JP2004010683A - Resin composition and cured material thereof - Google Patents
Resin composition and cured material thereof Download PDFInfo
- Publication number
- JP2004010683A JP2004010683A JP2002163660A JP2002163660A JP2004010683A JP 2004010683 A JP2004010683 A JP 2004010683A JP 2002163660 A JP2002163660 A JP 2002163660A JP 2002163660 A JP2002163660 A JP 2002163660A JP 2004010683 A JP2004010683 A JP 2004010683A
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- resin
- weight
- phenol
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- FMZPVXIKKGVLLV-UHFFFAOYSA-N C(c(cccc1)c1OC1)N1c1ccccc1 Chemical compound C(c(cccc1)c1OC1)N1c1ccccc1 FMZPVXIKKGVLLV-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は難燃性、耐水性、靱性に優れた硬化物を与え、作業性に優れた樹脂組成物に関する。
【0002】
【従来の技術】
ベンゾオキサジン環を有する熱硬化性化合物は一般的にハロゲンフリー、アンチモンフリーの難燃性を有し、耐水性に優れた硬化物を与えることで知られている。例えば特開平10−204255号公報には、ジヒドロベンゾジオキサン環を有する熱硬化性樹脂及びイソシアヌル環を有するエポキシ樹脂を含有する熱硬化性樹脂組成物が記載され、この熱硬化性樹脂組成物はガラス転移温度が高く、吸水率が低く更に難燃性に優れた硬化物を与える旨が記載されている。また、特開平10−251380号公報には、ジヒドロベンゾジオキサン環を有する熱硬化性樹脂、ハロゲン化フェノール化合物及びエポキシ樹脂を含有する熱硬化性樹脂組成物が記載され、このこの熱硬化性樹脂組成物はガラス転移温度が高く、吸水率が低く更に難燃性に優れた硬化物を与える旨が記載されている。また、特開2000−7901号公報には、ジヒドロベンゾジオキサン環を有する樹脂とエポキシ化ポリブタジエンを含有する熱硬化性樹脂組成物が記載され、この熱硬化性樹脂組成物は、耐湿耐熱性が良好で、プリント配線板用積層板に適用した場合に層間クラックの発生が抑制できる硬化物を与える旨が記載されている。また、特開平11−140278号公報及び特開平11−140278号公報には、ジヒドロベンゾジオキサン環を有する熱硬化性樹脂、エポキシ樹脂及びフェノール樹脂を含有する半導体封止用樹脂組成物が記載され、この樹脂組成物は、半導体封止に必要とされる諸特性を低下させることなく難燃性を向上させた硬化物を与える旨が記載されている。また、特開2001−288339号公報には、ジヒドロベンゾジオキサン環を有する化合物、エポキシ樹脂、硬化剤及び無機充填材を含有する難燃性エポキシ樹脂組成物が記載され、この樹脂組成物は難燃性に優れる硬化物を与える旨が記載されている。
【0003】
【発明が解決しようとする課題】
しかしながら、ベンゾオキサジン環を有する化合物を熱硬化させた場合、硬化温度が通常200℃以上と高く作業性に問題がある。またその硬化物は難燃性、耐水性には優れているものの、硬くて脆いという欠点が指摘されている。一方、一般的なフェノールノボラックを反応系に加えた場合、硬化温度は下げることは可能だが、難燃性や、耐水性、靭性が低下する。
【0004】
【課題を解決するための手段】
本発明者らはこうした実状に鑑み、難燃性、耐水性が高く、しかも作業性に優れた樹脂組成物を求めて鋭意検討した結果、ベンゾオキサジン環を有する化合物と特定の構造を有するフェノール樹脂及びまたはエポキシ樹脂との樹脂組成物が、これらの特性を満たすことを見出し、本発明を完成させるに至った。
【0005】
すなわち本発明は
(1)(a)構造中にベンゾオキサジン環を有する化合物
(b)下記式(1)
【0006】
【化6】
【0007】
(式中mは繰り返し数を表す。)
で表されるフェノール樹脂であって、重量平均分子量が5000〜20000であるフェノール樹脂を含有することを特徴とする樹脂組成物、
(2)(c)エポキシ樹脂を含有する請求項1記載の樹脂組成物。
(3)
(c)成分が下記式(2)
【0008】
【化7】
(式中nは繰り返し数を表す。)
【0009】
である上記(2)記載の樹脂組成物、
(4)成分(a)が下記式(3)
【0010】
【化8】
【0011】
若しくは下記式(4)
【0012】
【化9】
【0013】
(式中、Xは単結合、または下記式(5)
【0014】
【化10】
【0015】
で、示される構造のいずれかを表す。)
で表される化合物である上記(1)〜(3)のいずれか1項に記載の樹脂組成物、
(5)硬化促進剤を含有する上記(1)〜(4)のいずれか1項に記載の樹脂組成物、
(6)上記(1)〜(5)のいずれか1項に記載の樹脂組成物を硬化してなる硬化物、
を提供するものである。
【0016】
【発明の実施の形態】
本発明で用いる成分(a)は、ベンゾオキサジン環を有する化合物(ベンゾオキサジン環含有化合物という)であれば特に制限はなく、例えば特開2001−288339号公報にジヒドロベンゾオキサジン環を有する化合物として記載された化合物等を使用することができる。ベンゾオキサジン環含有化合物は、加熱に伴い開環重合しフェノール樹脂の架橋剤として作用する他、開環重合に伴いフェノール性水酸基を有する化合物となるため、エポキシ樹脂の硬化剤として作用する。
本発明においては、ベンゾオキサジン環含有化合物のうち上記式(3)又は(4)で表される化合物は粘度が低く作業性に優れるため好ましい。
【0017】
本発明において成分(a)と、成分(b)の配合比率は、重量比で通常5:95〜95〜5であり、好ましくは10:90〜90:10である。
【0018】
本発明において用いる成分(b)は、式(1)で表され、重合平均分子量が5000〜20000程度のものであれば特に制限はない。式(1)のフェノール樹脂の構造自体は公知であり、例えば特開平8−143648号公報、特開2001−40053号公報、特開平11−140166号公報等に記載されている。式(1)の構造を有するフェノール樹脂は、例えばビス(メトキシメチル)ビフェニル、ビス(クロロメチル)ビフェニル、ビス(ヒドロキシメチル)ビフェニル等のビフェニル誘導体とフェノールを酸触媒の存在下に反応させ得ることができるが、このような一般的な製法で得られるフェノール樹脂の重量平均分子量は500〜1500程度である。
本発明において使用する成分(b)は、このような低分子量のフェノール樹脂を前記したようなビフェニル誘導体で鎖延長して得ることができる。
【0019】
具体的には、低分子量のフェノール樹脂のフェノール性水酸基1当量に対し、ビフェニル誘導体を通常0.01〜0.45モル、好ましくは0.05〜0.4モルの範囲内で加え縮合反応を行う。
【0020】
縮合反応において、ビフェニル誘導体がビス(クロロメチル)ビフェニルである場合は、触媒は特に必要ではないが、ビス(メトキシメチル)ビフェニル又はビス(ヒドロキシメチル)ビフェニル等の場合は酸触媒を用いる。用い得る酸触媒としては塩酸、硫酸、パラトルエンスルホン酸などが挙げられるが、特にパラトルエンスルホン酸が好ましい。酸触媒の使用量としてはビフェニル誘導体1モルに対し通常0.001〜0.1重量部、好ましくは0.005〜0.05重量部である。
【0021】
縮合反応は生成物の分子量が大きくなるにつれ粘度も上昇するため溶剤を使用してもよい。用い得る溶剤としては沸点が100〜200℃で酸に対して不活性であるものが好ましい。具体的な例としてはプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等が挙げられる。溶剤は、生成物の重量に対して通常2〜200重量%、好ましくは3〜150重量%となるよう反応系に添加する。
反応はビフェニル誘導体が完全に消失するまで行う。反応温度としては通常100〜180℃、反応時間としては通常1〜20時間である。
【0022】
尚、原料にビス(クロロメチル)ビフェニルを使用した場合、反応器の一方から窒素を吹き込み、他方から副反応物として生成する塩酸ガスをチューブなどで取り出す。取り出された塩酸は水酸化ナトリウム水溶液などのアルカリ性水溶液中にバブリングしてトラップすることが好ましい。
【0023】
反応終了後、系中に必要により更に前記溶剤、好ましくはアルキルフェノールを加えて、樹脂分を溶解する。ここで用い得るアルキルフェノールの例としてはフェノール、オルソクレゾール、メタクレゾール、パラクレゾール、キシレノール等が挙げられるが、水に対する溶解性や融点の面からクレゾール、特にオルソクレゾールが好ましい。溶剤は、全溶剤量が生成物の重量に対して通常30〜300重量%、好ましくは50〜250重量%程度となる量使用する。
【0024】
溶剤添加後、系内を50〜100℃に保ち、撹拌下で温水を加える。温水の量としては生成物の重量に対し通常10〜300重量%、好ましくは20〜200重量%である。充分撹拌を行った後、静置し、水層(上層)と油層(下層)に分離する。水層が中性を示すまでこの水洗工程を繰り返す。通常、必要な水洗回数は2〜10回である。水洗終了後、加熱減圧下において溶剤を留去することにより目的とするの高分子量のフェノール樹脂を得ることが出来る。尚、式(1)において、mは繰り返し数を表すが、通常5〜25、好ましくは6〜20である。また、成分(b)のフェノール樹脂の軟化点としては通常60〜140℃である。水酸基当量は通常200〜260g/eqである。
【0025】
本発明の樹脂組成物は、成分(a)と成分(b)だけでも熱硬化性を示すが、更に(c)成分としてエポキシ樹脂を使用することもできる。使用できるエポキシ樹脂としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエンフェノール共縮合型エポキシ樹脂などが挙げられ、市販品が入手可能である。中でも硬化物の難燃性が向上するという点から上記式(2)で表されるエポキシ樹脂が好ましい。
また、成分(c)は、その軟化点が通常50〜80℃であるものが好ましく、エポキシ当量が通常260〜290g/eqであるものが好ましい。
【0026】
本発明の樹脂組成物において、成分(c)の配合比率は、成分(a):成分(c)の重量比で通常5:95〜95〜5であり、好ましくは10:90〜90:10である。
【0027】
またエポキシ樹脂を含有する本発明の樹脂組成物においては、硬化促進剤を使用しても差し支えない。用い得る硬化促進剤の具体例としては2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾ−ル類、2−(ジメチルアミノメチル)フェノール、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズ等の金属化合物等が挙げられる。硬化促進剤は樹脂100重量部に対して0.01〜5.0重量部が必要に応じ用いられる。
【0028】
本発明の樹脂組成物は必要により無機充填材を含有しうる。用いうる無機充填材の具体例としてはシリカ、アルミナ、タルク等が挙げられる。無機充填材は本発明の樹脂組成物中において0〜90重量%を占める量が用いられる。更に本発明の樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、顔料等の種々の配合剤を添加することができる。
【0029】
本発明の樹脂組成物は、各成分を均一に混合することにより得られる。本発明の樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えばベンゾオキサジン環を有する化合物、式(1)のフェノール樹脂及び/またはエポキシ樹脂並びに必要により、硬化促進剤、無機充填材及び配合剤とを必要に応じて押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に混合して樹脂組成物を得、その樹脂組成物を溶融後注型あるいはトランスファ−成型機などを用いて成型し、さらに80〜200℃で2〜10時間加熱することにより硬化物を得ることができる。
【0030】
また本発明の樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン等の溶剤に溶解させワニスを調製し、銅箔、ポリイミドフィルム、PET(ポリエチレンテレフタレート)フィルム等の上に塗布し加熱下で溶剤を蒸発させ硬化させることによりフィルム状の硬化物を得ることも出来る。また、得られたワニスをガラス繊維、カ−ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱半乾燥して得たプリプレグを熱プレス成型して硬化物を得ることもできる。この際の溶剤は、樹脂組成物と該溶剤の混合物中で通常10〜70重量%、好ましくは15〜70重量%を占める量を用いる。
【0031】
【実施例】
次に本発明を実施例、比較例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。
【0032】
合成例1
温度計、冷却管、撹拌器を取り付けたフラスコにフェノール315部を加え80℃に昇温した後、4,4’−ビス(クロロメチル)ビフェニル251部を撹拌下で4時間かけて分割して仕込み、更に1.5時間撹拌した後、トリポリリン酸3.7部を加え30分撹拌し中和した後、加熱減圧下で未反応フェノールを除去しフェノール樹脂326部を得た。得られた樹脂の軟化点は71℃、水酸基当量は214g/eqであった。
【0033】
温度計、分留管、冷却管、撹拌器、冷却管の先端に容器内に発生した塩酸ガスを系外に追い出せるようシリコンチューブを取り付けたフラスコに窒素ガスパージを施しながら、得られた樹脂214部に対し、4,4’−ビス(クロロメチル)ビフェニル56,3部、プロピレングリコールモノメチルエーテル50.8部を加え窒素を吹き込みながら撹拌下で130℃まで昇温し、溶解させた。ゲルパーミエーションクロマトグラフィー分析により反応を追跡し4,4’−ビス(クロロメチル)ビフェニルが反応開始後4時間で完全に消失したことを確認した後、更に2時間撹拌を続け反応を終了させた。
【0034】
系内の温度を90℃まで冷却しオルソクレゾールを254部、温水を500部加え、80℃で10分撹拌した。静置後、上層からサイホン排水により水層を除去した。次いで、温水を500部加え撹拌、静置、分離という同様の操作を更に2回繰り返した。3回目の水洗工程において、水層が中性になったため、油層からエバポレーターを用いて加熱減圧下でオルソクレゾールを留去したところ式(1)で表されるフェノール樹脂241部が得られた(式(1)のm=8.9(平均値))。得られた樹脂(以下、フェノール樹脂(B)という)のGPCによる重量平均分子量は12400、軟化点は135.2℃、水酸基当量は254g/eqであった。
【0035】
実施例1、2 比較例1、2
下記式(6)
【0036】
【化11】
【0037】
で表されるベンゾオキサジン環を有する化合物(A)と合成例1で得られたフェノール樹脂(B)、フェノールノボラック(明和化成(株)製、H−1;軟化点83℃、水酸基当量106g/eq、重量平均分子量960)、前記式(2)で表されるエポキシ樹脂(C)(日本化薬(株)製NC−3000;軟化点58℃、エポキシ当量275g/eq)及び溶剤としてメチルエチルケトン(MEK)を表1に示される組成で配合してワニスを調製した。次いで各ワニスをガラスクロスに含浸し、130℃で7分間乾燥して、樹脂分約45%のプリプレグを得た。このプリプレグを8枚と両面に厚さ5ミクロンの銅箔を重ね、170℃、圧力40Kg/m2で1時間プレス成形して、厚さ1.6mmの銅張りガラス積層板を作成した。これらの積層板の難燃性、吸水率、及びガラス転移点を下記の方法に基づき試験した結果を表1に示した。
【0038】
難燃性
UL−94に従って測定
吸湿性
40℃、90%HR 100時間後の吸湿率
ガラス転移点
熱機械測定装置(TMA):真空理工(株)製 TM−7000
昇温速度:2℃/min.
【0039】
【0040】
【発明の効果】
本発明の樹脂組成物は、従来一般的に使用されてきた熱硬化性樹脂組成物と比較して難燃性、耐水性、耐熱性に優れた硬化物を与える。
従って、本発明の樹脂組成物は電気・電子材料、成型材料、注型材料、積層材料、塗料、接着剤、レジスト、光学材料などの広範囲の用途にきわめて有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resin composition which provides a cured product having excellent flame retardancy, water resistance and toughness and has excellent workability.
[0002]
[Prior art]
A thermosetting compound having a benzoxazine ring is generally known to have halogen-free and antimony-free flame retardancy and to give a cured product having excellent water resistance. For example, JP-A-10-204255 describes a thermosetting resin composition containing a thermosetting resin having a dihydrobenzodioxane ring and an epoxy resin having an isocyanuric ring, and the thermosetting resin composition is made of glass. It is described that a cured product having a high transition temperature, a low water absorption rate and further excellent flame retardancy is provided. JP-A-10-251380 discloses a thermosetting resin composition containing a thermosetting resin having a dihydrobenzodioxane ring, a halogenated phenol compound and an epoxy resin. It is described that the product gives a cured product having a high glass transition temperature, a low water absorption and a further excellent flame retardancy. Further, JP-A-2000-7901 describes a thermosetting resin composition containing a resin having a dihydrobenzodioxane ring and an epoxidized polybutadiene, and the thermosetting resin composition has good moisture resistance and heat resistance. It is described that when applied to a laminate for printed wiring boards, a cured product capable of suppressing the occurrence of interlayer cracks is provided. JP-A-11-140278 and JP-A-11-140278 describe a resin composition for semiconductor encapsulation containing a thermosetting resin having a dihydrobenzodioxane ring, an epoxy resin and a phenol resin, It is described that this resin composition gives a cured product having improved flame retardancy without deteriorating various properties required for semiconductor encapsulation. JP-A-2001-288339 describes a flame-retardant epoxy resin composition containing a compound having a dihydrobenzodioxane ring, an epoxy resin, a curing agent and an inorganic filler. It is described that a cured product having excellent properties is provided.
[0003]
[Problems to be solved by the invention]
However, when a compound having a benzoxazine ring is thermally cured, the curing temperature is usually as high as 200 ° C. or more, and there is a problem in workability. Although the cured product is excellent in flame retardancy and water resistance, it is pointed out that it is hard and brittle. On the other hand, when a general phenol novolak is added to the reaction system, the curing temperature can be lowered, but the flame retardancy, water resistance and toughness are lowered.
[0004]
[Means for Solving the Problems]
In view of these circumstances, the present inventors have conducted intensive studies in search of a resin composition having high flame retardancy, high water resistance, and excellent workability. As a result, a compound having a benzoxazine ring and a phenol resin having a specific structure The inventors have found that a resin composition with an epoxy resin and / or an epoxy resin satisfies these characteristics, and have completed the present invention.
[0005]
That is, the present invention provides (1) (a) a compound having a benzoxazine ring in the structure (b);
[0006]
Embedded image
[0007]
(Where m represents the number of repetitions)
A resin composition characterized by containing a phenol resin having a weight average molecular weight of 5,000 to 20,000,
(2) The resin composition according to claim 1, further comprising (c) an epoxy resin.
(3)
The component (c) has the following formula (2)
[0008]
Embedded image
(In the formula, n represents the number of repetitions.)
[0009]
The resin composition according to (2) above,
(4) Component (a) is represented by the following formula (3)
[0010]
Embedded image
[0011]
Or the following formula (4)
[0012]
Embedded image
[0013]
(Wherein X is a single bond or the following formula (5)
[0014]
Embedded image
[0015]
Represents one of the structures shown. )
The resin composition according to any one of the above (1) to (3), which is a compound represented by the formula:
(5) The resin composition according to any one of the above (1) to (4), which contains a curing accelerator.
(6) a cured product obtained by curing the resin composition according to any one of (1) to (5);
Is provided.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The component (a) used in the present invention is not particularly limited as long as it is a compound having a benzoxazine ring (referred to as a benzoxazine ring-containing compound). For example, JP-A-2001-288339 describes it as a compound having a dihydrobenzoxazine ring. Compounds and the like can be used. The benzoxazine ring-containing compound undergoes ring-opening polymerization upon heating and acts as a crosslinking agent for the phenolic resin, and also becomes a compound having a phenolic hydroxyl group upon ring-opening polymerization, and thus acts as a curing agent for the epoxy resin.
In the present invention, among the benzoxazine ring-containing compounds, the compound represented by the above formula (3) or (4) is preferable because of its low viscosity and excellent workability.
[0017]
In the present invention, the mixing ratio of the component (a) to the component (b) is usually from 5:95 to 95 to 5, preferably from 10:90 to 90:10 by weight.
[0018]
The component (b) used in the present invention is represented by the formula (1), and is not particularly limited as long as the polymerization average molecular weight is about 5,000 to 20,000. The structure itself of the phenolic resin of the formula (1) is known, and is described in, for example, JP-A-8-143648, JP-A-2001-40053, JP-A-11-140166, and the like. The phenolic resin having the structure of the formula (1) is capable of reacting a phenol with a biphenyl derivative such as bis (methoxymethyl) biphenyl, bis (chloromethyl) biphenyl, and bis (hydroxymethyl) biphenyl in the presence of an acid catalyst. However, the weight average molecular weight of the phenol resin obtained by such a general production method is about 500 to 1500.
The component (b) used in the present invention can be obtained by chain-extending such a low-molecular-weight phenol resin with a biphenyl derivative as described above.
[0019]
Specifically, the biphenyl derivative is added in an amount of usually 0.01 to 0.45 mol, preferably 0.05 to 0.4 mol, per 1 equivalent of the phenolic hydroxyl group of the low molecular weight phenol resin, and the condensation reaction is carried out. Do.
[0020]
In the condensation reaction, a catalyst is not particularly necessary when the biphenyl derivative is bis (chloromethyl) biphenyl, but an acid catalyst is used when bis (methoxymethyl) biphenyl or bis (hydroxymethyl) biphenyl is used. Examples of the acid catalyst that can be used include hydrochloric acid, sulfuric acid, and para-toluenesulfonic acid, and para-toluenesulfonic acid is particularly preferable. The amount of the acid catalyst to be used is generally 0.001 to 0.1 part by weight, preferably 0.005 to 0.05 part by weight, per 1 mol of the biphenyl derivative.
[0021]
In the condensation reaction, a solvent may be used because the viscosity increases as the molecular weight of the product increases. As a solvent that can be used, a solvent having a boiling point of 100 to 200 ° C. and being inert to an acid is preferable. Specific examples include propylene glycol monomethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, and the like. The solvent is added to the reaction system in an amount of usually 2 to 200% by weight, preferably 3 to 150% by weight based on the weight of the product.
The reaction is performed until the biphenyl derivative has completely disappeared. The reaction temperature is usually 100 to 180 ° C, and the reaction time is usually 1 to 20 hours.
[0022]
When bis (chloromethyl) biphenyl is used as a raw material, nitrogen is blown from one side of the reactor, and hydrochloric acid gas generated as a by-product is taken out from the other side by a tube or the like. The extracted hydrochloric acid is preferably bubbled and trapped in an alkaline aqueous solution such as an aqueous sodium hydroxide solution.
[0023]
After the completion of the reaction, the above-mentioned solvent, preferably an alkylphenol, is further added to the system as necessary to dissolve the resin component. Examples of the alkylphenol that can be used here include phenol, orthocresol, metacresol, paracresol, xylenol, etc., but cresol, particularly orthocresol, is preferred from the viewpoint of solubility in water and melting point. The solvent is used in such an amount that the total amount of the solvent is usually about 30 to 300% by weight, preferably about 50 to 250% by weight based on the weight of the product.
[0024]
After the addition of the solvent, the inside of the system is kept at 50 to 100 ° C., and hot water is added under stirring. The amount of warm water is usually 10 to 300% by weight, preferably 20 to 200% by weight, based on the weight of the product. After sufficient stirring, the mixture is allowed to stand, and separated into an aqueous layer (upper layer) and an oil layer (lower layer). This washing step is repeated until the aqueous layer shows neutrality. Usually, the required number of times of washing is 2 to 10 times. After washing with water, the solvent is distilled off under reduced pressure under heating to obtain the desired high molecular weight phenol resin. In the formula (1), m represents the number of repetitions, and is usually 5 to 25, preferably 6 to 20. The softening point of the phenol resin of the component (b) is usually from 60 to 140 ° C. The hydroxyl group equivalent is usually 200 to 260 g / eq.
[0025]
Although the resin composition of the present invention exhibits thermosetting properties only by the component (a) and the component (b), an epoxy resin can also be used as the component (c). Examples of epoxy resins that can be used include novolak type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, biphenyl type epoxy resins, dicyclopentadiene phenol co-condensation type epoxy resins, and commercial products are available. . Among them, the epoxy resin represented by the above formula (2) is preferable from the viewpoint of improving the flame retardancy of the cured product.
The component (c) preferably has a softening point of usually 50 to 80 ° C, and preferably has an epoxy equivalent of usually 260 to 290 g / eq.
[0026]
In the resin composition of the present invention, the compounding ratio of the component (c) is usually from 5:95 to 95 to 5, preferably from 10:90 to 90:10 by weight ratio of the component (a) to the component (c). It is.
[0027]
In the resin composition of the present invention containing an epoxy resin, a curing accelerator may be used. Specific examples of the curing accelerator that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, and 1,8-diaza-. Tertiary amines such as bicyclo (5,4,0) undecene-7; phosphines such as triphenylphosphine; and metal compounds such as tin octylate. The curing accelerator is used as needed in an amount of 0.01 to 5.0 parts by weight based on 100 parts by weight of the resin.
[0028]
The resin composition of the present invention may optionally contain an inorganic filler. Specific examples of the inorganic filler that can be used include silica, alumina, and talc. The inorganic filler is used in an amount occupying 0 to 90% by weight in the resin composition of the present invention. Furthermore, various compounding agents such as a silane coupling agent, a releasing agent such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, and a pigment can be added to the resin composition of the present invention.
[0029]
The resin composition of the present invention is obtained by uniformly mixing the components. The resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method. For example, a compound having a benzoxazine ring, a phenol resin and / or an epoxy resin of the formula (1) and, if necessary, a curing accelerator, an inorganic filler and a compounding agent, if necessary, may be used in an extruder, kneader, roll. The resin composition is sufficiently mixed until it becomes uniform using, for example, the resin composition is melted and then molded using a casting or transfer molding machine and the like, and further heated at 80 to 200 ° C. for 2 to 10 hours. A cured product can be obtained by heating.
[0030]
Further, the resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, and methyl isobutyl ketone to prepare a varnish, which is coated on a copper foil, a polyimide film, a PET (polyethylene terephthalate) film or the like, and heated By evaporating and curing the solvent in the above, a film-like cured product can also be obtained. In addition, the varnish obtained is impregnated into a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc., heated and semi-dried, and a prepreg obtained is hot-pressed to obtain a cured product. You can also. In this case, the solvent is used in an amount which usually accounts for 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the resin composition and the solvent.
[0031]
【Example】
Next, the present invention will be described more specifically with reference to Examples and Comparative Examples. In the following, parts are by weight unless otherwise specified.
[0032]
Synthesis Example 1
After adding 315 parts of phenol to a flask equipped with a thermometer, a condenser, and a stirrer and raising the temperature to 80 ° C., 251 parts of 4,4′-bis (chloromethyl) biphenyl was divided under stirring for 4 hours. After charging and further stirring for 1.5 hours, 3.7 parts of tripolyphosphoric acid was added, and the mixture was neutralized by stirring for 30 minutes. Thereafter, unreacted phenol was removed under reduced pressure under heating to obtain 326 parts of a phenol resin. The obtained resin had a softening point of 71 ° C. and a hydroxyl equivalent of 214 g / eq.
[0033]
The resin 214 obtained was purged with a nitrogen gas in a flask equipped with a thermometer, a fractionating tube, a cooling tube, a stirrer, and a silicon tube at the end of the cooling tube so that hydrochloric acid gas generated in the container could be driven out of the system. To this part, 56,3 parts of 4,4′-bis (chloromethyl) biphenyl and 50.8 parts of propylene glycol monomethyl ether were added, and the mixture was heated to 130 ° C. with stirring and dissolved while blowing in nitrogen. The reaction was followed by gel permeation chromatography analysis, and after confirming that 4,4′-bis (chloromethyl) biphenyl had completely disappeared 4 hours after the start of the reaction, stirring was continued for another 2 hours to terminate the reaction. .
[0034]
The temperature in the system was cooled to 90 ° C., 254 parts of orthocresol and 500 parts of warm water were added, and the mixture was stirred at 80 ° C. for 10 minutes. After standing, the aqueous layer was removed from the upper layer by siphon drainage. Next, 500 parts of warm water was added, and the same operation of stirring, standing, and separating was further repeated twice. In the third washing step, the aqueous layer became neutral, and thus orthocresol was distilled off from the oil layer under reduced pressure by heating using an evaporator to obtain 241 parts of a phenol resin represented by the formula (1) ( M = 8.9 (average value) in equation (1)). The obtained resin (hereinafter, referred to as phenolic resin (B)) had a weight average molecular weight by GPC of 12,400, a softening point of 135.2 ° C., and a hydroxyl equivalent of 254 g / eq.
[0035]
Examples 1 and 2 Comparative Examples 1 and 2
The following equation (6)
[0036]
Embedded image
[0037]
And a phenol resin (B) obtained in Synthesis Example 1 and a phenol novolak (manufactured by Meiwa Kasei Co., Ltd., H-1; softening point: 83 ° C., hydroxyl equivalent: 106 g / eq, weight average molecular weight 960), epoxy resin (C) represented by the above formula (2) (NC-3000 manufactured by Nippon Kayaku Co., Ltd .; softening point 58 ° C, epoxy equivalent 275 g / eq) and methyl ethyl ketone (solvent) MEK) was blended with the composition shown in Table 1 to prepare a varnish. Next, each varnish was impregnated in a glass cloth and dried at 130 ° C. for 7 minutes to obtain a prepreg having a resin content of about 45%. Eight of these prepregs were laminated with copper foil of 5 μm thickness on both sides and press-formed at 170 ° C. under a pressure of 40 kg / m 2 for 1 hour to prepare a 1.6 mm-thick copper-clad glass laminate. Table 1 shows the results of testing the flame retardancy, water absorption, and glass transition point of these laminates based on the following methods.
[0038]
Measured according to flame retardancy UL-94 Hygroscopicity 40 ° C., 90% HR Moisture absorption after 100 hours Glass transition point thermomechanical analyzer (TMA): TM-7000 manufactured by Vacuum Riko Co., Ltd.
Heating rate: 2 ° C / min.
[0039]
[0040]
【The invention's effect】
The resin composition of the present invention gives a cured product excellent in flame retardancy, water resistance, and heat resistance as compared with conventionally generally used thermosetting resin compositions.
Therefore, the resin composition of the present invention is extremely useful for a wide range of applications such as electric / electronic materials, molding materials, casting materials, laminate materials, paints, adhesives, resists, and optical materials.
Claims (6)
(b)下記式(1)
で表されるフェノール樹脂であって、重量平均分子量が5000〜20000であるフェノール樹脂を含有することを特徴とする樹脂組成物。(A) a compound having a benzoxazine ring in the structure (b) the following formula (1)
And a phenol resin having a weight average molecular weight of 5,000 to 20,000.
である請求項2記載の樹脂組成物。The component (c) has the following formula (2)
The resin composition according to claim 2, which is
で表される化合物である請求項1〜3のいずれか1項に記載の樹脂組成物。Component (a) is represented by the following formula (3)
The resin composition according to any one of claims 1 to 3, which is a compound represented by the formula:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002163660A JP2004010683A (en) | 2002-06-05 | 2002-06-05 | Resin composition and cured material thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002163660A JP2004010683A (en) | 2002-06-05 | 2002-06-05 | Resin composition and cured material thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004010683A true JP2004010683A (en) | 2004-01-15 |
Family
ID=30432020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002163660A Pending JP2004010683A (en) | 2002-06-05 | 2002-06-05 | Resin composition and cured material thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004010683A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006083229A (en) * | 2004-09-14 | 2006-03-30 | Fujitsu Ltd | Thermosetting resin composition and thermosetting resin film |
WO2010092723A1 (en) * | 2009-02-12 | 2010-08-19 | 新日本石油株式会社 | Benzoxazine resin composition |
-
2002
- 2002-06-05 JP JP2002163660A patent/JP2004010683A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006083229A (en) * | 2004-09-14 | 2006-03-30 | Fujitsu Ltd | Thermosetting resin composition and thermosetting resin film |
WO2010092723A1 (en) * | 2009-02-12 | 2010-08-19 | 新日本石油株式会社 | Benzoxazine resin composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI638850B (en) | Epoxy resin mixture, epoxy resin composition, cured product and semiconductor device | |
TWI753136B (en) | Phosphorus-containing phenolic compounds, phosphorus-containing epoxy resins, curable resin compositions thereof or epoxy resin compositions and cured products thereof | |
US6469109B2 (en) | Aryl ester compound, its production process, epoxy resin composition using said compound, and copper-clad laminate using the epoxy resin composition | |
JP2013166959A (en) | Curable epoxy resin composition having mixed catalyst system and laminate made therefrom | |
JP6515255B1 (en) | Curable resin composition, varnish, prepreg, cured product, and laminate or copper-clad laminate | |
JP2001064340A (en) | 4,4'-biphenydiyldimethylene-phenolic resin epoxy resin, epoxy resin composition, and its cured product | |
KR101407434B1 (en) | Liquid Epoxy Resin, Epoxy Resin Composition, and Cured Product | |
JP5363735B2 (en) | Aromatic ether type polymer, process for producing the same, and polymer composition | |
JP5127164B2 (en) | Modified epoxy resin, epoxy resin composition, and cured product thereof | |
JP5142180B2 (en) | Epoxy resin composition and cured product thereof | |
US4529790A (en) | Epoxy resin composition | |
JP2008195843A (en) | Phenolic resin, epoxy resin, epoxy resin composition, and cured product of the same | |
KR101813527B1 (en) | Phosphorus epoxy compound and method for preparing the same, epoxy composition comprising the same | |
JP2003040969A (en) | Phosphorus-containing phenolic resin and epoxy resin composition using the same | |
JP5322143B2 (en) | Phenol resin, epoxy resin, epoxy resin composition, and cured product thereof | |
JP5127160B2 (en) | Epoxy resin, curable resin composition, and cured product thereof | |
JP5752574B2 (en) | Phenol novolac resin and epoxy resin composition using the same | |
JP2004010683A (en) | Resin composition and cured material thereof | |
WO2015125780A1 (en) | Epoxy resin, epoxy resin composition, and cured product thereof | |
JPH08253582A (en) | Thermosetting resin composition and copper-clad laminate | |
JP4605681B2 (en) | Polycresol resin, epoxy resin composition and cured product thereof | |
JP3995244B2 (en) | Epoxy resin, method for producing epoxy resin, epoxy resin composition and cured product thereof | |
JP2002060593A (en) | Flame-retardant epoxy resin composition and use thereof | |
JP4086630B2 (en) | Polyhydric phenol compound, epoxy resin composition and cured product thereof | |
WO2015060307A1 (en) | Phenolic resin, epoxy resin, epoxy resin composition, prepreg, and cured product thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050520 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060607 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061005 |