JP2004031268A - Battery pack - Google Patents
Battery pack Download PDFInfo
- Publication number
- JP2004031268A JP2004031268A JP2002189462A JP2002189462A JP2004031268A JP 2004031268 A JP2004031268 A JP 2004031268A JP 2002189462 A JP2002189462 A JP 2002189462A JP 2002189462 A JP2002189462 A JP 2002189462A JP 2004031268 A JP2004031268 A JP 2004031268A
- Authority
- JP
- Japan
- Prior art keywords
- cell
- series
- battery pack
- parallel
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920001940 conductive polymer Polymers 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 12
- 239000012778 molding material Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- -1 or the like Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、複数の単セルで構成した組電池に関する。
【0002】
【従来の技術】
従来、複数の単セルを直列接続および並列接続した組電池とすることにより、高電圧、高容量な電池を得るようにしている。単セルを並列接続した構成においては、並列接続された単セルの内の一つに内部短絡が発生した場合に、並列接続された他の単セルから内部短絡した単セルに電流が流れ込むことになる。例えば、特開2001−68076号公報に開示されている発明では、このような短絡電流による障害を避けるために、並列接続されている単セルの各々にPTC(positive temperature coefficient)素子を直列接続するようにしている。
【0003】
PTC素子は、大電流による発熱で素子温度が所定値以上となると抵抗値が急激に大きくなる素子であり、電子回路の過電流制御用などに使用されている。例えば、特開2001−68076号公報に開示されている発明では、単セル毎にPTC素子を直列接続している。単セルに内部短絡が生じると、直列接続されたPTC素子を流れる電流が大きくなり素子温度が上昇する。素子温度が所定値以上となると、PCT素子の抵抗値が大きくなって電流値が抑えられることになる。その結果、内部短絡による悪影響を防止することができる。
【0004】
【発明が解決しようとする課題】
しかしながら、特開2001−68076号公報に記載の発明では、各単セル毎にPCT素子が直列接続されているため、PTC素子の抵抗に起因する組電池の抵抗が大きくなり、出力特性が低下するという問題がある。
【0005】
本発明の目的は、複数の単セルで構成される組電池において、組電池の抵抗を低く抑えつつ、単セルの短絡等に起因する障害を抑制することができる組電池を提供することにある。
【0006】
【課題を解決するための手段】
本発明による組電池は、同数の単セルが直列接続された直列セルユニットを複数並列接続した組電池に適用される。並列接続された各直列セルユニットの一方の並列接続点、例えば組電池としての一方の端子部分、から数えて同一番目のセル直列接続ラインの間に抵抗体をそれぞれ配設する。セル直列接続ラインとは単セル同士を接続する強電ラインのことであり、抵抗体の配設により並列接続点から数えて同一番目の単セル同士は並列接続される。
【0007】
【発明の効果】
本発明によれば、セル直列接続ラインの間に抵抗体を配設したので、組電池の抵抗を低く抑えつつ、単セルに内部短絡が発生した場合に大きな短絡電流が流れるのを防止することができる。
【0008】
【発明の実施の形態】
以下、図を参照して本発明の実施の形態を説明する。
−第1の実施の形態−
図1は本発明による組電池の第1の実施の形態を示す回路図である。図1に示す組電池は12個の単セルCn(ただし、n=1,2,〜,12)で構成されており、4個の単セルCnを直列接続した直列セルユニットU1,U2,U3を並列接続したものである。図1のCT1,CT2が、直列セルユニットU1,U2,U3の並列接続点を構成している。直列セルユニットU1の単セルC1およびC2を接続する接続ラインL11と、直列セルユニットU2の単セルC5およびC6を接続する接続ラインL21との間には抵抗R1が設けられている。
【0009】
同様に、接続ラインL12およびL22の間には抵抗R2が、接続ラインL13およびL23の間には抵抗R3がそれぞれ設けられている。また、直列セルユニットU2およびU3に関しても、接続ラインL21およびL31の間には抵抗R4が、接続ラインL22およびL32の間には抵抗R5が、接続ラインL23およびL33の間には抵抗R6がそれぞれ設けられている。その結果、単セルC1,C5,C9同士、単セルC2,C6,C10同士、単セルC3,C7,C11同士、単セルC4,C8,C12同士は、それぞれ並列接続されことになる。接続ラインL11〜L33は、組電池の充放電電流が流れる強電ラインである。
【0010】
例えば、単セルC1よりも単セルC5の方がセル電圧が高い場合には、抵抗R1を介して単セルC5から単セルC1へと電流が流れ込む。この電流は、単セルC1,C5のセル電圧が釣り合うまで継続する。よって、単セルC1,C5,C9のセル電圧が等しい場合には、抵抗R1,R4を流れる電流はゼロとなる。その他の抵抗R2,R3,R5,R6に関しても同様である。すなわち、単セルC1〜C12のセル電圧が等しい状態では、4セル直列接続の直列セルユニットU1,U2,U3を並列接続したものと同一状態になる。
【0011】
上述したように、単セルC1,C5,C9の間においては抵抗R1,R4を介して電流の行き来があるため、単セルC1,C5,C9は同一セル電圧となっており、これらのセル電圧はセル電圧センサ1aによって検出される。同様に、単セルC2,C6,C10のセル電圧はセル電圧センサ1bにより検出され、単セルC3,C7,C11のセル電圧はセル電圧センサ1cにより検出され、単セルC4,C8,C12のセル電圧はセル電圧センサ1dによって検出される。
【0012】
ところで、電池容量が3Ahよりも大きな単セルの場合には、内部短絡などの異常が起きたときに、セル内部温度の上昇による電解液の分解等によってガス噴出が発生しやすい。そのため、本実施の形態の組電池では、電池容量が3Ah以下の単セルCnを使用するのが好ましい。そして、必要とする電池容量に応じて直列セルユニットの数を増減させれば良い。
