JP2004012986A - Electrophotographic photoreceptor, processing cartridge, electrophotographic apparatus and method for manufacturing electrophotographic photoreceptor - Google Patents
Electrophotographic photoreceptor, processing cartridge, electrophotographic apparatus and method for manufacturing electrophotographic photoreceptor Download PDFInfo
- Publication number
- JP2004012986A JP2004012986A JP2002168658A JP2002168658A JP2004012986A JP 2004012986 A JP2004012986 A JP 2004012986A JP 2002168658 A JP2002168658 A JP 2002168658A JP 2002168658 A JP2002168658 A JP 2002168658A JP 2004012986 A JP2004012986 A JP 2004012986A
- Authority
- JP
- Japan
- Prior art keywords
- electrophotographic
- layer
- photosensitive member
- electrophotographic photoreceptor
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は電子写真感光体、該電子写真感光体を有するプロセスカートリッジ及び電子写真装置、更には該電子写真感光体の製造方法に関し、詳しくは、放射線照射後に加熱されることによって形成された電子写真感光体、該電子写真感光体を有するプロセスカートリッジ及び電子写真装置、該電子写真感光体の製造方法に関する。
【0002】
【従来の技術】
近年、電子写真感光体に用いられる材料として有機光導電材料は、その高生産性や無公害性等の利点が注目され、広く用いられるようになってきた。これらの電子写真感光体は、電気的及び機械的特性の双方を満足するために電荷発生層と電荷輸送層を積層した機能分離型の電子写真感光体として利用される場合が多い。一方、当然のことながら電子写真感光体には適用される電子写真プロセスに応じた感度、電気的特性、更には光学的特性を備えていることが要求される。特に、繰り返し使用される電子写真感光体にあっては、その電子写真感光体表面には帯電、画像露光、トナー現像、紙への転写、クリーニング処理といった電気的や機械的外力が直接加えられるため、それらに対する耐久性が要求される。具体的には、摺擦による表面の磨耗や傷の発生に対する耐久性、帯電による表面劣化による転写効率や滑り性の低下、更には感度低下、電位低下等の電気特性の劣化に対する耐久性も要求される。
【0003】
一般に電子写真感光体の表面は薄い樹脂層であり、樹脂の特性が非常に重要である。上述の諸条件をある程度満足する樹脂として、近年アクリル樹脂やポリカーボネート樹脂等が実用化されているが、前述したような特性の全てがこれらの樹脂で満足されるわけではなく、特に電子写真感光体の高耐久化を図る上では該樹脂の被膜硬度は十分高いとは言い難い。これらの樹脂を表面層形成用の樹脂として用いた場合でも繰り返し使用時において表面層の磨耗が起こり、更に傷が発生するという問題点があった。更に、近年の有機電子写真感光体の高感度化に対する要求から電荷輸送材料等の低分子量化合物が比較的大量に添加される場合が多いが、この場合それら低分子量物質の可塑剤的な作用により膜強度が著しく低下し、一層繰り返し使用時の表面層の磨耗や傷発生が問題となっている。また、電子写真感光体を長期にわたって保存する際に前述の低分子量成分が析出してしまい、層分離するといった問題も発生している。
【0004】
これらの問題点を解決する手段として、硬化性の樹脂を電荷輸送層用の樹脂として用いる試みが、例えば特開平2−127652号公報等に開示されている。このように、電荷輸送層用の樹脂に硬化性の樹脂を用い電荷輸送層を硬化、架橋することによって機械的強度が増し、繰り返し使用時の耐削れ性及び耐傷性は大きく向上する。しかしながら硬化性樹脂を用いても、低分子量成分はあくまでも結着樹脂中において可塑剤として作用するので、先に述べたような析出や層分離の問題は根本的な解決にはなっていない。また、有機電荷輸送材料と結着樹脂とで構成される電荷輸送層においては電荷輸送能の樹脂に対する依存度が大きく、例えば硬度が十分に高い硬化性樹脂では電荷輸送能が十分ではなく繰り返し使用時に残留電位の上昇が見られる等、これまでの系では高い硬度と十分な電荷輸送能の両立について見当の余地が残されていた。
【0005】
以上の状況に対して本発明者らは、特開平11−265085号公報及び特開2000−66425号公報において、放射線による重合反応を利用した電子写真感光体によって上記課題が大幅に改善されることを開示した。
【0006】
【発明が解決しようとする課題】
しかしながら、近年のプリントスピードの更なる高速化、更なる高プリントボリューム化、更なる低ランニングコスト化等に対応すべく、より一層優れた耐久性を有する電子写真感光体が検討されている。
【0007】
本発明の目的は、放射線による重合反応を利用した電子写真感光体において、更に耐磨耗性の向上した電子写真感光体を提供することにある。
【0008】
本発明の別の目的は、上記電子写真感光体を有するプロセスカートリッジ及び電子写真装置を提供することにある。
【0009】
本発明の更に別の目的は、上記電子写真感光体の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明に従って、支持体上に感光層あるいは感光層及び保護層を有する電子写真感光体において、該感光層あるいは保護層の少なくとも一つの層が放射線を照射されることにより形成され、かつ該放射線照射後に加熱されることによって形成された層であることを特徴とする電子写真感光体、該電子写真感光体の製造方法が提供される。
【0011】
また、本発明に従って、上記電子写真感光体を有するプロセスカートリッジ及び電子写真装置が提供される。
【0012】
【発明の実施の形態】
以下に、本発明の実施の形態を詳細に説明する。
【0013】
本発明は基本的に放射線による重合・架橋反応を利用したものであるが、この反応は通常室温下で行われるのが一般的であり、紫外線硬化プロセスや熱硬化プロセスのように熱に関する種々の問題点が発生しないことが利点であると広く知られている。本発明者らは、この重合・架橋反応時の温度に着目した結果、放射線照射時の温度を上昇させることにより、当然のことながら反応が促進されることを確認した。放射線照射時に温度を上昇させる手段としては、
(1)被照射体を照射前に加温する、
(2)照射時に被照射体を加温する、
(3)照射室内を所定温度に加温し、被照射体を投入する、
(4)被照射体の放射線吸収効率を向上させる(高加速電圧化あるいは吸収線量の増大)
等が考えられるが、装置/設備が複雑になりやすいことや、特に(4)では、電子写真特性や物性の悪化が懸念される。
【0014】
そこで本発明者らが更に鋭意検討した結果、重合・架橋反応は放射線照射時に限らず、照射後の加温においても十分に促進されることを見出した。詳細なメカニズムは判明していないが、放射線照射時に系内で発生したラジカル等を開始点として重合・架橋反応が進行し、その成長末端がある程度の寿命を有して系内で安定に存在、その後の加熱により更に重合・架橋反応が進行する、すなわち一種のリビング重合が起こっていると考えられる。
【0015】
本発明の電子写真感光体の構成は、支持体上に感光層として電荷発生層、電荷輸送層をこの順に積層した構成又は逆に電荷輸送層、電荷発生層をこの順に積層した構成、更には電荷発生材料と電荷輸送材料を結着樹脂中に分散した単層より構成されるもののいずれの構成をとることも可能である。更に、前記感光層上に表面保護層を形成することも可能である。
【0016】
この電子写真感光体構成において、本発明の主たる目的は電子写真感光体の耐久性能の向上であるから、電子写真感光体の表面層を放射線照射及び加熱により形成することによってその効果が十分に発揮される。なかでも、電子写真特性、特に残留電位等の電気的特性及び耐久性の点より、電荷発生層、電荷輸送層をこの順に積層した機能分離型の電子写真感光体構成、又は前記電荷発生層、電荷輸送層をこの順に積層した機能分離型の感光層上に保護層を形成した構成が好ましい。すなわち電荷輸送層あるいは保護層を放射線照射及び加熱により形成することが好ましい。
【0017】
本発明の放射線照射及び加熱により形成される層は、この工程により重合又は架橋し硬化するものであればいずれのものでも構わない。すなわち、放射線照射によりラジカル等の活性点が発生し、重合あるいは架橋することが可能な化合物であればよい。中でも分子内に不飽和重合性官能基を有する化合物は、反応性の高さ、反応速度の速さ、材料の汎用性等の点から好ましい。
【0018】
本発明における不飽和重合性官能基を有する化合物は、モノマー、オリゴマーあるいはマクロマーのいずれにも限定されない。
【0019】
また、本発明における表面層が電荷輸送層あるいは保護層のいずれの場合においても、両者は硬化後に電荷輸送能を有している必要があるが、前記不飽和重合性官能基を有する化合物が電荷輸送能力を有さない化合物である場合においては、電荷輸送材料や導電性材料の添加により電荷輸送能を確保することが好ましく、前記不飽和重合性官能基を有する化合物自体が電荷輸送能を有する場合においては、この限りではない。ただし、表面層の膜硬度や種々の電子写真特性の点からして、後者のような電荷輸送能を有する化合物を使用するのがより好ましい。更に、電荷輸送能を有する化合物の中でも、電子写真プロセスや材料の汎用性の点からして、正孔輸送能を有する化合物が更に好ましい。
【0020】
本発明の電子写真感光体の感光層は、導電性支持体上に形成される。支持体は、導電性を有するものであればよい。例えば、アルミニウム、銅、クロム、ニッケル、亜鉛及びステンレス等の金属や合金をドラム状又はシート状に成形したもの、アルミニウム及び銅等の金属箔をプラスチックフィルムにラミネートしたもの、アルミニウム、酸化インジウム及び酸化錫等をプラスチックフィルムに蒸着したもの、導電性物質を単独又は結着樹脂と共に塗布して導電層を設けた金属、プラスチックフィルム及び紙等が挙げられる。
【0021】
本発明においては、支持体と感光層の間にバリアー機能と接着機能をもつ下引き層を設けることができる。下引き層は、感光層の接着性改良、塗工性改良、支持体の保護、支持体の欠陥の被覆、支持体からの電荷注入性改良、また感光層の電気的破壊に対する保護等のために形成される。
【0022】
下引き層の材料としては、ポリビニルアルコール、ポリ−N−ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース、エチレン−アクリル酸共重合体、カゼイン、ポリアミド、N−メトキシメチル化6ナイロン、共重合ナイロン、にかわ及びゼラチン等が挙げられる。下引き層は、これらの材料をそれぞれに適した溶剤に溶解した溶液を支持体上に塗布し、乾燥することによって形成される。膜厚は0.1〜2μm程度であることが好ましい。
【0023】
本発明の電子写真感光体が機能分離型の電子写真感光体である場合には、電荷発生層及び電荷輸送層を積層する。
【0024】
電荷発生層に用いる電荷発生材料としては、セレン−テルル、ピリリウム、チアピリリウム系染料、また各種の中心金属及び結晶系、具体的には例えばα、β、γ、ε又はX型等の結晶型を有するフタロシアニン化合物、アントアントロン顔料、ジベンズピレンキノン顔料、ピラントロン顔料、トリスアゾ顔料、ジスアゾ顔料、モノアゾ顔料、インジゴ顔料、キナクリドン顔料、非対称キノシアニン顔料、キノシアニン及び特開昭54−143645号公報に記載のアモルファスシリコン等が挙げられる。
【0025】
電荷発生層は前記電荷発生材料を0.3〜4倍量の結着樹脂及び溶剤と共にホモジナイザー、超音波分散、ボールミル、振動ボールミル、サンドミル、アトライター又はロールミル等の方法で均一に分散し、得られた分散液を塗布し、乾燥することによって形成されるか、又は前記電荷発生材料の蒸着膜等、単独組成の膜として形成される。その膜厚は5μm以下であることが好ましく、特に0.1〜2μmの範囲であることが好ましい。
【0026】
結着樹脂としては、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレン等のビニル化合物の重合体及び共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂及びエポキシ樹脂等が挙げられる。
【0027】
次に、電荷輸送層について説明する。本発明において、表面層が電荷輸送層である場合には、電荷輸送層が放射線照射及び加熱により形成される層となり、この工程により重合又は架橋し硬化する化合物から構成される。電荷輸送材料としては、ポリ−N−ビニルカルバゾール及びポリスチリルアントラセン等の複素環や縮合多環芳香族を有する高分子化合物や、ピラゾリン、イミダゾール、オキサゾール、トリアゾール及びカルバゾール等の複素環化合物、トリフェニルメタン等のトリアリールアルカン誘導体、トリフェニルアミン等のトリアリールアミン誘導体、フェニレンジアミン誘導体、N−フェニルカルバゾール誘導体、スチルベン誘導体及びヒドラゾン誘導体等の低分子化合物が挙げられるが、これらを放射線照射及び加熱により重合、架橋可能な樹脂と共に適当な溶剤に分散あるいは溶解させ、先の電荷発生層上に塗布した後、後述する放射線及び加熱工程により電荷輸送層を形成する。
【0028】
放射線照射及び加熱により重合・架橋可能な樹脂としては前述したように、放射線照射によりラジカル等の活性点が発生し、重合あるいは架橋することが可能な化合物であればよく、一般的には連鎖重合性官能基を有する化合物が挙げられる。中でも分子内に不飽和重合性官能基を有する化合物は、反応性の高さ、反応速度の速さ、材料の汎用性等の点から好ましく、アクリロイルオキシ基、メタクリロイルオキシ基及びスチレン基等が特に好ましく、これらはモノマー、オリゴマー、マクロマー、ポリマーのいずれにも限定されることなく適宜選択あるいは組み合わせることができる。
【0029】
より具体的には、不飽和重合性官能基が下記式(1)で示されるアクリロイルオキシ基、下記式(2)で示されるメタクリロイルオキシ基あるいは下記式(3)で示されるスチレン基であることが好ましい。
【0030】
【化3】
(式中、Arは置換もしくは無置換のアリーレン基を示し、R1は水素原子又はメチル基を示す)
【0031】
また、電荷輸送能、好ましくは正孔輸送能を有しかつ放射線照射及び加熱により重合・架橋可能な樹脂を用いる場合は、それ単独で電荷輸送層を形成、あるいは前述の電荷輸送材料及び電荷輸送能を有さない放射線照射及び加熱により重合・架橋可能な樹脂を適宜混合することが可能である。
【0032】
電荷輸送能を有しかつ放射線照射及び加熱により重合・架橋可能な樹脂は、例えば上記の不飽和重合性官能基を有する公知の正孔輸送性化合物や、公知の正孔輸送性化合物の一部に上記の不飽和重合性官能基を付加した化合物等であればよい。公知の正孔輸送性化合物の例としては、ヒドラゾン化合物、ピラゾリン化合物、トリフェニルアミン化合物、ベンジジン化合物及びスチルベン化合物等が挙げられるが、正孔輸送性化合物であればいかなる化合物も使用可能である。
【0033】
更に、本発明において電子写真感光体表面層の硬度を十分に確保するためには、連鎖重合性官能基を有する化合物は同一分子内に2つ以上の連鎖重合性官能基を有する化合物であることが好ましい。
【0034】
本発明において、単層構成の電子写真感光体の場合には、少なくとも電荷発生材料、電荷輸送材料及び放射線照射及び加熱により重合・架橋可能な化合物を分散又は溶解した溶液を用いて感光層が形成される。この場合においても先の機能分離型電子写真感光体と同様に、電荷輸送能を有しかつ放射線照射及び加熱により重合・架橋可能な化合物の使用が好ましい。
【0035】
