[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004026986A - Method for modifying surface of organic polymeric substrate - Google Patents

Method for modifying surface of organic polymeric substrate Download PDF

Info

Publication number
JP2004026986A
JP2004026986A JP2002184437A JP2002184437A JP2004026986A JP 2004026986 A JP2004026986 A JP 2004026986A JP 2002184437 A JP2002184437 A JP 2002184437A JP 2002184437 A JP2002184437 A JP 2002184437A JP 2004026986 A JP2004026986 A JP 2004026986A
Authority
JP
Japan
Prior art keywords
pressure
organic polymer
polymer substrate
pressure fluid
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002184437A
Other languages
Japanese (ja)
Inventor
Teruo Hori
堀 照夫
Yoshiyuki Nagase
長瀬 佳之
Tomoji Takahashi
高橋 知二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002184437A priority Critical patent/JP2004026986A/en
Publication of JP2004026986A publication Critical patent/JP2004026986A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To establish a temperature and pressure condition which allows a catalyst for electroless plating to be present in the vicinity of the surface of an organic polymeric substrate when the catalyst for electroless plating is fixed to an organic polymeric substrate by a high spressure fluid, without damaging the organic polymeric substrate and wasting the catalyst. <P>SOLUTION: In a method for fixing an organometal compound to the surface of the organic polymeric substrate by bringing the organic polymeric substrate into contact with the high pressure fluid containing the organometal compound batchwise in a high pressure container, either one of carbon dioxide, nitrogen and a 4C or less hydrocarbon is used as the high pressure fluid. When the critical pressure of the high pressure fluid is Pc<SB>1</SB>(MPa), the temperature T<SB>1</SB>(K) and pressure P<SB>1</SB>(MPa) of the high pressure fluid are controlled so as to satisfy formulas (1) and (2) : 313 ≤T<SB>1</SB>≤ 473 (1) and 0.8Pc<SB>1</SB>≤ P<SB>1</SB>≤ 5.0Pc<SB>1</SB><SP></SP>(2) to perform the above fixing process. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチック(樹脂成形品)や、ゴムあるいは熱可塑性エラストマー等の有機高分子基体に無電解めっき法でめっきを施すに当たり、その前処理として、通常のめっき前処理における脱脂、洗浄、エッチング等の工程を必要とせず、簡単な工程でめっきすることができるようにするための有機高分子基体の表面改質方法に関するものであり、より詳細には、有機高分子基体に対する無電解めっきのための触媒付与工程を高圧下で行う有機高分子基体の表面改質方法に関するものである。
【0002】
【従来の技術】
無電解めっきは材料表面での触媒の還元作用により行われ、金属から非金属まで種々の材料にめっきすることが可能であり、従来から、プラスチック等の有機高分子基体のメタライジング化のためのめっき方法として利用されている。有機高分子基体に対して無電解めっきを行う際には、めっき金属を有機高分子基体表面上に析出させるため、めっき用触媒を有機高分子基体表面に吸着等の手法で付与しなければならない。この触媒付与にはキャタライザーと呼ばれるパラジウムイオンとスズイオンとの混合コロイド溶液等が用いられることが多い。コロイド溶液を有機高分子基体表面に塗布・乾燥するだけでは、スズがパラジウムを取り囲んで触媒活性が発揮されないため、触媒付与後には、硫酸、塩酸等でスズを除去するアクセレーター工程が行われる。
【0003】
これらの触媒付与やアクセレーター工程以外にも、めっき層の密着性を向上させるために、様々な前処理が行われる。例えば、脱脂・洗浄処理やアンカーコート剤の塗布・乾燥等の化学的前処理である。また、無電解めっき法は、特に凹凸表面上にも均一にめっき層が形成されることから、酸やアルカリ等による化学的なエッチングが施されることも多い。さらに、コロナ放電・プラズマ放電等の電気的方法や、サンドブラスト等の物理的な方法でも、表面粗化が行われる。
【0004】
しかしながら上記前処理方法は、例えば化学的方法であれば、有機溶剤や酸・アルカリ等の回収が必要である上に、有機高分子基体上からこれらの溶液を除去するための洗浄・中和処理が必要となる。また、電気的な方法であれば、高価な設備が必要である。さらに物理的方法では、費用面では安価であるが、有機高分子基体への砂等の混入が避けられないという問題があった。
【0005】
上記のような無電解めっきの前処理工程は、煩雑で環境的にも好ましくないことから、特開2001−316832号には、超臨界流体によってプラスチックのエッチングとめっき用触媒の付与を行う試みが記載されている。この技術によれば、超臨界流体によるプラスチック表面のエッチング効果と相まって、めっき用触媒がプラスチック表面近傍へ注入・固定されている。
【0006】
しかしながら、この公報の実施例に記載された方法では、有機金属化合物と有機高分子基体が装填された高圧容器へ超臨界二酸化炭素を流通させているため、有機高分子基体にうまく固着できなかっためっき用触媒が二酸化炭素と共に高圧容器外へ排出されており、高価なめっき用触媒が無駄になる点が課題として残されている。また、触媒の活性化を硫酸や塩酸等の酸溶液接触によって行っており、前記した洗浄・中和処理工程が必要となる問題も依然として残っていた。
【0007】
さらに、上記公報では超臨界流体として用いられる化合物があまりにも広範であるにもかかわらず、処理に適切な温度・圧力条件は二酸化炭素の場合しか記載されていない上に非常に幅広く(上記公報[0014])、より効率的な処理のための最適条件を見出す必要があった。
【0008】
【発明が解決しようとする課題】
そこで本発明者等は鋭意検討を重ねて、超臨界流体として二酸化炭素を使用した場合に、上記公報に記載された温度・圧力条件の中には、プラスチックへのダメージが大き過ぎて、加水分解されてしまうような条件が含まれていることを見出した。
【0009】
そこで、本発明では、高圧流体で無電解めっき用の触媒を有機高分子基体に固着させる際に、有機高分子基体に対してダメージを与えることなく、しかも触媒を無駄なく有機高分子基体の表面近傍に存在させることのできる温度および圧力条件を確立することを課題として掲げた。
【0010】
【課題を解決する手段】
本発明の第1の実施形態は、高圧容器内で、有機高分子基体と、有機金属化合物を含む高圧流体とをバッチ式で接触させることにより、有機高分子基体表面に有機金属化合物を固定させる方法において、
有機金属化合物として、Ni、Cu、Cr、Pt、Au、Ag、PdおよびFeよりなる群から選択される1種以上の金属を含む有機金属錯体を用い、
高圧流体として、二酸化炭素、窒素および炭素数4以下の炭化水素のうちのいずれかを用いると共に、
高圧流体の臨界圧力がPc(MPa)であるとき、高圧流体の温度T(K)および圧力P(MPa)を、それぞれ下記式(1)および(2)を満足するように制御して、前記接触工程を行うというものである。
313≦T≦473   …(1)
0.8Pc≦P≦5.0Pc   …(2)
【0011】
二酸化炭素、窒素および炭素数4以下の炭化水素は、有機高分子基体に対し、あまり強いダメージを与えないため、上記(1)および(2)を満足する高圧流体を用いることにより、有機高分子基体の表面改質を効率よく行うことができる。また、バッチ式で表面改質を行うことで、高価な有機金属化合物を多く使わなくても、後工程の無電解めっきに必要十分量を有機高分子基体へと固定することができた。
【0012】
本発明の第2の実施形態では、有機金属化合物は上記と同じであるが、高圧流体として、水またはアルコールを用い、
高圧流体の臨界温度がTc(K)、高圧流体の臨界圧力がPc(MPa)であるとき、高圧流体の温度T(K)および圧力P(MPa)を、それぞれ下記式(3)および(4)を満足するように制御して、前記接触工程を行うというものである。
0.6Tc≦T≦1.1Tc   …(3)
0.05Pc≦P≦1.5Pc   …(4)
【0013】
水またはアルコールは、有機高分子基体に加水分解等のダメージを与えやすいため、上記(3)および(4)を満足する温度・圧力条件で表面改質を行うものである。
【0014】
上記いずれの方法においても、接触工程の後、有機金属錯体が表面に固着した有機高分子基体を加熱して、有機金属錯体を分解することにより有機高分子基体表面に活性金属単体を生成させる工程か、接触工程の後で高圧流体を排出し、還元性ガス存在下で、有機金属錯体が表面に固着した有機高分子基体を加熱して、有機金属錯体を分解することにより有機高分子基体表面に活性金属単体を生成させる工程を含むことが好ましい。この工程により、めっき用触媒が活性化する。
【0015】
本発明には、上記活性金属単体が固着した有機高分子基体の表面に、無電解めっき層を形成することにより得られるめっき層含有有機高分子基体が含まれる。さらに、本発明の表面改質方法を実施するための高圧装置であって、高圧容器と、この高圧容器へ高圧流体を供給する高圧流体供給手段と、高圧容器内部を撹拌する撹拌手段とを備える高圧装置も本発明に包含される。
【0016】
【発明の実施の形態】
上記本発明の第1の実施形態では、高圧流体として、二酸化炭素、窒素および炭素数4以下の炭化水素のうちのいずれかを用いると共に、
高圧流体の臨界圧力がPc(MPa)であるとき、高圧流体の温度T(K)および圧力P(MPa)を、それぞれ下記式(1)および(2)を満足するように制御する。
313≦T≦473   …(1)
0.8Pc≦P≦5.0Pc   …(2)
【0017】
二酸化炭素、窒素および炭素数4以下の炭化水素は、有機高分子基体に対し、あまり強いダメージを与えないことから、313K(40℃)から473K(200℃)までの温度範囲で、かつ、臨界圧力Pc近傍の0.8Pcから5.0Pcもの圧力範囲で、有機高分子基体の表面改質処理を行うことができる。温度および圧力が上記下限未満となると、エッチング効果が十分に発揮されず、必要十分量の有機金属化合物(有機金属錯体)が有機高分子基体に注入されない。一方、温度および圧力が上記上限を超えると、有機高分子基体の加水分解反応や劣化反応が起こって、有機高分子基体の強度等が低下するため好ましくない。
【0018】
上記第1実施形態では、高圧流体として、二酸化炭素、窒素または炭素数4以下の炭化水素を用いる。ここで、二酸化炭素の臨界温度は304K、臨界圧力は7.3MPaであり、窒素の臨界温度は126K、臨界圧力は3.4MPaである。また、炭素数4以下の炭化水素として利用可能なものは、エチレン(臨界温度282K、臨界圧力5.0MPa)、プロピレン(臨界温度365K、臨界圧力4.6MPa)、メタン(臨界温度191K、臨界圧力4.6MPa)、エタン(臨界温度305K、臨界圧力4.9MPa)、プロパン(臨界温度370K、臨界圧力4.2MPa)等が挙げられる。
【0019】
有機金属化合物としては、第1実施形態および第2実施形態とも、無電解めっき用触媒として有用なものが好ましく、Ni、Cu、Cr、Pt、Au、Ag、PdおよびFeよりなる群から選択される1種以上の金属を含む有機金属錯体が挙げられる。具体的には、ジベンゼンクロム、ニッケロセン(ビスシクロペンタジエニルニッケル)、バナジウムアセチルアセトネート、C1018Pt等が挙げられる。
【0020】
有機高分子基体としては、いわゆるプラスチックの他、ゴム、熱可塑性エラストマーが用いられ、その形態は、各種形状をした成形品そのままの形状(板状、容器状)等の他、繊維状、粉末・粒子状等、一定形状を有するものであればいずれも利用可能である。成形方法、紡糸方法、粒状化方法も特に限定されない。
【0021】
有機高分子としては、具体的には、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン樹脂、ポリスチレン、ABS等のスチレン系樹脂、ポリエチレンテレフタレート等のポリエステル樹脂、ポリ塩化ビニル等のハロゲン含有樹脂等の汎用熱可塑性樹脂;液晶ポリマー等の特殊樹脂;ポリアセタール、ポリカーボネート、脂肪族または芳香族ポリアミド、ポリフェニレンエーテル等のエンジニアリングプラスチックが使用可能である。また、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、不飽和ポリエステル樹脂、オリゴアクリレート等、成形材料として公知の硬化性樹脂の硬化体を用いることもできる。
【0022】
ゴムとしては、天然ゴム、SBR、NBR、EPM、EPDM等の合成ゴムが挙げられる。熱可塑性エラストマーとしては、SEPS等のスチレン系エラストマーの他、オレフィン系、ポリエステル系、ウレタン系等公知の熱可塑性エラストマーが挙げられる。
