to realize high-speed operation, low drive voltage, low power consumption, and the like. Also, since each substrate is quite expensive, it has been difficult to realize low cost. Therefore, an object of the present invention is to realize a semiconductor device with high performance, high integration, high speed operation, low driving voltage, low power consumption, and low cost.
[0005]
[Means for Solving the Problems]
According to the first aspect of the present invention, a bulk semiconductor element is formed on a semiconductor substrate, a thin film transistor is formed with an inter-element insulating film interposed therebetween, and the bulk semiconductor element is formed through a contact hole formed in the inter-element insulating film. A semiconductor element characterized by being electrically connected to a thin film transistor.
[0006]
According to a second aspect of the present invention, there is provided the semiconductor device according to the first aspect, wherein a single layer or a plurality of layers of thin film transistors are formed further above the thin film transistors.
[0007]
According to a third aspect of the present invention, a first layer of thin film transistor is formed on an insulator substrate, a second layer of thin film transistor is formed with an inter-element insulating film interposed therebetween, and the first layer of thin film transistor is formed of an element. A semiconductor element which is electrically connected to a second-layer thin film transistor through a contact hole formed in an inter-insulation film.
[0008]
According to a fourth aspect of the present invention, there is provided the semiconductor device according to the third aspect, wherein a single-layer or a plurality of thin-film transistors are formed further above the second-layer thin-film transistor. is there.
[0009]
According to the semiconductor device according to the first to fourth aspects, it is possible to realize a semiconductor device with high performance, high integration, high speed operation, low driving voltage, low power consumption, and low cost. As described in the background art, the characteristics of a thin film transistor have recently been remarkably improved, and a high-performance semiconductor device can be realized. Further, similarly to the three-dimensional technology of the conventional semiconductor technology, it is possible to realize a highly integrated semiconductor device. Further, since the inter-element insulating film is a thin film, it is possible to realize a semiconductor element with high speed operation, low driving voltage and low power consumption. Further, since only one substrate is used, a low-cost semiconductor element can be realized. Note that since the temperature of the manufacturing process of the thin film transistor can be reduced, the lower layer is not damaged.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
[0011]
FIG. 1 is a diagram showing a semiconductor device according to a first embodiment of the present invention.
[0012]
In the semiconductor device of the present embodiment, as described in claim 1, a bulk semiconductor device 12 is formed on a semiconductor substrate 11, a thin film transistor 14 is formed across an inter-device insulating film 13, and the bulk semiconductor device 12 It is electrically connected to the thin film transistor 14 through a contact hole 15 opened in the insulating film 13. Further, as described in claim 2, an upper layer thin film transistor 16 is formed further above the thin film transistor 14. In this embodiment, the thin film transistor 14 and the upper thin film transistor 16 form a two-layer thin film transistor on the lowermost bulk semiconductor element 12, but a single layer or three or more layers is formed. Is also good.
[0013]
FIG. 2 is a diagram showing a semiconductor device according to a second embodiment of the present invention.
[0014]
In the semiconductor device of this embodiment, a first-layer thin film transistor 22 is formed on an insulator substrate 21, and a second-layer thin film transistor 24 is formed with an inter-element insulating film 23 interposed therebetween. The first-layer thin film transistor 22 is electrically connected to the second-layer thin film transistor 24 through a contact hole 25 formed in the inter-element insulating film 23. Further, as described in claim 4, an upper layer thin film transistor 26 is formed further above the second layer thin film transistor 24. In this embodiment, the two-layered thin film transistor 24 and the upper-layered thin film transistor 26 are formed on the lowermost first-layer thin film transistor 22; May also be three or more layers.
[0015]
FIG. 3 is a diagram illustrating an example of a method for manufacturing a thin film transistor according to the present invention. Here, a laser crystallized polycrystalline thin film transistor will be described as an example. The thin film transistors of the first and second embodiments are formed by this manufacturing method. First, an amorphous silicon film is formed on the substrate 31 by PECVD using SiH 4 or LPCVD using Si 2 H 6 . By irradiating the laser 33, the amorphous silicon film is crystallized and becomes a polycrystalline silicon film 32 (FIG. 3A). After patterning the polycrystalline silicon film 32, a gate insulating film 34 is formed, and a gate electrode 35 is formed and patterned (FIG. 3B). Impurities such as phosphorus and boron are implanted into the polycrystalline silicon film 32 in a self-aligned manner using the gate electrode 35 and activated, thereby forming a source region and a drain region 36 having a CMOS structure. An interlayer insulating film 37 is formed, a contact hole is opened, and a source electrode and a drain electrode 38 are formed and patterned (FIG. 3C). As shown in this figure, when the bulk semiconductor element 12 and the thin film transistor 14 are present in the lower layer as in the first embodiment, and as in the second embodiment, the first thin film transistor 22 and the second thin film transistor When the thin film transistor 24 is formed, the contact hole is opened, and when the source electrode and the drain electrode 36 are formed, conduction with the lower layer is performed, so that a desired structure can be obtained without increasing an extra step. be able to.
[0016]
In this manufacturing process, the maximum temperature is about 400 ° C., and even if the bulk semiconductor element 12 and the thin film transistor 14 are provided in the lower layer as in the first embodiment, or the second semiconductor device is formed as in the second embodiment. Even if the first-layer thin film transistor 22 and the second-layer thin film transistor 24 are present, no damage is caused.
[Brief description of the drawings]
FIG. 1 is a diagram showing a semiconductor device according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a semiconductor device according to a second embodiment of the present invention.
FIG. 3 is a diagram showing an example of a method for manufacturing a thin film transistor of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Semiconductor substrate 12 Bulk semiconductor element 13 Inter-element insulating film 14 Thin-film transistor 15 Contact hole 16 Upper thin-film transistor 21 Insulator substrate 22 First-layer thin-film transistor 23 Inter-element insulating film 24 Second-layer thin-film transistor 25 Contact hole 26 Thin film transistor 31 Substrate 32 Polycrystalline silicon film 33 Laser 34 Gate insulating film 35 Gate electrode 36 Source and drain regions 37 Interlayer insulating film 38 Source and drain electrodes

Claims (4)

半導体基板上にバルク半導体素子が形成され、素子間絶縁膜をはさんで薄膜トランジスタが形成され、前記バルク半導体素子は前記素子間絶縁膜に開孔されたコンタクトホールを介して前記薄膜トランジスタと導通していることを特徴とする、半導体素子。A bulk semiconductor element is formed on a semiconductor substrate, a thin film transistor is formed with an inter-element insulating film interposed therebetween, and the bulk semiconductor element is electrically connected to the thin film transistor through a contact hole opened in the inter-element insulating film. A semiconductor device, characterized in that: 請求項1記載の半導体素子において、
前記薄膜トランジスタのさらに上層に、単層あるいは複数層の薄膜トランジスタが形成されていることを特徴とする、半導体素子。
The semiconductor device according to claim 1,
A semiconductor device, wherein a single layer or a plurality of layers of thin film transistors are formed further above the thin film transistors.
絶縁体基板上に第1層めの薄膜トランジスタが形成され、素子間絶縁膜をはさんで第2層めの薄膜トランジスタが形成され、前記第1層めの薄膜トランジスタは前記素子間絶縁膜に開孔されたコンタクトホールを介して前記第2層めの薄膜トランジスタと導通していることを特徴とする、半導体素子。A first-layer thin film transistor is formed on an insulator substrate, a second-layer thin film transistor is formed with an inter-element insulating film interposed therebetween, and the first-layer thin film transistor is opened in the inter-element insulating film. A semiconductor element that is electrically connected to the second-layer thin film transistor via the contact hole. 請求項3記載の半導体素子において、
前記第2層めの薄膜トランジスタのさらに上層に、単層あるいは複数層の薄膜トランジスタが形成されていることを特徴とする、半導体素子。
The semiconductor device according to claim 3,
A semiconductor element, wherein a single layer or a plurality of layers of thin film transistors are formed further above the second layer of thin film transistors.
JP2002191088A 2002-06-28 2002-06-28 Semiconductor device Withdrawn JP2004039690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191088A JP2004039690A (en) 2002-06-28 2002-06-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191088A JP2004039690A (en) 2002-06-28 2002-06-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2004039690A true JP2004039690A (en) 2004-02-05

Family

ID=31700815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191088A Withdrawn JP2004039690A (en) 2002-06-28 2002-06-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2004039690A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049914A (en) * 2004-08-04 2006-02-16 Samsung Electronics Co Ltd Semiconductor device and methods of arranging and manufacturing same
JP2007294897A (en) * 2006-03-15 2007-11-08 Marvell World Trade Ltd Method for fabricating 1t-dram on bulk silicon
JP2008218786A (en) * 2007-03-06 2008-09-18 Seiko Epson Corp Semiconductor device and method of manufacturing the same
JP2009076879A (en) * 2007-08-24 2009-04-09 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2009239196A (en) * 2008-03-28 2009-10-15 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
JP2009302530A (en) * 2008-06-02 2009-12-24 Commissariat A L'energie Atomique Three-dimensional integrated transistor circuit having dynamically adjustable threshold voltage
JP2018088543A (en) * 2011-05-27 2018-06-07 株式会社半導体エネルギー研究所 Semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049914A (en) * 2004-08-04 2006-02-16 Samsung Electronics Co Ltd Semiconductor device and methods of arranging and manufacturing same
US20110266623A1 (en) * 2004-08-04 2011-11-03 Gong-Heum Han Semiconductor Memory Device Having Three Dimensional Structure
JP2007294897A (en) * 2006-03-15 2007-11-08 Marvell World Trade Ltd Method for fabricating 1t-dram on bulk silicon
JP2008218786A (en) * 2007-03-06 2008-09-18 Seiko Epson Corp Semiconductor device and method of manufacturing the same
JP2009076879A (en) * 2007-08-24 2009-04-09 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2009239196A (en) * 2008-03-28 2009-10-15 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
JP2009302530A (en) * 2008-06-02 2009-12-24 Commissariat A L'energie Atomique Three-dimensional integrated transistor circuit having dynamically adjustable threshold voltage
JP2018088543A (en) * 2011-05-27 2018-06-07 株式会社半導体エネルギー研究所 Semiconductor device
JP2020123755A (en) * 2011-05-27 2020-08-13 株式会社半導体エネルギー研究所 Semiconductor device

Similar Documents

Publication Publication Date Title
US11062965B2 (en) Flipped vertical field-effect-transistor
JP4651924B2 (en) Thin film semiconductor device and method for manufacturing thin film semiconductor device
US7485508B2 (en) Two-sided semiconductor-on-insulator structures and methods of manufacturing the same
US7436027B2 (en) Semiconductor device and fabrication method for the same
TWI395295B (en) Integrated circuit and method for its manufacture
EP1463105A2 (en) Semiconductor device and method of manufacturing the same by a transfer technique
JPH01162376A (en) Manufacture of semiconductor device
KR20050031876A (en) Three dimensional cmos integrated circuits having device layers built on diffrent crystal oriented wafers
WO2013190863A1 (en) Stacked semiconductor device and method for manufacturing same
JP2004228273A (en) Semiconductor device
JP2000150906A5 (en)
JP2004047608A5 (en)
CN1897286A (en) Semiconductor structure and its production method
JP2004039690A (en) Semiconductor device
US7202140B1 (en) Method to fabricate Ge and Si devices together for performance enhancement
JP2005268662A (en) Method of manufacturing three-dimensional device
JP3425603B2 (en) Method for manufacturing field effect transistor
JPH0595117A (en) Thin film transistor and its manufacture
JP2001320052A (en) Semiconductor device and semiconductor integrated circuit
JP3013628B2 (en) Semiconductor device
WO2009144870A1 (en) Semiconductor device and manufacturing method thereof
JP2004079645A (en) Semiconductor device and its manufacturing method
JP2004153255A5 (en)
JP5416790B2 (en) Semiconductor device and manufacturing method thereof
US7413956B2 (en) Semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090327