【0001】
【発明の属する技術分野】
本発明は熱伝導性粘着体に関し、詳しくは、熱伝導性と難燃性と粘着性のバランスに優れており、電子部品等の発熱体とヒートシンク等の放熱部品との伝熱と接着固定等に有用な難燃性熱伝導電気絶縁粘着体に関する。
【0002】
【従来技術】
近年、エレクトロニクス技術の格段なる進歩により電気、電子機器の高集積化・高性能化が進むに伴い、半導体やCPU等の電子部品や、プラズマディスプレイ等の家電製品の、熱放散の必要性が高まっている。そのため電子部品や家電製品には、ヒートシンク等の放熱部品を接合部材による接着、又は機械的に固定して熱放散を行っている。この接合部材には、高い熱伝導性と電気絶縁性の他、安全性の面から万一の発火に対して着火・延焼の危険性が無いように高い難燃性が要求される。
【0003】
特開平6−88061号公報は、アルキル基中に1〜12個の炭素原子を有する(メタ)アルキルアクリレートと共重合可能な極性モノマーから調整されるポリマーにランダムに分散された熱伝導電気絶縁粒子を含有する熱伝導電気絶縁感圧接着剤が記載されている。しかし、記載されている熱伝導電気絶縁感圧接着剤は安定性に劣り、接着剤の調整中または調整後に粘度が極端に上昇して流動性を損ない、取り扱い性とくに塗工作業性が悪くなる問題があった。この問題を避けるため、熱伝導電気絶縁粒子の添加量を制限する必要があり、熱伝導性を上げることが困難であった(高々0.6W/m・K)。また、本用途に対して難燃性を付与すべき認識がなく、当然対応もされていない。
【0004】
特開平10−330692号公報には、アルキル基の炭素数が2〜14個である(メタ)アルキルアクリレートを主成分とする単量体と分子内に極性基を有する共重合可能な単量体からなるアクリル系共重合体に対して熱伝導性充填剤を配合する際に、分子内にラジカル重合性の炭素−炭素二重結合を有する反応性界面活性剤を配合することにより、熱伝導充填剤の種類の制約を受けることのない熱伝導性感圧接着剤と、これを用いた熱伝導性感圧接着シートを提案している。しかし、高い熱伝導性を付与するために大量に添加する場合、反応性界面活性剤も過剰に添加する必要があり、配合に限界があった。また、本用途に対して難燃性を付与すべき認識がなく、当然対応もされていない。
【0005】
【発明が解決しようとする課題】
本発明は、上記のような従来技術の欠点を解消すべく、熱伝導率と難燃性と接着性、さらには塗工適性に優れる難燃性熱伝導電気絶縁粘着体を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは鋭意検討の結果、(メタ)アルキルアクリレートを主とするアクリル系単量体と、光重合開始剤と、難燃性を有する粒子と、非難燃性かつ熱伝導電気絶縁性を有する粒子と、分散剤とを含有する光重合性組成物において、前記難燃性を有する粒子の平均粒径が、前記、非難燃性かつ熱伝導電気絶縁性を有する粒子の平均粒径より小さいものを使用することにより、熱伝導率と難燃性、電気絶縁性、接着性、塗工作業性に優れる難燃性熱伝導電気絶縁粘着体が得られることを見出した。
【0007】
すなわち、炭素数が1〜14個のアルキル基を有する(メタ)アルキルアクリレートと、分子内に極性基を有する共重合単量体とからなるアクリル系単量体と、難燃性を有する粒子と、非難燃性かつ熱伝導電気絶縁性を有する粒子と、光重合開始剤と、分散剤を含む組成物の光重合物であって、前記難燃性を有する粒子の平均粒径が、非難燃性かつ熱伝導電気絶縁性を有する粒子の平均粒径より小さいことを特徴とする熱伝導電気絶縁難燃性粘着体である。
【0008】
【発明の実施の形態】
本発明の組成物において使用される、アクリル系単量体は、炭素数が1〜14個のアルキル基を有する(メタ)アルキルアクリレート及び分子内に極性基を有する共重合性単量体からなる。
【0009】
前記炭素数が1〜14個のアルキル基を有する(メタ)アルキルアクリレートとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸イソブチル、アクリル酸イソアミル、アクリル酸ヘキシル、アクリル酸2−エチルヘキシル、アクリル酸オクチル、アクリル酸イソオクチル、アクリル酸イソノニル、アクリル酸イソデシル、アクリル酸ラウリル、エタクリル酸メチル、メタクリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸イソデシル、メタクリル酸ラウリル等が挙げられるが、これに限定されるものではない。これらは単量体混合物中70〜100質量%、好ましくは90〜99質量%の割合で用いられる。(メタ)アルキルアクリレートの量が70質量%未満であると、初期接着性などが低下する。
【0010】
(分子内に極性基を有する共重合性単量体)
前記の(メタ)アルキルアクリレート単量体とともに、分子内に極性基を有する共重合性単量体を使用することができる。この共重合性単量体は、上記アクリル共重合体の凝集力や接着力を向上するために用いられる。特に限定されるものではないが、例としてアクリル酸、イタコン酸、(無水)マレイン酸、(無水)フマル酸、カプロラクタン変性の(メタ)アクリレート、アクリル酸ダイマー等のカルボキシル基含有単量体、(メタ)アクリルアミド、置換アクリルアミド、N−ビニルピロリドン、N−ビニルカプロラクタム、(メタ)アクリロイルモルフォリン、(メタ)アクリルアミド等の窒素含有単量体、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート等の水酸基含有単量体などが挙げられるがこれに限定されるものではない。これら共重合性単量体は、単量体混合物中30〜0.5質量%、好ましくは10〜1質量%の割合で用いられる。30質量%を越えると、初期接着性が低下する。
【0011】
(光重合開始剤)
本発明の組成物において、光重合開始剤としては、ベンゾインメチルエーテル、ベンゾインエチルエーテルなどのベンゾインエーテル類、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノンなどの置換アセトフェノン類、2−メチル−2−ヒドロキシプロピオフェノンなどの置換−α−ケトール類、ベンジルケタール類、アシルフォスフィンオキサイド類、ベンゾイン類、ベンゾフェノン類など公知のものが挙げられる。また、分子内に開裂点が2つ以上ある光重合開始剤、たとえば、ビスアシルフォスフィンオキサイド類、ビスマレイミド誘導体を用いると、光重合物の分子量を大きくしやすいので好ましい。
【0012】
これらの光重合開始剤の使用量は種類にもよるが、単量体100質量部に対して、0.01〜3質量部、好ましくは0.1〜1質量部の割合で用いる。0.01質量部より少ないと、光重合物中に未反応の単量体が残存する。また、3質量部より多いと、光重合物の分子量が低下して感圧接着剤の凝集力不足を招く。
なお、生成する光重合物の分子量は、ゲルパーミエッションクロマトグラフのポリスチレン換算での重量平均分子量が40万以上、好ましくは80万以上である。
【0013】
(熱伝導率)
本発明の難燃性熱伝導電気絶縁粘着体に使用される熱伝導電気絶縁粒子は、25℃での熱伝導率が10W/m・K以上であるものが好ましい。
【0014】
(電気絶縁粒子)
本発明の難燃性熱伝導電気絶縁粘着体に使用される熱伝導電気絶縁粒子の電気絶縁性は、体積固有抵抗が1011Ω・m以上であることが好ましく、1013Ω・m以上であることが更に好ましい。
【0015】
(難燃性)
本発明の難燃性熱伝導電気絶縁粘着体で使用される難燃性を有する粒子は、UL94VTM−0 を満足することが好ましい。
【0016】
(非難燃性かつ熱伝導電気絶縁性を有する粒子)
本発明の難燃性熱伝導電気絶縁粘着体で使用される非難燃性かつ熱伝導電気絶縁性を有する粒子としては、熱伝導性が高く、電気的に絶縁性であり、アクリル系単量体100質量部に対し該粒子を100質量部の添加で難燃性を付与できる充填剤であれば、特に限定されないが、例えば金属酸化物、金属窒化物、炭化珪素の群から選ばれた少なくとも1種を挙げることができる。
【0017】
かかる金属酸化物としては、酸化アルミニウム、酸化マグネシウム、酸化亜鉛等が挙げられる。金属窒化物としては窒化硼素、窒化アルミニウム等が挙げられる。
【0018】
(非難燃性かつ熱伝導電気絶縁性を有する粒子の添加量)
本発明で使用する難燃性熱伝導電気絶縁粘着体に含有される非難燃性かつ熱伝導電気絶縁性を有する粒子は、前記した(メタ)アルキルアクリレートから調整されるポリマー100質量部に対して、50〜400質量部含有することが好ましい。50質量部未満では熱伝導性が低下し、400質量部を越えると接着性が低下する。
【0019】
(難燃性を有する粒子)
本発明で使用する難燃性熱伝導電気絶縁粘着体に含有される難燃性を有する粒子としては、特に限定されないが、例えば水酸化アルミニウム、水酸化マグネシウム等の水和金属化合物や、ポリ燐酸アンモニウム等の含窒素リン系化合物、ほう酸亜鉛、錫化合物、有機リン系、赤リン系、カーボンブラック、シリコーン系、ハロゲン系難燃剤を使用することが出来る。難燃性を有する粒子の添加量としては、特に限定されないが100質量部以上であることが好ましい。100質量部未満では難燃性が低下する。
また、難燃性を有する粒子は、熱伝導性を有することが好ましい。
難燃性を有する粒子の前記アクリル系単量体への分散性を向上するためカップリング処理、ステアリン酸処理等の表面処理を適宜行っても良い。難燃性を有する粒子の形状は、球状、針状、フレーク状が挙げられる。化合物種類及び平均粒径、形状は単独で使用しても2種以上組み合わせて使用してもよい。
【0020】
(難燃性を有する粒子と非難燃性かつ熱伝導電気絶縁性を有する粒子の平均粒径)難燃性を有する粒子は、同一添加量では表面積が大きいほど、言い換えれば、難燃性を有する粒子が小さいほど難燃効果に優れるため、難燃性を有する粒子の平均粒径は、熱伝導電気絶縁粒子の粒径に比べ小さいことが好ましい。
【0021】
好ましくは、非難燃性かつ熱伝導電気絶縁性を有する粒子の平均粒径は20〜200μm(大きな粒子)、その内、難燃性を有する粒子の平均粒径は10μm以下(小さな粒子)である。大きな粒子である非難燃性かつ熱伝導電気絶縁性を有する粒子の充填率を上げることにより熱伝導性は向上する。その際、大きな粒子間に隙間ができる。その隙間に平均粒径の小さな難燃性熱伝導電気絶縁粒子を充填することで、接着性を低下することなく高い熱伝導性と難燃性が両立できる。
【0022】
非難燃性かつ熱伝導電気絶縁性を有する粒子の平均粒径が20μm未満であると、粒子同士の接点の減少により熱伝導性が低下する。平均粒径が200μmを越えると接着性、塗工性が低下する。難燃性を有する粒子の平均粒径が10μmを越えると、非難燃性かつ熱伝導電気絶縁性を有する粒子の隙間に充填できなくなり、結果的に非難燃性かつ熱伝導電気絶縁性を有する粒子の添加量が減少し、熱伝導性が低下する。
【0023】
(分散剤)
本発明で使用する難燃性熱伝導電気絶縁粘着体に含有される分散剤とは、いわゆる界面活性剤であり、その分子内に分散質である難燃性を有する粒子及び非難燃性かつ熱伝導電気絶縁性を有する粒子と親和性が高い極性基と、主な分散媒である(メタ)アルキルアクリレート単量体と親和性の高い疎水基を有する化合物である。例えば、高級アルコールスルホン酸エステルナトリウム、アルキルベンゼンスルホン酸ナトリウム、ジアルキルスルホコハク酸エステルナトリウム、アルキル(アリル)エーテルリン酸エステル、アルキル(アリル)エーテル硫酸エステル、リン酸エステルなどのイオン性分散剤や、アルキルフェニルエーテル、アルキルエーテル、ポリオキシエチレンポリオキシプロピレンブロック共重合体などのノニオン性分散剤が挙げられる。添加量は特に限定されないが、前記難燃性を有する粒子と非難燃性の熱伝導電気絶縁性を有する粒子の総量に対し0.02〜5.0質量%が好ましい。0.02質量%未満では塗工性が低下し、5.0質量%を越えると耐熱性が低下する。
【0024】
(難燃性熱伝導電気絶縁粘着体の製法)
本発明の組成物は、必要に応じ塗工適性の調整を行うことができる。例えば、まず、前記したアクリル系単量体と光重合開始剤とを一緒に混合し、通常はこのプレミックスを部分的に重合することによって、粘度が約500〜50000mPa・s、好ましくは500〜10000 mPa・sの部分重合物からなる塗布可能なシロップ状にできる。あるいは、上記プレミックスに対して、増粘剤やヒユ―ムドシリカのようなチキソトロ―プ剤を混合することにより、塗布可能なシロップ状にすることもできる。
次に、前記アクリル系単量体又は前記シロップ状物に、難燃性を有する粒子、非難燃性かつ熱伝導電気絶縁性を有する粒子、分散剤、光重合開始剤とを混合し、光重合用の組成物を調製する。この組成物には、粘着シートの凝集性や剪断強度を増加させるため、架橋剤を添加することができる。さらに必要により顔料、充填剤、酸化防止剤、紫外線吸収剤、粘着付与樹脂、などの公知の各種添加剤を、紫外線などの照射による光重合を妨げない範囲内で添加してもよい。
【0025】
(架橋剤)
架橋剤としては、前記アクリル系単量体と共重合可能な多官能(メタ)アクリレートや、分子内にカルボキシル基や水酸基などの極性基を有する共重合性単量体がある場合は、これと反応する官能基を有する架橋剤を用いることができる。本発明では光重合法を用いて粘着体を作成するので、共重合可能な多官能(メタ)アクリレートとの共重合による架橋は、熟成工程が不要となるので好ましい。
【0026】
共重合可能な多官能(メタ)アクリレートとしては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、1,2−エチレングリコ―ルジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレ―トなどの多官能(メタ)アクリレートがある。また、極性基と反応する官能基を有する架橋剤には、トリレンジイソシアネート、トリメチロールプロパントリレンジイソシアネート、ジフエニルメタントリイソシアネートなどの多官能イソシアネート系架橋剤、ポリエチレングリコ―ルジグリシジルエーテル、ジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテルなどのエポキシ系架橋剤、メラミン樹脂系架橋剤、アミノ樹脂系架橋剤、過酸化物系架橋剤、カルボジイミド系架橋剤などが挙げられる。
【0027】
(粘着付与樹脂)
本発明の難燃性熱伝導電気絶縁粘着体で使用する粘着剤層に用いられる上記アクリル共重合体には、必要に応じ粘着付与樹脂を添加しても良い。粘着付与樹脂としては、テルペン系樹脂、テルペンフェノール樹脂、ロジン系樹脂、石油系樹脂、クマロン−インデン樹脂、フェノール系樹脂等が挙げられるが、本発明では光重合法を用いて粘着体を作成するので、粘着付与樹脂中の二重結合による重合阻害を防止するために、二重結合が少なく阻害を起こしにくい粘着付与樹脂を用いる。例えば、高度に不均化したロジンエステルや、高度に水素添加をして二重結合を少なくしたロジンエステルやクマロン−インデン樹脂、テルペンフェノール樹脂、分子骨格に二重結合部位をもたないアクリル系樹脂、飽和脂肪族樹脂等が挙げられる。
【0028】
本発明においては、上記の組成物に紫外線や放射線などを照射して、光重合物とする。紫外線の照射は、窒素ガスなどの不活性ガスで置換した酸素のない雰囲気中で行うか、ポリエチレンテレフタレートなどの紫外線透過性フィルムによる被覆で空気を遮断した状態で行う。紫外線は、波長範囲が180〜460nmの電磁放射線であるが、これより長波長または短波長の電磁放射線を用いてもよい。紫外線源には、水銀アーク、炭素アーク、低圧水銀ランプ、中・高圧水銀ランプ、メタルハライドランプ、蛍光ケミカルランプ、ブラックライトランプなどの通常の照射装置が用いられる。紫外線の強度は、被照射体までの距離や電圧の調整により適宜設定できるが、通常は、被照射体面で0.1〜100mW/cm2 、好ましくは0.3〜20mW/cm2光を用いるのが望ましい。紫外線の照射は塗工面の片側または両側から照射するが、組成物に熱伝導性粒子が配合されているので、生産性などの面から両側から照射することが好ましい。また、放射線としては、活性エネルギー線で、α線、β線、γ線、中性子線、加速電子線のような電離性放射線が用いられ、照射量は1〜10Mrad程度が好ましい。なお、紫外線と放射線を併用してもよい。
【0029】
(塗工法・厚さ)
本発明は、このように形成される光重合物を、常態で感圧接着性を有し、かつ熱伝導性や難燃性などが良好なアクリル系の難燃性熱伝導電気絶縁粘着体としたものである。本発明の粘着シートは、剥離ライナ上に前記の組成物を塗布し、紫外線や放射線を照射して、光重合物からなる難燃性熱伝導電気絶縁粘着体を形成することにより製造できる。
【0030】
具体的には、組成物をロールコーターやダイコーター等で離型処理したポリエチレンテレフタレート製のフィルム(セパレーター)等に塗布する方法で行う。難燃性熱伝導電気絶縁粘着体の厚さは、0.1mm〜5mm、好ましくは0.5〜2mmであるなお、本発明の組成物は、支持体を有する粘着シート状に加工することもできる。
【0031】
本発明に使用する難燃性熱伝導電気絶縁粘着体の90°ピール接着力は、0.5N/25mm以上であることが好ましい。0.5N/25mm未満であると、例えば、CPU等の電子部品とヒートシンク等との接合界面に、せん断方向や割裂方向に負荷が掛かるような装着をした場合、経時で剥がれが発生する。このような場合、CPU等の発熱体からシートシンクへの熱伝導が阻害される。
【0032】
(熱伝導率・難燃性)
本発明の難燃性熱伝導電気絶縁粘着体の熱伝導率は、熱の放散性を十分発現させるために、1W/m・K以上、好ましくは1.5W/m・Kである。難燃性は、着火・延焼の危険性を排除する面からUL94VTM−0 を満足する事が好ましい。
【0033】
(用途)
本発明の難燃性熱伝導電気絶縁粘着体は、半導体やCPU等の電子部品やプラズマディスプレイパネル等の発熱体と、アルミ製ヒートシンク等の放熱部品との接着固定をする用途に使用することができる。
【0034】
【実施例】
以下に実施例について具体的に説明するが、本願発明はこれらの実施例に限定されるものではない。
【0035】
(実施例1)
[難燃性熱伝導電気絶縁粘着体の調製]
2−エチルヘキシルアクリレート95質量部、アクリル酸5質量部に対して、光重合開始剤イルガキュア2020[チバスペシャリティケミカル社製]0.3質量部、非難燃性かつ熱伝導電気絶縁性を有する粒子として、平均粒径39μmの球状アルミナ[昭和電工(株)製、AS−10]を200質量部、難燃性を有する粒子として、平均粒径8μmの水酸化アルミニウム[昭和電工(株)製、ハイジライトH−32]を200質量部、リン酸エステル系分散剤[楠本化成社製、PW−36]3.0質量部(非難燃性かつ熱伝導電気絶縁性を有する粒子及び難燃性を有する粒子の総量に対して、0.75質量%)、架橋剤トリメチロールプロパントリアクリレート0.1質量部、酸化防止剤イルガノックス1010[チバスペシャリティケミカル社製]1.0質量部を添加し均一になるまで充分攪拌し組成物を調整した。この組成物は、部分重合などのシロップ化を行わなくても良好な塗工適性を有していた。この組成物を脱泡処理後、シリコーン離型処理した厚さ75μmのポリエステルフィルムに硬化後の厚さが1mmになるようにアプリケーターで塗工し、シリコーン離型処理した厚さ38μmのポリエステルフィルムで被覆したのち、20Wの蛍光ケミカルランプで塗工面の両側から、それぞれ被照射面での照射強度が1.0mW/cm2の紫外線を5分間照射し、粘着シート状態で重合させ、難燃性熱伝導電気絶縁粘着体を得た。
【0036】
(比較例1)
[熱伝導電気絶縁両面粘着体の調整]
2−エチルヘキシルアクリレート95質量部、アクリル酸5質量部に対して、光重合開始剤イルガキュア2020[チバスペシャリティケミカル社製]0.3質量部、非難燃性かつ熱伝導電気絶縁性を有する粒子として、平均粒径39μmの球状アルミナ [昭和電工(株)製、AS−10]を300質量部、架橋剤トリメチロールプロパントリアクリレート0.1質量部、酸化防止剤イルガノックス1010[チバスペシャリティケミカル社製]1.0質量部を添加し攪拌したが、著しく増粘し均一な組成物は得られなかった。この組成物を脱泡処理後、シリコーン離型処理した厚さ75μmのポリエステルフィルムに硬化後の厚さが1mmになるようにアプリケーターで塗工を試みたが塗工できなかった。
【0037】
(比較例2)
[熱伝導電気絶縁両面粘着体の調整]
2−エチルヘキシルアクリレート95質量部、アクリル酸5質量部に対して、光重合開始剤イルガキュア2020[チバスペシャリティケミカル社製]0.3質量部、非難燃性かつ熱伝導電気絶縁性を有する粒子として、平均粒径39μmの球状アルミナ[昭和電工(株)製、AS−10]を300質量部、反応性分散剤[第一工業製薬社製、アクアロンRA20]3.0質量部、架橋剤トリメチロールプロパントリアクリレート0.1質量部、酸化防止剤イルガノックス1010[チバスペシャリティケミカル社製]1.0質量部を添加し均一になるまで充分攪拌し組成物を調整した。この組成物は、部分重合などのシロップ化を行わなくても良好な塗工適性を有していた。この組成物を脱泡処理後、シリコーン離型処理した厚さ75μmのポリエステルフィルムに硬化後の厚さが1mmになるようにアプリケーターで塗工し、シリコーン離型処理した厚さ38μmのポリエステルフィルムで被覆したのち、20Wの蛍光ケミカルランプで塗工面の両側から、それぞれ被照射面での照射強度が1.0mW/cm2の紫外線を5分間照射し、粘着シート状態で重合させ、熱伝導電気絶縁粘着体を得た。
【0038】
実施例、比較例の光重合性組成物の塗工安定性及び、得られた粘着体は離型処理したポリエステルフィルムを剥離し熱伝導率、難燃性、接着力、体積固有抵抗を評価し結果を表1に記した。
【0039】
〔塗工安定性〕
実施例、比較例の光重合性組成物を、室温で48時間放置後、アプリケーターで塗工し、塗工性を評価した。
○:増粘無く問題なく塗工性できる
△:やや増粘しているが塗工できる
×:増粘して塗工できない
【0040】
〔熱伝導率〕
実施例、比較例の粘着体を5cm×15cmの大きさに切断し、厚みが約2cmになるまで積層し試験片とした。23℃±2℃の雰囲気温度で、迅速熱伝導率計QTM500(京都電子工業社製)を使用して、熱伝導率を測定した。
【0041】
〔難燃性〕
UL規格(UL94「機器の部品用プラスチック材料の燃焼試験方法」)に準じ、燃焼性試験を行い判断した。「VTM−0」、「VTM−1」は以下の燃焼程度を示す基準である。
【0042】
フィルム状の試料を円筒型に保持し、1組5枚の試料に対して各試料につき3秒間の接炎を2回行い、その場合の燃焼時間の合計、燃焼距離、熱による貫通の有無により下記の如く、クラス分類する。VTM−0 は、VTM−1 よりも燃焼しにくいことを意味する。
【0043】
【0044】
〔接着力〕
厚さ50μmのアルミ箔で一方の粘着面を裏打ちした25mm×100mmの粘着体サンプルを、アルミ板に2kgローラー1往復加圧貼付し、室温で1時間放置後、90°方向に剥離速度300mm/minで引き剥がし接着力を測定した。
【0045】
〔体積固有抵抗値〕
超絶縁/微少電流計 TR8601(タケダ理研(株)製)で測定した。測定温度は30℃、測定電圧は500V・60秒とした。
【0046】
〔実装試験〕
実施例、比較例の粘着体25mm×25mmを、CPUと重さ100gのアルミニウムヒートシンクとの間に挟み、一定の圧力をかけてCPUに押しつけて、アルミニウムヒートシンクの荷重が熱伝導粘着シートのせん断方向にかかるように垂直方向に設置し、CPUに7.0Vの電圧を印加した。24時間後、アルミニウムヒートシンクの装着状態を確認した。
【0047】
評価基準
○:剥がれ無し、△:50%剥がれ、×:アルミヒートシンクが脱落
【0048】
【表1】
【0049】
実施例1の光重合性組成物は、分散剤が添加されているので、難燃性を有する粒子及び非難燃性かつ熱伝導電気絶縁性を有する粒子を多く添加しても、増粘が無く塗工適性に優れていた。また得られた難燃性熱伝導電気絶縁粘着体は、粒径の大きい非難燃性かつ熱伝導電気絶縁性を有する粒子で高い熱伝導率を発揮し、粒径の小さい難燃性を有する粒子が、前記大きい粒子の隙間に充填されるため接着力、電気絶縁性を維持したまま、UL規格で高い難燃性(VTM−0)を示した。接着力が高いため、実装試験においても剥がれが生じなかった。
【0050】
一方、比較例1は、増粘して塗工可能な光重合性組成物を得られなかった。また比較例2の光重合性配合物は、反応性分散剤が添加されているので、非難燃性の熱伝導電気絶縁性を有する粒子を多く添加しても、増粘が無く塗工適性に優れていた。しかし、得られた熱伝導電気絶縁性粘着体は、熱伝導性、接着性、電気絶縁性は優れているが、難燃性評価では燃焼しUL規格不適合であった。
【0051】
以上のように、実施例1の難燃性熱伝導電気絶縁粘着体(粒子総量:400部)は、比較例1及び比較例2の熱伝導電気絶縁性粘着体(粒子総量:300部)と比べ、実質的により多くの粒子を含有している。しかし、粒径の小さい難燃性粒子が、粒径の大きい非難燃性かつ熱伝導電気絶縁性を有する粒子と効率的に充填されるため、塗工性、接着性等の性能を低下させることなく、高い熱伝導性と難燃性を同時に付与することができた。
【0052】
【発明の効果】
本発明の難燃性熱伝導電気絶縁粘着体は、特に難燃性と熱伝導性に優れ、且つ電気絶縁性と充分な接着性を併せ持つため、電子部品やプラズマディスプレイ等の家電製品の発熱体と、ヒートシンク等の放熱体との接合用の熱伝導性粘着体として有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat conductive adhesive, and more particularly, it has an excellent balance between heat conductivity, flame retardancy, and adhesiveness, and performs heat transfer and adhesive fixing between a heat generating element such as an electronic component and a heat radiating component such as a heat sink. The present invention relates to a flame-retardant heat-conductive and electrically-insulating pressure-sensitive adhesive which is useful for the present invention.
[0002]
[Prior art]
In recent years, with the remarkable progress in electronics technology, the integration and performance of electric and electronic devices have been advanced, and the need for heat dissipation of electronic components such as semiconductors and CPUs and household electrical appliances such as plasma displays has increased. ing. For this reason, heat dissipation is performed on electronic components and home appliances by bonding or mechanically fixing a heat dissipation component such as a heat sink by a joining member. In addition to high thermal conductivity and electrical insulation, the joining member is required to have high flame retardancy so that there is no danger of ignition or spread of fire in the event of ignition in view of safety.
[0003]
JP-A-6-88061 discloses heat conductive and electrically insulating particles randomly dispersed in a polymer prepared from a polar monomer copolymerizable with a (meth) alkyl acrylate having 1 to 12 carbon atoms in an alkyl group. A heat conductive, electrically insulating, pressure sensitive adhesive containing: However, the heat-conductive and electrically insulating pressure-sensitive adhesives described are inferior in stability, the viscosity is extremely increased during or after the adjustment of the adhesive and the fluidity is impaired, and the handling property, especially the coating workability, is deteriorated. There was a problem. In order to avoid this problem, it is necessary to limit the amount of the thermally conductive electrically insulating particles added, and it has been difficult to increase the thermal conductivity (at most 0.6 W / m · K). Further, there is no recognition that flame retardancy should be imparted to the present application, and of course no response has been taken.
[0004]
JP-A-10-330892 discloses a copolymerizable monomer having a polar group in a molecule and a monomer mainly containing a (meth) alkyl acrylate having an alkyl group having 2 to 14 carbon atoms. When blending a thermally conductive filler with the acrylic copolymer consisting of, by blending a reactive surfactant having a radically polymerizable carbon-carbon double bond in the molecule, the thermal conductive filler We have proposed a heat-conductive pressure-sensitive adhesive that is not restricted by the type of agent, and a heat-conductive pressure-sensitive adhesive sheet using the same. However, when a large amount is added in order to provide high thermal conductivity, it is necessary to add a reactive surfactant in excess, and there is a limit in the formulation. Further, there is no recognition that flame retardancy should be imparted to the present application, and of course no response has been taken.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a flame-retardant heat-conductive and electrically insulating pressure-sensitive adhesive body having excellent thermal conductivity, flame retardancy and adhesiveness, and further excellent coating applicability in order to solve the above-mentioned disadvantages of the prior art. It is assumed that.
[0006]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that an acrylic monomer mainly containing (meth) alkyl acrylate, a photopolymerization initiator, particles having flame retardancy, In the photopolymerizable composition containing particles having a dispersing agent, the average particle size of the particles having flame retardancy is smaller than the average particle size of the particles having non-flammability and heat conductive electrical insulation. It has been found that by using such a material, a flame-retardant heat-conductive and electrically insulating pressure-sensitive adhesive body having excellent heat conductivity, flame retardancy, electrical insulation, adhesion, and coating workability can be obtained.
[0007]
That is, an acrylic monomer composed of a (meth) alkyl acrylate having an alkyl group having 1 to 14 carbon atoms, a copolymer monomer having a polar group in the molecule, and particles having flame retardancy. A non-flame-retardant and thermally conductive electrically insulating particle, a photopolymerization initiator, and a photopolymer of a composition containing a dispersant, wherein the average particle size of the flame-retardant particles is non-flame-retardant A heat-conductive and electrically-insulating flame-retardant pressure-sensitive adhesive body, characterized in that it is smaller than the average particle size of particles having heat conductivity and heat-conductive electrical insulation.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The acrylic monomer used in the composition of the present invention comprises a (meth) alkyl acrylate having an alkyl group having 1 to 14 carbon atoms and a copolymerizable monomer having a polar group in the molecule. .
[0009]
Examples of the (meth) alkyl acrylate having an alkyl group having 1 to 14 carbon atoms include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, isoamyl acrylate, hexyl acrylate, and acryl. 2-ethylhexyl acrylate, octyl acrylate, isooctyl acrylate, isononyl acrylate, isodecyl acrylate, lauryl acrylate, methyl ethacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, lauryl methacrylate And the like, but is not limited thereto. These are used in a proportion of 70 to 100% by mass, preferably 90 to 99% by mass in the monomer mixture. When the amount of the (meth) alkyl acrylate is less than 70% by mass, the initial adhesiveness and the like are reduced.
[0010]
(Copolymerizable monomer having a polar group in the molecule)
Together with the (meth) alkyl acrylate monomer, a copolymerizable monomer having a polar group in the molecule can be used. This copolymerizable monomer is used for improving the cohesive strength and adhesive strength of the acrylic copolymer. Although not particularly limited, examples include acrylic acid, itaconic acid, (anhydride) maleic acid, (anhydride) fumaric acid, caprolactan-modified (meth) acrylate, carboxyl group-containing monomers such as acrylic acid dimer, ( (Meth) acrylamide, substituted acrylamide, N-vinylpyrrolidone, N-vinylcaprolactam, (meth) acryloylmorpholine, nitrogen-containing monomers such as (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl ( Examples include hydroxyl group-containing monomers such as (meth) acrylate and 4-hydroxybutyl (meth) acrylate, but are not limited thereto. These copolymerizable monomers are used in a proportion of 30 to 0.5% by mass, preferably 10 to 1% by mass in the monomer mixture. If it exceeds 30% by mass, the initial adhesiveness is reduced.
[0011]
(Photopolymerization initiator)
In the composition of the present invention, examples of the photopolymerization initiator include benzoin ethers such as benzoin methyl ether and benzoin ethyl ether, and substituted acetophenones such as 2,2-diethoxyacetophenone and 2,2-dimethoxy-2-phenylacetophenone. , 2-methyl-2-hydroxypropiophenone and the like, and known compounds such as substituted α-ketols, benzyl ketals, acylphosphine oxides, benzoins, and benzophenones. It is preferable to use a photopolymerization initiator having two or more cleavage points in the molecule, for example, a bisacylphosphine oxide or a bismaleimide derivative, because the molecular weight of the photopolymer can be easily increased.
[0012]
The amount of the photopolymerization initiator used depends on the type, but is used in a proportion of 0.01 to 3 parts by mass, preferably 0.1 to 1 part by mass, per 100 parts by mass of the monomer. If the amount is less than 0.01 parts by mass, unreacted monomers remain in the photopolymer. On the other hand, if the amount is more than 3 parts by mass, the molecular weight of the photopolymer decreases, and the cohesive force of the pressure-sensitive adhesive becomes insufficient.
Regarding the molecular weight of the resulting photopolymer, the weight average molecular weight in terms of polystyrene by gel permeation chromatography is 400,000 or more, preferably 800,000 or more.
[0013]
(Thermal conductivity)
The heat conductive electric insulating particles used in the flame-retardant heat conductive electric insulating pressure-sensitive adhesive body of the present invention preferably have a heat conductivity at 25 ° C. of 10 W / m · K or more.
[0014]
(Electrically insulating particles)
The heat insulating electric insulating particles used in the flame-retardant heat conductive electric insulating pressure-sensitive adhesive of the present invention have an electric insulation property of a volume resistivity of 10%. 11 Ω · m or more, preferably 10 13 It is more preferable that the resistance is Ω · m or more.
[0015]
(Flame retardance)
The flame-retardant particles used in the flame-retardant heat conductive and electrically insulating pressure-sensitive adhesive according to the present invention preferably satisfy UL94VTM-0.
[0016]
(Particles that are non-flammable and have thermal conductivity and electrical insulation)
The non-flame-retardant and heat-conductive and electrically insulating particles used in the flame-retardant heat-conductive and electrically insulating pressure-sensitive adhesive of the present invention include high thermal conductivity, electrical insulation, and acrylic monomers. The filler is not particularly limited as long as it is a filler capable of imparting flame retardancy by adding 100 parts by mass of the particles to 100 parts by mass, and for example, at least one selected from the group consisting of metal oxides, metal nitrides, and silicon carbide. Species can be mentioned.
[0017]
Examples of such a metal oxide include aluminum oxide, magnesium oxide, and zinc oxide. Examples of the metal nitride include boron nitride and aluminum nitride.
[0018]
(Amount of non-flame retardant and thermally conductive and electrically insulating particles added)
The non-flame-retardant and heat-conductive and electrically insulating particles contained in the flame-retardant heat-conductive and electrically-insulating adhesive used in the present invention are based on 100 parts by mass of the polymer prepared from the (meth) alkyl acrylate. , 50 to 400 parts by mass. If the amount is less than 50 parts by mass, the thermal conductivity decreases, and if it exceeds 400 parts by mass, the adhesiveness decreases.
[0019]
(Flame retardant particles)
The flame-retardant particles contained in the flame-retardant heat conductive and electrically insulating pressure-sensitive adhesive used in the present invention are not particularly limited. For example, hydrated metal compounds such as aluminum hydroxide and magnesium hydroxide, and polyphosphoric acid Nitrogen-containing phosphorus-based compounds such as ammonium, zinc borate, tin compounds, organic phosphorus-based, red phosphorus-based, carbon black, silicone-based, and halogen-based flame retardants can be used. The amount of the particles having flame retardancy is not particularly limited, but is preferably 100 parts by mass or more. If the amount is less than 100 parts by mass, the flame retardancy is reduced.
The particles having flame retardancy preferably have thermal conductivity.
In order to improve the dispersibility of the particles having flame retardancy in the acrylic monomer, a surface treatment such as a coupling treatment and a stearic acid treatment may be appropriately performed. The shape of the particles having flame retardancy is spherical, needle-like, or flake-like. The compound type, the average particle size, and the shape may be used alone or in combination of two or more.
[0020]
(Average particle diameter of particles having flame retardancy and particles having non-flammability and heat conduction and electrical insulation) Particles having flame retardancy have a greater surface area with the same amount of addition, in other words, have flame retardancy. Since the smaller the particles, the better the flame retardant effect, the average particle size of the particles having flame retardancy is preferably smaller than the particle size of the heat conductive and electrically insulating particles.
[0021]
Preferably, the average particle size of the non-flame-retardant and thermally conductive and electrically insulating particles is 20 to 200 μm (large particles), and the average particle size of the flame-retardant particles is 10 μm or less (small particles). . The thermal conductivity is improved by increasing the filling rate of the non-flame-retardant and thermally conductive and electrically insulating particles which are large particles. At that time, gaps are formed between the large particles. By filling the gap with flame-retardant heat-conductive electrically insulating particles having a small average particle size, both high heat conductivity and flame retardancy can be achieved without lowering the adhesiveness.
[0022]
If the average particle size of the non-flame-retardant and thermally conductive and electrically insulating particles is less than 20 μm, the number of contact points between the particles decreases, and the thermal conductivity decreases. If the average particle size exceeds 200 μm, the adhesiveness and coatability will decrease. If the average particle size of the particles having flame retardancy exceeds 10 μm, the particles cannot be filled in the gaps between the particles having non-flammability and heat conduction and electrical insulation, and consequently the particles having nonflammability and heat conduction and electrical insulation , The thermal conductivity decreases.
[0023]
(Dispersant)
The dispersant contained in the flame-retardant heat-conductive and electrically insulating pressure-sensitive adhesive used in the present invention is a so-called surfactant, in which the flame-retardant particles and the non-flame-retardant and heat It is a compound having a polar group having a high affinity for particles having conductive electric insulation and a hydrophobic group having a high affinity for a (meth) alkyl acrylate monomer which is a main dispersion medium. For example, ionic dispersants such as higher alcohol sodium sulfonate, sodium alkylbenzene sulfonate, sodium dialkyl sulfosuccinate, alkyl (allyl) ether phosphate, alkyl (allyl) ether sulfate, phosphate, and the like; Nonionic dispersants such as ethers, alkyl ethers, and polyoxyethylene polyoxypropylene block copolymers are exemplified. The amount of addition is not particularly limited, but is preferably 0.02 to 5.0% by mass based on the total amount of the above-mentioned flame-retardant particles and the non-flame-retardant heat conductive and electrically insulating particles. If the amount is less than 0.02% by mass, the coatability decreases, and if it exceeds 5.0% by mass, the heat resistance decreases.
[0024]
(Production method of flame-retardant heat conductive and electrically insulating adhesive)
The composition of the present invention can be adjusted for coating suitability as needed. For example, first, the above-mentioned acrylic monomer and photopolymerization initiator are mixed together, and usually the premix is partially polymerized to have a viscosity of about 500 to 50,000 mPa · s, preferably 500 to 50,000 mPa · s. It can be formed into a coatable syrup consisting of a partial polymer of 10,000 mPa · s. Alternatively, the premix may be mixed with a thickening agent or a thixotropic agent such as fumed silica to form a syrup that can be applied.
Next, the acrylic monomer or the syrup is mixed with flame-retardant particles, non-flame-retardant particles having thermal conductivity and electrical insulation, a dispersant, and a photopolymerization initiator, and then photopolymerized. A composition is prepared. A crosslinking agent can be added to this composition in order to increase the cohesiveness and shear strength of the pressure-sensitive adhesive sheet. If necessary, various known additives such as a pigment, a filler, an antioxidant, an ultraviolet absorber, a tackifier resin, and the like may be added as long as the photopolymerization by irradiation with ultraviolet rays or the like is not hindered.
[0025]
(Crosslinking agent)
As a cross-linking agent, when there is a polyfunctional (meth) acrylate copolymerizable with the acrylic monomer or a copolymerizable monomer having a polar group such as a carboxyl group or a hydroxyl group in the molecule, this is used. A crosslinking agent having a reactive functional group can be used. In the present invention, since the pressure-sensitive adhesive body is prepared using a photopolymerization method, crosslinking by copolymerization with a copolymerizable polyfunctional (meth) acrylate is preferable because an aging step becomes unnecessary.
[0026]
Examples of copolymerizable polyfunctional (meth) acrylates include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, 1,2-ethylene glycol di (meth) acrylate, and 1,6-hexanediol diacrylate. There are polyfunctional (meth) acrylates such as (meth) acrylate. Examples of the crosslinking agent having a functional group that reacts with a polar group include polyfunctional isocyanate crosslinking agents such as tolylene diisocyanate, trimethylolpropane tolylene diisocyanate, diphenylmethane triisocyanate, polyethylene glycol diglycidyl ether, and diglycidyl. Examples include epoxy-based crosslinking agents such as ether and trimethylolpropane triglycidyl ether, melamine resin-based crosslinking agents, amino resin-based crosslinking agents, peroxide-based crosslinking agents, and carbodiimide-based crosslinking agents.
[0027]
(Tackifying resin)
If necessary, a tackifying resin may be added to the acrylic copolymer used in the pressure-sensitive adhesive layer used in the flame-retardant heat-conductive and electrically insulating pressure-sensitive adhesive body of the present invention. Examples of the tackifying resin include a terpene resin, a terpene phenol resin, a rosin resin, a petroleum resin, a cumarone-indene resin, a phenol resin, and the like. In the present invention, an adhesive is prepared by using a photopolymerization method. Therefore, in order to prevent polymerization inhibition due to double bonds in the tackifying resin, a tackifying resin having a small number of double bonds and hardly causing inhibition is used. For example, highly disproportionated rosin esters, highly hydrogenated rosin esters with reduced double bonds, coumarone-indene resins, terpene phenol resins, acrylics without double bond sites in the molecular skeleton Resins and saturated aliphatic resins.
[0028]
In the present invention, the above composition is irradiated with ultraviolet light, radiation, or the like to obtain a photopolymer. Irradiation with ultraviolet rays is performed in an oxygen-free atmosphere replaced with an inert gas such as nitrogen gas, or in a state where air is blocked by coating with an ultraviolet-permeable film such as polyethylene terephthalate. Ultraviolet rays are electromagnetic radiation having a wavelength range of 180 to 460 nm, but electromagnetic radiation having a longer or shorter wavelength may be used. Usable irradiation devices such as a mercury arc, a carbon arc, a low-pressure mercury lamp, a medium / high-pressure mercury lamp, a metal halide lamp, a fluorescent chemical lamp, and a black light lamp are used as the ultraviolet light source. The intensity of the ultraviolet light can be appropriately set by adjusting the distance to the irradiation object and the voltage, but is usually 0.1 to 100 mW / cm on the irradiation object surface. 2 , Preferably 0.3 to 20 mW / cm 2 It is desirable to use light. Irradiation with ultraviolet rays is performed from one side or both sides of the coated surface, but since the composition contains heat conductive particles, it is preferable to irradiate from both sides in terms of productivity and the like. As the radiation, ionizing radiation such as α-ray, β-ray, γ-ray, neutron beam, and accelerating electron beam is used as the active energy ray, and the irradiation amount is preferably about 1 to 10 Mrad. Note that ultraviolet rays and radiation may be used in combination.
[0029]
(Coating method / thickness)
The present invention relates to the photopolymer formed as described above, which has a pressure-sensitive adhesive property under normal conditions, and an acrylic flame-retardant heat-conductive electrically insulating pressure-sensitive adhesive having good heat conductivity and flame retardancy. It was done. The pressure-sensitive adhesive sheet of the present invention can be produced by applying the above composition on a release liner and irradiating it with ultraviolet rays or radiation to form a flame-retardant heat-conductive and electrically-insulating pressure-sensitive adhesive made of a photopolymer.
[0030]
Specifically, it is carried out by a method of applying the composition to a polyethylene terephthalate film (separator) or the like that has been release-treated with a roll coater, a die coater or the like. The thickness of the flame-retardant heat conductive and electrically insulating pressure-sensitive adhesive body is 0.1 mm to 5 mm, preferably 0.5 to 2 mm. The composition of the present invention can be processed into a pressure-sensitive adhesive sheet having a support. it can.
[0031]
The 90 ° peel adhesive strength of the flame-retardant heat conductive and electrically insulating pressure-sensitive adhesive used in the present invention is preferably 0.5 N / 25 mm or more. If the thickness is less than 0.5 N / 25 mm, for example, if the mounting is performed such that a load is applied in a shearing direction or a splitting direction on a bonding interface between an electronic component such as a CPU and a heat sink or the like, peeling occurs with time. In such a case, heat conduction from the heating element such as the CPU to the sheet sink is hindered.
[0032]
(Thermal conductivity / flame retardant)
The heat conductivity of the flame-retardant heat conductive and electrically insulating pressure-sensitive adhesive body of the present invention is 1 W / m · K or more, preferably 1.5 W / m · K, in order to sufficiently exhibit heat dissipation. The flame retardancy preferably satisfies UL94VTM-0 from the viewpoint of eliminating the risk of ignition and fire spread.
[0033]
(Application)
The flame-retardant heat conductive and electrically insulating pressure-sensitive adhesive of the present invention can be used for bonding and fixing a heat-generating body such as an electronic component such as a semiconductor or a CPU or a plasma display panel to a heat-radiating component such as an aluminum heat sink. it can.
[0034]
【Example】
Examples will be specifically described below, but the present invention is not limited to these examples.
[0035]
(Example 1)
[Preparation of flame-retardant heat conductive and electrically insulating adhesive]
For 95 parts by mass of 2-ethylhexyl acrylate and 5 parts by mass of acrylic acid, 0.3 parts by mass of a photopolymerization initiator Irgacure 2020 [manufactured by Ciba Specialty Chemical Co., Ltd.], as particles having nonflammability and heat conductive electrical insulation, 200 parts by mass of spherical alumina (AS-10, manufactured by Showa Denko KK) having an average particle size of 39 μm, and aluminum hydroxide having an average particle size of 8 μm (Higyrite, manufactured by Showa Denko KK) as flame-retardant particles. H-32] and 3.0 parts by mass of a phosphate ester dispersant [PW-36 manufactured by Kusumoto Kasei Co., Ltd.] 0.75% by mass with respect to the total amount of), 0.1 part by mass of a cross-linking agent trimethylolpropane triacrylate, an antioxidant Irganox 1010 [Ciba Specialty Chemical Co., Ltd. Cal Co.] was added, and the mixture was sufficiently stirred until it became uniform to prepare a composition. This composition had good coating suitability without performing syrup such as partial polymerization. After defoaming the composition, it is applied to a silicone release-treated polyester film having a thickness of 75 μm with an applicator so that the thickness after curing becomes 1 mm, and is applied with a silicone release-treated polyester film having a thickness of 38 μm. After coating, the irradiation intensity on the irradiated surface was 1.0 mW / cm from both sides of the coated surface with a 20 W fluorescent chemical lamp. 2 For 5 minutes to polymerize in the state of an adhesive sheet to obtain a flame-retardant heat-conductive and electrically-insulating adhesive.
[0036]
(Comparative Example 1)
[Adjustment of heat conductive and electrically insulating double-sided adhesive]
For 95 parts by mass of 2-ethylhexyl acrylate and 5 parts by mass of acrylic acid, 0.3 parts by mass of a photopolymerization initiator Irgacure 2020 [manufactured by Ciba Specialty Chemical Co., Ltd.], as particles having nonflammability and heat conductive electrical insulation, 300 parts by mass of spherical alumina [AS-10, manufactured by Showa Denko KK], 0.1 part by mass of cross-linking agent trimethylolpropane triacrylate, and antioxidant Irganox 1010 [manufactured by Ciba Specialty Chemical Co.] Although 1.0 part by mass was added and stirred, the composition was remarkably thickened and a uniform composition was not obtained. After defoaming this composition, an attempt was made to apply it to a silicone release-treated polyester film having a thickness of 75 μm with an applicator so that the thickness after curing became 1 mm, but application was not possible.
[0037]
(Comparative Example 2)
[Adjustment of heat conductive and electrically insulating double-sided adhesive]
For 95 parts by mass of 2-ethylhexyl acrylate and 5 parts by mass of acrylic acid, 0.3 parts by mass of a photopolymerization initiator Irgacure 2020 [manufactured by Ciba Specialty Chemical Co., Ltd.], as particles having nonflammability and heat conductive electrical insulation, 300 parts by mass of spherical alumina [AS-10, manufactured by Showa Denko KK] having an average particle size of 39 μm, 3.0 parts by mass of reactive dispersant [Aqualon RA20, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.], cross-linking agent trimethylolpropane 0.1 part by mass of triacrylate and 1.0 part by mass of antioxidant Irganox 1010 [manufactured by Ciba Specialty Chemical Co., Ltd.] were added, and the mixture was sufficiently stirred until the composition became uniform to prepare a composition. This composition had good coating suitability without performing syrup such as partial polymerization. After defoaming the composition, it is applied to a silicone release-treated polyester film having a thickness of 75 μm with an applicator so that the thickness after curing becomes 1 mm, and is applied with a silicone release-treated polyester film having a thickness of 38 μm. After coating, the irradiation intensity on the irradiated surface was 1.0 mW / cm from both sides of the coated surface with a 20 W fluorescent chemical lamp. 2 For 5 minutes to polymerize in the state of an adhesive sheet to obtain a heat conductive and electrically insulating adhesive.
[0038]
Example, the coating stability of the photopolymerizable composition of the comparative example, and the obtained adhesive was peeled off the polyester film subjected to release treatment, and the thermal conductivity, flame retardancy, adhesive strength, and volume resistivity were evaluated. The results are shown in Table 1.
[0039]
(Coating stability)
The photopolymerizable compositions of Examples and Comparative Examples were left at room temperature for 48 hours, and then coated with an applicator to evaluate coatability.
:: Coating can be performed without thickening without any problem
Δ: slightly thickened, but can be coated
×: Coating is not possible due to thickening
[0040]
〔Thermal conductivity〕
The pressure-sensitive adhesive bodies of Examples and Comparative Examples were cut into a size of 5 cm × 15 cm and laminated until the thickness became about 2 cm to obtain test pieces. Thermal conductivity was measured at an ambient temperature of 23 ° C. ± 2 ° C. using a rapid thermal conductivity meter QTM500 (manufactured by Kyoto Electronics Industry Co., Ltd.).
[0041]
〔Flame retardance〕
A flammability test was performed in accordance with UL standard (UL94 "Method of testing combustion of plastic materials for equipment parts") to make a judgment. "VTM-0" and "VTM-1" are standards indicating the following degrees of combustion.
[0042]
The sample in the form of a film is held in a cylindrical shape, and a set of five samples is subjected to flame contact twice for 3 seconds for each sample. The total burning time, the burning distance, and the presence or absence of penetration by heat Classify as follows. VTM-0 means that it is less likely to burn than VTM-1.
[0043]
[0044]
(Adhesive strength)
An adhesive sample of 25 mm × 100 mm, one adhesive surface of which is lined with an aluminum foil having a thickness of 50 μm, is adhered to an aluminum plate by a two-kg roller with one reciprocating pressure, and left at room temperature for 1 hour. The peel adhesion was measured in minutes.
[0045]
[Volume resistivity]
It was measured with a super insulation / micro ammeter TR8601 (manufactured by Takeda Riken Co., Ltd.). The measurement temperature was 30 ° C., and the measurement voltage was 500 V for 60 seconds.
[0046]
(Mounting test)
The adhesive body 25 mm × 25 mm of each of Examples and Comparative Examples was sandwiched between a CPU and an aluminum heat sink having a weight of 100 g, and was pressed against the CPU with a certain pressure. And a voltage of 7.0 V was applied to the CPU. After 24 hours, the mounting state of the aluminum heat sink was confirmed.
[0047]
Evaluation criteria
○: No peeling, Δ: 50% peeling, ×: Aluminum heat sink falls off
[0048]
[Table 1]
[0049]
Since the photopolymerizable composition of Example 1 contains a dispersing agent, even if a large amount of non-flammable particles and non-flammable and thermally conductive and electrically insulating particles are added, there is no increase in viscosity. Excellent coating aptitude. In addition, the obtained flame-retardant heat conductive and electrically insulating pressure-sensitive adhesive has high thermal conductivity due to its non-flammable and heat conductive and electrically insulating particles having a large particle diameter, and particles having a small particle diameter and having flame retardancy. However, it exhibited high flame retardancy (VTM-0) in the UL standard while maintaining the adhesive strength and the electric insulation because it was filled in the gaps between the large particles. Due to the high adhesive strength, no peeling occurred in the mounting test.
[0050]
On the other hand, in Comparative Example 1, a photopolymerizable composition which was thickened and could be applied was not obtained. In addition, since the photopolymerizable compound of Comparative Example 2 contains a reactive dispersant, even if a large amount of non-flame-retardant particles having heat conductive and electrical insulation properties are added, there is no increase in viscosity and coating suitability is improved. It was excellent. However, the obtained heat conductive and electrically insulating pressure-sensitive adhesive body was excellent in heat conductivity, adhesiveness, and electrical insulation, but burned in flame retardancy evaluation and did not conform to UL standards.
[0051]
As described above, the flame-retardant heat conductive and electrically insulating pressure-sensitive adhesive body (total particle amount: 400 parts) of Example 1 was different from the heat-conductive and electrically conductive pressure-sensitive adhesive bodies of Comparative Examples 1 and 2 (total particle amount: 300 parts). In comparison, it contains substantially more particles. However, flame-retardant particles with a small particle size are efficiently filled with non-flame-retardant particles having a large particle size and having heat conduction and electrical insulation, so that performance such as coatability and adhesiveness is reduced. Therefore, high thermal conductivity and flame retardancy could be simultaneously provided.
[0052]
【The invention's effect】
The flame-retardant heat conductive and electrically insulating pressure-sensitive adhesive of the present invention is particularly excellent in flame retardancy and heat conductivity, and has both electrical insulation and sufficient adhesiveness. And a heat conductive adhesive for bonding to a heat radiator such as a heat sink.