【0023】
上記有機高分子基体は、異素材が複合されたものであってもよく、例えば、強化繊維や無機充填剤等を含むものや、高分子素材以外のものが一部に積層されているような種々の積層構造体等が利用可能である。
【0024】
本発明の第2の実施形態では、高圧流体として、水またはアルコールを用い、高圧流体の臨界温度がTc(K)、高圧流体の臨界圧力がPc(MPa)であるとき、高圧流体の温度T(K)および圧力P(MPa)を、それぞれ下記式(3)および(4)を満足するように制御して、前記接触工程を行うものである。
0.6Tc≦T≦1.1Tc   …(3)
0.05Pc≦P≦1.5Pc   …(4)
【0025】
水やアルコールは、有機高分子基体に対するダメージが大きい。1.1Tcおよび1.5Pcを超える温度・圧力条件では、有機高分子基体が劣化分解してしまうおそれがあるので、上記上限よりも低温・低圧の条件で表面改質を行う必要がある。ただし、あまりにも低温・低圧では、有機高分子基体のエッチング効果や有機金属化合物の固着効果が発揮されないため、上記下限を定めた。
【0026】
なお、水の臨界温度は647K、臨界圧力は22MPaである。また、用いることのできるアルコールは、メタノール(臨界温度513K、臨界圧力8MPa)、エタノール(臨界温度516K、臨界圧力6MPa)等である。
【0027】
次に、本発明の第1および第2の表面改質方法の具体的な実施方法を図面を参照して説明する。図1には、本発明の表面改質方法を実施するための高圧処理装置の一実施例を示した。1は高圧流体供給手段であり、必須構成要素である高圧流体用媒体貯槽10と加圧ポンプ11を備えている。その他、必要に応じて、過冷却器や加熱器が加わってもよい。高圧流体として液化または超臨界二酸化炭素を用いる場合、貯槽10として液化二酸化炭素が貯留された貯層を用い、加圧ポンプ11で加圧すれば高圧液化二酸化炭素を得ることができる。その他の流体を高圧流体として利用する場合も、液化物をボンベから直接供給したり、ガスを過冷却器を介して供給したりする等の公知の方法が採用可能である。
【0028】
本発明の表面改質方法の実施は、以下の方法で行う。まず、図1に示した撹拌機4を備え、かつ、密封可能で高圧処理が可能な容器(高圧容器)3の中に、有機高分子基体と適正量の有機金属化合物を入れ、容器3を密封する。高圧バルブ6は閉じておく。高圧バルブ2を開放し、高圧流体を加圧ポンプ11で送り込み、容器3内が所定の圧力となった段階で高圧バルブ2を閉じて表面改質を実施する。撹拌機4で容器3内部を撹拌することにより、有機金属化合物が効率よく有機高分子基体へと固定含浸する。表面改質中の温度制御は恒温槽5で行う。バッチ式で行うことにより、高価な有機金属化合物を多く使わなくても、後工程の無電解めっきに必要十分量を有機高分子基体へと固定することができる。
【0029】
表面改質処理に要する時間は、有機高分子基体の表面積に応じて適宜変更すべきであるが、時間が長くなればそれだけ有機高分子基体へのダメージが大きくなるので、2時間以内が好ましく、1時間以内がさらに好ましく、5〜40分が最も好ましい。
【0030】
表面改質処理終了後は、高圧バルブ6を開放し、容器3内部を減圧する。必要に応じて後処理手段7によって、有機金属化合物と流体とを分離することもできる。図例には、高圧バルブ71と回収タンク72とからなる後処理手段7を示した。後処理手段7としては、例えば、フラッシュタンク、蒸留塔、濾過装置、サイクロン等が利用可能である。容器3内部を大気圧まで減圧したら、有機高分子基体を取り出せばよい。
【0031】
表面改質処理終了後には有機金属化合物の活性化処理を高圧容器3を用いて行うことも可能である。活性化処理には、容器3内部を減圧せずに高圧流体を封入したまま加熱して有機金属化合物の熱分解を行う方法、高圧容器3の内部を流体が流体状態を維持できる程度に減圧して、この低圧流体存在下で加熱して有機金属化合物の熱分解を行う方法、高圧流体を減圧によって完全に除去し、続いて還元性ガスを容器3内に導入した後、加熱して有機金属化合物の熱分解を行う方法のいずれかが好ましい方法として採用可能である。高圧または低圧流体存在下で加熱するのは、酸化性雰囲気にすると金属が酸化されて好ましくないためで、還元性ガスの導入を行うのは、有機金属化合物の種類によって還元性ガスが存在する方が熱分解が進行しやすいものがあるためである。上記いずれかの方法で有機金属化合物を熱分解することにより、有機高分子基体表面には金属のみが固定されることとなり、無電解めっきのための触媒活性が発現する。活性化処理の後は、公知の方法で無電解めっきを行えばよい。めっき用金属としては、Cu、Ni、Co等やこれらの合金が利用可能である。
【0032】
図2には、高圧容器3の外部に撹拌手段として高圧流体循環手段8を備えた装置例を示した。高圧流体循環手段8は、高圧バルブ81、タンク82およびポンプ84と、タンク82とポンプ84を連結する連結管83と、ポンプ84と高圧容器3とを連結する連結管85とから構成されている。タンク82や連結管83、85を、図示しない冷却器または加熱器で、冷却または加熱することによって、ポンプ84を利用せずに流体を循環させる等の循環手段を採用しても構わない。
【0033】
バッチ操作は、高圧容器3と循環手段8によって行われ、高圧流体を高圧容器3の底部から循環させることにより、高圧流体による容器3内の撹拌作用が発揮されると共に、有機金属化合物も循環するため少量の有機金属化合物を有効に利用することができる。
【0034】
また、タンク82は、高圧流体中に溶解せずに混入している有機金属化合物をタンク82内にとどめることで、高圧容器3内へ過剰量の有機金属化合物を導入しないようにすることができる。さらに、通常の表面改質処理操作においては、安全を見て、高分子基体へ固定させるべき量よりも有機金属化合物を多めに用いるが、タンク82で余剰の有機金属化合物が溶解した高圧流体を貯留することにより、次のバッチ操作の際に有機金属化合物を有効利用でき、無駄がなくなると共に、バッチ操作毎に有機金属化合物を高圧流体から回収する作業が不要となる。
【0035】
図1および図2のいずれの装置を用いたバッチ操作の場合でも、容器3内部の圧力が所定圧よりも減少した場合には、適宜、高圧流体を追加供給してもよい。
【0036】
【実施例】
以下実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲の変更実施は、本発明に含まれるものとする。
【0037】
実験例1
図1に示した装置を用い、容器3内に、ポリプロピレン板(50mm×15mm×3mmt)とともに、有機白金錯体(C1018Pt)を0.2g入れ、容器3を密封した。ポンプ11により貯槽12から容器3内部へ二酸化炭素を供給し、温度120℃、圧力30MPaとした。その後、ポンプ11による送液を停止し、バッチ式で、撹拌機4で撹拌を行いながら、1時間実験条件を維持した。その後、二酸化炭素を高圧バルブ6を介して放出することにより、容器3内部の圧力を大気圧まで減圧して、ポリプロピレン板を取り出した。EPMAを用いてポリプロピレン板表面を分析した結果、ポリプロピレン板表面層に前記有機白金錯体が高密度にかつ均一に分布していることを確認した。
【0038】
実験例2
実験例1と同じポリプロピレン板および有機白金錯体を使用し、実験例1と同様にして、温度120℃、圧力30MPaの条件で、表面改質処理を行った。3時間バッチ処理を行った後、高圧容器3を180℃に昇温し、有機白金錯体を加熱分解させた。その後、容器3内部の圧力を大気圧まで減圧して、ポリプロピレン板を取り出した。EPMAを用いてポリプロピレン板表面を分析した結果、ポリプロピレン板表面層にPtが高密度に分布していることを確認した。
【0039】
実験例3
高圧流体として二酸化炭素を使用し、有機金属化合物としてジベンゼンクロムを用い、実験例1と同様の実験を種々の有機高分子板に対して行った。表面改質処理の条件は、前記式(1)および(2)を満足する範囲内とした。EPMAによる分析の結果、実験に用いたすべての有機高分子基体、すなわち、ポリプロピレン、ポリエチレンテレフタレート、ナイロン6、ポリカーボネート、ポリアセタール、ポリアクリロニトリル、ポリメタクリル酸メチル、ポリ酢酸ビニル、エポキシ樹脂において、その表面にジベンゼンクロムが固定されていることが確認された。
【0040】
実験例4
有機金属化合物として有機ニッケル錯体(ニッケロセン)を用いた以外は実験例3と同様にして種々の有機高分子基体の表面改質実験を行った。EPMAによる分析の結果、実験に用いたすべての有機高分子基体、すなわち、ポリエチレン、ポリブチレンテレフタレート、ナイロン6、ポリカーボネート、ポリアセタール、ポリ四フッ化エチレン、ポリメタクリル酸メチル、ポリ酢酸ビニルにおいて、その表面にニッケロセンが固定されていることが確認された。
【0041】
実験例4
有機金属化合物として、Cu、Pt、Au、Ag、PdおよびFeをそれぞれ含有する各種有機錯体を用いた以外は実験例1と同様にしてポリプロピレン板の表面改質実験を行った。EPMAによる分析の結果、実験に用いた有機金属化合物はいずれもポリプロピレン板表面に固定されていることが確認された。
【0042】
実験例5
高圧流体として、窒素、炭化水素(エタン、エチレン、プロパン、プロピレン)を用い、有機金属化合物としてニッケロセンを用いて、実験例4と同様の処理を行った。実験例4で用いた全ての有機高分子基体の表面に、ニッケロセンが固定されていることが確認された。
【0043】
実験例6
高圧流体として水あるいはメタノールを用い、ポリイミド板のニッケロセンによる表面改質を行った。温度・圧力条件は上記(3)式および(4)式を満足する範囲で行った。また、反応時間は、5分〜1時間とした。水およびメタノールいずれの場合においても、ポリイミド板表面にニッケロセンが固定されていることが確認された。
【0044】
実験例7
高圧流体として二酸化炭素を用い、ポリ四フッ化エチレン板のニッケロセンによる表面改質を実験例1と同様にして行った。温度は120℃、圧力は20MPaで、1時間実験を続けた。その後、大気圧下まで減圧して二酸化炭素を容器3から放出した後、水素を供給し、容器3内部を還元雰囲気とした状態で、180℃まで昇温し、約10分間維持した。その後、容器を開放し、ニッケルが固定されたポリ四フッ化エチレンを取り出した。
【0045】
引き続き、無電解めっきを行った。Cuめっき液として「C200LT」を使用し、約40℃で10分間めっきした後、洗浄および乾燥を行った。ポリ四フッ化エチレン表面に光沢のあるCuめっき膜が形成されていた。
【0046】
比較実験例
高圧流体として二酸化炭素を用い、ポリウレタン板のニッケロセンによる表面改質を行った。条件は450℃、30MPaとした。1時間実験を続けた後、減圧して、ポリウレタン板を取り出そうとしたところ、ポリウレタンが分解していた。
【0047】
【発明の効果】
本発明では、有機高分子基体を無電解めっきする前に行われる有機金属化合物による有機高分子基体の活性化のための表面改質処理を行うに当たり、有機高分子基体に対し、あまり強いダメージを与えない二酸化炭素、窒素および炭素数4以下の炭化水素についての最適処理条件と、有機高分子基体に加水分解等のダメージを与えやすい水またはアルコールについての最適処理条件とを見出すことに成功した。このため、有機高分子基体の表面改質を効率よく行うことができる。また、バッチ式で表面改質を行うことで、高価な有機金属化合物を多く使わなくても、後工程の無電解めっきに必要十分量を有機高分子基体へと固定することができた。
【図面の簡単な説明】
【図1】本発明の表面改質方法を実施するための装置の一例を示す概略説明図である。
【図2】本発明の表面改質方法を実施するための装置の他の例を示す概略説明図である。
【符号の説明】
1 高圧流体供給手段
11 加圧ポンプ
3 高圧容器
7 後処理手段
8 高圧流体還流手段
[0001]
TECHNICAL FIELD OF THE INVENTION
In the present invention, when plating an organic polymer substrate such as a plastic (resin molded article) or a rubber or a thermoplastic elastomer by an electroless plating method, the pretreatment includes degreasing, washing, and etching in a usual plating pretreatment. The present invention relates to a method for modifying the surface of an organic polymer substrate so that plating can be performed in a simple process without the need for such a process. The surface of an organic polymer substrate is subjected to a catalyst application step under high pressure.
[0002]
[Prior art]
Electroless plating is performed by the reduction action of a catalyst on the surface of a material, and can be plated on various materials from metals to nonmetals. Conventionally, it has been used for metallizing organic polymer substrates such as plastics. It is used as a plating method. When performing electroless plating on an organic polymer substrate, a plating catalyst must be applied to the surface of the organic polymer substrate by a method such as adsorption in order to deposit a plating metal on the surface of the organic polymer substrate. . For this catalyst application, a mixed colloidal solution of palladium ion and tin ion called a catalyst is often used. Simply coating and drying the colloid solution on the surface of the organic polymer substrate does not exhibit catalytic activity because the tin surrounds the palladium, and therefore, after the catalyst is applied, an accelerator step of removing the tin with sulfuric acid, hydrochloric acid or the like is performed.
[0003]
Various pretreatments are performed in addition to the catalyst application and the accelerator process in order to improve the adhesion of the plating layer. For example, chemical pretreatment such as degreasing / cleaning treatment and application / drying of an anchor coat agent. In addition, in the electroless plating method, since a plating layer is formed evenly particularly on an uneven surface, chemical etching with an acid or an alkali is often performed. Further, the surface is roughened by an electrical method such as corona discharge or plasma discharge, or a physical method such as sand blast.
[0004]
However, in the case of the above pretreatment method, for example, if it is a chemical method, it is necessary to recover an organic solvent, an acid, an alkali, and the like. In addition, a washing and neutralizing treatment for removing these solutions from the organic polymer substrate Is required. In the case of an electrical method, expensive equipment is required. Further, the physical method is inexpensive in terms of cost, but there is a problem that sand or the like is inevitably mixed into the organic polymer substrate.
[0005]
Since the pretreatment process of the electroless plating as described above is complicated and environmentally unfavorable, Japanese Patent Application Laid-Open No. 2001-316832 discloses an attempt to etch a plastic and provide a plating catalyst with a supercritical fluid. Has been described. According to this technique, the plating catalyst is injected and fixed to the vicinity of the plastic surface in combination with the etching effect of the supercritical fluid on the plastic surface.
[0006]
However, in the method described in the examples of this publication, since supercritical carbon dioxide is passed through the high-pressure vessel loaded with the organometallic compound and the organic polymer substrate, it was not able to adhere to the organic polymer substrate well. Plating catalysts are discharged to the outside of the high-pressure vessel together with carbon dioxide, leaving a problem that expensive plating catalysts are wasted. Further, the activation of the catalyst is performed by contact with an acid solution such as sulfuric acid or hydrochloric acid, and the problem that the above-mentioned washing / neutralization process is required still remains.
[0007]
Further, in the above publication, although the compound used as a supercritical fluid is too wide, the temperature and pressure conditions suitable for the treatment are described only in the case of carbon dioxide and very widely (see the above publication [ 0014]), it was necessary to find optimal conditions for more efficient processing.
[0008]
[Problems to be solved by the invention]
Therefore, the present inventors have conducted intensive studies and found that when carbon dioxide was used as a supercritical fluid, the temperature and pressure conditions described in the above-mentioned gazettes caused too much damage to plastics and caused hydrolysis. Have been found to include conditions that would cause them to be compromised.
[0009]
Therefore, in the present invention, when the catalyst for electroless plating is fixed to the organic polymer substrate using a high-pressure fluid, the catalyst is not damaged and the surface of the organic polymer substrate is not wasted without damaging the organic polymer substrate. The task was to establish temperature and pressure conditions that can exist in the vicinity.
[0010]
[Means to solve the problem]
The first embodiment of the present invention fixes an organometallic compound on the surface of an organic polymer substrate by bringing an organic polymer substrate and a high-pressure fluid containing an organometallic compound into contact in a batch system in a high-pressure vessel. In the method,
As the organometallic compound, an organometallic complex containing one or more metals selected from the group consisting of Ni, Cu, Cr, Pt, Au, Ag, Pd and Fe is used,
As a high-pressure fluid, while using any of carbon dioxide, nitrogen and hydrocarbons having 4 or less carbon atoms,
When the critical pressure of the high-pressure fluid is Pc 1 (MPa), the temperature T 1 (K) and the pressure P 1 (MPa) of the high-pressure fluid are controlled so as to satisfy the following equations (1) and (2), respectively. Then, the contact step is performed.
313 ≦ T 1 ≦ 473 (1)
0.8Pc 1 ≦ P 1 ≦ 5.0Pc 1 (2)
[0011]
Since carbon dioxide, nitrogen and hydrocarbons having 4 or less carbon atoms do not damage the organic polymer substrate very much, the use of a high-pressure fluid that satisfies the above (1) and (2) allows the organic polymer substrate to be used. The surface modification of the substrate can be performed efficiently. Further, by performing the surface modification in a batch system, it was possible to fix a necessary and sufficient amount to the organic polymer substrate for the electroless plating in the subsequent step without using a large amount of expensive organometallic compounds.
[0012]
In the second embodiment of the present invention, the organometallic compound is the same as above, but using water or alcohol as the high-pressure fluid,
When the critical temperature of the high-pressure fluid is Tc (K) and the critical pressure of the high-pressure fluid is Pc 2 (MPa), the temperature T 2 (K) and the pressure P 2 (MPa) of the high-pressure fluid are expressed by the following equation (3), respectively. The contact step is performed while controlling so as to satisfy the conditions (4) and (4).
0.6Tc ≦ T 2 ≦ 1.1Tc (3)
0.05Pc 2 ≦ P 2 ≦ 1.5Pc 2 (4)
[0013]
Water or alcohol is liable to damage the organic polymer substrate, such as hydrolysis, so that the surface modification is performed under temperature and pressure conditions satisfying the above (3) and (4).
[0014]
In any of the above methods, after the contacting step, a step of heating the organic polymer substrate to which the organometallic complex is fixed on the surface to decompose the organometallic complex to generate an active metal simple substance on the surface of the organic polymer substrate. Alternatively, the high-pressure fluid is discharged after the contacting step, and in the presence of a reducing gas, the organic polymer substrate on which the organometallic complex is fixed is heated to decompose the organometallic complex, thereby decomposing the organometallic complex. It is preferable to include a step of generating a single active metal. This step activates the plating catalyst.
[0015]
The present invention includes a plating layer-containing organic polymer substrate obtained by forming an electroless plating layer on the surface of the organic polymer substrate to which the simple active metal is fixed. The high-pressure apparatus for performing the surface modification method of the present invention includes a high-pressure vessel, high-pressure fluid supply means for supplying a high-pressure fluid to the high-pressure vessel, and stirring means for stirring the inside of the high-pressure vessel. High pressure devices are also included in the present invention.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
In the first embodiment of the present invention, any one of carbon dioxide, nitrogen, and a hydrocarbon having 4 or less carbon atoms is used as the high-pressure fluid,
When the critical pressure of the high-pressure fluid is Pc 1 (MPa), the temperature T 1 (K) and the pressure P 1 (MPa) of the high-pressure fluid are controlled so as to satisfy the following equations (1) and (2), respectively. .
313 ≦ T 1 ≦ 473 (1)
0.8Pc 1 ≦ P 1 ≦ 5.0Pc 1 (2)
[0017]
Since carbon dioxide, nitrogen and hydrocarbons having 4 or less carbon atoms do not damage the organic polymer substrate very much, the temperature range is from 313 K (40 ° C.) to 473 K (200 ° C.) and critical in 5.0Pc 1 things pressure range from 0.8Pc 1 pressure Pc 1 near, it is possible to perform surface modification treatment of the organic polymer base. When the temperature and pressure are below the lower limits, the etching effect is not sufficiently exhibited, and a necessary and sufficient amount of the organometallic compound (organometallic complex) is not injected into the organic polymer substrate. On the other hand, when the temperature and the pressure exceed the above upper limits, a hydrolysis reaction and a deterioration reaction of the organic polymer substrate occur, and the strength and the like of the organic polymer substrate decrease, which is not preferable.
[0018]
In the first embodiment, carbon dioxide, nitrogen, or a hydrocarbon having 4 or less carbon atoms is used as the high-pressure fluid. Here, the critical temperature of carbon dioxide is 304 K, the critical pressure is 7.3 MPa, the critical temperature of nitrogen is 126 K, and the critical pressure is 3.4 MPa. In addition, those usable as hydrocarbons having 4 or less carbon atoms include ethylene (critical temperature 282 K, critical pressure 5.0 MPa), propylene (critical temperature 365 K, critical pressure 4.6 MPa), methane (critical temperature 191 K, critical pressure 4.6 MPa), ethane (critical temperature 305 K, critical pressure 4.9 MPa), propane (critical temperature 370 K, critical pressure 4.2 MPa) and the like.
[0019]
As the organometallic compound, in both the first embodiment and the second embodiment, those useful as a catalyst for electroless plating are preferable, and are selected from the group consisting of Ni, Cu, Cr, Pt, Au, Ag, Pd and Fe. Organometallic complexes containing one or more metals. Specifically, dibenzene chromium, nickelocene (biscyclopentadienyl nickel), vanadium acetylacetonate, C 10 H 18 Pt and the like can be mentioned.
[0020]
As the organic polymer substrate, in addition to so-called plastics, rubbers and thermoplastic elastomers are used. The shapes of the organic polymer substrates are not limited to various shapes as they are (plate-like, container-like), but also fibrous, powdery, Any material having a certain shape such as a particle shape can be used. The molding method, spinning method, and granulation method are not particularly limited.
[0021]
Specific examples of the organic polymer include general-purpose resins such as polyolefin resins such as polyethylene, polypropylene and polymethylpentene; styrene resins such as polystyrene and ABS; polyester resins such as polyethylene terephthalate; and halogen-containing resins such as polyvinyl chloride. Thermoplastic resins; special resins such as liquid crystal polymers; engineering plastics such as polyacetal, polycarbonate, aliphatic or aromatic polyamide, and polyphenylene ether can be used. Further, a cured product of a curable resin known as a molding material such as an epoxy resin, a phenol resin, a polyurethane resin, an unsaturated polyester resin, and an oligoacrylate can also be used.
[0022]
Examples of the rubber include natural rubber and synthetic rubbers such as SBR, NBR, EPM, and EPDM. Examples of the thermoplastic elastomer include styrene-based elastomers such as SEPS, and known thermoplastic elastomers such as olefin-based, polyester-based, and urethane-based elastomers.
[0023]
The organic polymer substrate may be a composite of different materials, for example, a material containing a reinforcing fiber or an inorganic filler, or a material other than a polymer material partially laminated. Various laminated structures and the like can be used.
[0024]
In the second embodiment of the present invention, when water or alcohol is used as the high-pressure fluid and the critical temperature of the high-pressure fluid is Tc (K) and the critical pressure of the high-pressure fluid is Pc 2 (MPa), the temperature of the high-pressure fluid is The contacting step is performed by controlling T 2 (K) and pressure P 2 (MPa) so as to satisfy the following expressions (3) and (4), respectively.
0.6Tc ≦ T 2 ≦ 1.1Tc (3)
0.05Pc 2 ≦ P 2 ≦ 1.5Pc 2 (4)
[0025]
Water and alcohol cause large damage to the organic polymer substrate. The temperature and pressure conditions exceeding 1.1Tc and 1.5Pc 2, there is a possibility that the organic polymer substrate is deteriorated decomposition, it is necessary to perform surface modification at low temperature and low pressure conditions than the upper limit. However, if the temperature is too low and the pressure is too low, the effect of etching the organic polymer substrate and the effect of fixing the organic metal compound are not exhibited.
[0026]
The critical temperature of water is 647K and the critical pressure is 22 MPa. Alcohols that can be used include methanol (critical temperature 513 K, critical pressure 8 MPa), ethanol (critical temperature 516 K, critical pressure 6 MPa), and the like.
[0027]
Next, specific embodiments of the first and second surface modification methods of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of a high-pressure processing apparatus for performing the surface modification method of the present invention. A high-pressure fluid supply unit 1 includes a high-pressure fluid medium storage tank 10 and a pressure pump 11 which are essential components. In addition, if necessary, a supercooler or a heater may be added. When liquefied or supercritical carbon dioxide is used as the high-pressure fluid, a high-pressure liquefied carbon dioxide can be obtained by using a reservoir in which the liquefied carbon dioxide is stored as the storage tank 10 and pressurizing with the pressurizing pump 11. In the case where another fluid is used as the high-pressure fluid, a known method such as supplying a liquefied material directly from a cylinder or supplying a gas via a subcooler can be adopted.
[0028]
The surface modification method of the present invention is performed by the following method. First, an organic polymer substrate and an appropriate amount of an organometallic compound are placed in a container (high-pressure container) 3 having a stirrer 4 shown in FIG. Seal. The high pressure valve 6 is closed. The high-pressure valve 2 is opened, high-pressure fluid is fed by the pressure pump 11, and when the pressure in the container 3 reaches a predetermined pressure, the high-pressure valve 2 is closed to perform surface modification. By stirring the inside of the container 3 with the stirrer 4, the organometallic compound is efficiently fixedly impregnated into the organic polymer substrate. Temperature control during the surface modification is performed in the constant temperature bath 5. By performing the batch method, it is possible to fix a necessary and sufficient amount to the organic polymer substrate for electroless plating in a later step without using a large amount of expensive organometallic compounds.
[0029]
The time required for the surface modification treatment should be appropriately changed according to the surface area of the organic polymer substrate. However, the longer the time, the greater the damage to the organic polymer substrate. It is more preferably within 1 hour, most preferably 5 to 40 minutes.
[0030]
After the surface modification treatment, the high-pressure valve 6 is opened, and the pressure inside the container 3 is reduced. If necessary, the organometallic compound and the fluid can be separated by the post-treatment means 7. In the illustrated example, the post-processing means 7 including the high-pressure valve 71 and the recovery tank 72 is shown. As the post-processing means 7, for example, a flash tank, a distillation column, a filtering device, a cyclone, or the like can be used. When the pressure inside the container 3 is reduced to the atmospheric pressure, the organic polymer substrate may be taken out.
[0031]
After the surface modification treatment, the activation treatment of the organometallic compound can be performed using the high-pressure vessel 3. In the activation treatment, a method of performing thermal decomposition of the organometallic compound by heating the inside of the container 3 without decompressing the inside of the high-pressure fluid while enclosing the inside, and reducing the pressure inside the high-pressure container 3 to such an extent that the fluid can maintain a fluid state. Then, a method of thermally decomposing the organometallic compound by heating in the presence of the low-pressure fluid, completely removing the high-pressure fluid by depressurization, subsequently introducing a reducing gas into the vessel 3, and then heating the organometallic compound. Any of the methods for thermally decomposing a compound can be adopted as a preferable method. Heating in the presence of a high-pressure or low-pressure fluid is not preferable because an oxidizing atmosphere oxidizes the metal, which is not preferable. Therefore, the introduction of a reducing gas is performed depending on the type of organometallic compound. However, this is because thermal decomposition easily proceeds. By thermally decomposing the organometallic compound by any of the above methods, only the metal is fixed on the surface of the organic polymer substrate, and the catalytic activity for electroless plating is developed. After the activation treatment, electroless plating may be performed by a known method. As the metal for plating, Cu, Ni, Co, etc. and alloys thereof can be used.
[0032]
FIG. 2 shows an example of an apparatus provided with high-pressure fluid circulation means 8 as stirring means outside the high-pressure vessel 3. The high-pressure fluid circulating means 8 includes a high-pressure valve 81, a tank 82 and a pump 84, a connecting pipe 83 connecting the tank 82 and the pump 84, and a connecting pipe 85 connecting the pump 84 and the high-pressure container 3. . A circulating means such as circulating a fluid without using the pump 84 by cooling or heating the tank 82 and the connecting pipes 83 and 85 with a cooler or a heater (not shown) may be adopted.
[0033]
The batch operation is performed by the high-pressure vessel 3 and the circulating means 8, and by circulating the high-pressure fluid from the bottom of the high-pressure vessel 3, the high-pressure fluid exerts a stirring action in the vessel 3 and also circulates the organometallic compound. Therefore, a small amount of the organometallic compound can be effectively used.
[0034]
In addition, the tank 82 can prevent an excessive amount of the organometallic compound from being introduced into the high-pressure container 3 by keeping the organometallic compound mixed without being dissolved in the high-pressure fluid in the tank 82. . Further, in a normal surface modification treatment operation, in view of safety, the organic metal compound is used in a larger amount than the amount to be fixed to the polymer substrate, but the high pressure fluid in which the excess organic metal compound is dissolved in the tank 82 is used. By storing, the organometallic compound can be effectively used at the time of the next batch operation, waste is eliminated, and the operation of recovering the organometallic compound from the high-pressure fluid for each batch operation becomes unnecessary.
[0035]
In the case of the batch operation using any one of the devices shown in FIGS. 1 and 2, when the pressure inside the container 3 decreases below a predetermined pressure, a high-pressure fluid may be additionally supplied as appropriate.
[0036]
【Example】
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples do not limit the present invention, and modifications that do not depart from the gist of the present invention are included in the present invention.
[0037]
Experimental example 1
Using the apparatus shown in FIG. 1, 0.2 g of an organoplatinum complex (C 10 H 18 Pt) was put in the container 3 together with a polypropylene plate (50 mm × 15 mm × 3 mmt), and the container 3 was sealed. Carbon dioxide was supplied from the storage tank 12 to the inside of the container 3 by the pump 11, and the temperature was set to 120 ° C. and the pressure was set to 30 MPa. Thereafter, the liquid supply by the pump 11 was stopped, and the experiment conditions were maintained for 1 hour while stirring with the stirrer 4 in a batch system. Thereafter, the pressure inside the container 3 was reduced to the atmospheric pressure by releasing carbon dioxide through the high-pressure valve 6, and the polypropylene plate was taken out. As a result of analyzing the surface of the polypropylene plate using EPMA, it was confirmed that the organoplatinum complex was uniformly and densely distributed on the surface layer of the polypropylene plate.
[0038]
Experimental example 2
Using the same polypropylene plate and organic platinum complex as in Experimental Example 1, a surface modification treatment was performed in the same manner as in Experimental Example 1 at a temperature of 120 ° C. and a pressure of 30 MPa. After performing the batch treatment for 3 hours, the temperature of the high-pressure vessel 3 was increased to 180 ° C., and the organoplatinum complex was thermally decomposed. Thereafter, the pressure inside the container 3 was reduced to the atmospheric pressure, and the polypropylene plate was taken out. As a result of analyzing the polypropylene plate surface using EPMA, it was confirmed that Pt was distributed at a high density in the polypropylene plate surface layer.
[0039]
Experimental example 3
Using carbon dioxide as the high-pressure fluid and dibenzenechromium as the organometallic compound, the same experiment as in Experimental Example 1 was performed on various organic polymer plates. The conditions for the surface modification treatment were set within a range satisfying the above-mentioned expressions (1) and (2). As a result of analysis by EPMA, all organic polymer substrates used in the experiments, namely, polypropylene, polyethylene terephthalate, nylon 6, polycarbonate, polyacetal, polyacrylonitrile, polymethyl methacrylate, polyvinyl acetate, epoxy resin, It was confirmed that dibenzenechromium was fixed.
[0040]
Experimental example 4
Various organic polymer substrate surface modification experiments were performed in the same manner as in Experimental Example 3 except that an organic nickel complex (nickelocene) was used as the organometallic compound. As a result of the analysis by EPMA, the surface of all the organic polymer substrates used in the experiments, ie, polyethylene, polybutylene terephthalate, nylon 6, polycarbonate, polyacetal, polytetrafluoroethylene, polymethyl methacrylate, and polyvinyl acetate, were observed. It was confirmed that nickelocene was fixed.
[0041]
Experimental example 4
A surface modification experiment of a polypropylene plate was performed in the same manner as in Experimental Example 1 except that various organic complexes each containing Cu, Pt, Au, Ag, Pd, and Fe were used as the organometallic compound. As a result of analysis by EPMA, it was confirmed that all the organometallic compounds used in the experiment were fixed on the surface of the polypropylene plate.
[0042]
Experimental example 5
The same treatment as in Experimental Example 4 was performed using nitrogen and a hydrocarbon (ethane, ethylene, propane, propylene) as the high-pressure fluid and using nickelocene as the organometallic compound. It was confirmed that nickelocene was fixed on the surfaces of all the organic polymer substrates used in Experimental Example 4.
[0043]
Experimental example 6
Using water or methanol as the high-pressure fluid, surface modification of the polyimide plate with nickelocene was performed. The temperature and pressure conditions were set so as to satisfy the above-mentioned equations (3) and (4). The reaction time was 5 minutes to 1 hour. In each case of water and methanol, it was confirmed that nickelocene was fixed on the surface of the polyimide plate.
[0044]
Experimental example 7
Using carbon dioxide as the high-pressure fluid, surface modification of the polytetrafluoroethylene plate with nickelocene was performed in the same manner as in Experimental Example 1. The experiment was continued for 1 hour at a temperature of 120 ° C. and a pressure of 20 MPa. Thereafter, the pressure was reduced to atmospheric pressure, carbon dioxide was released from the container 3, hydrogen was supplied, the temperature was raised to 180 ° C. in a state where the inside of the container 3 was in a reducing atmosphere, and the temperature was maintained for about 10 minutes. Thereafter, the container was opened, and the polytetrafluoroethylene to which nickel had been fixed was taken out.
[0045]
Subsequently, electroless plating was performed. After using “C200LT” as a Cu plating solution and plating at about 40 ° C. for 10 minutes, washing and drying were performed. A glossy Cu plating film was formed on the polytetrafluoroethylene surface.
[0046]
Comparative Experimental Example Surface modification of a polyurethane plate with nickelocene was performed using carbon dioxide as a high-pressure fluid. The conditions were 450 ° C. and 30 MPa. After continuing the experiment for one hour, the pressure was reduced and the polyurethane plate was taken out, and the polyurethane was decomposed.
[0047]
【The invention's effect】
In the present invention, in performing the surface modification treatment for activating the organic polymer substrate with the organic metal compound performed before the electroless plating of the organic polymer substrate, the organic polymer substrate is not strongly damaged. We have succeeded in finding the optimum treatment conditions for carbon dioxide, nitrogen, and hydrocarbons having 4 or less carbon atoms, which are not to be given, and the optimum treatment conditions for water or alcohol that easily damages the organic polymer substrate such as hydrolysis. Therefore, the surface modification of the organic polymer substrate can be performed efficiently. Further, by performing the surface modification in a batch system, it was possible to fix a necessary and sufficient amount to the organic polymer substrate for the electroless plating in the subsequent step without using a large amount of expensive organometallic compounds.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an example of an apparatus for performing a surface modification method of the present invention.
FIG. 2 is a schematic explanatory view showing another example of an apparatus for performing the surface modification method of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 high-pressure fluid supply means 11 high-pressure pump 3 high-pressure vessel 7 post-processing means 8 high-pressure fluid recirculation means

Claims (6)

高圧容器内で、有機高分子基体と、有機金属化合物を含む高圧流体とをバッチ式で接触させることにより、有機高分子基体表面に有機金属化合物を固定させる方法において、
有機金属化合物として、Ni、Cu、Cr、Pt、Au、Ag、PdおよびFeよりなる群から選択される1種以上の金属を含む有機金属錯体を用い、
高圧流体として、二酸化炭素、窒素および炭素数4以下の炭化水素のうちのいずれかを用いると共に、
高圧流体の臨界圧力がPc(MPa)であるとき、高圧流体の温度T(K)および圧力P(MPa)を、それぞれ下記式(1)および(2)を満足するように制御して、前記接触工程を行うことを特徴とする有機高分子基体の表面改質方法。
313≦T≦473   …(1)
0.8Pc≦P≦5.0Pc   …(2)
In a high-pressure container, by contacting the organic polymer substrate and a high-pressure fluid containing an organometallic compound in a batch manner, a method of fixing the organometallic compound on the surface of the organic polymer substrate,
As the organometallic compound, an organometallic complex containing one or more metals selected from the group consisting of Ni, Cu, Cr, Pt, Au, Ag, Pd and Fe is used,
As a high-pressure fluid, while using any of carbon dioxide, nitrogen and hydrocarbons having 4 or less carbon atoms,
When the critical pressure of the high-pressure fluid is Pc 1 (MPa), the temperature T 1 (K) and the pressure P 1 (MPa) of the high-pressure fluid are controlled so as to satisfy the following equations (1) and (2), respectively. And performing the contacting step.
313 ≦ T 1 ≦ 473 (1)
0.8Pc 1 ≦ P 1 ≦ 5.0Pc 1 (2)
高圧容器内で、有機高分子基体と、有機金属化合物を含む高圧流体とをバッチ式で接触させることにより、有機高分子基体表面に有機金属化合物を固定させる方法において、
有機金属化合物として、Ni、Cu、Cr、Pt、Au、Ag、PdおよびFeよりなる群から選択される1種以上の金属を含む有機金属錯体を用い、
高圧流体として、水またはアルコールを用い、
高圧流体の臨界温度がTc(K)、高圧流体の臨界圧力がPc(MPa)であるとき、高圧流体の温度T(K)および圧力P(MPa)を、それぞれ下記式(3)および(4)を満足するように制御して、前記接触工程を行うことを特徴とする有機高分子基体の表面改質方法。
0.6Tc≦T≦1.1Tc   …(3)
0.05Pc≦P≦1.5Pc   …(4)
In a high-pressure container, by contacting the organic polymer substrate and a high-pressure fluid containing an organometallic compound in a batch manner, a method of fixing the organometallic compound on the surface of the organic polymer substrate,
As the organometallic compound, an organometallic complex containing one or more metals selected from the group consisting of Ni, Cu, Cr, Pt, Au, Ag, Pd and Fe is used,
Using water or alcohol as the high-pressure fluid,
When the critical temperature of the high-pressure fluid is Tc (K) and the critical pressure of the high-pressure fluid is Pc 2 (MPa), the temperature T 2 (K) and the pressure P 2 (MPa) of the high-pressure fluid are expressed by the following equation (3), respectively. A method for modifying the surface of an organic polymer substrate, wherein the contacting step is performed while controlling to satisfy (4).
0.6Tc ≦ T 2 ≦ 1.1Tc (3)
0.05Pc 2 ≦ P 2 ≦ 1.5Pc 2 (4)
上記接触工程の後、有機金属錯体が表面に固着した有機高分子基体を加熱して、有機金属錯体を分解することにより有機高分子基体表面に活性金属単体を生成させる工程を含む請求項1または2に記載の有機高分子基体の表面改質方法。2. The method according to claim 1, further comprising, after the contacting step, heating the organic polymer substrate to which the organometallic complex is fixed on the surface to decompose the organometallic complex to form an active metal element on the surface of the organic polymer substrate. 3. The method for modifying the surface of an organic polymer substrate according to item 2. 上記接触工程の後、還元性ガス存在下で、有機金属錯体が表面に固着した有機高分子基体を加熱して、有機金属錯体を分解することにより有機高分子基体表面に活性金属単体を生成させる工程を含む請求項1または2に記載の有機高分子基体の表面改質方法。After the contacting step, in the presence of a reducing gas, the organic polymer substrate having the organometallic complex fixed to the surface is heated to decompose the organometallic complex, thereby generating a single active metal on the organic polymer substrate surface. 3. The method for modifying the surface of an organic polymer substrate according to claim 1, comprising a step. 請求項3または4に記載の方法で得られた活性金属単体が固着した有機高分子基体の表面に、無電解めっき層を形成することにより得られることを特徴とするめっき層含有有機高分子基体。A plating layer-containing organic polymer substrate obtained by forming an electroless plating layer on a surface of an organic polymer substrate to which an active metal simple substance obtained by the method according to claim 3 is fixed. . 請求項1または2に記載の表面改質方法を実施するための高圧装置であって、高圧容器と、この高圧容器へ高圧流体を供給する高圧流体供給手段と、高圧容器内部を撹拌する撹拌手段とを備えることを特徴とする高圧装置。A high-pressure apparatus for performing the surface modification method according to claim 1, wherein the high-pressure vessel, high-pressure fluid supply means for supplying a high-pressure fluid to the high-pressure vessel, and stirring means for stirring the inside of the high-pressure vessel. And a high-pressure device.
JP2002184437A 2002-06-25 2002-06-25 Method for modifying surface of organic polymeric substrate Pending JP2004026986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184437A JP2004026986A (en) 2002-06-25 2002-06-25 Method for modifying surface of organic polymeric substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184437A JP2004026986A (en) 2002-06-25 2002-06-25 Method for modifying surface of organic polymeric substrate

Publications (1)

Publication Number Publication Date
JP2004026986A true JP2004026986A (en) 2004-01-29

Family

ID=31180354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184437A Pending JP2004026986A (en) 2002-06-25 2002-06-25 Method for modifying surface of organic polymeric substrate

Country Status (1)

Country Link
JP (1) JP2004026986A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200507A (en) * 2004-01-14 2005-07-28 Sekisui Chem Co Ltd Method for producing metal/resin composite microparticle and the resulting metal/resin composite microparticle
JP2005298993A (en) * 2004-04-08 2005-10-27 Kagawa Industry Support Foundation Structural fiber product and method for producing the same
JP2006096810A (en) * 2004-09-28 2006-04-13 Kagawa Industry Support Foundation Functional transparent organic polymer material and method for producing the same
JP2007254764A (en) * 2006-03-20 2007-10-04 Univ Of Fukui Metal coated polymer material and method for manufacturing the same
WO2008060582A2 (en) * 2006-11-15 2008-05-22 Aculon, Inc. Coated substrates, organometallic films and methods for applying organometallic films to substrates
JP2008542543A (en) * 2005-06-02 2008-11-27 シェブロン フィリップス ケミカル カンパニー エルピー How to treat a surface for protection

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200507A (en) * 2004-01-14 2005-07-28 Sekisui Chem Co Ltd Method for producing metal/resin composite microparticle and the resulting metal/resin composite microparticle
JP2005298993A (en) * 2004-04-08 2005-10-27 Kagawa Industry Support Foundation Structural fiber product and method for producing the same
JP4615887B2 (en) * 2004-04-08 2011-01-19 財団法人かがわ産業支援財団 A method for producing a fiber structure.
JP2006096810A (en) * 2004-09-28 2006-04-13 Kagawa Industry Support Foundation Functional transparent organic polymer material and method for producing the same
JP2008542543A (en) * 2005-06-02 2008-11-27 シェブロン フィリップス ケミカル カンパニー エルピー How to treat a surface for protection
JP2007254764A (en) * 2006-03-20 2007-10-04 Univ Of Fukui Metal coated polymer material and method for manufacturing the same
WO2008060582A2 (en) * 2006-11-15 2008-05-22 Aculon, Inc. Coated substrates, organometallic films and methods for applying organometallic films to substrates
WO2008060582A3 (en) * 2006-11-15 2009-05-28 Aculon Inc Coated substrates, organometallic films and methods for applying organometallic films to substrates
JP2010510090A (en) * 2006-11-15 2010-04-02 アキュロン, インコーポレイテッド Coated substrate, organic film and method for applying organic film to substrate

Similar Documents

Publication Publication Date Title
US8147737B2 (en) Storage container, method for molding resin, and method for forming plating film
WO2008050715A1 (en) Metal-film-coated material and process for producing the same, metallic-pattern-bearing material and process for producing the same, composition for polymer layer formation, nitrile polymer and method of synthesizing the same, composition containing nitrile polymer, and layered product
Jia et al. Polymer surface oxidation by light-activated chlorine dioxide radical for metal–plastics adhesion
JP2004026986A (en) Method for modifying surface of organic polymeric substrate
KR970067726A (en) Freon gas processing method and processing apparatus
JP4903528B2 (en) Method for producing substrate with metal film, substrate with metal film, method for producing metal pattern material, metal pattern material
WO2008050631A1 (en) Process for producing metal-film-coated substrate, metal-film-coated substrate, process for producing metallic-pattern material, and metallic-pattern material
Jia et al. Photooxidation of the ABS resin surface for electroless metal plating
JP3878962B1 (en) Pre-plating method and plating method for polymer substrate and method for producing molded article made of thermoplastic resin
JP4660661B2 (en) Plating pretreatment method for plastic, plating method, method for producing plated product, and plating apparatus
CN107614580B (en) Method and apparatus for modified resin
WO2006095589A1 (en) Resin substrate, substrate for electronic component having electroless plating applied thereon, and process for production of substrate for electronic component
CN101970719B (en) Method for producing composite material containing resin molded body
JP3590933B2 (en) Removal method of thermosetting coating film
JP5215731B2 (en) Plastic surface modification method and surface modified plastic
JP2006066180A (en) Manufacturing method for conductive film and conductive film
TW201124361A (en) Process for preparing alkyl hydroperoxide compounds
KR20130028582A (en) Method for getting graphene
CN101928938A (en) Manufacture method with polymer elements of plated film
Boipai et al. Improvement in adhesion of electroless coating on plastic substrates: A review
JP4958141B2 (en) Metal-coated polymer material and method for producing the same
JP5491737B2 (en) High pressure processing method and high pressure processing apparatus
JP2004330720A (en) Manufacturing method of molded article, mold used for manufacturing the same, and molded article
JP2006037188A (en) Pretreatment method for electroless plating, and electroless plating method including the pretreatment method
KR101815680B1 (en) System of removing metal catalyst on graphene

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

A621 Written request for application examination

Effective date: 20040922

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080527