本発明において、表面層が保護層である場合には、保護層が放射線照射及び加熱により形成される層となり、この工程により重合又は架橋し硬化する化合物から構成される。
【0036】
この場合、下層である感光層の構成は、電荷発生層及び電荷輸送層をこの順に積層した機能分離型電子写真感光体、電荷輸送層及び電荷発生層をこの順に積層した機能分離型電子写真感光体、あるいは単層電子写真感光体のいずれもが可能であるが、先に述べた理由により、電荷発生層及び電荷輸送層をこの順に積層した電子写真感光体構成が好ましい。
【0037】
この場合、電荷発生層は、前述と同様な方法で形成され、電荷輸送層は、先の電荷輸送材料をスチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレン等のビニル化合物の重合体及び共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂及びエポキシ樹脂等の結着樹脂中に分散あるいは溶解した溶液を用いて形成される。場合によっては、放射線照射及び加熱により重合・架橋可能な化合物を有する化合物の添加も可能である。
【0038】
保護層は硬化後に電荷輸送能を有している必要があるため、放射線照射及び加熱工程により重合・架橋し保護層を形成する化合物自体が電荷輸送能力を有さない化合物である場合においては、前述の電荷輸送材料や導電性材料の添加により電荷輸送能を確保することが好ましい。この場合、電荷輸送材料は、放射線照射及び加熱により重合・架橋可能な官能基を有しても有さなくてもかまわないが、電荷輸送材料の可塑性による機械的強度の低下を避けるためには、前者が好ましい。
【0039】
導電性材料としては、酸化チタンや酸化錫等の導電性微粒子が一般的ではあるが、その他として、導電性高分子化合物等の利用も可能である。放射線照射及び加熱工程により重合・架橋し保護層を形成する化合物自体が電荷輸送能を有する場合においては、この限りではない。本発明においては、表面層の膜硬度や種々の電子写真の点からして、後者のような電荷輸送能を有する化合物を使用した表面層が特に好ましい。
【0040】
本発明において各々溶液を塗布する方法は、例えば、浸漬コーティング法、スプレイコーティング法、カーテンコーティング法及びスピンコーティング法等の公知の塗布方法が可能であるが、効率性/生産性の点からは浸漬コーティング法が好ましい。また、蒸着、プラズマその他の公知の製膜方法も適宜選択できる。
【0041】
本発明において、感光層及び保護層には各種添加剤を添加することができる。該添加剤とは、酸化防止剤及び紫外線吸収剤等の劣化防止剤やフッ素系樹脂微粒子等の滑材等である。
【0042】
次に、放射線照射及び加熱について説明する。
【0043】
本発明における放射線とは、特開2000−66425号公報において開示したものと同様に、電子線及びγ線等が挙げられ、装置の大きさ、安全性、コスト及び汎用性等の種々の点から電子線が好ましい。電子線照射をする場合、加速器としては、スキャニング型、エレクトロカーテン型、ブロードビーム型、パルス型及びラミナー型等のいずれの形成も使用することができる。
【0044】
また、電子線照射により電子写真感光体を形成する本発明においても、電子写真感光体の電気特性及び耐久性能を十分に発現させる上で、電子線の加速電圧と吸収線量が非常に重要なファクターであり、加速電圧は300KV以下が好ましく、最適には150KV以下、また線量は好ましくは1〜100Mradの範囲、より好ましくは50Mrad以下の範囲である。加速電圧が300KVを超えたり、線量が100Mradを超えると、電子写真感光体への劣化が起こり易い傾向にあることは該公報において示した通りである。
【0045】
本発明者らは、鋭意検討を重ねた結果、放射線照射後も数時間以上にわたって、反応活性点であるラジカルが存在し続けることを発見した。これによれば、放射線照射後のラジカルが存在している間にその系の温度を後述する加熱手段により上昇させることによって、より重合・架橋反応を進行させることができ、同じ線量でも、より硬化度の高い膜が形成されることを実証した。更には、この放射線照射後の加熱を利用した重合・架橋反応を利用すると、従来と比べてより少ない線量で十分な硬化性を得ることが判明した。
【0046】
すなわち従来の方法では余分な放射線エネルギーによって必要以上のラジカルを生成させていたことになるが、本願においては必要最小限のラジカル発生に対して放射線の線量を決定することの優位性を示している。これはとりもなおさず、より電子写真感光体に対して緩やかな条件で放射線照射が行なえること、また装置の簡略化、低エネルギー化、コストダウン等に対する大きな利点である。
【0047】
反応活性点であるラジカル開始点の生成量は、重合・架橋する層の構成材料の化学構造自体、すなわちこれらの化合物の放射線に対する開始反応効率にも大きく依存するが、ラジカルの生成量を正確に予測したり測定することは困難であるため、現状では最終的な硬化性を評価することにより、最適な構成材料と放射線照射条件を決定する必要がある。なお本願で使用している不飽和重合性官能基を有する化合物の場合は、おおむね20Mrad以下の線量においても十分な硬化性を得ることが可能であり、材料によってはわずか1Mradの線量においても十分な硬化性が得られることがわかった。
【0048】
次に、加熱について説明する。本発明における加熱の手段としては、電子写真感光体の外部あるいは内部からのいずれにおいても行うことができる。外部から加温する場合は、電子写真感光体の近傍に各種のヒーター等を設置し直接加熱する方法、電子写真感光体のまわりの雰囲気を加熱あるいは加熱された気体を接触させることにより間接的に加熱する方法等が挙げられる。内部から加温する方法においても、内部に各種ヒーターを設置する方法、加熱された流体を通過させる方法等が挙げられる。また、これらの加熱手段はそのいくつかを組み合わせることが可能である。なお電子写真感光体の温度は、同組成の温度測定用電子写真感光体を別途準備し、
(1)該感光体表面にサーモラベルを貼り付ける
(2)該感光体表面にテープ型熱電対温度計を接触させる
(3)該感光体表面近傍に非接触型放射温度計を配置する
等の方法により測定することが可能であるが、温度の信頼性を高めるためには、単独ではなくこれらいくつかの測定データを総合して電子写真感光体の温度とすることが好ましい。
【0049】
加熱する温度は、電子写真感光体の温度が室温以上になるように設定することが好ましく、特には放射線照射時の温度以上になるように設定することが好ましい。電子線照射は通常20℃前後の室温雰囲気下で行うのが一般的であるが、電子線照射時にはそのエネルギーを電子写真感光体及び周りの媒体が吸収するために、これらの温度上昇が起こる。その割合は、加速電圧、ビーム電流値、照射時間、線量等の系に加えられるエネルギーと、吸収する側のエネルギーすなわち照射スペースの大きさや材質、雰囲気気体の流れ、装置の冷却システムや電子写真感光体自体の材料構成等の熱収支に依存し、実質的な線量において電子写真感光体自体は一般的には室温から数十℃程度に温度上昇する。
【0050】
ここで室温以上好ましくは放射線照射時の温度以上に電子写真感光体の温度を設定する理由は、重合反応メカニズムに起因すると考えられる。放射線照射時には、重合・架橋する層内部において、反応活性点がまず生成し、構成材料が分子レベルで動けるすなわち二分子反応できる分子間距離内において重合が進行する。ある程度、重合・架橋が進行すると、オリゴマーあるいはポリマー化した構成材料はもはやその温度においては分子レベルで動くことが出来なくなり、反応は一旦停止すると考えられる。この時点で反応活性点は先に述べたようにある程度の寿命をもって存在することができるために、この段階において系の温度を上げることで、更に分子レベルでの運動を可能とし、更なる重合、架橋反応を進行させることが可能であると考えられる。
【0051】
加熱時の温度は高いほど重合・架橋反応に有効ではあるが、電子写真感光体を対象とした本発明においては、250℃以下であることが好ましい。これを超える温度になると電子写真感光体の材料が劣化し、電子写真特性が悪くなる傾向にある。より好ましくは200℃以下、更に好ましくは150℃以下である。
【0052】
一方、温度の下限については、前述のように加熱時の電子写真感光体の温度が放射線照射時の電子写真感光体の温度より高いことで重合・架橋反応が促進されるという推定メカニズムに基づくと、放射線照射時の感光体の温度より少なくとも数十℃は高く設定することが必須であり、好ましくは50℃以上、特に弊害がない限りにおいては出来るだけ設定温度を高くすることが好ましい。
【0053】
加温する時間はおおよそ数秒から数十分程度であるが、加温時間よりはむしろ設定温度すなわち電子写真感光体の到達温度が硬化性には大きく影響する。実質的に加温時間とは、昇温時間及び到達温度保持時間を含む。昇温時間は加熱手段や電子写真感光体の種類、特には基材の材質によっても大きく異なるが、数秒から数分程度で所定温度近傍までに到達する手段を選択することが好ましく、あまりに昇温に対して長い時間を費やすことは、特性上は問題ないと推測されるが、生産上は好ましくはない。
【0054】
到達温度保持時間は、過熱防止/到達温度安定化等の観点から、設定温度に到達した後、場合に応じて数秒から数十分程度設けることが好ましい。これらの時間より短時間、すなわち数秒以内で加温処理を完結することに対して特に問題はないが、装置的な制御の問題や負荷が大きくなる等の点で実用的ではない。一方、これらの時間より長い加熱処理を行なうことも可能ではあるが、生産性等の点からあまり好ましくはない。
【0055】
加温処理を行なう雰囲気は、大気中、不活性ガス中、真空中のいずれでも構わないが、重合・架橋反応のメカニズムから考えて、酸素による反応活性点の失活を極力避ける意味でも、不活性ガス中あるいは真空中が好ましい。不活性ガスとしては、窒素、ヘリウム及びアルゴン等が使用可能であるが、コストの面からして、窒素を使用することが好ましい。不活性ガスの純度は出来る限り高いことが好ましいが、要求される特性、コスト及び装置面から低純度の不活性ガスを弊害のない範囲で使用することは可能である。このとき加温処理中における酸素濃度は1%以下であることが好ましく、特には1000ppm以下、更には100ppm以下であることが好ましい。
【0056】
真空中における加熱方法も同様に酸素濃度を低下させることが可能であるため可能である。このときの真空度は1×10−2Pa以下が好ましく、更には1×10−5Pa以下であることがより好ましいが、装置のハンドリングや生産上の観点から考えて、前述の不活性ガスを用いた方法が最も好ましい。
【0057】
放射線照射から加熱処理までの時間は、先のように反応活性点の失活をなるべく避ける目的で短時間に設定するのが好ましく、実質的には放射線照射後に連続して加熱処理を行なうことが好ましいが、装置上の問題から連続処理が困難である場合には、両者の間に数分から数時間程度の放置時間が生じても構わない。ただし、この時間が極短時間である場合においても、少なからず酸素による重合阻害が起こる可能性があるので、雰囲気の酸素濃度には注意すべきである。
【0058】
なお、これらの失活速度が遅い場合すなわち不活性ガス中や真空中を経由する場合、また材料の種類によってラジカル失活速度が遅い等の場合においては、数時間という放置期間を経由しても硬化性は変化しておらず、また本発明者らが実際に放射線照射直後及び数時間放置後の重合・架橋層におけるラジカル量を電子スピン共鳴法により測定した結果においてもラジカル数の減少は確認されなかったことから、場合によっては例えば一日以上の長い放置時間を経由することも可能であると考えられる。また、これらの加熱方法はその数種類の手段を組み合わせることも可能である。
【0059】
図1に本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成を示す。
【0060】
図1において、1はドラム状の本発明の電子写真感光体であり、軸2を中心に矢印方向に所定の周速度で回転駆動される。電子写真感光体1は、回転過程において、一次帯電手段3によりその周面に正又は負の所定電位の均一帯電を受け、次いで、スリット露光やレーザービーム走査露光等の露光手段(不図示)から出力される目的の画像情報の時系列電気デジタル画像信号に対応して強度変調された露光光4を受ける。こうして電子写真感光体1の周面に対し、目的の画像情報に対応した静電潜像が順次形成されていく。
【0061】
形成された静電潜像は、次いで現像手段5によりトナー現像され、不図示の給紙部から電子写真感光体1と転写手段6との間に電子写真感光体1の回転と同期して取り出されて給送された転写材7に、電子写真感光体1の表面に形成担持されているトナー画像が転写手段6により順次転写されていく。
【0062】
トナー画像の転写を受けた転写材7は、電子写真感光体面から分離されて像定着手段8へ導入されて像定着を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。
【0063】
像転写後の電子写真感光体1の表面は、クリーニング手段9によって転写残りトナーの除去を受けて清浄面化され、更に前露光手段(不図示)からの前露光光10により除電処理された後、繰り返し画像形成に使用される。なお、一次帯電手段3が帯電ローラー等を用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。
【0064】
本発明においては、上述の電子写真感光体1、一次帯電手段3、現像手段5及びクリーニング手段9等の構成要素のうち、複数のものを容器に納めてプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱自在に構成してもよい。例えば、一次帯電手段3、現像手段5及びクリーニング手段9の少なくとも一つを電子写真感光体1と共に一体に支持してカートリッジ化して、装置本体のレール等の案内手段12を用いて装置本体に着脱自在なプロセスカートリッジ11とすることができる。
【0065】
また、露光光4は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光、あるいは、センサーで原稿を読取り、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動又は液晶シャッターアレイの駆動等により照射される光である。
【0066】
本発明の電子写真感光体は、電子写真複写機に利用するのみならず、レーザービームプリンター、CRTプリンター、LEDプリンター、FAX、液晶プリンター及びレーザー製版等の電子写真応用分野にも幅広く適用し得るものである。
【0067】
【実施例】
以下、実施例に従って本発明を更に詳細に説明する。なお、実施例中の「部」は「質量部」を意味する。
【0068】
(実施例1)
直径30mm×357.5mmのアルミニウムシリンダーを支持体とし、それに、以下の材料より構成される塗工液を支持体上に浸漬コーティング法で塗布し、140℃で30分間熱硬化して、膜厚が18μmの導電層を形成した。
【0069】
導電性顔料:SnO2コート処理硫酸バリウム 10部
抵抗調節用顔料:酸化チタン 2部
結着樹脂:フェノール樹脂 6部
レベリング材:シリコーンオイル 0.001部
溶剤:メタノール/メトキシプロパノール=0.2/0.8 15部
【0070】
次に、この上にN−メトキシメチル化ナイロン5部をメタノール65部/n−ブタノール30部の混合溶媒に溶解した溶液を浸漬コーティング法で塗布して、膜厚が0.7μmの中間層を形成した。
【0071】
次に、CuKα特性X線回折のブラッグ角(2θ±0.2°)の7.4°及び28.2°に強いピークを有するヒドロキシガリウムフタロシアニン4部、ポリビニルブチラール(商品名:エスレックBX−1、積水化学製)2部及びシクロヘキサノン80部を直径1mmガラスビーズを用いたサンドミル装置で4時間分散した後、酢酸エチル80部を加えて電荷発生層用分散液を調製した。これを浸漬コーティング法で塗布して、膜厚が0.2μmの電荷発生層を形成した。
【0072】
次いで、下記式(4)で示される正孔輸送性化合物60部を
【0073】
【化4】
モノクロロベンゼン30部/ジクロロメタン30部の混合溶媒中に溶解し、電荷輸送層用塗料を調製した。この塗料を前記の電荷発生層上にコーティングし、窒素雰囲気中において加速電圧150KV、線量20Mradの条件で電子線を照射した後、引き続いて電子写真感光体の温度が150℃になるまでおよそ1分で昇温させその後2分間150℃を保持し、合計で3分間の加熱処理とした。なお電子線照射直後の電子写真感光体の温度は30℃、電子線照射時及び加熱時の酸素濃度は80ppmであった。更に、電子写真感光体を大気中において140℃で1時間後処理を行い、膜厚13μmの電荷輸送層を形成し、電子写真感光体を得た。
【0074】
作製した電子写真感光体は、キヤノン(株)製複写機GP40を用いて22℃/55%の環境下で評価した。電子写真感光体の電位特性については、複写機本体から現像器ユニットを取り外し、代わりに電位測定用プローブを現像位置に固定することにより測定を行った。なおその際に転写ユニットは、電子写真感光体に非接触、紙は非通紙とした。初期の電子写真感光体特性〔暗部電位Vd、光減衰感度(暗部電位650V設定で150Vに光減衰させるために必要な光量)、残留電位Vsl(光減衰感度の光量の3倍の光量を照射したときの電位)〕を測定し、更に100000枚の通紙耐久実験を行い、画像欠陥の発生の有無の観察、電子写真感光体の削れ量を測定した。なお削れ量の測定には、渦電流式膜厚計(カールフィッシャー社製)を使用した。また、通紙耐久はプリント1枚ごとに1回停止する間欠モードとした。
【0075】
結果を表1に示す。表1に見られるように本発明の電子写真感光体は、初期の電子写真感光体特性が良好であり、耐久での削れ量が少なくかつキズ等による画像欠陥が発生しないという従来の電子写真感光体と比較して、優れた耐久性能を示すことがわかった。
【0076】
【表1】
【0077】
(実施例2)
実施例1における電子線の線量を20Mradから5Mradに低下させた以外は、実施例1と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0078】
(実施例3)
実施例1にける電子線の線量を20Mradから1Mradに低下させた以外は、実施例1と同様にして電子写真感光体を作製し、評価した。結果、実施例1及び2と比較して、初期の電子写真感光体特性は若干良化したが、耐久性能はやや低下することがわかった。結果を表1に示す。
【0079】
(実施例4)
実施例1と同様にして電荷発生層までを形成した。
【0080】
次いで下記式(5)で示されるスチリル化合物7部
【0081】
【化5】
及びポリカーボネート樹脂(商品名:ユーピロンZ800、三菱エンジニアリングプラスチックス(株)社製)10部をモノクロロベンゼン105部/ジクロロメタン35部の混合溶媒中に溶解して調製した電荷輸送層用塗料を用いて、前記電荷発生層上に電荷輸送層を形成した。このときの電荷輸送層の膜厚は10μmであった。
【0082】
次いで、下記式(6)で示される正孔輸送性化合物45部を
【0083】
【化6】
n−プロピルアルコール55部に溶解し、表面保護層用塗料を調製した。この塗料を用いて、前記電荷輸送層上に保護層を塗布したのち、窒素雰囲気中において加速電圧150KV、線量20Mradの条件で電子線を照射した後、引き続いて電子写真感光体の温度が150℃になるまでおよそ2分で昇温させ、その後1分間150℃を保持し、合計で3分間の加熱処理とした。なお、電子線照射直後の電子写真感光体の温度は30℃、電子線照射時及び加熱時の酸素濃度は80ppmであった。更に、電子写真感光体を大気中において140℃で1時間後処理を行い、膜厚が5μmの保護層を形成し、電子写真感光体を得た。このようにして作製した電子写真感光体を実施例1と同様に評価した。結果を表1に示す。
【0084】
(実施例5〜8)
実施例4における電子線の線量を20Mradから表2に示した線量に変更した以外は、実施例4と同様にして電子写真感光体を作製し、評価した。結果、線量が低い方が初期の電子写真特性は良化する傾向にあったが、耐久性能はやや劣る傾向が見られた。結果を表1に示す。
【0085】
【表2】
【0086】
(実施例9〜14)
実施例4において、窒素中における加温条件を150℃で3分間から表3に示した条件に変更した以外は、実施例4と同様にして電子写真感光体を作製し、評価した。なお加熱条件における時間は、昇温時間と保持時間をほぼ均等としその合計時間を示した。結果、加温時の温度が高く、加温時間の長いほうが硬化性が向上し耐久性能が良化傾向にあった。しかし加温時の温度が高すぎると感光層の劣化により電子写真特性が悪化する傾向が見られた。結果を表1に示す。
【0087】
【表3】
【0088】
(実施例15〜16)
実施例4において、電子線の加速電圧を150KVから表4に示した条件に変更した以外は、実施例4と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0089】
【表4】
【0090】
(実施例17〜19)
実施例4において、窒素中における加温時の酸素濃度を80ppmから表5に示した条件に変更した以外は、実施例4と同様にして電子写真感光体を作製し、評価した。結果、酸素濃度を高くすると耐久性能が低下する傾向にあった。これは酸素によって重合/架橋反応が阻害され、結果として硬化性が低下したことによると考えられる。結果を表1に示す。
【0091】
【表5】
【0092】
(実施例20)
実施例4において、電子線照射後窒素中における加熱までの間に酸素濃度80ppmの窒素中で2時間放置を行った以外は、実施例4と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0093】
(実施例21)
実施例20において、電子線照射後窒素中における加熱までの間に大気中で2時間放置を行った以外は、実施例20と同様に電子写真感光体を作製し、評価した。結果を表1に示す。
【0094】
(実施例22〜23)
実施例4において、窒素中における加温の雰囲気を表6に示した真空条件に変更した以外は、実施例4と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0095】
【表6】
【0096】
(実施例24)
実施例4における式(6)に示される化合物を下記式(7)に示される正孔輸送性化合物に代えた以外は、実施例4と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0097】
【化7】
【0098】
(実施例25)
実施例4における式(6)に示される化合物を下記式(8)に示される正孔輸送性化合物に、溶剤をn−プロピルアルコールからシクロヘキサンに変更した以外は、実施例4と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0099】
【化8】
【0100】
(実施例26)
実施例4における式(6)に示される化合物を下記式(9)に示される正孔輸送性化合物に、溶剤をn−プロピルアルコールからシクロヘキサンに変更した以外は、実施例4と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0101】
【化9】
【0102】
(実施例27)
実施例4と同様にして電荷輸送層までを形成した。
【0103】
次に、3,3,3,−トリフルオロプロピルトリメトキシシラン(商品名:LS1090、信越化学(株)社製)で表面処理した(処理量7%)アンチモンドープ酸化錫微粒子50部及び下記式(10)で示される正孔輸送機能を有さないアクリルモノマー30部
【0104】
【化10】
をエタノール150部中でサンドミルにより70時間かけて分散し、保護層用塗料を調製した。この塗料を前記の電荷輸送層上に塗布した後に実施例4と同様に、電子線照射以降の処理を行い電子写真感光体を作製し、評価した。なおこのときの保護層の膜厚は4μmであった。結果を表1に示す。
【0105】
(実施例28)
実施例4において、表面保護層用塗料中に5部のポリテトラフルオロエチレン微粒子を添加分散した塗工液を表面保護層用塗料とした以外は実施例4と同様に電子写真感光体を作製し、評価した。結果を表1に示す。
【0106】
(比較例1)
実施例4において、電子線照射後の窒素中加温工程を行わない以外は、実施例4と同様に電子写真感光体を作製し、評価した。その結果、表1に示したように、電子写真特性は良好であったが耐久性能が大幅に低下した。
【0107】
(比較例2)
実施例8において、電子線照射後の窒素中加温工程を行わない以外は、実施例8と同様に電子写真感光体を作製し、評価した。その結果、表1に示したように、比較例1と比較して向上はしたものの耐久性能は十分ではなかった。また、初期の電子写真特性が悪い傾向にあった。これは電子線照射による電子写真感光体の劣化が原因であると考えられる。
【0108】
(比較例3)
実施例1において、電子線照射を行わなかった以外は実施例1と同様に電子写真感光体を作製したが、出来上がった電子写真感光体の表面にはタックが残っており、硬化が十分に進行していないことがわかった。よって、評価は行わなかった。
【0109】
(比較例4)
比較例3に対して、窒素中加温の温度を150℃から200℃に変更した以外は比較例3と同様に電子写真感光体を作製し、評価した。その結果、表1に示したように、比較例3のように出来上がった電子写真感光体表面のタックは残っておらず、見かけ上は硬化が進行したと考えられたが、初期の電子写真特性が悪く、また耐久性能は十分ではなかった。これは、電子線による重合及び架橋の開始点の生成工程がなくとも、熱による重合及び架橋が進行することを示していると考えられるが、その重合反応は十分ではないと予想される。また、電子写真感光体を高温にさらすことで、電子写真感光体の劣化が起こっているため、電子写真特性が悪化する傾向にあると推測される。
【0110】
(比較例5)
比較例4に対して窒素中の加温のかわりに大気中において加温を行った結果、出来上がった電子写真感光体の表面にはタックが残っており、硬化が十分に進行していないことがわかった。よって評価は行わなかった。
【0111】
【発明の効果】
以上のように、本発明の電子写真感光体は電子写真特性に優れ、耐磨耗性や耐傷性に優れた効果を有する。従って、近年のプリントスピードの高速化、高プリントボリューム化、コピーコストの低減等の市場の要求に十分答えうる電子写真感光体、該電子写真感光体を有するプロセスカートリッジ及び電子写真装置、該電子写真感光体の製造方法を提供することが可能となった。
【図面の簡単な説明】
【図1】本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成の例を示す図である。
【符号の説明】
1 電子写真感光体
2 軸
3 帯電手段
4 露光光
5 現像手段
6 転写手段
7 転写材
8 定着手段
9 クリーニング手段
10 前露光光
11 プロセスカートリッジ
12 案内手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrophotographic photoreceptor, a process cartridge having the electrophotographic photoreceptor, an electrophotographic apparatus, and a method of manufacturing the electrophotographic photoreceptor. More specifically, the present invention relates to an electrophotography formed by heating after irradiation with radiation. The present invention relates to a photoconductor, a process cartridge having the electrophotographic photoconductor, an electrophotographic apparatus, and a method for manufacturing the electrophotographic photoconductor.
[0002]
[Prior art]
2. Description of the Related Art In recent years, organic photoconductive materials have been widely used as materials used in electrophotographic photoreceptors because of their advantages such as high productivity and non-polluting properties. These electrophotographic photoconductors are often used as function-separated electrophotographic photoconductors in which a charge generation layer and a charge transport layer are laminated in order to satisfy both electrical and mechanical properties. On the other hand, as a matter of course, the electrophotographic photosensitive member is required to have sensitivity, electrical characteristics, and even optical characteristics according to the electrophotographic process applied. In particular, in the case of electrophotographic photoreceptors that are used repeatedly, electrical or mechanical external forces such as charging, image exposure, toner development, transfer to paper, and cleaning are directly applied to the electrophotographic photoreceptor surface. , Durability against them is required. Specifically, it is required to have durability against abrasion and scratches on the surface due to rubbing, decrease in transfer efficiency and slipperiness due to surface deterioration due to electrification, and also durability against deterioration in electrical characteristics such as sensitivity reduction and potential decrease. Is done.
[0003]
Generally, the surface of an electrophotographic photosensitive member is a thin resin layer, and the characteristics of the resin are very important. In recent years, acrylic resins, polycarbonate resins, and the like have been put into practical use as resins that satisfy the above-described conditions to some extent. However, not all of the above-described characteristics are satisfied by these resins, and in particular, electrophotographic photoreceptors It is difficult to say that the resin has a sufficiently high coating hardness in order to achieve high durability. Even when these resins are used as the resin for forming the surface layer, there is a problem that the surface layer is worn and the flaw is further generated during repeated use. Furthermore, low molecular weight compounds such as charge transport materials are often added in relatively large amounts due to recent demands for higher sensitivity of organic electrophotographic photoreceptors. In this case, due to the action of these low molecular weight substances as plasticizers. The film strength is remarkably reduced, and abrasion and scratching of the surface layer during repeated use are problematic. Further, when the electrophotographic photoreceptor is stored for a long period of time, the above-mentioned low molecular weight component is precipitated, which causes a problem of layer separation.
[0004]
As means for solving these problems, an attempt to use a curable resin as a resin for the charge transport layer is disclosed in, for example, JP-A-2-127652. As described above, by using a curable resin as the resin for the charge transport layer and curing and cross-linking the charge transport layer, the mechanical strength is increased, and the abrasion resistance and scratch resistance during repeated use are greatly improved. However, even if a curable resin is used, the low molecular weight component acts as a plasticizer in the binder resin to the last, so that the problems of precipitation and layer separation as described above have not been fundamentally solved. In the charge transport layer composed of an organic charge transport material and a binder resin, the charge transport ability is highly dependent on the resin. For example, a curable resin having sufficiently high hardness has insufficient charge transport ability and is used repeatedly. In the conventional systems, there is still room for a balance between high hardness and sufficient charge transport ability, for example, a rise in residual potential is sometimes observed.
[0005]
In view of the above situation, the present inventors have disclosed in JP-A-11-265085 and JP-A-2000-66425 that the above-mentioned problem can be significantly improved by an electrophotographic photosensitive member using a polymerization reaction by radiation. Was disclosed.
[0006]
[Problems to be solved by the invention]
However, electrophotographic photoreceptors having even more excellent durability have been studied in order to cope with higher print speeds, higher print volumes, and lower running costs in recent years.
[0007]
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrophotographic photoreceptor utilizing a polymerization reaction caused by radiation, which has further improved abrasion resistance.
[0008]
Another object of the present invention is to provide a process cartridge and an electrophotographic apparatus having the above electrophotographic photosensitive member.
[0009]
Still another object of the present invention is to provide a method for producing the above electrophotographic photosensitive member.
[0010]
[Means for Solving the Problems]
According to the present invention, in an electrophotographic photosensitive member having a photosensitive layer or a photosensitive layer and a protective layer on a support, at least one of the photosensitive layer or the protective layer is formed by irradiating radiation, and An electrophotographic photosensitive member, which is a layer formed by being heated later, and a method for producing the electrophotographic photosensitive member.
[0011]
Further, according to the present invention, a process cartridge and an electrophotographic apparatus having the above electrophotographic photosensitive member are provided.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0013]
Although the present invention basically utilizes a polymerization / crosslinking reaction by radiation, this reaction is generally performed at room temperature, and various kinds of heat-related processes such as an ultraviolet curing process and a thermosetting process. It is widely known that the advantage is that no problems arise. The present inventors focused on the temperature during the polymerization / crosslinking reaction, and as a result, confirmed that the reaction was naturally accelerated by increasing the temperature during irradiation. As means for raising the temperature during irradiation,
(1) heating the irradiation target before irradiation;
(2) heating the irradiation target at the time of irradiation;
(3) heating the irradiation chamber to a predetermined temperature and charging the irradiation target;
(4) Improve the radiation absorption efficiency of the irradiation target (increase the acceleration voltage or increase the absorbed dose)
However, there is a concern that the apparatus / equipment is likely to be complicated, and particularly in the case of (4), the electrophotographic characteristics and physical properties are deteriorated.
[0014]
Then, as a result of further intense studies by the present inventors, they have found that the polymerization / crosslinking reaction is sufficiently promoted not only during irradiation but also upon heating after irradiation. Although the detailed mechanism has not been clarified, the polymerization / crosslinking reaction proceeds starting from radicals and the like generated in the system at the time of irradiation, and the growth terminal has a certain life and exists stably in the system. It is considered that the polymerization / crosslinking reaction further proceeds by the subsequent heating, that is, a kind of living polymerization is occurring.
[0015]
The configuration of the electrophotographic photoreceptor of the present invention has a configuration in which a charge generation layer and a charge transport layer are stacked in this order as a photosensitive layer on a support, or a configuration in which a charge transport layer and a charge generation layer are stacked in this order on the support. Any one of a single layer in which a charge generation material and a charge transport material are dispersed in a binder resin can be used. Further, it is also possible to form a surface protective layer on the photosensitive layer.
[0016]
In this electrophotographic photoreceptor configuration, the main object of the present invention is to improve the durability performance of the electrophotographic photoreceptor, so that the effect is sufficiently exhibited by forming the surface layer of the electrophotographic photoreceptor by irradiation and heating. Is done. Among them, the electrophotographic properties, especially from the viewpoint of electrical properties and durability, such as residual potential, a charge generation layer, a function separation type electrophotographic photoreceptor structure in which a charge transport layer is laminated in this order, or the charge generation layer, It is preferable that a protective layer is formed on a function-separated type photosensitive layer in which a charge transport layer is laminated in this order. That is, the charge transport layer or the protective layer is preferably formed by irradiation with radiation and heating.
[0017]
The layer formed by irradiation and heating of the present invention may be any layer as long as it is polymerized or crosslinked and cured by this step. That is, any compound can be used as long as it generates an active site such as a radical upon irradiation with radiation and can be polymerized or crosslinked. Among them, compounds having an unsaturated polymerizable functional group in the molecule are preferable from the viewpoints of high reactivity, high reaction rate, versatility of materials, and the like.
[0018]
The compound having an unsaturated polymerizable functional group in the present invention is not limited to any of monomers, oligomers and macromers.
[0019]
Further, in the case where the surface layer in the present invention is either a charge transport layer or a protective layer, both need to have charge transport ability after curing, but the compound having the unsaturated polymerizable functional group is not charged. In the case of a compound having no transport ability, it is preferable to secure the charge transport ability by adding a charge transport material or a conductive material, and the compound having the unsaturated polymerizable functional group itself has the charge transport ability. In some cases, this is not the case. However, from the viewpoint of the film hardness of the surface layer and various electrophotographic characteristics, it is more preferable to use the latter compound having the charge transporting ability. Further, among the compounds having a charge transporting ability, a compound having a hole transporting ability is more preferable in view of the versatility of the electrophotographic process and the material.
[0020]
The photosensitive layer of the electrophotographic photosensitive member of the present invention is formed on a conductive support. The support may be any as long as it has conductivity. For example, a metal or alloy such as aluminum, copper, chromium, nickel, zinc and stainless steel formed into a drum or sheet shape, a metal foil such as aluminum and copper laminated on a plastic film, aluminum, indium oxide and oxide Examples thereof include those in which tin or the like is vapor-deposited on a plastic film, a metal, a plastic film, and paper in which a conductive material is applied alone or together with a binder resin to provide a conductive layer.
[0021]
In the invention, an undercoat layer having a barrier function and an adhesive function can be provided between the support and the photosensitive layer. The undercoat layer is used for improving the adhesiveness of the photosensitive layer, improving the coating properties, protecting the support, covering defects of the support, improving the charge injection property from the support, and protecting the photosensitive layer against electrical breakdown. Formed.
[0022]
Materials for the undercoat layer include polyvinyl alcohol, poly-N-vinylimidazole, polyethylene oxide, ethyl cellulose, ethylene-acrylic acid copolymer, casein, polyamide, N-
[0023]
When the electrophotographic photosensitive member of the present invention is a function-separated type electrophotographic photosensitive member, a charge generation layer and a charge transport layer are laminated.
[0024]
As the charge generating material used for the charge generating layer, selenium-tellurium, pyrylium, thiapyrylium-based dyes, various central metals and crystal systems, specifically, for example, α, β, γ, ε or X-type crystal forms Having a phthalocyanine compound, an anthrone pigment, a dibenzopyrene quinone pigment, a pyranthrone pigment, a trisazo pigment, a disazo pigment, a monoazo pigment, an indigo pigment, a quinacridone pigment, an asymmetric quinocyanine pigment, a quinocyanine and an amorphous described in JP-A No. 54-143645. Silicon etc. are mentioned.
[0025]
The charge generating layer is obtained by uniformly dispersing the charge generating material by a method such as a homogenizer, an ultrasonic dispersion, a ball mill, a vibration ball mill, a sand mill, an attritor or a roll mill together with 0.3 to 4 times the amount of a binder resin and a solvent. The dispersion is applied and dried, or formed as a film having a single composition, such as a vapor-deposited film of the charge generation material. The film thickness is preferably 5 μm or less, particularly preferably in the range of 0.1 to 2 μm.
[0026]
Examples of the binder resin include polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylate, methacrylate, vinylidene fluoride, and trifluoroethylene, polyvinyl alcohol, polyvinyl acetal, polycarbonate, and polyester. , Polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin, epoxy resin and the like.
[0027]
Next, the charge transport layer will be described. In the present invention, when the surface layer is a charge transport layer, the charge transport layer becomes a layer formed by irradiation and heating, and is composed of a compound which is polymerized or crosslinked and cured by this step. Examples of the charge transport material include a polymer compound having a heterocyclic ring or a condensed polycyclic aromatic compound such as poly-N-vinylcarbazole and polystyrylanthracene, a heterocyclic compound such as pyrazoline, imidazole, oxazole, triazole and carbazole, and triphenyl. Triarylalkane derivatives such as methane, triarylamine derivatives such as triphenylamine, phenylenediamine derivatives, N-phenylcarbazole derivatives, low molecular compounds such as stilbene derivatives and hydrazone derivatives, and the like. After dispersing or dissolving in a suitable solvent together with a polymerizable and crosslinkable resin, and coating on the charge generation layer, a charge transport layer is formed by a radiation and heating step described later.
[0028]
As described above, the resin that can be polymerized and cross-linked by irradiation with radiation and heating can be any compound that can generate an active site such as a radical upon irradiation and can be polymerized or cross-linked. And a compound having an acidic functional group. Among them, compounds having an unsaturated polymerizable functional group in the molecule are preferred in terms of high reactivity, high reaction rate, versatility of materials, etc., and acryloyloxy groups, methacryloyloxy groups, styrene groups, and the like are particularly preferable. Preferably, these are not limited to any of monomers, oligomers, macromers, and polymers, and can be appropriately selected or combined.
[0029]
More specifically, the unsaturated polymerizable functional group is an acryloyloxy group represented by the following formula (1), a methacryloyloxy group represented by the following formula (2), or a styrene group represented by the following formula (3) Is preferred.
[0030]
Embedded image
(Wherein, Ar represents a substituted or unsubstituted arylene group; 1 Represents a hydrogen atom or a methyl group)
[0031]
When a resin having a charge transporting ability, preferably a hole transporting ability and capable of being polymerized and crosslinked by irradiation and heating is used, a charge transporting layer may be formed by itself or a charge transporting material and a charge transporting material described above. It is possible to appropriately mix a resin capable of polymerizing / crosslinking by irradiation with radiation and heating which has no function.
[0032]
Resins having charge transportability and polymerizable / crosslinkable by irradiation and heating are, for example, known hole transporting compounds having the above-mentioned unsaturated polymerizable functional groups and some of the known hole transporting compounds. Any compound may be used as long as it is a compound having the above-mentioned unsaturated polymerizable functional group added thereto. Examples of the known hole transporting compound include a hydrazone compound, a pyrazoline compound, a triphenylamine compound, a benzidine compound, a stilbene compound, and the like. Any compound can be used as long as it is a hole transporting compound.
[0033]
Furthermore, in the present invention, in order to sufficiently secure the hardness of the electrophotographic photoreceptor surface layer, the compound having a chain polymerizable functional group is a compound having two or more chain polymerizable functional groups in the same molecule. Is preferred.
[0034]
In the present invention, in the case of an electrophotographic photosensitive member having a single-layer structure, the photosensitive layer is formed using a solution in which at least a charge generation material, a charge transport material, and a compound capable of being polymerized and crosslinked by irradiation and heating are dispersed or dissolved. Is done. Also in this case, it is preferable to use a compound having a charge transporting ability and capable of being polymerized / crosslinked by irradiation with radiation and heating, as in the case of the above-mentioned function-separated electrophotographic photosensitive member.
[0035]
In the present invention, when the surface layer is a protective layer, the protective layer becomes a layer formed by irradiation and heating, and is composed of a compound which is polymerized or crosslinked and cured by this step.
[0036]
In this case, the structure of the lower photosensitive layer is a function-separated electrophotographic photosensitive member in which a charge generation layer and a charge transport layer are laminated in this order, and a function-separated electrophotographic photosensitive member in which a charge transport layer and a charge generation layer are laminated in this order. Although either a solid or a single-layer electrophotographic photoreceptor is possible, an electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are laminated in this order is preferable for the reasons described above.
[0037]
In this case, the charge generating layer is formed by the same method as described above, and the charge transporting layer is formed by using the above charge transporting material as styrene, vinyl acetate, vinyl chloride, acrylate, methacrylate, vinylidene fluoride, and trifluoroethylene. In binder resins such as polymers and copolymers of vinyl compounds such as ethylene, polyvinyl alcohol, polyvinyl acetal, polycarbonate, polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin and epoxy resin. It is formed using a solution that is dispersed or dissolved in water. In some cases, it is also possible to add a compound having a compound that can be polymerized and cross-linked by irradiation and heating.
[0038]
Since the protective layer needs to have a charge transporting ability after curing, when the compound itself that forms a protective layer by polymerization and crosslinking by irradiation and a heating step is a compound having no charge transporting ability, It is preferable to secure the charge transporting ability by adding the above-mentioned charge transporting material or conductive material. In this case, the charge transport material may or may not have a functional group that can be polymerized and cross-linked by irradiation and heating, but in order to avoid a decrease in mechanical strength due to plasticity of the charge transport material. The former is preferred.
[0039]
As the conductive material, conductive fine particles such as titanium oxide and tin oxide are generally used, but a conductive polymer compound or the like can also be used. This is not the case when the compound itself that forms a protective layer by polymerization and crosslinking by irradiation and heating has a charge transporting ability. In the present invention, from the viewpoint of the film hardness of the surface layer and various electrophotographs, the surface layer using the latter compound having the charge transporting ability is particularly preferable.
[0040]
In the present invention, as a method of applying each solution, for example, a known coating method such as a dip coating method, a spray coating method, a curtain coating method, and a spin coating method can be used, but from the viewpoint of efficiency / productivity, the immersion method is used. A coating method is preferred. In addition, a known film forming method such as evaporation, plasma, or the like can be appropriately selected.
[0041]
In the present invention, various additives can be added to the photosensitive layer and the protective layer. The additives include a deterioration inhibitor such as an antioxidant and an ultraviolet absorber, and a lubricant such as fluororesin fine particles.
[0042]
Next, irradiation and heating will be described.
[0043]
The radiation in the present invention is similar to that disclosed in JP-A-2000-66425, and includes electron beams and γ-rays. From various points such as the size, safety, cost, and versatility of the device. Electron beams are preferred. When irradiating with an electron beam, any of a scanning type, an electro curtain type, a broad beam type, a pulse type, a laminar type and the like can be used as the accelerator.
[0044]
Also, in the present invention in which an electrophotographic photosensitive member is formed by irradiation with an electron beam, the acceleration voltage and absorbed dose of the electron beam are very important factors for sufficiently developing the electrical characteristics and durability of the electrophotographic photosensitive member. The accelerating voltage is preferably 300 KV or less, optimally 150 KV or less, and the dose is preferably in the range of 1 to 100 Mrad, more preferably 50 Mrad or less. When the accelerating voltage exceeds 300 KV or the dose exceeds 100 Mrad, the electrophotographic photoreceptor tends to deteriorate as described in the publication.
[0045]
As a result of intensive studies, the present inventors have discovered that radicals, which are reactive sites, continue to exist for several hours or more after irradiation. According to this, by raising the temperature of the system by the heating means described later while the radicals after irradiation exist, the polymerization / crosslinking reaction can proceed more, and even with the same dose, more curing It was demonstrated that a high-grade film was formed. Further, it has been found that when the polymerization / crosslinking reaction utilizing the heating after the irradiation of radiation is used, a sufficient curability can be obtained with a smaller dose than in the past.
[0046]
That is, in the conventional method, unnecessary radicals were generated by extra radiation energy, but in the present application, the superiority of determining the radiation dose with respect to the minimum necessary radical generation is shown. . This is a great advantage in that radiation can be applied to the electrophotographic photosensitive member under milder conditions, and that the apparatus can be simplified, energy consumption can be reduced, and costs can be reduced.
[0047]
The amount of radical initiation, which is the active site, depends greatly on the chemical structure of the constituent material of the layer to be polymerized / crosslinked, that is, the efficiency of initiation reaction of these compounds against radiation. Since it is difficult to predict or measure, at present, it is necessary to determine the optimal constituent materials and irradiation conditions by evaluating the final curability. In the case of the compound having an unsaturated polymerizable functional group used in the present application, sufficient curability can be obtained even at a dose of about 20 Mrad or less, and depending on the material, sufficient curability can be obtained even at a dose of only 1 Mrad. It was found that curability was obtained.
[0048]
Next, heating will be described. The heating means in the present invention can be performed either outside or inside the electrophotographic photosensitive member. When heating from the outside, various heaters etc. are installed near the electrophotographic photoreceptor to directly heat it, or the atmosphere around the electrophotographic photoreceptor is heated or the heated gas is brought into contact with it indirectly. A heating method and the like can be given. The method of heating from the inside also includes a method of installing various heaters inside, a method of passing a heated fluid, and the like. Some of these heating means can be combined. The temperature of the electrophotographic photoreceptor was prepared separately by preparing an electrophotographic photoreceptor for temperature measurement of the same composition.
(1) A thermo label is attached to the surface of the photoreceptor
(2) bringing a tape-type thermocouple thermometer into contact with the surface of the photoconductor;
(3) A non-contact radiation thermometer is arranged near the surface of the photoconductor.
Although it is possible to measure the temperature of the electrophotographic photoreceptor, it is preferable to collect these several measurement data instead of alone to increase the reliability of the temperature.
[0049]
The heating temperature is preferably set so that the temperature of the electrophotographic photosensitive member is equal to or higher than room temperature, and particularly preferably set so as to be equal to or higher than the temperature at the time of radiation irradiation. Electron beam irradiation is generally performed in a room temperature atmosphere of about 20 ° C., but the temperature rises during electron beam irradiation because the energy is absorbed by the electrophotographic photosensitive member and the surrounding medium. The ratio depends on the energy applied to the system, such as the acceleration voltage, beam current value, irradiation time, and dose, and the energy on the absorbing side, that is, the size and material of the irradiation space, the flow of the atmospheric gas, the cooling system of the device, and the electrophotographic photosensitive system. The electrophotographic photoreceptor itself generally rises in temperature from room temperature to about several tens of degrees Celsius at a substantial dose, depending on the heat balance such as the material composition of the body itself.
[0050]
The reason why the temperature of the electrophotographic photosensitive member is set to be equal to or higher than room temperature, preferably equal to or higher than the temperature at the time of radiation irradiation, is considered to be due to a polymerization reaction mechanism. At the time of irradiation, a reaction active site is first generated inside the layer to be polymerized / crosslinked, and the polymerization proceeds within the intermolecular distance where the constituent material can move at the molecular level, that is, can perform a bimolecular reaction. It is considered that when the polymerization / crosslinking proceeds to some extent, the oligomer or polymerized constituent material can no longer move at the molecular level at that temperature, and the reaction is temporarily stopped. At this point, the reaction active site can exist with a certain lifetime as described above, so by raising the temperature of the system at this stage, further movement at the molecular level is possible, and further polymerization, It is believed that the crosslinking reaction can proceed.
[0051]
The higher the heating temperature, the more effective the polymerization / crosslinking reaction. However, in the present invention for an electrophotographic photosensitive member, the temperature is preferably 250 ° C. or lower. If the temperature exceeds this, the material of the electrophotographic photosensitive member deteriorates, and the electrophotographic characteristics tend to deteriorate. The temperature is more preferably 200 ° C or lower, and further preferably 150 ° C or lower.
[0052]
On the other hand, the lower limit of the temperature is based on the presumed mechanism that the polymerization / crosslinking reaction is promoted by the fact that the temperature of the electrophotographic photosensitive member during heating is higher than the temperature of the electrophotographic photosensitive member during irradiation as described above. It is essential that the temperature is set at least several tens of degrees Celsius higher than the temperature of the photoconductor at the time of irradiation, and it is preferable to set the temperature as high as possible, preferably at least 50 degrees Celsius, as long as there is no adverse effect.
[0053]
The heating time is about several seconds to several tens of minutes, but rather than the heating time, the set temperature, that is, the ultimate temperature of the electrophotographic photosensitive member, has a great influence on the curability. Substantially the heating time includes a heating time and an attained temperature holding time. Although the heating time varies greatly depending on the type of the heating means and the electrophotographic photoreceptor, particularly the material of the base material, it is preferable to select a means that reaches a predetermined temperature in a few seconds to about a few minutes. Although it is presumed that spending a long time on the surface does not cause any problem in characteristics, it is not preferable in terms of production.
[0054]
From the viewpoint of prevention of overheating / stabilization of the attained temperature and the like, the attained temperature holding time is preferably set to several seconds to several tens of minutes depending on the case after reaching the set temperature. There is no particular problem with completing the heating process within a shorter time than these times, that is, within several seconds, but it is not practical in view of problems such as apparatus-related control and an increase in load. On the other hand, it is possible to perform a heat treatment longer than these times, but it is not so preferable in terms of productivity and the like.
[0055]
The atmosphere in which the heating treatment is performed may be in the air, an inert gas, or a vacuum. However, considering the mechanism of the polymerization / crosslinking reaction, it is not possible to minimize the deactivation of the reactive sites by oxygen as much as possible. Preferably in an active gas or in a vacuum. As the inert gas, nitrogen, helium, argon and the like can be used, but from the viewpoint of cost, it is preferable to use nitrogen. Although the purity of the inert gas is preferably as high as possible, it is possible to use a low-purity inert gas within a range that does not cause any harm from required characteristics, cost, and apparatus. At this time, the oxygen concentration during the heating treatment is preferably 1% or less, particularly preferably 1000 ppm or less, and more preferably 100 ppm or less.
[0056]
A heating method in a vacuum is also possible because the oxygen concentration can be similarly reduced. The degree of vacuum at this time is 1 × 10 -2 Pa or less, more preferably 1 × 10 -5 The pressure is more preferably Pa or less, but the method using the above-described inert gas is most preferable from the viewpoint of handling and production of the apparatus.
[0057]
The time from irradiation to heat treatment is preferably set to a short time for the purpose of minimizing the deactivation of the reactive active site as described above, and it is practically possible to perform heat treatment continuously after irradiation. Although it is preferable, when continuous processing is difficult due to a problem on the apparatus, a leaving time of about several minutes to several hours may occur between the two. However, even when this time is extremely short, attention should be paid to the oxygen concentration in the atmosphere, because polymerization polymerization may be inhibited by oxygen.
[0058]
In addition, when these deactivation rates are slow, that is, when passing through an inert gas or vacuum, or when the radical deactivation rate is low depending on the type of material, even after passing through a standing period of several hours. The curability was not changed, and the inventors measured the amount of radicals in the polymerized / crosslinked layer immediately after irradiation and after standing for several hours by electron spin resonance, and confirmed that the number of radicals was reduced. Since it was not performed, it is considered that, in some cases, it is possible to go through a long leaving time of, for example, one day or more. Moreover, these heating methods can also combine several types of means.
[0059]
FIG. 1 shows a schematic configuration of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention.
[0060]
In FIG. 1, reference numeral 1 denotes a drum-shaped electrophotographic photosensitive member of the present invention, which is driven to rotate around an axis 2 in a direction of an arrow at a predetermined peripheral speed. In the rotation process, the peripheral surface of the electrophotographic photoreceptor 1 is uniformly charged at a predetermined positive or negative potential by a
[0061]
The formed electrostatic latent image is then developed with toner by developing
[0062]
The transfer material 7 to which the toner image has been transferred is separated from the surface of the electrophotographic photoreceptor, introduced into the image fixing means 8 and subjected to image fixing to be printed out as an image formed product (print, copy) outside the apparatus. .
[0063]
The surface of the electrophotographic photoreceptor 1 after the image transfer is cleaned and cleaned by removing the untransferred toner by a cleaning unit 9 and further subjected to a static elimination process by a pre-exposure light 10 from a pre-exposure unit (not shown). , Is repeatedly used for image formation. When the
[0064]
In the present invention, among the above-mentioned components such as the electrophotographic photoreceptor 1, the
[0065]
When the electrophotographic apparatus is a copying machine or a printer, the exposure light 4 is reflected light or transmitted light from the original, or the original is read by a sensor, converted into a signal, and scanned by a laser beam performed in accordance with the signal. , Light emitted by driving an LED array or driving a liquid crystal shutter array.
[0066]
The electrophotographic photoreceptor of the present invention can be widely used not only for electrophotographic copying machines but also for electrophotographic applications such as laser beam printers, CRT printers, LED printers, faxes, liquid crystal printers, and laser plate making. It is.
[0067]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples. In the examples, “parts” means “parts by mass”.
[0068]
(Example 1)
An aluminum cylinder having a diameter of 30 mm × 357.5 mm was used as a support, and a coating liquid composed of the following materials was applied on the support by a dip coating method, and was thermally cured at 140 ° C. for 30 minutes to form a film. Formed a conductive layer having a thickness of 18 μm.
[0069]
Conductive pigment: SnO 2
Pigment for resistance adjustment: 2 parts of titanium oxide
Binder resin:
Leveling material: 0.001 part of silicone oil
Solvent: methanol / methoxypropanol = 0.2 / 0.8 15 parts
[0070]
Next, a solution obtained by dissolving 5 parts of N-methoxymethylated nylon in a mixed solvent of 65 parts of methanol / 30 parts of n-butanol was applied thereon by dip coating to form an intermediate layer having a thickness of 0.7 μm. Formed.
[0071]
Next, 4 parts of hydroxygallium phthalocyanine having strong peaks at 7.4 ° and 28.2 ° of the Bragg angle (2θ ± 0.2 °) of CuKα characteristic X-ray diffraction, polyvinyl butyral (trade name: Eslek BX-1) (Manufactured by Sekisui Chemical Co., Ltd.) and 80 parts of cyclohexanone were dispersed in a sand mill using glass beads of 1 mm in diameter for 4 hours, and 80 parts of ethyl acetate was added to prepare a dispersion for a charge generation layer. This was applied by a dip coating method to form a charge generation layer having a thickness of 0.2 μm.
[0072]
Next, 60 parts of a hole transporting compound represented by the following formula (4)
[0073]
Embedded image
It was dissolved in a mixed solvent of 30 parts of monochlorobenzene / 30 parts of dichloromethane to prepare a paint for a charge transport layer. This paint is coated on the charge generation layer and irradiated with an electron beam under a condition of an acceleration voltage of 150 KV and a dose of 20 Mrad in a nitrogen atmosphere. Then, the temperature of the electrophotographic photoreceptor is reduced to about 150 ° C. for about 1 minute. Then, the temperature was kept at 150 ° C. for 2 minutes, and the heat treatment was performed for a total of 3 minutes. The temperature of the electrophotographic photosensitive member immediately after electron beam irradiation was 30 ° C., and the oxygen concentration during electron beam irradiation and heating was 80 ppm. Further, the electrophotographic photosensitive member was subjected to a post-treatment at 140 ° C. for 1 hour in the air to form a charge transport layer having a thickness of 13 μm, thereby obtaining an electrophotographic photosensitive member.
[0074]
The produced electrophotographic photoreceptor was evaluated in an environment of 22 ° C./55% using a copying machine GP40 manufactured by Canon Inc. The potential characteristics of the electrophotographic photosensitive member were measured by removing the developing unit from the copying machine body and fixing a potential measuring probe at the developing position instead. In this case, the transfer unit was not in contact with the electrophotographic photosensitive member, and the paper was not passed. Initial electrophotographic photoreceptor characteristics [dark portion potential Vd, light attenuation sensitivity (light amount required to attenuate light to 150 V at dark portion potential 650 V setting), residual potential Vsl (light amount three times the light attenuation sensitivity amount was irradiated) Of the electrophotographic photoreceptor was measured, and an image defect was observed, and the amount of scraping of the electrophotographic photosensitive member was measured. Note that an eddy current type film thickness meter (manufactured by Karl Fischer) was used to measure the shaved amount. The paper passing durability was set to an intermittent mode in which the printing was stopped once for each print.
[0075]
Table 1 shows the results. As can be seen from Table 1, the electrophotographic photoreceptor of the present invention has good initial electrophotographic photoreceptor characteristics, a small amount of abrasion in durability, and no image defects due to scratches or the like. It was found to show superior durability performance compared to the body.
[0076]
[Table 1]
[0077]
(Example 2)
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1, except that the dose of the electron beam in Example 1 was reduced from 20 Mrad to 5 Mrad. Table 1 shows the results.
[0078]
(Example 3)
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1, except that the dose of the electron beam in Example 1 was reduced from 20 Mrad to 1 Mrad. As a result, it was found that the initial electrophotographic photosensitive member characteristics were slightly improved as compared with Examples 1 and 2, but the durability performance was slightly lowered. Table 1 shows the results.
[0079]
(Example 4)
In the same manner as in Example 1, the layers up to the charge generation layer were formed.
[0080]
Next, 7 parts of a styryl compound represented by the following formula (5):
[0081]
Embedded image
And a charge transport layer coating prepared by dissolving 10 parts of a polycarbonate resin (trade name: Iupilon Z800, manufactured by Mitsubishi Engineering-Plastics Corporation) in a mixed solvent of 105 parts of monochlorobenzene / 35 parts of dichloromethane. A charge transport layer was formed on the charge generation layer. At this time, the thickness of the charge transport layer was 10 μm.
[0082]
Next, 45 parts of a hole transporting compound represented by the following formula (6)
[0083]
Embedded image
It was dissolved in 55 parts of n-propyl alcohol to prepare a coating for a surface protective layer. After applying a protective layer on the charge transporting layer using this coating material, the coating was irradiated with an electron beam under a condition of an acceleration voltage of 150 KV and a dose of 20 Mrad in a nitrogen atmosphere, and then the temperature of the electrophotographic photosensitive member was raised to 150 ° C. The temperature was raised in about 2 minutes until the temperature reached 150 ° C. for 1 minute, and the heat treatment was performed for a total of 3 minutes. The temperature of the electrophotographic photosensitive member immediately after electron beam irradiation was 30 ° C., and the oxygen concentration during electron beam irradiation and heating was 80 ppm. Further, the electrophotographic photosensitive member was subjected to a post-treatment at 140 ° C. for 1 hour in the air to form a protective layer having a thickness of 5 μm, thereby obtaining an electrophotographic photosensitive member. The electrophotographic photoreceptor thus produced was evaluated in the same manner as in Example 1. Table 1 shows the results.
[0084]
(Examples 5 to 8)
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 4, except that the dose of the electron beam in Example 4 was changed from 20 Mrad to the dose shown in Table 2. As a result, the lower the dose, the better the initial electrophotographic characteristics tended to be, but the durability performance tended to be slightly inferior. Table 1 shows the results.
[0085]
[Table 2]
[0086]
(Examples 9 to 14)
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 4, except that the heating condition in nitrogen was changed from 150 minutes at 150 ° C. to the conditions shown in Table 3. Note that the time under the heating conditions is shown as the total time when the heating time and the holding time are almost equal. As a result, the higher the heating temperature and the longer the heating time, the better the curability and the better the durability. However, when the temperature at the time of heating was too high, the electrophotographic characteristics tended to deteriorate due to the deterioration of the photosensitive layer. Table 1 shows the results.
[0087]
[Table 3]
[0088]
(Examples 15 and 16)
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 4 except that the acceleration voltage of the electron beam was changed from 150 KV to the conditions shown in Table 4. Table 1 shows the results.
[0089]
[Table 4]
[0090]
(Examples 17 to 19)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 4, except that the oxygen concentration during heating in nitrogen was changed from 80 ppm to the conditions shown in Table 5. As a result, when the oxygen concentration was increased, the durability performance tended to decrease. This is considered to be because the polymerization / crosslinking reaction was inhibited by oxygen, and as a result, the curability was reduced. Table 1 shows the results.
[0091]
[Table 5]
[0092]
(Example 20)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 4 except that the film was left in nitrogen having an oxygen concentration of 80 ppm for 2 hours between irradiation with electron beam and heating in nitrogen. . Table 1 shows the results.
[0093]
(Example 21)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 20, except that the sample was left in the air for 2 hours after the electron beam irradiation and before heating in nitrogen. Table 1 shows the results.
[0094]
(Examples 22 to 23)
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 4, except that the heating atmosphere in nitrogen was changed to the vacuum conditions shown in Table 6. Table 1 shows the results.
[0095]
[Table 6]
[0096]
(Example 24)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 4, except that the compound represented by the formula (6) in Example 4 was replaced with a hole transporting compound represented by the following formula (7). Table 1 shows the results.
[0097]
Embedded image
[0098]
(Example 25)
In the same manner as in Example 4 except that the compound represented by the formula (6) in Example 4 was changed to a hole transporting compound represented by the following formula (8), and the solvent was changed from n-propyl alcohol to cyclohexane. A photoreceptor was prepared and evaluated. Table 1 shows the results.
[0099]
Embedded image
[0100]
(Example 26)
In the same manner as in Example 4, except that the compound represented by the formula (6) in Example 4 was changed to a hole transporting compound represented by the following formula (9), and the solvent was changed from n-propyl alcohol to cyclohexane. A photoreceptor was prepared and evaluated. Table 1 shows the results.
[0101]
Embedded image
[0102]
(Example 27)
In the same manner as in Example 4, the layers up to the charge transport layer were formed.
[0103]
Next, 50 parts of antimony-doped tin oxide fine particles surface-treated (treatment amount: 7%) with 3,3,3, -trifluoropropyltrimethoxysilane (trade name: LS1090, manufactured by Shin-Etsu Chemical Co., Ltd.) and the following formula 30 parts of an acrylic monomer having no hole transport function represented by (10)
[0104]
Embedded image
Was dispersed in 150 parts of ethanol by a sand mill over 70 hours to prepare a coating for a protective layer. After this coating material was applied on the charge transport layer, the same treatment as in Example 4 was performed after electron beam irradiation to produce an electrophotographic photosensitive member, which was evaluated. At this time, the thickness of the protective layer was 4 μm. Table 1 shows the results.
[0105]
(Example 28)
An electrophotographic photoreceptor was prepared in the same manner as in Example 4, except that a coating liquid in which 5 parts of polytetrafluoroethylene fine particles were added and dispersed in the coating for the surface protective layer was used as the coating for the surface protective layer. ,evaluated. Table 1 shows the results.
[0106]
(Comparative Example 1)
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 4 except that the heating step in nitrogen after electron beam irradiation was not performed. As a result, as shown in Table 1, the electrophotographic characteristics were good, but the durability performance was significantly reduced.
[0107]
(Comparative Example 2)
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 8, except that the heating step in nitrogen after electron beam irradiation was not performed. As a result, as shown in Table 1, although the durability was improved as compared with Comparative Example 1, the durability was not sufficient. Also, the initial electrophotographic properties tended to be poor. This is considered to be due to deterioration of the electrophotographic photosensitive member due to electron beam irradiation.
[0108]
(Comparative Example 3)
An electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that the electron beam irradiation was not performed in Example 1, but tack was left on the surface of the completed electrophotographic photoreceptor, and the curing was sufficiently advanced. I knew I didn't. Therefore, no evaluation was performed.
[0109]
(Comparative Example 4)
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Comparative Example 3 except that the temperature of heating in nitrogen was changed from 150 ° C to 200 ° C. As a result, as shown in Table 1, no tack was left on the surface of the electrophotographic photosensitive member completed as in Comparative Example 3, and it was considered that the curing had apparently proceeded. And the durability was not enough. This is thought to indicate that the polymerization and crosslinking by heat proceed without the step of generating the starting point of the polymerization and crosslinking by the electron beam, but the polymerization reaction is expected to be insufficient. Further, it is presumed that exposure of the electrophotographic photoreceptor to a high temperature causes deterioration of the electrophotographic photoreceptor, so that the electrophotographic characteristics tend to deteriorate.
[0110]
(Comparative Example 5)
As a result of heating in the air instead of heating in the nitrogen in Comparative Example 4, tack was left on the surface of the completed electrophotographic photoreceptor, and curing was not sufficiently progressed. all right. Therefore, no evaluation was performed.
[0111]
【The invention's effect】
As described above, the electrophotographic photoreceptor of the present invention is excellent in electrophotographic properties and has an effect of excellent abrasion resistance and scratch resistance. Accordingly, an electrophotographic photosensitive member capable of sufficiently responding to market demands such as a recent increase in print speed, a high print volume, and a reduction in copy cost, a process cartridge having the electrophotographic photosensitive member, an electrophotographic apparatus, and an electrophotographic apparatus. It has become possible to provide a method for manufacturing a photoconductor.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an example of a schematic configuration of an electrophotographic apparatus including a process cartridge having an electrophotographic photosensitive member according to the present invention.
[Explanation of symbols]
1. Electrophotographic photoreceptor
2 axes
3 Charging means
4 Exposure light
5 Developing means
6 transfer means
7 Transfer material
8 Fixing means
9 Cleaning means
10 Pre-exposure light
11 Process cartridge
12 Guidance means
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002168658A JP3880457B2 (en) | 2002-06-10 | 2002-06-10 | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002168658A JP3880457B2 (en) | 2002-06-10 | 2002-06-10 | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006116850A Division JP4266999B2 (en) | 2006-04-20 | 2006-04-20 | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004012986A true JP2004012986A (en) | 2004-01-15 |
JP3880457B2 JP3880457B2 (en) | 2007-02-14 |
Family
ID=30435509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002168658A Expired - Fee Related JP3880457B2 (en) | 2002-06-10 | 2002-06-10 | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3880457B2 (en) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006195155A (en) * | 2005-01-13 | 2006-07-27 | Canon Inc | Image forming method |
JP2007241140A (en) * | 2006-03-10 | 2007-09-20 | Ricoh Co Ltd | Image carrier and image forming method using the same, and image forming apparatus, and process cartridge |
JP2008233118A (en) * | 2007-03-16 | 2008-10-02 | Ricoh Co Ltd | Electrophotographic photoreceptor, method for manufacturing same, image forming method using same, image forming apparatus, and process cartridge for image forming apparatus |
JP2009196945A (en) * | 2008-02-22 | 2009-09-03 | Kuraray Co Ltd | New acrylate derivative, and method for producing the same |
US7718335B2 (en) | 2005-12-27 | 2010-05-18 | Ricoh Company Limited | Image bearing member, and image forming apparatus and process cartridge using the same |
EP2202582A1 (en) | 2008-12-25 | 2010-06-30 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, manufacturing method of eletrcophotographic photoreceptor, processing cartridge, and image forming apparatus |
US8273510B2 (en) | 2010-02-10 | 2012-09-25 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge and image forming apparatus |
US8283096B2 (en) | 2009-03-27 | 2012-10-09 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge and image forming apparatus |
US8309286B2 (en) | 2008-12-25 | 2012-11-13 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
JP2013044820A (en) * | 2011-08-22 | 2013-03-04 | Fuji Xerox Co Ltd | Image forming apparatus and process cartridge |
JP2013044824A (en) * | 2011-08-22 | 2013-03-04 | Fuji Xerox Co Ltd | Image forming apparatus and process cartridge |
JP2013044822A (en) * | 2011-08-22 | 2013-03-04 | Fuji Xerox Co Ltd | Image forming apparatus and process cartridge |
JP2013044821A (en) * | 2011-08-22 | 2013-03-04 | Fuji Xerox Co Ltd | Image forming apparatus and process cartridge |
JP2013044823A (en) * | 2011-08-22 | 2013-03-04 | Fuji Xerox Co Ltd | Image forming apparatus and process cartridge |
JP2013137490A (en) * | 2011-05-24 | 2013-07-11 | Canon Inc | Electrophotographic photoreceptor, manufacturing method of electrophotographic photoreceptor, process cartridge, and electrophotographic device |
US8518619B2 (en) | 2010-07-21 | 2013-08-27 | Fuji Xerox Co., Ltd. | Photoelectric conversion device, electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US8524433B2 (en) | 2010-06-28 | 2013-09-03 | Fuji Xerox Co., Ltd. | Electrophotographic photoconductor, process cartridge, and image forming apparatus |
US8609311B2 (en) | 2011-02-04 | 2013-12-17 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US8609310B2 (en) | 2009-03-16 | 2013-12-17 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US8669029B2 (en) | 2011-08-22 | 2014-03-11 | Fuji Xerox Co., Ltd. | Reactive compound, charge transporting film, photoelectric conversion device, electrophotographic photoreceptor and method of producing the same, process cartridge, and image forming apparatus |
US8673526B2 (en) | 2011-01-28 | 2014-03-18 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
JP2014056119A (en) * | 2012-09-12 | 2014-03-27 | Fuji Xerox Co Ltd | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US8795933B2 (en) | 2010-06-28 | 2014-08-05 | Fuji Xerox Co., Ltd. | Electrophotographic photoconductor, method for preparing the same, process cartridge, and image forming apparatus |
US8808952B2 (en) | 2012-03-28 | 2014-08-19 | Fuji Xerox Co., Ltd. | Composition for forming charge transporting film, electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US8815480B2 (en) | 2010-10-22 | 2014-08-26 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US8846280B2 (en) | 2011-08-22 | 2014-09-30 | Fuji Xerox Co., Ltd. | Compound, charge transporting film, photoelectric conversion device, electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US8883381B2 (en) | 2010-03-17 | 2014-11-11 | Fuji Xerox Co., Ltd. | Image forming apparatus, and processing cartridge |
US8900783B2 (en) | 2013-03-05 | 2014-12-02 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US8962225B2 (en) | 2012-09-12 | 2015-02-24 | Fuji Xerox Co., Ltd. | Charge transporting film, photoelectric conversion device, electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9034544B2 (en) | 2011-08-22 | 2015-05-19 | Fuji Xerox Co., Ltd. | Compound, charge transporting film, photoelectric conversion device, and electrophotographic photoreceptor using the compound, method of producing electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9034543B2 (en) | 2013-03-26 | 2015-05-19 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9057972B2 (en) | 2013-03-05 | 2015-06-16 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9182687B2 (en) | 2012-09-12 | 2015-11-10 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9235145B2 (en) | 2013-01-21 | 2016-01-12 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9310702B2 (en) | 2014-03-26 | 2016-04-12 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9389525B2 (en) | 2011-03-09 | 2016-07-12 | Fuji Xerox Co., Ltd. | Fluorine-containing resin particle dispersion, method for preparing fluorine-containing resin particle dispersion, coating liquid which contains fluorine-containing resin particles, method for preparing coating film which contains fluorine-containing resin particles, coating film which contains fluorine-containing resin particles, molded body, electrophotographic photoreceptor, method for preparing electrophotographic photoreceptor, image forming apparatus, and process cartridge |
US9535343B2 (en) | 2014-09-26 | 2017-01-03 | Fuji Xerox Co., Ltd. | Image forming method, image forming apparatus, and process cartridge |
US10539895B2 (en) | 2017-09-27 | 2020-01-21 | Fuji Xerox Co., Ltd. | Image forming apparatus |
-
2002
- 2002-06-10 JP JP2002168658A patent/JP3880457B2/en not_active Expired - Fee Related
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006195155A (en) * | 2005-01-13 | 2006-07-27 | Canon Inc | Image forming method |
US7718335B2 (en) | 2005-12-27 | 2010-05-18 | Ricoh Company Limited | Image bearing member, and image forming apparatus and process cartridge using the same |
JP2007241140A (en) * | 2006-03-10 | 2007-09-20 | Ricoh Co Ltd | Image carrier and image forming method using the same, and image forming apparatus, and process cartridge |
JP2008233118A (en) * | 2007-03-16 | 2008-10-02 | Ricoh Co Ltd | Electrophotographic photoreceptor, method for manufacturing same, image forming method using same, image forming apparatus, and process cartridge for image forming apparatus |
JP2009196945A (en) * | 2008-02-22 | 2009-09-03 | Kuraray Co Ltd | New acrylate derivative, and method for producing the same |
US8309286B2 (en) | 2008-12-25 | 2012-11-13 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
EP2202582A1 (en) | 2008-12-25 | 2010-06-30 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, manufacturing method of eletrcophotographic photoreceptor, processing cartridge, and image forming apparatus |
US8273511B2 (en) | 2008-12-25 | 2012-09-25 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, manufacturing method of electrophotographic photoreceptor, processing cartridge, and image forming apparatus |
US8609310B2 (en) | 2009-03-16 | 2013-12-17 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US8283096B2 (en) | 2009-03-27 | 2012-10-09 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge and image forming apparatus |
US8273510B2 (en) | 2010-02-10 | 2012-09-25 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge and image forming apparatus |
US8883381B2 (en) | 2010-03-17 | 2014-11-11 | Fuji Xerox Co., Ltd. | Image forming apparatus, and processing cartridge |
US8795933B2 (en) | 2010-06-28 | 2014-08-05 | Fuji Xerox Co., Ltd. | Electrophotographic photoconductor, method for preparing the same, process cartridge, and image forming apparatus |
US8524433B2 (en) | 2010-06-28 | 2013-09-03 | Fuji Xerox Co., Ltd. | Electrophotographic photoconductor, process cartridge, and image forming apparatus |
US8518619B2 (en) | 2010-07-21 | 2013-08-27 | Fuji Xerox Co., Ltd. | Photoelectric conversion device, electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US8815480B2 (en) | 2010-10-22 | 2014-08-26 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US8673526B2 (en) | 2011-01-28 | 2014-03-18 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US8609311B2 (en) | 2011-02-04 | 2013-12-17 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9829813B2 (en) | 2011-03-09 | 2017-11-28 | Fuji Xerox Co., Ltd. | Fluorine-containing resin particle dispersion, method for preparing fluorine-containing resin particle dispersion, coating liquid which contains fluorine-containing resin particles, method for preparing coating film which contains fluorine-containing resin particles, coating film which contains fluorine-containing resin particles, molded body, electrophotographic photoreceptor, method for preparing electrophotographic photoreceptor, image forming apparatus, and process cartridge |
US9389525B2 (en) | 2011-03-09 | 2016-07-12 | Fuji Xerox Co., Ltd. | Fluorine-containing resin particle dispersion, method for preparing fluorine-containing resin particle dispersion, coating liquid which contains fluorine-containing resin particles, method for preparing coating film which contains fluorine-containing resin particles, coating film which contains fluorine-containing resin particles, molded body, electrophotographic photoreceptor, method for preparing electrophotographic photoreceptor, image forming apparatus, and process cartridge |
JP2013137490A (en) * | 2011-05-24 | 2013-07-11 | Canon Inc | Electrophotographic photoreceptor, manufacturing method of electrophotographic photoreceptor, process cartridge, and electrophotographic device |
US8669029B2 (en) | 2011-08-22 | 2014-03-11 | Fuji Xerox Co., Ltd. | Reactive compound, charge transporting film, photoelectric conversion device, electrophotographic photoreceptor and method of producing the same, process cartridge, and image forming apparatus |
US9034544B2 (en) | 2011-08-22 | 2015-05-19 | Fuji Xerox Co., Ltd. | Compound, charge transporting film, photoelectric conversion device, and electrophotographic photoreceptor using the compound, method of producing electrophotographic photoreceptor, process cartridge, and image forming apparatus |
JP2013044823A (en) * | 2011-08-22 | 2013-03-04 | Fuji Xerox Co Ltd | Image forming apparatus and process cartridge |
JP2013044820A (en) * | 2011-08-22 | 2013-03-04 | Fuji Xerox Co Ltd | Image forming apparatus and process cartridge |
JP2013044821A (en) * | 2011-08-22 | 2013-03-04 | Fuji Xerox Co Ltd | Image forming apparatus and process cartridge |
US8846280B2 (en) | 2011-08-22 | 2014-09-30 | Fuji Xerox Co., Ltd. | Compound, charge transporting film, photoelectric conversion device, electrophotographic photoreceptor, process cartridge, and image forming apparatus |
JP2013044822A (en) * | 2011-08-22 | 2013-03-04 | Fuji Xerox Co Ltd | Image forming apparatus and process cartridge |
JP2013044824A (en) * | 2011-08-22 | 2013-03-04 | Fuji Xerox Co Ltd | Image forming apparatus and process cartridge |
US8951701B2 (en) | 2012-03-28 | 2015-02-10 | Fuji Xerox Co., Ltd. | Composition for forming charge transporting film, electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US8808952B2 (en) | 2012-03-28 | 2014-08-19 | Fuji Xerox Co., Ltd. | Composition for forming charge transporting film, electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9182687B2 (en) | 2012-09-12 | 2015-11-10 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
JP2014056119A (en) * | 2012-09-12 | 2014-03-27 | Fuji Xerox Co Ltd | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9005855B2 (en) | 2012-09-12 | 2015-04-14 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US8962225B2 (en) | 2012-09-12 | 2015-02-24 | Fuji Xerox Co., Ltd. | Charge transporting film, photoelectric conversion device, electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9235145B2 (en) | 2013-01-21 | 2016-01-12 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9057972B2 (en) | 2013-03-05 | 2015-06-16 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US8900783B2 (en) | 2013-03-05 | 2014-12-02 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9034543B2 (en) | 2013-03-26 | 2015-05-19 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9310702B2 (en) | 2014-03-26 | 2016-04-12 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9535343B2 (en) | 2014-09-26 | 2017-01-03 | Fuji Xerox Co., Ltd. | Image forming method, image forming apparatus, and process cartridge |
US10539895B2 (en) | 2017-09-27 | 2020-01-21 | Fuji Xerox Co., Ltd. | Image forming apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3880457B2 (en) | 2007-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3880457B2 (en) | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member | |
JP4006461B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4095509B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
WO2006129879A1 (en) | Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus | |
JP4630806B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2008070761A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JP2007086522A (en) | Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor | |
JP2005062301A (en) | Electrophotographic photoreceptor | |
JP2005062300A (en) | Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus | |
JP2004212959A (en) | Electrophotographic photoreceptor, electrophotographic apparatus, and process cartridge | |
JP2007192905A (en) | Electrophotographic photoreceptor, process cartridge and image forming apparatus | |
JP4143497B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2004240305A (en) | Electrophotographic photoreceptor, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photoreceptor | |
JP2009251507A (en) | Method for manufacturing electrophotographic photoreceptor, and electrophotographic photoreceptor | |
JP4630813B2 (en) | Electrophotographic photosensitive member and method for manufacturing the same, process cartridge and electrophotographic apparatus | |
JP4266999B2 (en) | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member | |
JP2005345662A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JP4136836B2 (en) | Electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge | |
JP2005091742A (en) | Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor, electrophotographic apparatus, and process cartridge | |
JP2006195497A5 (en) | ||
JP4596843B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4785366B2 (en) | Image forming apparatus | |
US8859172B2 (en) | Electrophotographic photosensitive member, method of producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2010066670A (en) | Method of manufacturing electrophotographic photoreceptor | |
JP2005091741A (en) | Electrophotographic photoreceptor, process cartridge, electrophotographic apparatus and method for manufacturing the electrophotographic photoreceptor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060420 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061026 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061107 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131117 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |