【0001】
【発明の属する技術分野】
本発明は、マイクロ波エネルギーを利用して食品を加熱する高周波加熱装置のドアに関するものである。
【0002】
【従来の技術】
従来、食品を加熱する目的の高周波加熱装置は、加熱室の食品の加熱状況が観察できるようドアの一部に透視窓を設けている。この透視窓には加熱中に加熱室内のマイクロ波エネルギーがドアの透視窓を通して外部へ漏洩しないよう金属の薄板に小孔を設けたパンチングメタルや、細い金属線からなる金網がはめ込まれているものであった。
【0003】
このパンチングメタルや金網は、使用波長に対して十分小さな遮断波長以下の直径数mm程度の小孔となっている。従って、使用者は透視窓からの漏洩マイクロ波エネルギ−を受けることなくこの小孔を透して加熱の進行状況を観察できるものであった。
【0004】
また、膜厚がおよそ3μmの透明な導電性膜をガラス板の表裏の両面に構成した透視窓をドアに設け、パンチングメタルや金網から構成された透視窓と同様の効果を持たせたものがあった。(例えば、特開平9−48640号公報参照)
この透明な導電性膜を用いたものはパンチングメタルや金網で構成されたものと比較して光の透過特性にすぐれ、加熱室内の食品の加熱状況を鮮明に観察できるものである。
【0005】
【発明が解決しようとする課題】
上記従来の技術にあっては、パンチングメタルや金網で構成されたものは構成上、透視性は十分とは言えないものであった。この理由は、例えばパンチングメタルの場合は小孔間には金属板が存在し、金網では金属線が存在するためこれらのものが加熱室内の食品を観察する際、障害となるためである。
【0006】
また、透明な導電性膜をガラス板の表裏の両面に設けたものにおいては、前記パンチングメタルや金網で構成された透視窓に比べて視認性は優れているが、薄膜をガラス両面に製膜させる必要があり、製造する手間や時間等がかかりすぎ、コストの高いものとなってしまう問題があった。
【0007】
さらに、透明な導電性膜をガラス板の表裏の両面に設けたものにおいては、ガラスの両面に製膜された薄膜を傷つけないようにするため取り扱いに注意を要するとともに、傷の有無の確認が必要など品質管理上においても時間や手間がかかりコストアップになる問題があった。
【0008】
また、組み立て工程面においても、導電性膜が製膜されているガラス板をドアのガラス板支持部に取り付ける際に、導電性膜が傷つけられ剥離し、この部分においてマイクロ波エネルギーによりスパークを発生し、これにより導電性膜の剥離が拡大することによりマイクロ波エネルギーが漏洩するという問題点があった。
【0009】
また、ドアを閉じて食品を加熱する場合、加熱室に面した透明な導電性膜が、加熱中に発生する食品の高温蒸気や油類にさらされ接着強度が低下したり、食品の出し入れをするとき接触して傷つく恐れがあるなどの実用面においても問題点があった。
【0010】
【課題を解決するための手段】
本発明は上記の課題を解決するために、食品を収納する加熱室と、この加熱室の前面に設けられ、食品を加熱室に出し入れするため開閉自在で、かつ、加熱室内の食品等を見るための透視窓を有するドアと、加熱室にマイクロ波エネルギ−を供給する高周波発振器を備えた高周波加熱装置において、ドアの透視窓を膜厚が5〜6μm、導電率が7.7×105(s/m)以上を有する酸化インジュウムと酸化錫とからなる透明導電性膜を片面に製膜したガラス板で構成すると共に、加熱室内を観察するため設けられたドア本体の開口部の周囲に、前記ガラス板を固定するガラス板支持部を設け、このガラス板支持部とガラス板の透明導電性膜側を相対するように配置すると共に、ガラス板支持部とガラス板の透明導電性膜側との間に導電性クッション材を設けたものである。
【0011】
【発明の実施の形態】
本発明の一実施例について図面を用いて説明する。
【0012】
図1は、本発明の一実施例における高周波加熱装置の要部断面図で、1は食品である。2は食品1を収納する加熱室で、金属製導体で構成されている。3は高周波供給口で、前記加熱室2の天井面に設けられ、マイクロ波エネルギーを加熱室2へ放射するところである。4はマイクロ波エネルギーを発振する高周波発振器である。5は導波管で、高周波発振器4が固定され、この高周波発振器4で発生したマイクロ波エネルギーを高周波供給口3へ導くものである。
【0013】
6はドアで、加熱室2の前面に設けられ、食品1を加熱室2に出し入れするとき使用するもので開閉自在に構成されている。このドア6は下記に説明する符号6aから6kまでの総称である。
【0014】
6aはガラス板で、ドア6を閉じているとき一面は加熱室2の内面になっていて、加熱室2の一部を構成する役割を持っている。また、ドア6を閉じたとき、このガラス板6aを通して加熱室2の食品1を観察するため、透視性のよい材質を使用している。また、加熱中、食品1からでる水蒸気や高温になっている食品1片が飛び散り、付着することもあるので耐熱性のある材質でできている。
【0015】
6a1はマイクロ波エネルギーを反射させる酸化インジュウムと酸化錫とからなる透明導電性膜である。この透明導電性膜6a1はガラス板6aの一面に製膜されている。これら透明導電性膜6a1、及びガラス板6aを総称して透視窓6cと称する。
【0016】
6dはドア6の基本構造物であるドア本体で、ドア6を閉じているときドア本体6dの一部は加熱室2の前面部と密着し、加熱中に加熱室2内のマイクロ波エネルギーが外部に漏洩しないようにしている。6eはドア本体6dの中ほどに長方形に切り抜かれ穴となっている開口部である。この開口部6eは加熱室2内の食品1が観察できるよう設けられている。6fはガラス板支持部で、前記開口部6eの周辺に設けられた平面部で透明導電性膜6a1が製膜されたガラス板6aを保持する。
【0017】
6gはチョーク溝で、ドア本体6dと加熱室2前面部に隙間が生じた場合、マイクロ波エネルギーが外部に漏洩しないよう電気的に減衰させるものである。チョーク溝6gの開口部分には外部からの異物が浸入しないよう低誘電体損失の材料からなるチョークカバ−6hがはめ込まれている。
【0018】
6jはドアカバーで、ドア本体6dをカバーするものである。6kはドアカバー6jの前面部には設けられたカバー開口部で、加熱室2内の食品1が観察できるよう透明になっている。
【0019】
図2は図1のP部拡大図で、6bはガラス板6aの透明導電性膜6a1側とガラス板支持部6fとの間に挟み込まれるように固着されている導電性クッション材である。
【0020】
上記構成において、本実施例の動作について説明する。
【0021】
食品1を加熱する場合、ドア6を開け、加熱室2内に食品1を戴置し、ドア6を閉じ加熱スタートする。加熱スタートと同時に高周波発生器4によりマイクロ波エネルギーが発生する。このマイクロ波エネルギーは導波管5を通って加熱室2の天井部に設けられた高周波供給口3から加熱室2内に導かれ、食品1を加熱する。
【0022】
加熱室2内における食品1の加熱の進行状況はドア6に設けられたカバー開口部6k、透視窓6cを通し観察することができる。これは、図2で示すように加熱室2内のマイクロ波エネルギーはガラス板6aに製膜された透明導電性膜6a1で反射され、マイクロ波エネルギーが、外部へ漏洩することがないためである。
【0023】
ここで、透明導電性膜6a1について詳細に説明する。透明導電性膜6a1の膜厚を厚くすると割れや剥がれが発生する。このため、一般的にはせいぜい3μm位が限度である。しかし、マイクロ波エネルギーを漏洩させないためには導電率が7.7×105(s/m)の場合、膜厚は5〜6μmの厚さが必要であるので、従来ではガラス板6aの両面にそれぞれ透明導電性膜6a1を3μmだけ製膜させ、ガラス板6aの両面合計で膜厚が6μm程度となるようにしている。
【0024】
本発明では、膜厚が5〜6μmを実現させるため、酸化インジウム90wt%と酸化錫10wt%を主成分としたものとガラス板6aとを真空蒸着器(図示せず)に入れ、この真空蒸着器にて基板温度や搬送速速度など予め実験などで決められた製膜条件によりガラス板6aに製膜する。この製膜の方法については本発明と関係ないため詳細は省略する。
【0025】
ここで、膜厚は一般には導電率が一定であれば膜厚が大きいほどマイクロ波エネルギーの遮蔽効果が期待される。しかし、膜厚を厚くすると透視性が悪くなる。また導電率は膜の材料によりにほぼ決まるので必要以上に大な値にすることはできない。
【0026】
本発明では、前記製膜条件で透視性を損なわないでマイクロ波エネルギーの遮蔽が可能となるように透明導電性膜6a1の導電率は7.7×105(s/m)で、膜厚は5〜6μm程度としている。
【0027】
また、本発明では、透明導電性膜6a1はガラス板6aの一面のみに形成し、ガラス板6aの外周部付近とガラス板支持部6fとの間に導電性クッション材6bを設け、透明導電性膜6a1が金属製のガラス板支持部6fと接触しないようにしている。接触すると接触部で導電性膜が傷つけられ剥離するおそれがあるためである。
【0028】
なお、導電性クッション材6bを設けても、ガラス板支持部6fと透明導電性膜6a1との間には十分な表面電流の導通性能が得られるような材料、例えば導電性テープや導電性材料をスポンジ状にまたはペースト状に構成させたもの、あるいは導電性接着塗料などを使用している。従って、この部分からマイクロ波エネルギーが漏洩することない。
【0029】
また、透明導電性膜6a1側が加熱室2と反対側、すなわち加熱室2の外側に位置するように開口部6e側に設置されおり、加熱中に食品1から発生した油分や水蒸気が触れないようにしている。
【0030】
図4は従来のパンチングメタルを介したアルファベット文字を写真に撮ったもので、小孔20と見るためには障害物となる金属部21が交互に存在するため透視性は良くない。
【0031】
一方、図3は本発明の透明導電性膜6a1を介したアルファベット文字を写真に撮ったもので、このものは上記で説明した金属部21のような障害物がなく見やすい構成となっている。
【0032】
このように透明導電性膜6a1をガラス板6aの片側だけ製膜しても、電波漏洩を防止できる性能が確保できることにより、製造コストの削減や耐久性の向上が図られる。
【0033】
さらに、透明導電性膜6a1とドア6のガラス板支持部6fとの間に導電性クッション材6bを設けることにより透明導電性膜6a1の剥離などがなくなるとともに、密着性もよくなり信頼性が向上する。
【0034】
【発明の効果】
以上説明したように本発明によれば、食品を収納する加熱室と、この加熱室の前面に設けられ、食品を加熱室に出し入れするため開閉自在で、かつ、加熱室内の食品等を見るための透視窓を有するドアと、加熱室にマイクロ波エネルギ−を供給する高周波発振器を備えた高周波加熱装置において、ドアの透視窓を膜厚が5〜6μm、導電率が7.7×105(s/m)以上を有する酸化インジュウムと酸化錫とからなる透明導電性膜6a1を片面に製膜したガラス板6aで構成すると共に、加熱室内を観察するため設けられたドア本体の開口部の周囲に、前記ガラス板を固定するガラス板支持部を設け、このガラス板支持部とガラス板の透明導電性膜側を相対するように配置すると共に、ガラス板支持部とガラス板の透明導電性膜側との間に導電性クッション材を設けることにより、十分な透視性能をもち、しかも、取り扱いが簡単で、製造する手間や時間が短縮できコストの低減がはかられた。
【0035】
また、導電性クッション材によりガラス板の透明導電性膜とガラス板支持部が直接接触することがないため、透明導電性膜が傷つけられ剥離することによる、スパークの発生やマイクロ波エネルギーの漏洩することがなく安全面での信頼性が著しく向上する。
【0036】
さらに、透明導電性膜が加熱中に発生した食品の高温蒸気や油類にさらされることがないので透明導電性膜の保護手段を必要とすることがなく膜の剥離などの心配もないので、安全で耐久性に優れるなどの効果を奏する。
【図面の簡単な説明】
【図1】本発明の一実施例における高周波加熱装置の要部側面断面図である。
【図2】図1のP部の拡大図である。
【図3】本発明の一実施例における透明導電性膜を介した文字の透視状況を示した図である。
【図4】従来のパンチングメタルを介した文字の透視状況を示した図である。
【符号の説明】
1・・・・食品
2・・・・加熱室
4・・・・高周波発振器
6・・・・ドア
6a・・・ガラス板
6a1・・透明導電性膜
6b・・・導電性クッション材
6c・・・透視窓
6d・・・ドア本体
6e・・・開口部
6f・・・ガラス板支持部[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a door of a high-frequency heating device that heats food using microwave energy.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a high-frequency heating apparatus for heating food has a see-through window at a part of a door so that a heating state of the food in a heating chamber can be observed. This see-through window is fitted with a perforated metal with a small hole in a thin metal plate or a wire mesh made of thin metal wire so that microwave energy in the heating chamber does not leak outside through the see-through window of the door during heating. Met.
[0003]
This perforated metal or wire mesh is a small hole having a diameter of several mm or less, which is smaller than a cut-off wavelength sufficiently smaller than the wavelength used. Therefore, the user can observe the progress of heating through the small holes without receiving the leaked microwave energy from the see-through window.
[0004]
In addition, a transparent window having a transparent conductive film having a thickness of about 3 μm formed on both sides of a glass plate is provided on a door, and the same effect as a transparent window formed of a punched metal or a wire mesh is provided. there were. (See, for example, JP-A-9-48640)
Those using the transparent conductive film have better light transmission characteristics than those made of perforated metal or wire mesh, and can clearly observe the heating condition of food in the heating chamber.
[0005]
[Problems to be solved by the invention]
In the above-mentioned conventional technology, the structure made of a punched metal or a wire mesh is not sufficiently transparent in view of the structure. The reason for this is that, for example, in the case of punching metal, a metal plate exists between the small holes, and a metal wire exists in the metal mesh, which obstructs observing food in the heating chamber.
[0006]
Further, in the case where a transparent conductive film is provided on both the front and back surfaces of the glass plate, the visibility is excellent as compared with the see-through window formed of the punched metal or the wire mesh, but a thin film is formed on both surfaces of the glass. However, there is a problem that it takes too much time and effort to manufacture, and the cost becomes high.
[0007]
In addition, when a transparent conductive film is provided on both the front and back surfaces of the glass plate, care must be taken to prevent damage to the thin film formed on both surfaces of the glass, and it is necessary to confirm whether there is any damage. There is a problem that time and labor are required in quality control, such as necessity, and cost is increased.
[0008]
Also, in the assembly process, when the glass plate on which the conductive film is formed is attached to the glass plate support of the door, the conductive film is damaged and peeled off, and sparks are generated in this part by microwave energy However, this causes a problem that microwave energy leaks due to the increase in peeling of the conductive film.
[0009]
When the food is heated with the door closed, the transparent conductive film facing the heating chamber is exposed to the high-temperature steam and oils of the food generated during heating, reducing the adhesive strength and removing and taking out the food. There is also a problem in practical use, for example, there is a risk of being injured by contact when performing.
[0010]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a heating chamber for storing food, and is provided at the front of the heating chamber, and is openable and closable for taking food in and out of the heating chamber. And a high-frequency heating device provided with a high-frequency oscillator for supplying microwave energy to the heating chamber, the transparent window of the door has a thickness of 5 to 6 μm and a conductivity of 7.7 × 10 5. (S / m) A transparent conductive film made of indium oxide and tin oxide having at least (s / m) is formed on a glass plate formed on one surface, and is provided around an opening of a door body provided for observing the inside of the heating chamber. Providing a glass plate supporting portion for fixing the glass plate, disposing the glass plate supporting portion and the transparent conductive film side of the glass plate so as to face each other, and the glass plate supporting portion and the transparent conductive film side of the glass plate. Conductive clamp between It is provided with a Deployment material.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
[0012]
FIG. 1 is a cross-sectional view of a main part of a high-frequency heating device according to an embodiment of the present invention, where 1 is a food. Reference numeral 2 denotes a heating chamber for storing the food 1, which is made of a metal conductor. Reference numeral 3 denotes a high-frequency supply port, which is provided on the ceiling of the heating chamber 2 and emits microwave energy to the heating chamber 2. Reference numeral 4 denotes a high-frequency oscillator that oscillates microwave energy. Reference numeral 5 denotes a waveguide to which the high-frequency oscillator 4 is fixed, and which guides microwave energy generated by the high-frequency oscillator 4 to the high-frequency supply port 3.
[0013]
Reference numeral 6 denotes a door, which is provided on the front of the heating chamber 2 and is used when the food 1 is taken in and out of the heating chamber 2 and is configured to be openable and closable. The door 6 is a general term for reference numerals 6a to 6k described below.
[0014]
6a is a glass plate, one surface of which is an inner surface of the heating chamber 2 when the door 6 is closed, and has a role of forming a part of the heating chamber 2. When the door 6 is closed, the food 1 in the heating chamber 2 is observed through the glass plate 6a, so that a material having good transparency is used. In addition, during heating, water vapor from the food 1 or a high-temperature food piece may be scattered and attached to the food 1, so that the food 1 is made of a heat-resistant material.
[0015]
6a1 is a transparent conductive film made of indium oxide and tin oxide that reflects microwave energy. The transparent conductive film 6a1 is formed on one surface of the glass plate 6a. The transparent conductive film 6a1 and the glass plate 6a are collectively referred to as a see-through window 6c.
[0016]
6d is a door body which is a basic structure of the door 6, and when the door 6 is closed, a part of the door body 6d is in close contact with the front surface of the heating chamber 2, and microwave energy in the heating chamber 2 is heated during heating. We do not leak to the outside. Reference numeral 6e denotes an opening which is cut into a rectangular shape in the middle of the door body 6d to form a hole. The opening 6e is provided so that the food 1 in the heating chamber 2 can be observed. Reference numeral 6f denotes a glass plate supporting portion which holds a glass plate 6a on which a transparent conductive film 6a1 is formed at a flat portion provided around the opening 6e.
[0017]
6g is a choke groove for electrically attenuating microwave energy so as not to leak outside when a gap is formed between the door body 6d and the front surface of the heating chamber 2. A choke cover 6h made of a material having a low dielectric loss is fitted into the opening of the choke groove 6g so that foreign substances from outside do not enter.
[0018]
A door cover 6j covers the door body 6d. 6k is a cover opening provided in the front part of the door cover 6j, and is transparent so that the food 1 in the heating chamber 2 can be observed.
[0019]
FIG. 2 is an enlarged view of a portion P in FIG. 1. Reference numeral 6b denotes a conductive cushion material fixed so as to be sandwiched between the transparent conductive film 6a1 side of the glass plate 6a and the glass plate support 6f.
[0020]
In the above configuration, the operation of this embodiment will be described.
[0021]
When heating the food 1, the door 6 is opened, the food 1 is placed in the heating chamber 2, the door 6 is closed and heating is started. Microwave energy is generated by the high frequency generator 4 simultaneously with the start of heating. This microwave energy is guided into the heating chamber 2 from the high frequency supply port 3 provided on the ceiling of the heating chamber 2 through the waveguide 5 and heats the food 1.
[0022]
The progress of the heating of the food 1 in the heating chamber 2 can be observed through the cover opening 6k provided in the door 6 and the see-through window 6c. This is because the microwave energy in the heating chamber 2 is reflected by the transparent conductive film 6a1 formed on the glass plate 6a as shown in FIG. 2, and the microwave energy does not leak to the outside. .
[0023]
Here, the transparent conductive film 6a1 will be described in detail. When the thickness of the transparent conductive film 6a1 is increased, cracking or peeling occurs. For this reason, the limit is generally at most about 3 μm. However, when the conductivity is 7.7 × 10 5 (s / m), the film thickness needs to be 5 to 6 μm in order to prevent microwave energy from leaking. Each of the transparent conductive films 6a1 is formed to have a thickness of 3 μm, and the total thickness of both surfaces of the glass plate 6a is about 6 μm.
[0024]
In the present invention, in order to realize a film thickness of 5 to 6 μm, a glass plate 6a containing 90 wt% of indium oxide and 10 wt% of tin oxide as main components and a glass plate 6a are placed in a vacuum evaporator (not shown). The film is formed on the glass plate 6a by a container under the film forming conditions determined in advance by experiments and the like, such as the substrate temperature and the transfer speed. The details of the film forming method are omitted because they are not related to the present invention.
[0025]
Here, in general, if the conductivity is constant, the larger the film thickness, the more the effect of shielding microwave energy is expected. However, when the film thickness is increased, the transparency deteriorates. In addition, since the electric conductivity is almost determined by the material of the film, it cannot be made larger than necessary.
[0026]
In the present invention, the conductivity of the transparent conductive film 6a1 is 7.7 × 10 5 (s / m) so that the microwave energy can be shielded without impairing the transparency under the above-mentioned film forming conditions. Is about 5 to 6 μm.
[0027]
Further, in the present invention, the transparent conductive film 6a1 is formed only on one surface of the glass plate 6a, and a conductive cushion material 6b is provided between the vicinity of the outer periphery of the glass plate 6a and the glass plate support 6f. The film 6a1 is prevented from contacting the metal glass plate support 6f. This is because the conductive film may be damaged at the contact portion and peeled off when the contact is made.
[0028]
In addition, even if the conductive cushion material 6b is provided, a material capable of obtaining a sufficient surface current conduction performance between the glass plate supporting portion 6f and the transparent conductive film 6a1, such as a conductive tape or a conductive material. In the form of a sponge or a paste, or a conductive adhesive paint. Therefore, microwave energy does not leak from this portion.
[0029]
Also, the transparent conductive film 6a1 is installed on the opening 6e side opposite to the heating chamber 2, that is, outside the heating chamber 2, so that oil and water vapor generated from the food 1 during heating do not touch. I have to.
[0030]
FIG. 4 is a photograph of alphabet letters through a conventional punching metal, and the see-through hole 20 has poor transparency because the metal parts 21 which are obstacles are alternately present.
[0031]
On the other hand, FIG. 3 is a photograph of the alphabet letters through the transparent conductive film 6a1 of the present invention, which is easy to see without obstacles such as the metal part 21 described above.
[0032]
As described above, even if the transparent conductive film 6a1 is formed on only one side of the glass plate 6a, the performance capable of preventing radio wave leakage can be secured, so that the manufacturing cost can be reduced and the durability can be improved.
[0033]
Further, by providing the conductive cushion material 6b between the transparent conductive film 6a1 and the glass plate supporting portion 6f of the door 6, the transparent conductive film 6a1 is not peeled off, the adhesion is improved, and the reliability is improved. I do.
[0034]
【The invention's effect】
As described above, according to the present invention, a heating chamber for storing food, and provided at the front of the heating chamber, can be freely opened and closed for taking food in and out of the heating chamber, and for viewing food and the like in the heating chamber. In a high-frequency heating apparatus provided with a door having a transparent window and a high-frequency oscillator for supplying microwave energy to the heating chamber, the transparent window of the door has a thickness of 5 to 6 μm and a conductivity of 7.7 × 10 5 ( s / m) A glass plate 6a formed on one side with a transparent conductive film 6a1 made of indium oxide and tin oxide having at least about s / m) and around a door body opening provided for observing the inside of the heating chamber. Is provided with a glass plate support for fixing the glass plate, and the glass plate support and the transparent conductive film side of the glass plate are disposed so as to face each other, and the glass plate support and the transparent conductive film of the glass plate are provided. Between the side By providing the conductive cushioning material has a sufficient perspective performance, moreover, handling is simple, cost reduction can be shortened labor and time to manufacture was worn.
[0035]
In addition, since the transparent conductive film of the glass plate and the glass plate supporting portion are not in direct contact with each other due to the conductive cushion material, the transparent conductive film is damaged and peeled, thereby generating a spark or leaking microwave energy. The reliability in terms of safety is greatly improved.
[0036]
Furthermore, since the transparent conductive film is not exposed to high-temperature steam or oils of food generated during heating, there is no need for a protective means for the transparent conductive film, and there is no fear of peeling of the film. It has effects such as safety and excellent durability.
[Brief description of the drawings]
FIG. 1 is a side sectional view of a main part of a high-frequency heating device according to an embodiment of the present invention.
FIG. 2 is an enlarged view of a portion P in FIG.
FIG. 3 is a diagram showing a see-through state of a character through a transparent conductive film in one embodiment of the present invention.
FIG. 4 is a diagram showing a see-through state of a character through a conventional punching metal.
[Explanation of symbols]
1, food 2, heating chamber 4, high frequency oscillator 6, door 6a, glass plate 6a1, transparent conductive film 6b, conductive cushion material 6c, etc. -Transparent window 6d-Door body 6e-Opening 6f-Glass plate support