【0013】
次に、抵抗R1〜R6の機能について説明する。図1に示した組電池おいて、例えば単セルC2に内部短絡が生じた場合を考える。このとき、抵抗R1,R2,R4,R5を介して単セルC6,C10から単セルC2へと電流が流れ込むことになるが、抵抗R1,R2,R4,R5の抵抗値を大きく設定することによって電流値を小さく抑えることができる。
【0014】
また、組電池を構成する単セルに関しては、各単セルの過充電や過放電を防止するために全単セルの電圧を測定する必要がある。そのため、従来の組電池では抵抗R1〜R6の部分にセル電圧検出線を設けている。この場合には、単セルC2に内部短絡が生じると、単セルC2に大電流が流れ込むとともに、他の単セルC6,C10も外部短絡を起こした状態となってしまう。そのため、例えば特開2000−102185号公報に開示されている発明では、複数の単セルを直列したものに一つのPTC素子を直列接続し、そのように直列接続したものを複数並列接続している。この場合は、各単セル毎に電圧検出回路を設ける必要があり、重量や体積が増加するだけでなく、コストの点でも不利である。
【0015】
しかしながら本実施の形態の組電池では、抵抗R1,R2,R4,R5の抵抗値を大きく設定することによって内部短絡発生時の電流値を小さく抑えることができ、短絡による障害の発生を防止することができる。内部短絡によるこのような電流が生じると、セル電圧センサ1bで検出される電圧値が他のセル電圧センサで検出されるものよりも異常に小さくなり、それによって単セルCnの異常を検知することができる。なお、抵抗R1〜R6の抵抗値は、1Ω以上が適している。
【0016】
一方、通常使用時には、4セルが直列接続された直列セルユニットU1,U2,U3を並列接続した状態となり、抵抗R1〜R6には電流が流れることはほとんどない。すなわち、単セルCnに対して抵抗R1〜R6が直列に接続されていないため、組電池の内部抵抗が大きくなるのを避けることができ、出力特性の低下を防止することができる。また、抵抗R1およびR4を設けたことにより単セルC1,C5,C9は並列接続され、3つの単セルC1,C5,C9のセル電圧を一つのセル電圧センサ1aによって検出することができる。すなわち、図1の上下方向に形成された並列接続の数だけセル電圧センサを設ければ良い。
【0017】
−第2の実施の形態−
図2は本発明による組電池の第2の実施の形態を示す回路図である。第2の実施の形態においても、組電池は12個の単セルCnで構成されており、4セルが直列に接続された直列セルユニットU1,U2,U3を並列接続したものである。図2に示した組電池は図1の組電池と異なる点は、抵抗R1〜R6に代えてPTC(positive temperature coefficient)素子P1〜P6を用いたことである。PTC素子は図3に示すような特性を有しており、素子温度が所定温度T0よりも低い場合には抵抗値が小さく、所定温度T0を越えると抵抗値が急激に大きくなる。すなわち、所定温度T0を境に抵抗値はRaからRbへと変化する。一般的にRb≫Raであって、電流はほとんど遮断されることになる。PTC素子の所定温度T0は、PTC素子の材料を調整することで室温から約300℃まで任意に設定可能である。本実施の形態では、通常の使用では到達しないと考えられる90℃のものとする。また、抵抗値Raは10mΩ程度であるのに対して、Rbは5000Ω程度と非常に大きいものを用いるものとする。
【0018】
第1の実施の形態と同様に単セルC2に内部短絡が生じた場合を考えると、抵抗値RaのPTC素子P1,P2を介して単セルC6から単セルC2へと大電流が流れ込むことになる。PTC素子P1,P2に大電流が流れ込むとジュール熱により素子温度が急激に上昇し、所定温度T0を越えると抵抗値がRaからRbへと急激に増大する。すなわち、単セルC6から単セルC2への電流はPTC素子P1,P2によって遮断されることになる。その結果、第1の実施の形態と同様に短絡電流による単セルC2,C6,C10の障害発生を防止することができる。
【0019】
一方、通常使用時には、PTC素子P1〜P6の温度は上述した所定温度T0より低いため、抵抗値はRaとなっている。この場合には、図1の組電池において抵抗R1〜R6の値をRaとしたものと等価である。そのため、第1の実施の形態と同様に組電池の内部抵抗が大きくなるのを避けることができ、出力特性の低下を防止できる。
【0020】
さらに、PTC素子P1〜P6の抵抗値Raは上述したように10mΩ程度であって、第1の実施の形態における短絡電流防止用抵抗R1〜R6の抵抗値(1Ω以上)に比べ十分に小さいので、例えば、単セルC1,C5,C9の間にセル電圧のばらつきがあって電流のやり取りがあった場合でも、そのときのジュール熱による損失を低減することができる。そのため、直列セルユニットU1〜U3毎に特性の異なる単セルを用いるような場合には特に効果的である。なぜならば、並列接続された単セルC1,C5,C9の電池容量や内部抵抗がそれぞれ異なる場合には、セル間での電流のやり取りが必要になるからである。
【0021】
−第3の実施の形態−
図4および図5は、本発明による組電池の第3の実施の形態を示す図である。図4は組電池の外観を示す斜視図であり、図5は組電池の回路図である。第3の実施の形態の組電池では、単セルCnとしてラミネートセルを用いている。組電池は8個の単セルCnで構成されており、2個ずつ直列接続した直列セルユニットU1〜U4を上下に積層して並列接続したものである。
【0022】
各セルC1〜C8の左右両端には負極タブ端子T1および正極タブ端子T2が設けられている。単セルC1の正極タブ端子T2と単セルC2の負極タブ端子T1とを超音波溶接等により溶接することにより、2セルが直列接続された直列セルユニットU1が形成される。直列セルユニットU2〜U4も同様の構成となっている。上下に積層された直列セルユニットU1〜U4の各正極タブ端子T2は正極バスバー4aに溶接され、各負極タブ端子T1は負極バスバー4bに溶接される。
【0023】
5はモールド材であり、二点差線で示すように各直列セルユニットU1〜U4の少なくともタブ端子T1,T2の接続部分全体を含むように設けられている。モールド材5の材料としては、ポリアセチレン、ポリピロール、ポリチオフェンおよびポリアニリン等の導電性高分子が用いられる。また、非導電性高分子に金、銅、アルミニウム、鉄、ステンレス、ニッケルなどの金属やアセチレンブラック、ファーネスブラックなどのカーボンブラックを導電体として充填したものを用いても良い。マトリックスポリマーとして使用される非導電性高分子には、合成ゴム、ポリオレフィン、塩化ビニル、ポリスチレン、ABS、ナイロン、エチレン酢ビ共重合体、ポリエステル、アクリル、エポキシ、ウレタン樹脂などが用いられる。
【0024】
図4,5に示すように、導電性のモールド材5でタブ端子接続部L51,L52,L53,L54をモールドすると、モールド材5内を電流が流れることが可能となる。すなわち、図5の回路図に示すように、モールド材5はタブ端子接続部L51,L52,L53,L54間を繋ぐ抵抗R11,R12,R13として機能する。この抵抗R11〜R13は図1の抵抗R1〜R6と全く同様の働きをし、第1の実施の形態と同様の効果を奏することができる。
【0025】
さらに、第3の実施の形態では、モールド材5はタブ端子接続部L51〜L54の固定機能も兼ねている。また、モールド材5は空気に比べて熱伝導率が大きいので、タブ端子接続部L51〜L54の放熱性能の向上を図ることができる。
【0026】
なお、結晶性高分子重合体にカーボンブラックや金属等の導電性粒子を分散させたものは有機質PTCサーミスタとして使用されており、これらの物質をモールド材5として用いても良い。この場合、モールド材5は図2に示したPTC素子P1〜P6と同様の働きをし、第2の実施の形態と同様の効果を奏することができる。
【0027】
図6は、図4に示す組電池の変形例を示す図であり、回路図は図5と同様になる。図4の組電池では単セルC1,C2を直列に配設して直列接続した。一方、図6の組電池ではタブ端子T1,T2の向きを逆向きにして単セルC1,C2を並列に配設し、隣り合うタブ端子T1,T2同士をバスバー7で接続した。そして、直列セルユニットU1〜U4の各バスバー7とそれらに接続されているタブ端子T1,T2とを含むようにモールド材5を設けた。
【0028】
なお、第3の実施の形態では単セルCnとしてラミネートセルを用いる場合を例に説明したが、筒形状の二次電池に関しても同様に適用することができる。また、上述した特徴的な機能作用効果が得られるものであるならば、本発明は上述した実施の形態に限定されない。
【0029】
以上説明した実施の形態と特許請求の範囲の要素との対応において、接続ラインL11〜L13,L21〜L23,L31〜L33およびタブ端子接続部L51〜L54はセル直列接続ラインを構成する。
【図面の簡単な説明】
【図1】本発明による組電池の第1の実施の形態を示す回路図である。
【図2】本発明による組電池の第2の実施の形態を示す回路図である。
【図3】PCT素子の特性を示す図である。
【図4】本発明による組電池の第3の実施の形態を示す図である。
【図5】図4に示す組電池の回路図である。
【図6】図4に示す組電池の変形例を示す図である。
【符号の説明】
1a〜1d セル電圧センサ
4a,4b,7 バスバー
5 モールド材
C1〜C12 単セル
CT1,CT2 並列接続点
L11〜L13,L21〜L23,L31〜L33 接続ライン
L51〜L54 タブ端子接続部
P1〜P1 PTC素子
R1〜R6,R11〜R13 抵抗
T1 負極タブ端子
T2 正極タブ端子
U1〜U4 直列セルユニット[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a battery pack composed of a plurality of single cells.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a battery having a high voltage and a high capacity has been obtained by forming a battery pack in which a plurality of single cells are connected in series and in parallel. In a configuration in which single cells are connected in parallel, if an internal short circuit occurs in one of the single cells connected in parallel, current flows from another parallel connected single cell into the single short-circuited cell. Become. For example, in the invention disclosed in Japanese Patent Application Laid-Open No. 2001-68076, in order to avoid such a failure due to a short-circuit current, a PTC (positive temperature coefficient) element is connected in series to each of the single cells connected in parallel. Like that.
[0003]
The PTC element is an element whose resistance value rapidly increases when the element temperature becomes a predetermined value or more due to heat generated by a large current, and is used for controlling an overcurrent of an electronic circuit. For example, in the invention disclosed in JP-A-2001-68076, PTC elements are connected in series for each single cell. When an internal short circuit occurs in a single cell, the current flowing through the PTC elements connected in series increases, and the element temperature rises. When the element temperature becomes equal to or higher than a predetermined value, the resistance value of the PCT element increases and the current value is suppressed. As a result, adverse effects due to internal short circuits can be prevented.
[0004]
[Problems to be solved by the invention]
However, in the invention described in Japanese Patent Application Laid-Open No. 2001-68076, since the PCT elements are connected in series for each single cell, the resistance of the assembled battery due to the resistance of the PTC element increases, and the output characteristics deteriorate. There is a problem.
[0005]
An object of the present invention is to provide an assembled battery including a plurality of single cells, which can suppress a failure due to a short circuit of the single cell and the like while keeping the resistance of the assembled battery low. .
[0006]
[Means for Solving the Problems]
The assembled battery according to the present invention is applied to an assembled battery in which a plurality of series cell units in which the same number of single cells are connected in series are connected in parallel. Resistors are respectively arranged between the same serial connection lines counted from one parallel connection point of each series cell unit connected in parallel, for example, one terminal portion as an assembled battery. The cell series connection line is a high-power line connecting the single cells, and the same single cells counted from the parallel connection point are connected in parallel by disposing the resistor.
[0007]
【The invention's effect】
According to the present invention, since the resistor is disposed between the cell series connection lines, it is possible to prevent a large short-circuit current from flowing when an internal short-circuit occurs in a single cell while keeping the resistance of the battery pack low. Can be.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
-1st Embodiment-
FIG. 1 is a circuit diagram showing a first embodiment of a battery pack according to the present invention. The assembled battery shown in FIG. 1 is composed of 12 single cells Cn (where n = 1, 2,..., 12), and series cell units U1, U2, U3 in which four single cells Cn are connected in series. Are connected in parallel. CT1 and CT2 in FIG. 1 constitute a parallel connection point of the series cell units U1, U2 and U3. A resistor R1 is provided between a connection line L11 connecting the single cells C1 and C2 of the series cell unit U1 and a connection line L21 connecting the single cells C5 and C6 of the series cell unit U2.
[0009]
Similarly, a resistor R2 is provided between the connection lines L12 and L22, and a resistor R3 is provided between the connection lines L13 and L23. Regarding the series cell units U2 and U3, a resistor R4 is provided between the connection lines L21 and L31, a resistor R5 is provided between the connection lines L22 and L32, and a resistor R6 is provided between the connection lines L23 and L33. Is provided. As a result, the single cells C1, C5, and C9, the single cells C2, C6, and C10, the single cells C3, C7, and C11, and the single cells C4, C8, and C12 are connected in parallel. The connection lines L11 to L33 are high-power lines through which the charge / discharge current of the battery pack flows.
[0010]
For example, when the cell voltage of the single cell C5 is higher than that of the single cell C1, a current flows from the single cell C5 to the single cell C1 via the resistor R1. This current continues until the cell voltages of the single cells C1 and C5 are balanced. Therefore, when the cell voltages of the single cells C1, C5, and C9 are equal, the current flowing through the resistors R1 and R4 becomes zero. The same applies to the other resistors R2, R3, R5, and R6. That is, in a state where the cell voltages of the single cells C1 to C12 are equal, the state is the same as that in which the serial cell units U1, U2, and U3 connected in series with four cells are connected in parallel.
[0011]
As described above, since current flows between the single cells C1, C5, and C9 via the resistors R1 and R4, the single cells C1, C5, and C9 have the same cell voltage. Is detected by the cell voltage sensor 1a. Similarly, the cell voltages of the single cells C2, C6, and C10 are detected by the cell voltage sensor 1b, the cell voltages of the single cells C3, C7, and C11 are detected by the cell voltage sensor 1c, and the cells of the single cells C4, C8, and C12. The voltage is detected by the cell voltage sensor 1d.
[0012]
By the way, in the case of a single cell having a battery capacity larger than 3 Ah, when an abnormality such as an internal short circuit occurs, gas ejection is likely to occur due to decomposition of the electrolyte due to an increase in the internal temperature of the cell. Therefore, in the battery pack of the present embodiment, it is preferable to use a single cell Cn having a battery capacity of 3 Ah or less. Then, the number of series cell units may be increased or decreased according to the required battery capacity.
[0013]
Next, functions of the resistors R1 to R6 will be described. In the battery pack shown in FIG. 1, for example, a case where an internal short circuit occurs in the single cell C2 will be considered. At this time, current flows from the single cells C6 and C10 to the single cell C2 via the resistors R1, R2, R4 and R5, but by setting the resistance values of the resistors R1, R2, R4 and R5 large. The current value can be kept small.
[0014]
Further, as for the single cells constituting the assembled battery, it is necessary to measure the voltages of all the single cells in order to prevent overcharge and overdischarge of each single cell. Therefore, in the conventional battery pack, a cell voltage detection line is provided in a portion of the resistors R1 to R6. In this case, when an internal short circuit occurs in the single cell C2, a large current flows into the single cell C2, and the other single cells C6 and C10 are also in a state where an external short circuit has occurred. For this reason, for example, in the invention disclosed in Japanese Patent Application Laid-Open No. 2000-102185, one PTC element is connected in series to a plurality of single cells connected in series, and a plurality of such serially connected ones are connected in parallel. . In this case, it is necessary to provide a voltage detection circuit for each single cell, which is disadvantageous not only in weight and volume but also in cost.
[0015]
However, in the battery pack of the present embodiment, by setting the resistance values of the resistors R1, R2, R4, and R5 large, the current value at the time of occurrence of an internal short circuit can be reduced, and the occurrence of a failure due to the short circuit can be prevented. Can be. When such a current occurs due to an internal short circuit, the voltage value detected by the cell voltage sensor 1b becomes abnormally smaller than that detected by the other cell voltage sensors, thereby detecting the abnormality of the single cell Cn. Can be. Note that the resistance values of the resistors R1 to R6 are preferably 1Ω or more.
[0016]
On the other hand, at the time of normal use, the series cell units U1, U2, U3 in which four cells are connected in series are connected in parallel, and current hardly flows through the resistors R1 to R6. That is, since the resistors R1 to R6 are not connected in series to the single cell Cn, it is possible to avoid an increase in the internal resistance of the battery pack, and to prevent a decrease in output characteristics. Further, by providing the resistors R1 and R4, the single cells C1, C5 and C9 are connected in parallel, and the cell voltages of the three single cells C1, C5 and C9 can be detected by one cell voltage sensor 1a. That is, the cell voltage sensors may be provided by the number of parallel connections formed in the vertical direction in FIG.
[0017]
-2nd Embodiment-
FIG. 2 is a circuit diagram showing a second embodiment of the battery pack according to the present invention. Also in the second embodiment, the assembled battery is composed of 12 single cells Cn, and is a parallel connection of series cell units U1, U2, U3 in which four cells are connected in series. The battery pack shown in FIG. 2 is different from the battery pack of FIG. 1 in that positive resistors (PTCs) P1 to P6 are used instead of the resistors R1 to R6. The PTC element has characteristics as shown in FIG. 3. When the element temperature is lower than the predetermined temperature T0, the resistance value is small, and when the element temperature exceeds the predetermined temperature T0, the resistance value sharply increases. That is, the resistance value changes from Ra to Rb at the predetermined temperature T0. In general, Rb≫Ra, and the current is almost cut off. The predetermined temperature T0 of the PTC element can be arbitrarily set from room temperature to about 300 ° C. by adjusting the material of the PTC element. In the present embodiment, the temperature is assumed to be 90 ° C., which is considered not to be reached by normal use. Further, while the resistance value Ra is about 10 mΩ, Rb is about 5000 Ω, which is very large.
[0018]
Considering the case where an internal short circuit occurs in the single cell C2 as in the first embodiment, a large current flows from the single cell C6 to the single cell C2 via the PTC elements P1 and P2 having the resistance value Ra. Become. When a large current flows into the PTC elements P1 and P2, the element temperature sharply rises due to Joule heat, and when the temperature exceeds a predetermined temperature T0, the resistance value sharply increases from Ra to Rb. That is, the current from the single cell C6 to the single cell C2 is cut off by the PTC elements P1 and P2. As a result, similarly to the first embodiment, it is possible to prevent the failure of the single cells C2, C6, and C10 due to the short-circuit current.
[0019]
On the other hand, during normal use, since the temperatures of the PTC elements P1 to P6 are lower than the above-described predetermined temperature T0, the resistance value is Ra. This case is equivalent to the case where the values of the resistors R1 to R6 in the assembled battery of FIG. 1 are Ra. Therefore, similarly to the first embodiment, an increase in the internal resistance of the battery pack can be avoided, and a decrease in output characteristics can be prevented.
[0020]
Further, the resistance value Ra of the PTC elements P1 to P6 is about 10 mΩ as described above, and is sufficiently smaller than the resistance values (1Ω or more) of the short-circuit current prevention resistances R1 to R6 in the first embodiment. For example, even when currents are exchanged due to variations in cell voltages among the single cells C1, C5, and C9, loss due to Joule heat at that time can be reduced. Therefore, it is particularly effective when a single cell having different characteristics is used for each of the series cell units U1 to U3. This is because when the battery capacity and the internal resistance of the single cells C1, C5, and C9 connected in parallel are different from each other, it is necessary to exchange current between the cells.
[0021]
-Third embodiment-
4 and 5 are views showing a third embodiment of the battery pack according to the present invention. FIG. 4 is a perspective view showing the appearance of the battery pack, and FIG. 5 is a circuit diagram of the battery pack. In the battery pack of the third embodiment, a laminate cell is used as the single cell Cn. The assembled battery is composed of eight single cells Cn, and is formed by stacking two series-connected series cell units U1 to U4 one above the other and connecting them in parallel.
[0022]
A negative electrode tab terminal T1 and a positive electrode tab terminal T2 are provided at both left and right ends of each of the cells C1 to C8. By welding the positive electrode tab terminal T2 of the single cell C1 and the negative electrode tab terminal T1 of the single cell C2 by ultrasonic welding or the like, a series cell unit U1 in which two cells are connected in series is formed. The series cell units U2 to U4 have the same configuration. Each of the positive electrode tab terminals T2 of the series cell units U1 to U4 stacked vertically is welded to the positive
[0023]
[0024]
As shown in FIGS. 4 and 5, when the tab terminal connection portions L51, L52, L53, and L54 are molded with the
[0025]
Further, in the third embodiment, the
[0026]
Note that a material in which conductive particles such as carbon black and metal are dispersed in a crystalline polymer is used as an organic PTC thermistor, and these materials may be used as the
[0027]
FIG. 6 is a diagram showing a modification of the battery pack shown in FIG. 4, and the circuit diagram is the same as that of FIG. In the assembled battery of FIG. 4, the single cells C1 and C2 were arranged in series and connected in series. On the other hand, in the assembled battery of FIG. 6, the unit cells C1 and C2 are arranged in parallel with the tab terminals T1 and T2 reversed, and the adjacent tab terminals T1 and T2 are connected by the
[0028]
In the third embodiment, a case where a laminate cell is used as the single cell Cn has been described as an example. However, the present invention can be similarly applied to a cylindrical secondary battery. In addition, the present invention is not limited to the above-described embodiments as long as the above-described characteristic functions and effects can be obtained.
[0029]
In the correspondence between the embodiment described above and the elements of the claims, the connection lines L11 to L13, L21 to L23, L31 to L33 and the tab terminal connection parts L51 to L54 constitute a cell series connection line.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment of a battery pack according to the present invention.
FIG. 2 is a circuit diagram showing a second embodiment of the battery pack according to the present invention.
FIG. 3 is a diagram showing characteristics of a PCT element.
FIG. 4 is a diagram showing a third embodiment of the battery pack according to the present invention.
FIG. 5 is a circuit diagram of the battery pack shown in FIG.
FIG. 6 is a diagram showing a modification of the battery pack shown in FIG.
[Explanation of symbols]
1a-1d
Claims (5)
前記並列接続された各直列セルユニットの一方の並列接続点から数えて同一番目のセル直列接続ラインの間に抵抗体をそれぞれ配設したことを特徴とする組電池。In an assembled battery in which a plurality of series cell units in which the same number of single cells are connected in series are connected in parallel,
An assembled battery, wherein a resistor is disposed between the same serial cell connection lines counted from one parallel connection point of each of the serial cell units connected in parallel.
前記抵抗体の抵抗値を1Ω以上としたことを特徴とする組電池。The battery pack according to claim 1,
An assembled battery, wherein the resistance value of the resistor is 1 Ω or more.
前記抵抗体は、PTC素子であることを特徴とする組電池。The battery pack according to claim 1,
The said battery is a PTC element, The assembled battery characterized by the above-mentioned.
前記抵抗体は導電性高分子であり、前記セル直列接続ライン同士を前記導電性高分子で一体に固着したことを特徴とする組電池。The assembled battery according to any one of claims 1 to 3,
An assembled battery, wherein the resistor is a conductive polymer, and the cell series connection lines are integrally fixed with the conductive polymer.
前記単セルの電池容量を3Ah以下としたことを特徴とする組電池。The battery pack according to any one of claims 1 to 4,
An assembled battery, wherein the single cell has a battery capacity of 3 Ah or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002189462A JP4186525B2 (en) | 2002-06-28 | 2002-06-28 | Assembled battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002189462A JP4186525B2 (en) | 2002-06-28 | 2002-06-28 | Assembled battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004031268A true JP2004031268A (en) | 2004-01-29 |
JP4186525B2 JP4186525B2 (en) | 2008-11-26 |
Family
ID=31183877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002189462A Expired - Fee Related JP4186525B2 (en) | 2002-06-28 | 2002-06-28 | Assembled battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4186525B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011151981A1 (en) | 2010-06-02 | 2011-12-08 | パナソニック株式会社 | Battery module |
WO2012014350A1 (en) | 2010-07-29 | 2012-02-02 | パナソニック株式会社 | Battery module |
CN102468474A (en) * | 2010-11-01 | 2012-05-23 | 索尼公司 | Assembled battery and power consumption apparatus |
CN102473888A (en) * | 2009-07-08 | 2012-05-23 | 法国原子能源和替代能源委员会 | low loss battery |
WO2013050089A1 (en) * | 2011-10-08 | 2013-04-11 | Audi Ag | Lithium-ion battery with an overcurrent protection device |
WO2013053445A1 (en) * | 2011-10-10 | 2013-04-18 | Audi Ag | Lithium-ion battery comprising overcurrent protection device |
JP2013089489A (en) * | 2011-10-19 | 2013-05-13 | Yazaki Corp | Power supply device |
JP5197001B2 (en) * | 2005-02-22 | 2013-05-15 | 日本電気株式会社 | Method for manufacturing electrical device assembly |
WO2014109319A1 (en) * | 2013-01-11 | 2014-07-17 | 株式会社東芝 | Battery pack device, battery module and battery module system |
US8847552B2 (en) | 2010-06-09 | 2014-09-30 | Samsung Sdi Co., Ltd. | Battery pack and method of controlling the same |
EP2751867A4 (en) * | 2011-08-29 | 2015-04-29 | Amperex Technology Ltd | SERIAL / PARALLEL CONNECTION SYSTEM FOR ENERGY STORAGE DEVICES |
WO2018060179A1 (en) * | 2016-09-27 | 2018-04-05 | Robert Bosch Gmbh | Electrical energy storage system comprising a cross-connection of a plurality of parallel energy storage strings that is electrically conductively connected to a current detection means via a diode, and method for detecting a conduction fault |
JP2021044241A (en) * | 2019-09-10 | 2021-03-18 | 新盛力科技股▲ふん▼有限公司 | Battery module that can improve safety |
-
2002
- 2002-06-28 JP JP2002189462A patent/JP4186525B2/en not_active Expired - Fee Related
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5197001B2 (en) * | 2005-02-22 | 2013-05-15 | 日本電気株式会社 | Method for manufacturing electrical device assembly |
CN102473888A (en) * | 2009-07-08 | 2012-05-23 | 法国原子能源和替代能源委员会 | low loss battery |
JP2012533145A (en) * | 2009-07-08 | 2012-12-20 | コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ | Low loss battery |
US9172077B2 (en) | 2009-07-08 | 2015-10-27 | Commissariat à l'énergie atomique et aux energies alternatives | Low-loss storage battery |
WO2011151981A1 (en) | 2010-06-02 | 2011-12-08 | パナソニック株式会社 | Battery module |
US8847552B2 (en) | 2010-06-09 | 2014-09-30 | Samsung Sdi Co., Ltd. | Battery pack and method of controlling the same |
WO2012014350A1 (en) | 2010-07-29 | 2012-02-02 | パナソニック株式会社 | Battery module |
US9368838B2 (en) | 2010-07-29 | 2016-06-14 | Panasonic Intellectual Property Management Co., Ltd. | Battery module providing for disconnection of an abnormal cell |
EP2600436A4 (en) * | 2010-07-29 | 2015-04-29 | Panasonic Ip Man Co Ltd | BATTERY MODULE |
US9608248B2 (en) | 2010-11-01 | 2017-03-28 | Sony Corporation | Assembled battery and power consumption apparatus |
CN102468474B (en) * | 2010-11-01 | 2016-04-20 | 索尼公司 | Assembled battery and power consumption apparatus |
CN102468474A (en) * | 2010-11-01 | 2012-05-23 | 索尼公司 | Assembled battery and power consumption apparatus |
JP2012099307A (en) * | 2010-11-01 | 2012-05-24 | Sony Corp | Battery pack and power consumption equipment |
EP2751867A4 (en) * | 2011-08-29 | 2015-04-29 | Amperex Technology Ltd | SERIAL / PARALLEL CONNECTION SYSTEM FOR ENERGY STORAGE DEVICES |
US9118192B2 (en) | 2011-08-29 | 2015-08-25 | Amperex Technology Limited | Series/parallel connection scheme for energy storage devices |
WO2013050089A1 (en) * | 2011-10-08 | 2013-04-11 | Audi Ag | Lithium-ion battery with an overcurrent protection device |
WO2013053445A1 (en) * | 2011-10-10 | 2013-04-18 | Audi Ag | Lithium-ion battery comprising overcurrent protection device |
JP2013089489A (en) * | 2011-10-19 | 2013-05-13 | Yazaki Corp | Power supply device |
WO2014109319A1 (en) * | 2013-01-11 | 2014-07-17 | 株式会社東芝 | Battery pack device, battery module and battery module system |
WO2018060179A1 (en) * | 2016-09-27 | 2018-04-05 | Robert Bosch Gmbh | Electrical energy storage system comprising a cross-connection of a plurality of parallel energy storage strings that is electrically conductively connected to a current detection means via a diode, and method for detecting a conduction fault |
CN109791184A (en) * | 2016-09-27 | 2019-05-21 | 罗伯特·博世有限公司 | The method via diode with the electrical energy storage system of the lateral connection of current detection means conductive connection and for detecting line fault with multiple parallel energies storage branch |
US10981451B2 (en) | 2016-09-27 | 2021-04-20 | Robert Bosch Gmbh | Electrical energy storage system comprising a cross-connection of a plurality of parallel energy storage strings that is electrically conductively connected to a current detection means via a diode, and method for detecting a conduction fault |
CN109791184B (en) * | 2016-09-27 | 2021-07-13 | 罗伯特·博世有限公司 | Electrical energy storage system and method for detecting a line fault |
JP2021044241A (en) * | 2019-09-10 | 2021-03-18 | 新盛力科技股▲ふん▼有限公司 | Battery module that can improve safety |
JP7072910B2 (en) | 2019-09-10 | 2022-05-23 | 新盛力科技股▲ふん▼有限公司 | Battery module that can improve safety |
Also Published As
Publication number | Publication date |
---|---|
JP4186525B2 (en) | 2008-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5178154B2 (en) | Battery power system comprising an assembled battery unit and a plurality of assembled battery units | |
JP4186525B2 (en) | Assembled battery | |
US7304453B2 (en) | Methods and systems for assembling batteries | |
US8179650B2 (en) | Power supply apparatus | |
KR101998091B1 (en) | Apparatus for measuring current using shunt resistor | |
US7262605B2 (en) | Power supply apparatus | |
JP4961511B2 (en) | Battery module | |
JP6204357B2 (en) | Series / Parallel Connection Scheme for Energy Storage Devices | |
CA2589867C (en) | Heat radiation structure for secondary battery module, and switching board and secondary battery module having the same | |
US8173285B2 (en) | Lithium battery management system | |
US6784642B2 (en) | Power supply having temperature sensors for detecting battery temperatures | |
US8179097B2 (en) | Protection circuit for battery pack and battery pack having the same | |
JP2004031255A (en) | Battery pack | |
JPWO2011151981A1 (en) | Battery module | |
JP2010531047A (en) | Device with at least one battery | |
KR102258826B1 (en) | Apparatus and method for preventing overcharge | |
CN212517351U (en) | Battery modules and battery packs | |
KR101208570B1 (en) | Novel protection circuit module and battery pack including the same | |
JP2002010501A (en) | Capacity equalizing apparatus for capacitor | |
KR20180025702A (en) | Protection apparatus for rechargeable battery | |
KR20240025555A (en) | Bi-directional adaptive terminal voltage (BATV) of the battery pack | |
JP2023523313A (en) | Battery stress relief system | |
CN214543772U (en) | Battery switching circuit and battery management system | |
KR102137698B1 (en) | Protection circuit device for battery | |
JP2000331659A (en) | Set battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041222 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080624 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080605 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080819 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080901 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20081014 |
|
A072 | Dismissal of procedure [no reply to invitation to correct request for examination] |
Free format text: JAPANESE INTERMEDIATE CODE: A072 Effective date: 20090127 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |