[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004097267A - Cuff member - Google Patents

Cuff member Download PDF

Info

Publication number
JP2004097267A
JP2004097267A JP2002259848A JP2002259848A JP2004097267A JP 2004097267 A JP2004097267 A JP 2004097267A JP 2002259848 A JP2002259848 A JP 2002259848A JP 2002259848 A JP2002259848 A JP 2002259848A JP 2004097267 A JP2004097267 A JP 2004097267A
Authority
JP
Japan
Prior art keywords
cuff member
resin
porous
dimensional network
member according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002259848A
Other languages
Japanese (ja)
Inventor
Eisuke Tatsumi
巽 英介
Yasushi Nemoto
根本 泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
National Cerebral and Cardiovascular Center
Original Assignee
Bridgestone Corp
National Cerebral and Cardiovascular Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp, National Cerebral and Cardiovascular Center filed Critical Bridgestone Corp
Priority to JP2002259848A priority Critical patent/JP2004097267A/en
Priority to PCT/JP2003/003594 priority patent/WO2003082366A1/en
Priority to AU2003221090A priority patent/AU2003221090C1/en
Priority to CA2484012A priority patent/CA2484012C/en
Priority to DE10392444T priority patent/DE10392444T5/en
Priority to TW92106841A priority patent/TW200400811A/en
Publication of JP2004097267A publication Critical patent/JP2004097267A/en
Priority to US10/950,620 priority patent/US20050107868A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cuff member for isolating a lesion from ambiance, protecting the lesion against exacerbation factors such as bacterial infection in a healing mechanism, suppressing the advance of downgrowth and reducing various kinds of infection troubles including tunnel infection by obtaining strong adhesion with subcutaneous tissues since cells easily intrude from living body subcutaneous tissues are taken and capillary tubes are constructed. <P>SOLUTION: The cuff member is provided with a communicable porous three-dimensional net-like structure part which is formed of a thermoplastic resin or a thermosetting resin and whose average pore size is 100 to 1,000μm and apparent density is 0.01 to 0.5g/cm<SP>3</SP>. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は,生体組織からの細胞の侵入が可能で,生体組織と頑強な癒着が得られるカフ部材に係り,特に,カニューレやカテーテル類を皮下刺入する療法である補助人工心臓による血液循環法,腹膜透析療法,中心静脈栄養法,経カニューレDDS及び経カテーテルDDSなどの生体皮膚刺入部に有用なカフ部材に関する。
【0002】
【従来の技術】
近年発達した補助人工心臓や腹膜透析などの療法で使用されるカニューレやカテーテルは,尿道カテーテル,経消化管的栄養法及び気道確保術などと異なり,皮下刺入を行って生体内に留置する必要がある。生体内への留置が長期間へ及ぶ場合,生体内と外界を隔て,生体内への細菌の侵入や体液水分の揮発を防止するためにカフ部材(スキンカフなどともいう)を利用して疑似的に刺入部を密閉することが行われている。従来,補助人工心臓による血液循環法では,主としてポリエステル繊維からなるファブリックベロアを刺入カニューレに巻き付け,刺入部において該ファブリックベロアと皮下組織を縫合することで固定し,カニューレを留置している。腹膜透析療法においても,ポリエステル繊維からなるファブッリクベロアなどをカフ部材としてカテーテルの皮膚刺入位置に固定し,このカフ部材を圧迫するように皮下組織を縫合することでカテーテルを留置している。これらファブリックベロアにはコラーゲンなどを含浸させ,より頑強な癒着を狙ったものもある。また,生体適合性に優れる部材からなるカフ部材を刺入部の皮下組織に固定させる方法もある。
【0003】
【発明が解決しようとする課題】
しかしながら,補助人工心臓による血液循環法は,患者体外に設置された脈動ポンプによって血液循環を補助する療法であるため,約1.5Hzに相当する脈動ポンプの振動がカニューレに伝達している。即ち,カニューレの刺入部は,常時,振動による力学的負荷を受けている。更に,患者自身の体位の変化,刺入部の消毒作業時などにカニューレが動くことによっても皮下組織とカフ部材の接着界面にはこれを剥離しようとする応力が生じている。これらの応力負荷によってカフ部材と皮下組織の癒着性が低下することが要因と判断されるトラブルの代表例に,トンネル感染などの感染トラブルがあり,補助人工心臓療法の症例の中でも,これら感染トラブルの経験数は非常に多くなっている。心不全ではなく細菌感染によって療法を中止せざるを得ない症例が多い現状において,本療法においては感染を防止できるカフ部材の開発が急務であるといえる。
【0004】
同様に,皮下刺入を行ってカテーテルを長期間留置する腹膜透析療法においても,カフ部材に大きな課題がある。即ち,この療法では,透析液を注排液するためにカテーテルを腹腔内に留置するが,生体がカテーテルを異物と認識することによりカテーテルを排除しようとする作用が働き,皮下組織とカテーテルが癒着せず,表皮がカテーテルに沿って腹腔内へ入り込むダウングロース現象が生じてしまう。このダウングロースのポケットは,消毒液の到達を困難なものとし,表皮炎症やトンネル感染の要因となり,最終的には腹膜炎の誘発にも繋がっている。緑膿菌性の腹膜炎を頻繁に経験した患者においてSEP(硬化性被繭性腹膜炎)の発症率が高いという報告もあることを考慮すれば,カフ部材の改良による感染防止は腹膜透析療法の大きな課題であるといえる。
【0005】
このようなことから,上述の如く,コラーゲンを主成分とするカフ部材などが開発されているが,このようなカフ部材の場合,生理食塩水,アルコール,イソジン,血液,体液など液体を吸収することで体積が減少し,カテーテル刺入部に皮下組織を増殖させることが困難であり,その結果,ダウングロースの抑制効果は得られていない。
【0006】
本発明は,かかる従来技術の問題を顧みて達成されたものであり,生体皮下組織から細胞が容易に侵入,生着し,毛細血管が構築されることで皮下組織との癒着が頑強に得られ,その結果,ダウングロースの進行を抑制し,トンネル感染を始めとする各種の感染トラブルの少ないカフ部材を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明のカフ部材は,熱可塑性樹脂又は熱硬化性樹脂よりなる基材樹脂で形成された,平均孔径100〜1,000μmで,見掛け密度が0.01〜0.5g/cmの,連通性のある多孔性三次元網状構造部を有することを特徴とする。
【0008】
本発明のカフ部材は,上記特定の平均孔径及び見掛け密度を有する,熱可塑性樹脂又は熱硬化性樹脂からなる,連通性のある多孔性三次元網状構造部を有するため,この多孔性三次元網状構造部の空孔部分へ細胞が容易に侵入して生着し,生体組織と頑強な癒着が得られる。
【0009】
【発明の実施の形態】
以下に本発明のカフ部材の実施の形態を詳細に説明する。
【0010】
本発明のカフ部材を構成する熱可塑性樹脂又は熱硬化性樹脂からなる,連通性のある三次元網状構造部は,平均孔径が100〜1,000μm,見掛け密度が0.01〜0.5g/cmの多孔性三次元網状構造であれば良く,厚み方向の切断断面において,その全面が類似の構造を有してもいても,一方の面側と他方の面側において異なる構造を有していても良い。また,部分的に平均孔径や見掛け密度が変化するものであっても良く,例えば,一方の面側から他方の面側に向けて平均孔径や見掛け密度が徐々に変化する,所謂,異方性を有していても良い。また,生体組織との接触面側には平均孔径を大きく外れる大孔径の孔が存在しても構わない。このような孔としては500〜2,000μm程度の孔が好ましく,これらが生体組織側の表層近くに存在することでコラーゲンなどの細胞外マトリックスを深部まで均質に含浸させること容易となり,また,組織からの細胞の侵入や毛細血管の構築などに有利に働くこととなる。ただし,このような大孔径の孔は,本発明でいう多孔性三次元網状構造の平均孔径の計算の概念に導入されるものではない。
【0011】
本発明に係る多孔性三次元網状構造の平均孔径は100〜1,000μmで,見掛け密度が0.01〜0.5g/cmであるが,好ましい平均孔径は200〜600μm,より好ましくは200〜500μmである。見掛け密度としては0.01〜0.5g/cm範囲内であれば,細胞生着性が良好で,優れた物理的強度を維持し,細胞が侵入,生着し,組織化した際に皮下組織と近似した弾性特性が得られるが,好ましくは0.05〜0.3g/cm,より好ましくは0.05〜0.2g/cmである。
【0012】
また,平均孔径が同一であっても孔径の分布としては,細胞の侵入に重要な孔径サイズである150〜400μmの孔の寄与率が高いことが望ましく,孔径150〜400μmの孔の寄与率が10%以上,好ましくは20%以上,より好ましくは30%以上,更に好ましくは40%以上,特に好ましくは50%以上であると,細胞が侵入し易く,また,侵入した細胞が接着,成長しやすいため,好ましい。
【0013】
なお,多孔性三次元網状構造の平均孔径における孔径150〜400μmの孔の寄与率とは,後述の実施例1における平均孔径の測定方法における,全孔の数に対する孔径150〜400μmの孔の数の割合を指す。
【0014】
このような平均孔径,見掛け密度及び孔径分布の多孔性三次元網状構造であれば,細胞が容易に空孔部分へ浸透し,多孔性三次元網状構造部へ細胞が接着,成長し易く,毛細血管の構築がなされ,刺入部において皮下組織とカテーテルやカニューレとの癒着が頑強で良好なカフ部材を得ることができる。
【0015】
多孔性三次元網状構造部の厚みとしては0.2〜500.0mmが使用可能であるが,好ましくは0.2〜100.0mm,より好ましくは0.2〜50.0mm,特に好ましくは0.2〜10.0mm,とりわけ好ましくは0.2〜5.0mmであり,このような厚みであれば,カフ部材として必要な物理的強度,細胞の侵入,組織化,皮下組織との癒着性,細菌バリア性などを高いレベル満足することができる。
【0016】
このような多孔性三次元網状構造部を構成する熱可塑性樹脂又は熱硬化性樹脂としては,ポリウレタン樹脂,ポリアミド樹脂,ポリ乳酸樹脂,ポリオレフィン樹脂,ポリエステル樹脂,フッ素樹脂,尿素樹脂,フェノール樹脂,エポシキ樹脂,ポリイミド樹脂,アクリル樹脂及びメタクリル樹脂並びにそれらの誘導体の1種又は2種以上が例示できるが,好ましくはポリウレタン樹脂であり,中でもセグメント化ポリウレタン樹脂が好適である。
【0017】
セグメント化ポリウレタン樹脂は,ポリオール,ジイソシアネート及び鎖延長剤の3成分から合成され,いわゆるハードセグメント部分とソフトセグメント部分を分子内に有するブロックポリマー構造によるエラストマー特性を有するため,このようなセグメント化ポリウレタン樹脂を使用した場合に得られる弾性特性は,患者やカテーテル又はカニューレが動いた場合や,消毒作業時等に刺入部周辺の皮膚を動かした場合に皮下組織とカフ部材の界面に生じる応力を減衰させる効果が期待できる。
【0018】
本発明のカフ部材には,上記特定の多孔性三次元網状構造を形成した層を第1の層とし,この第1の層に更に異なる構造の第2の層を積層することも可能である。この第2の層としては,繊維集合体や可撓性フィルム,更には,第1の層の多孔性三次元網状構造とは平均孔径や見掛け密度が異なる多孔性三次元網状構造層が使用可能である。
【0019】
繊維集合体としては,例えば不織布や織布が例示でき,その厚みとしては0.1〜100.0mm,好ましくは0.1〜50.0mm,より好ましくは0.1〜10.0mm,とりわけ好ましくは0.1〜5.0mmであり,このような厚みであれば,多孔性三次元網状構造層と積層した際に良好な可撓性が得られ,皮下組織との縫合強度も頑強であり,好ましい。
【0020】
不織布又は織布の有孔性としては100〜5,000cc/cm/minの範囲のものであれば可撓性,皮下組織との縫合強度など点で好ましい。なお,この有孔性は,JIS L 1004により測定される値で,通気性や通気量ということもある。
【0021】
繊維集合体としては,ポリウレタン樹脂,ポリアミド樹脂,ポリ乳酸樹脂,ポリオレフィン樹脂,ポリエステル樹脂,フッ素樹脂,アクリル樹脂及びメタクリル樹脂並びにこれらの誘導体よりなる群から選択される1種又は2種以上からなる合成樹脂製であっても良く,また,フィブロイン,キチン,キトサン及びセルロース並びにこれらの誘導体から選択される1種又は2種以上のような天然物由来の繊維からなるものも使用可能である。合成繊維と天然物由来の繊維とを併用したものであっても良い。
【0022】
また,可撓性フィルムとしては,熱可塑性樹脂フィルム,具体的には,ポリウレタン樹脂,ポリアミド樹脂,ポリ乳酸樹脂,ポリオレフィン樹脂,ポリエステル樹脂,フッ素樹脂,尿素樹脂,フェノール樹脂,エポシキ樹脂,ポリイミド樹脂,アクリル樹脂及びメタクリル樹脂並びにこれらの誘導体よりなる群から選択される1種又は2種以上よりなるフィルムが例示でき,好ましくは,ポリエステル樹脂,フッ素樹脂,ポリウレタン樹脂,アクリル樹脂,塩化ビニール,フッ素樹脂及びシリコン樹脂よりなる群から選択される1種又は2種以上よりなるフィルムである。
【0023】
このような可撓性フィルムの厚みとしては,0.1〜500.0mmであると可撓性,物理的強度の点で有利なカフ部材が得られ,好ましくは0.1〜100.0mm,より好ましくは0.1mm〜50.0mm,さらに好ましくは0.1mm〜10.0mmである。
【0024】
可撓性フィルムとしては中実フィルムのみならず多孔膜や発泡体も使用可能である。中実の可撓性フィルムと積層した場合には,細菌バリア性が大きく,感染管理に有利なカフ部材が得られる。
【0025】
平均孔径や見掛け密度が第1の層の多孔性三次元網状構造とは異なる多孔性三次元網状構造を第2の層とする場合,この多孔性三次元網状構造としては,平均孔径0.1〜200μmで見掛け密度0.01〜1.0g/cm程度の多孔性三次元網状構造を用いることができる。この第2の層としての多孔性三次元網状構造層の厚みは0.2〜20.0mmであることが好ましい。
【0026】
これらの第2の層を多孔性三次元網状構造層に積層する方法としては,該第2の層が繊維集合体,可撓性フィルム,第1の層の多孔性三次元網状構造とは平均孔径や見掛け密度が異なる多孔性三次元網状構造層の場合には,粘着剤を使用して接着する方法,特にホットメルト不織布を第1の層と第2の層との間に挟みこんで積層し,加熱下で圧着する方法などが挙げられる。このようなホットメルト不織布としては,例えば,日東紡社製PA1001のようなポリアミド型熱粘着シートなどが使用可能である。他にも,溶剤を使用して接触表面の表層部を溶解して接着する方法,熱によって表層部を溶融して接着する方法,超音波や高周波を利用する方法などが例示できる。また,第1の層の製造時に,ポリマードープと繊維集合体や可撓性フィルムを積層して成形するなど,連続的に積層形成することができる。
【0027】
なお,第2の層としては,繊維集合体,可撓性フィルム,多孔性三次元網状構造層が2層以上設けられていても良く,また,第2の層を介して第1の層の多孔性三次元網状構造層が積層された3層構造であっても良い。
【0028】
本発明のカフ部材の多孔性三次元網状構造部には,コラーゲンタイプI,コラーゲンタイプII,コラーゲンタイプIII,コラーゲンタイプIV,アテロ型コラーゲン,フィブロネクチン,ゼラチン,ヒアルロン酸,ヘパリン,ケラタン酸,コンドロイチン,コンドロイチン硫酸,コンドロイチン硫酸B,エラスチン,ヘパラン硫酸,ラミニン,トロンボスポンジン,ビトロネクチン,オステオネクチン,エンタクチン,ヒドロキシエチルメタクリレートとジメチルアミノエチルメタクリレートの共重合体,ヒドロキシエチルメタクリレートとメタクリル酸の共重合体,アルギン酸,ポリアクリルアミド,ポリジメチルアクリルアミド及びポリビニルピロリドンよりなる群から選択される1種又は2種以上が保持されていても良く,更に血小板由来増殖因子,上皮増殖因子,形質転換増殖因子α,インスリン様増殖因子,インスリン様増殖因子結合蛋白,肝細胞増殖因子,血管内皮増殖因子,アンジオポイエチン,神経増殖因子,脳由来神経栄養因子,毛様体神経栄養因子,形質転換増殖因子β,潜在型形質転換増殖因子β,アクチビン,骨形質タンパク,繊維芽細胞増殖因子,腫瘍増殖因子β,二倍体繊維芽細胞増殖因子,ヘパリン結合性上皮増殖因子様増殖因子,シュワノーマ由来増殖因子,アンフィレグリン,ベーターセルリン,エピグレリン,リンホトキシン,エリスロエポイエチン,腫瘍壊死因子α,インターロイキン−1β,インターロイキン−6,インターロイキン−8,インターロイキン−17,インターフェロン,抗ウイルス剤,抗菌剤及び抗生物質よりなる群から選択される1種又は2種以上が保持されていても良く,更に,胚性幹細胞(分化されていても良い。),血管内皮細胞,中胚葉性細胞,平滑筋細胞,末梢血管細胞,及び中皮細胞よりなる群から選択される1種又は2種以上の細胞が接着されていても良い。
【0029】
また,本発明のカフ部材は,その多孔性三次元網状構造層を構築する熱可塑性樹脂又は熱硬化性樹脂からなる骨格自体にも微細な孔を設けることが可能である。このような微細孔は,骨格表面を平滑な表面でなく複雑な凹凸のある表面とし,コラーゲンや細胞増殖因子などの保持にも有効であり,結果として細胞の生着性を上げることが可能である。ただし,この場合の微細孔は,本発明でいう多孔性三次元網状構造層の平均孔径の計算の概念へ導入されるものではない。
【0030】
以下に,本発明のカフ部材を構成する熱可塑性ポリウレタン樹脂よりなる多孔性三次元網状構造体の製造方法の一例を挙げるが,本発明のカフ部材の製造方法は何ら以下の方法に限定されるものではない。
【0031】
熱可塑性ポリウレタン樹脂よりなる多孔性三次元網状構造体を製造するには,まず,ポリウレタン樹脂と,孔形成剤としての後述の水溶性高分子化合物と,ポリウレタン樹脂の良溶媒である有機溶媒とを混合してポリマードープを製造する。具体的には,ポリウレタン樹脂を有機溶媒に混合して均一溶液とした後,この溶液中に水溶性高分子化合物を混合分散させる。有機溶媒としては,N,N−ジメチルホルムアミド,N−メチル−2−ピロリジノン,テトラヒドロフランなどがあるが,熱可塑性ポリウレタン樹脂を溶解することができればこの限りではなく,また,有機溶媒を減量するか又は使用せずに熱の作用でポリウレタン樹脂を融解し,ここに孔形成剤を混合することも可能である。
【0032】
孔形成剤としての水溶性高分子化合物としては,ポリエチレングリコール,ポリプロピレングリコール,ポリビニルアルコール,ポリビニルピロリドン,アルギン酸,カルボキシメチルセルロース,ヒドロキシプロピルセルロース,メチルセルロース,エチルセルロースなどが挙げられるが,熱可塑性樹脂と均質に分散してポリマードープを形成するものであればこの限りではない。また,熱可塑性樹脂の種類によっては,水溶性高分子化合物でなく,フタル酸エステル,パラフィンなどの親油性化合物や塩化リチウム,炭酸カルシウムなどの無機塩類を使用することも可能である。また,高分子用の結晶核剤などを利用して凝固時の二次粒子の生成,即ち,多孔体の骨格形成を助長することも可能である。
【0033】
熱可塑性ポリウレタン樹脂,有機溶媒及び水溶性高分子化合物などより製造されたポリマードープは,次いで熱可塑性ポリウレタン樹脂の貧溶媒を含有する凝固浴中に浸漬し,凝固浴中に有機溶媒及び水溶性高分子化合物を抽出除去する。このように有機溶媒及び水溶性高分子化合物の一部又は全部を除去することにより,ポリウレタン樹脂からなる多孔性三次元網状構造材料を得ることができる。ここで用いる貧溶媒としては,水,低級アルコール,低炭素数のケトン類などが例示できる。凝固したポリウレタン樹脂は,最終的には,水などで洗浄して残留する有機溶媒や孔形成剤を除去すれば良い。
【0034】
【実施例】
以下に実施例を挙げて本発明をより具体的に説明するが,本発明はその要旨を超えない限り,以下の実施例により何ら限定されるものではない。
【0035】
(実施例1)
熱可塑性ポリウレタン樹脂(日本ミラクトラン社製,ミラクトランE980PNAT)をN−メチル−2−ピロリジノン(関東化学社製,ペプチド合成用試薬,NMP)にディゾルバー(約2,000rpm)を使用して室温下で溶解して7.5%溶液(重量/重量)を得た。このNMP溶液約1.0kgをプラネタリーミキサー(井上製作所製,2.0L仕込み,PLM−2型)に秤量して入れ,ポリウレタン樹脂の半分重量相当のメチルセルロース(関東化学社製,試薬,50cpグレード)を40℃で20分間攪拌して,攪拌を継続したまま10分間20mmHg(2.7kPa)まで減圧して脱泡する操作を加え,ポリマードープを得た。
【0036】
別に,厚み3mmで,内側の140mm×140mm部分を打抜いた150mm×150mmのテフロン製の四角枠を二枚重ね,これらの間に150mm×150mm角の化学実験用濾紙(東洋濾紙社製,定量分析用,1番)を挟み固定した。ここに前記ポリマードープを流延し,ガラス棒にて液切りした後,150mm×150mm角の化学実験用濾紙(東洋濾紙社製,定量分析用,1番)を載せて固定した。これを還流状態にあるメタノール中へ投入して72時間還流を継続して上下両面の化学実験用濾紙面からNMP溶媒を抽出除去することでポリウレタン樹脂を凝固させた。なお,メタノールは還流状態を維持したまま,随時新液と交換した。
【0037】
72時間後,テフロン枠から固化したポリウレタン樹脂を取り出し,日本薬局方精製水中で72時間洗浄することによりメチルセルロース,メタノール及び残留するNMPを抽出除去した。洗浄用の水は随時新液を供給した。これを,室温下で24時間減圧(20mmHg)乾燥させて,熱可塑性ポリウレタン樹脂製の多孔性三次元網状構造材料を得た。
【0038】
次に,140mm×140mmのポリエステル製ファブリックベロア(バード社,ボベイキー・ダブル・ベロア・ファブリック,有孔性3,800cc/cm/min,厚み1.5mm)にテトラヒドロフラン(関東化学社,試薬特級)を含浸させ,2本ロールで絞ることにより含浸量を0.104±0.002g/cmとし,ここに前記多孔性三次元網状構造材料を重ね合わせ,荷重1.0kg/cmで圧着させることにより本発明のカフ部材を得た。
【0039】
図1及び図2は,このカフ部材の走査型電子顕微鏡(トプコン社製,SM200)にて撮影した像であるが,得られたカフ部材の基材が孔径約350μmの多孔性三次元網状構造であることが分かる。
【0040】
得られたカフ部材の多孔性三次元網状構造部分(厚み2.3mm)について,下記方法により平均孔径及び見掛け密度の測定を行い,結果を表1に示した。なお,平均孔径と見掛け密度の測定において,試料の切断は両刃カミソリ(フェザー社製,ハイステンレス)を使用して室温下で行った。
【0041】
[平均孔径の測定]
両刃カミソリで切断した試料の平面(切断面)を電子顕微鏡(トプコン社製,SM200)にて撮影した写真を使用して,同一平面上の個々の孔を三次元網状構造の骨格から包囲された図形として画像処理(画像処理装置はニレコ社のLUZEX APを使用し,画像取り込みCCDカメラはSONYのLE N50を使用した。)し,個々の図形の面積を測定した。これを真円面積とし,対応する円の直径を求め孔径とした。多孔体の骨格部分に穿孔した微細孔は無視して同一平面上の連通孔のみを測定した。同時に,測定した全孔において孔径分布を測定し,図示したのが図3である。更に孔径分布測定結果から,孔径150〜400μm孔の寄与率を計測した。
【0042】
[見掛け密度の測定]
実施例1で製造し,第2の層を積層する前の三次元網状構造体を約10mm×10mm×3mmの直方体に両刃カミソリで切断した。この試料を投影機(Nikon,V−12)にて測定して得た寸法より体積を求め,その重量を体積で除した値から求めた。
【0043】
【表1】

Figure 2004097267
【0044】
表1より,第1の多孔性三次元網状構造層は,細胞接着に有効なサイズの孔を主体とする多孔性三次元網状構造であることが明らかである。
【0045】
(実施例2)
検体には成ヤギ(雌,体重54kg)を用い,剃毛された左側胸部より腹部表皮を試験部位とした。手術時,検体は左側臥位にて,通常手技を用い速やかに気管内挿管を行い,イソフルレンによる全身麻酔下にて維持された。胸腹部周囲表皮をイソジン消毒後,表皮を20mm切開し,実施例1で作成したカフ部材の試料片の半分を埋込み,皮下組織を縫合して貫通固定した(図4)。該カフ部材は,10mm×10mmの試験片に切断し,エチレンオキサイトガス滅菌を施したものを使用した。術後,試験部位は酸性水又はイソジンにて1日2回の消毒を行った。検体は自由給水とし,飼料としてヘイキューブを一日5回,適量(約1kg)を給仕した。術後2週間後に,全身麻酔下にて先に埋め込まれた試験片及び周囲の組織を摘出した。試験片と周囲の組織は密に生着し,互いの剥離は困難であった。また周囲に感染,炎症等の所見は認められなかった。
【0046】
図5(a)に,このカフ部材の生着部分をルーペで拡大した写真を示す。図5(a)の中の矢印で示される境界の不明瞭な乳白色の層がカフ部材の内部にも連続しており,また,カフ部材内部が透明な組織で充満しており肉芽組織が浸潤していることが確認された。
【0047】
図5(b)は織布(実施例1で用いたポリエステル製ファブリックベロア(バード社,ボベイキー・ダブル・ベロア・ファブリック))単体を用いて上記と同様に試験を行った場合のルーペによる拡大写真を示し,織布の表面に沿って乳白色の層が表皮から深い方向でのみ浸潤している,いわゆるダウングロース現象が確認された。
【0048】
これに対して,本発明のカフ部材では,乳白色の層が表皮近くまで連続して存在し,ダウングロースが抑制されていることが確認された。
【0049】
上記試験後,摘出された試料片は,10%中性緩衝ホルマリンにて速やかに固定され,常法にてHE染色標本を作成し,光学顕微鏡にて観察した。その結果,本発明のカフ部材の多孔性三次元網状構造層には,周囲組織より伸展した線維芽細胞,マクロファージおよび膠原線維などの細胞外基質を主体とする肉芽組織が浸潤し,また血管新生が確認された。
【0050】
また,4週間後に同様の手技にて得た標本から,埋没された試験片内には多量の肉芽組織が伸展し,より成熟した結合組織が形成されていることが認められ,更なる器質化が進んでいることが確認された。
【0051】
以上により,本発明のカフ部材は多孔性三次元網状構造層へ生体細胞が浸潤することにより器質化し,創傷部を外界と隔絶し,治癒機転における細菌感染等の増悪因子を防御することが示唆された。
【0052】
【発明の効果】
以上詳述した通り,本発明のカフ部材によれば,生体皮下組織から細胞が容易に侵入,生着し,毛細血管が構築されることで皮下組織との癒着が頑強に得られ,その結果,創傷部を外界と隔絶し,治癒機転における細菌感染等の増悪因子を防御ダウングロースの進行を抑制し,トンネル感染を始めとする各種の感染トラブルの少ないカフ部材が提供される。
【0053】
このような本発明のカフ部材は,カニューレやカテーテル類を皮下刺入する療法である補助人工心臓による血液循環法,腹膜透析療法,中心静脈栄養法,経カニューレDDS及び経カテーテルDDSなどの生体皮膚刺入部に好適に使用することができる。
【図面の簡単な説明】
【図1】実施例1で製造されたカフ部材の組織接触側の表面のSEM像(50倍)である。
【図2】実施例1で製造されたカフ部材の内部断面のSEM像(50倍)である。
【図3】実施例1で製造されたカフ部材の孔径分布を測定して得られた分布図である。
【図4】実施例1で製造されたカフ部材をヤギ胸部切開部位へ埋込み,皮下組織を縫合して貫通固定する手術を終えた直後の写真である。
【図5】図5(a)は,実施例1で製造されたカフ部材をヤギ胸部切開部位へ2週間埋込み,摘出した時の試験片周辺組織の拡大写真であり,図5(b)は,比較のため織布を用いて同様に試験を行った場合の試験片周辺組織の拡大写真の拡大写真である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cuff member capable of invading cells from a living tissue and obtaining a strong adhesion to the living tissue, and in particular, to a blood circulation method using an assisted artificial heart, which is a therapy for subcutaneously inserting a cannula or a catheter. The present invention relates to a cuff member useful for a living skin insertion portion such as peritoneal dialysis therapy, central parenteral nutrition, transcannula DDS and transcatheter DDS.
[0002]
[Prior art]
Unlike canals and catheters used in therapies such as ventricular assist devices and peritoneal dialysis, which have been developed recently, unlike urinary catheters, transgastrointestinal nutrition, and airway management, it is necessary to perform subcutaneous insertion and place them in the living body. There is. When indwelling in a living body for a long period of time, a cuff member (also called a skin cuff) is used to prevent bacteria from entering the living body and volatilizing water from the body, separating the living body from the outside world. It is practiced to seal the insertion section. Conventionally, in a blood circulation method using an artificial heart, a fabric velor mainly made of polyester fiber is wound around an insertion cannula, and the fabric velor and a subcutaneous tissue are fixed at the insertion portion by suturing, and the cannula is placed. In peritoneal dialysis therapy, a Fabry velor made of polyester fiber is fixed as a cuff member at the skin insertion position of the catheter, and the catheter is indwelled by suturing the subcutaneous tissue to press the cuff member. . Some of these fabric velours are impregnated with collagen or the like to achieve more robust adhesion. There is also a method in which a cuff member made of a member having excellent biocompatibility is fixed to the subcutaneous tissue at the puncture part.
[0003]
[Problems to be solved by the invention]
However, since the blood circulation method using the assisted artificial heart is a therapy that assists the blood circulation with a pulsation pump installed outside the patient, the vibration of the pulsation pump corresponding to about 1.5 Hz is transmitted to the cannula. That is, the insertion portion of the cannula is always subjected to a mechanical load due to vibration. Further, a stress that tends to peel off the adhesive interface between the subcutaneous tissue and the cuff member also occurs due to a change in the body position of the patient or movement of the cannula at the time of disinfection of the punctured portion. A typical example of a problem that is considered to be due to a decrease in the adhesion between the cuff member and the subcutaneous tissue due to these stress loads is an infection problem such as a tunnel infection. The number of experiences is very large. In many cases, therapy has to be discontinued due to bacterial infection rather than heart failure. In this therapy, it is urgently necessary to develop a cuff member that can prevent infection.
[0004]
Similarly, in peritoneal dialysis therapy in which a catheter is placed for a long period of time by performing subcutaneous insertion, there is a major problem with the cuff member. In other words, in this therapy, the catheter is placed in the abdominal cavity to inject and drain the dialysate, but the living body recognizes the catheter as a foreign substance and acts to remove the catheter, so that the subcutaneous tissue and the catheter adhere to each other. Otherwise, a downgrowth phenomenon occurs in which the epidermis enters the abdominal cavity along the catheter. These pockets of downgrowth make it difficult to reach the disinfectant solution, cause epidermal inflammation and tunnel infection, and eventually lead to peritonitis. Considering that there is a report that the incidence of SEP (sclerosing cocoon peritonitis) is high in patients who frequently experience Pseudomonas aeruginosa peritonitis, prevention of infection by improving cuff members is a major This is an issue.
[0005]
For this reason, as described above, a cuff member containing collagen as a main component has been developed. In the case of such a cuff member, a liquid such as physiological saline, alcohol, isodine, blood, or body fluid is absorbed. As a result, the volume is reduced, and it is difficult to grow the subcutaneous tissue at the catheter insertion site. As a result, the effect of suppressing downgrowth has not been obtained.
[0006]
The present invention has been achieved in view of the problems of the prior art, and cells can easily invade and engraft from a subcutaneous tissue of a living body, and a capillary is constructed, whereby adhesion with the subcutaneous tissue can be obtained robustly. As a result, it is an object of the present invention to provide a cuff member that suppresses the progress of downgrowth and has few troubles such as tunnel infection.
[0007]
[Means for Solving the Problems]
The cuff member of the present invention is made of a base resin made of a thermoplastic resin or a thermosetting resin, has an average pore diameter of 100 to 1,000 μm, and has an apparent density of 0.01 to 0.5 g / cm. 3 Characterized in that it has a porous three-dimensional network structure part with communication.
[0008]
Since the cuff member of the present invention has a continuous porous three-dimensional network structure made of a thermoplastic resin or a thermosetting resin having the specific average pore diameter and the apparent density described above, the porous three-dimensional network structure is used. Cells easily invade into the pores of the structural part and survive, and a strong adhesion with living tissue is obtained.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the cuff member of the present invention will be described in detail.
[0010]
The communicating three-dimensional network structure portion made of a thermoplastic resin or a thermosetting resin constituting the cuff member of the present invention has an average pore diameter of 100 to 1,000 μm and an apparent density of 0.01 to 0.5 g / cm 2. cm 3 Any cross-sectional structure in the thickness direction may be sufficient if the entire surface has a similar structure, but different structures on one side and the other side. Is also good. Further, the average pore diameter and the apparent density may partially change, for example, the so-called anisotropic, in which the average pore diameter and the apparent density gradually change from one surface side to the other surface side. May be provided. In addition, a large pore that largely deviates from the average pore diameter may exist on the contact surface side with the living tissue. As such pores, pores having a size of about 500 to 2,000 μm are preferable. When these pores are present near the surface layer on the side of the living tissue, it becomes easy to uniformly impregnate the extracellular matrix such as collagen into the deep part. It works favorably for the invasion of cells from the skin and the construction of capillaries. However, such a large pore size is not introduced into the concept of calculating the average pore size of the porous three-dimensional network structure according to the present invention.
[0011]
The average pore size of the porous three-dimensional network structure according to the present invention is 100 to 1,000 μm, and the apparent density is 0.01 to 0.5 g / cm. 3 However, the preferred average pore diameter is from 200 to 600 μm, more preferably from 200 to 500 μm. 0.01 to 0.5 g / cm as apparent density 3 Within this range, cell engraftability is good, excellent physical strength is maintained, and when cells invade, engraft, and organize, elastic properties similar to those of subcutaneous tissue can be obtained. 0.05-0.3g / cm 3 , More preferably 0.05 to 0.2 g / cm 3 It is.
[0012]
Further, even if the average pore diameter is the same, the pore diameter distribution is desirably such that the pores having a pore size of 150 to 400 μm, which are important for cell invasion, have a high contribution ratio, and the contribution ratio of pores having a pore diameter of 150 to 400 μm is high. When the content is 10% or more, preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, and particularly preferably 50% or more, the cells can easily invade, and the invaded cells adhere and grow. It is preferable because it is easy.
[0013]
The contribution ratio of the pores having a pore diameter of 150 to 400 μm in the average pore diameter of the porous three-dimensional network structure is the number of pores having a pore diameter of 150 to 400 μm with respect to the total number of pores in the method for measuring the average pore diameter in Example 1 described later. Refers to the percentage of
[0014]
With such a porous three-dimensional network having an average pore size, apparent density, and pore size distribution, cells can easily penetrate into pores, and cells can easily adhere to and grow on the porous three-dimensional network. A blood vessel is constructed, and the adhesion between the subcutaneous tissue and the catheter or cannula at the insertion site is strong, and a good cuff member can be obtained.
[0015]
The thickness of the porous three-dimensional network structure may be 0.2 to 500.0 mm, preferably 0.2 to 100.0 mm, more preferably 0.2 to 50.0 mm, and particularly preferably 0 to 50.0 mm. 0.2 to 10.0 mm, particularly preferably 0.2 to 5.0 mm. With such a thickness, the physical strength required for the cuff member, cell invasion, organization, and adhesion to subcutaneous tissue can be obtained. , A high level of bacterial barrier properties can be satisfied.
[0016]
Examples of the thermoplastic resin or thermosetting resin constituting such a porous three-dimensional network structure portion include polyurethane resin, polyamide resin, polylactic acid resin, polyolefin resin, polyester resin, fluorine resin, urea resin, phenol resin, epoxy resin, and the like. One or more of resin, polyimide resin, acrylic resin, methacrylic resin, and derivatives thereof can be exemplified, but a polyurethane resin is preferable, and a segmented polyurethane resin is particularly preferable.
[0017]
A segmented polyurethane resin is synthesized from three components of a polyol, a diisocyanate and a chain extender, and has an elastomer characteristic of a block polymer structure having a so-called hard segment portion and a soft segment portion in a molecule. The elastic properties obtained when using a pill attenuate the stress generated at the interface between the subcutaneous tissue and the cuff member when the patient, catheter or cannula is moved, or when the skin around the puncture is moved during disinfection. You can expect the effect to make it.
[0018]
In the cuff member of the present invention, it is also possible to use the layer having the specific porous three-dimensional network structure as a first layer, and further laminate a second layer having a different structure on the first layer. . As the second layer, a fiber aggregate or a flexible film, or a porous three-dimensional network layer having a different average pore size or apparent density from the porous three-dimensional network structure of the first layer can be used. It is.
[0019]
Examples of the fiber aggregate include a nonwoven fabric and a woven fabric, and the thickness thereof is 0.1 to 100.0 mm, preferably 0.1 to 50.0 mm, more preferably 0.1 to 10.0 mm, and particularly preferably. Is 0.1 to 5.0 mm. With such a thickness, good flexibility can be obtained when laminated with the porous three-dimensional network structure layer, and the suture strength with the subcutaneous tissue is robust. ,preferable.
[0020]
100 to 5,000 cc / cm for non-woven fabric or woven fabric 2 / Min is preferable in terms of flexibility, suture strength with a subcutaneous tissue, and the like. The porosity is a value measured according to JIS L 1004, and may be referred to as air permeability or air permeability.
[0021]
The fiber assembly is made of one or more selected from the group consisting of polyurethane resin, polyamide resin, polylactic acid resin, polyolefin resin, polyester resin, fluororesin, acrylic resin and methacrylic resin, and derivatives thereof. Resins may also be used, and fibers composed of fibers derived from natural products such as one or more selected from fibroin, chitin, chitosan, cellulose and derivatives thereof may also be used. Synthetic fibers and fibers derived from natural products may be used in combination.
[0022]
As the flexible film, a thermoplastic resin film, specifically, a polyurethane resin, a polyamide resin, a polylactic acid resin, a polyolefin resin, a polyester resin, a fluororesin, a urea resin, a phenol resin, an epoxy resin, a polyimide resin, Examples of the film include one or more films selected from the group consisting of acrylic resins, methacrylic resins, and derivatives thereof, and are preferably polyester resins, fluororesins, polyurethane resins, acrylic resins, vinyl chloride, fluororesins, and the like. It is a film composed of one or more selected from the group consisting of silicone resins.
[0023]
When the thickness of such a flexible film is 0.1 to 500.0 mm, a cuff member advantageous in terms of flexibility and physical strength can be obtained, and preferably 0.1 to 100.0 mm. More preferably, it is 0.1 mm to 50.0 mm, and still more preferably, it is 0.1 mm to 10.0 mm.
[0024]
As the flexible film, not only a solid film but also a porous film or a foam can be used. When laminated with a solid flexible film, a cuff member having a large bacterial barrier property and advantageous for infection control can be obtained.
[0025]
When the second layer is a porous three-dimensional network having a different average pore diameter or apparent density from the porous three-dimensional network of the first layer, the porous three-dimensional network has an average pore diameter of 0.1. ~ 200μm, apparent density 0.01 ~ 1.0g / cm 3 A degree of porous three-dimensional network can be used. The thickness of the porous three-dimensional network structure layer as the second layer is preferably 0.2 to 20.0 mm.
[0026]
As a method of laminating these second layers on the porous three-dimensional network structure layer, the second layer has an average of the fiber aggregate, the flexible film, and the porous three-dimensional network structure of the first layer. In the case of a porous three-dimensional network structure layer having different pore diameters and apparent densities, a method of bonding using a pressure-sensitive adhesive is used. In particular, a hot-melt nonwoven fabric is sandwiched between the first and second layers and laminated. Then, there is a method of pressing under heating. As such a hot-melt nonwoven fabric, for example, a polyamide-type thermo-adhesive sheet such as Nitto Bo's PA1001 can be used. Other examples include a method of dissolving and bonding the surface layer portion of the contact surface using a solvent, a method of melting and bonding the surface layer portion by heat, and a method of using ultrasonic waves or high frequency. Further, at the time of manufacturing the first layer, the polymer dope can be continuously laminated and formed by laminating and molding a fiber aggregate or a flexible film.
[0027]
As the second layer, two or more layers of a fiber assembly, a flexible film, and a porous three-dimensional network structure layer may be provided, or the first layer may be provided via the second layer. It may have a three-layer structure in which a porous three-dimensional network structure layer is laminated.
[0028]
The porous three-dimensional network structure of the cuff member of the present invention includes collagen type I, collagen type II, collagen type III, collagen type IV, atelocollagen, fibronectin, gelatin, hyaluronic acid, heparin, keratanic acid, chondroitin, Chondroitin sulfate, chondroitin sulfate B, elastin, heparan sulfate, laminin, thrombospondin, vitronectin, osteonectin, entactin, copolymer of hydroxyethyl methacrylate and dimethylaminoethyl methacrylate, copolymer of hydroxyethyl methacrylate and methacrylic acid, alginic acid , Polyacrylamide, polydimethylacrylamide, and polyvinylpyrrolidone, or one or more of them may be retained. Plate-derived growth factor, epidermal growth factor, transforming growth factor α, insulin-like growth factor, insulin-like growth factor binding protein, hepatocyte growth factor, vascular endothelial growth factor, angiopoietin, nerve growth factor, brain-derived neurotrophic factor , Ciliary neurotrophic factor, transforming growth factor β, latent transforming growth factor β, activin, bone plasma protein, fibroblast growth factor, tumor growth factor β, diploid fibroblast growth factor, heparin binding Epidermal growth factor-like growth factor, Schwanoma-derived growth factor, amphiregulin, betacellulin, epigrelin, lymphotoxin, erythroepoietin, tumor necrosis factor α, interleukin-1β, interleukin-6, interleukin-8, interleukin-8 The group consisting of leukin-17, interferon, antivirals, antibacterials and antibiotics One or more selected cells may be retained, and further, embryonic stem cells (which may be differentiated), vascular endothelial cells, mesodermal cells, smooth muscle cells, peripheral vascular cells, and One or more cells selected from the group consisting of mesothelial cells may be adhered.
[0029]
Further, in the cuff member of the present invention, it is possible to provide fine holes in the skeleton itself made of a thermoplastic resin or a thermosetting resin for constructing the porous three-dimensional network structure layer. Such micropores make the skeletal surface not a smooth surface but a complex uneven surface, and it is also effective for retaining collagen and cell growth factors, and as a result, it is possible to increase cell engraftment. is there. However, the fine pores in this case are not introduced into the concept of calculating the average pore diameter of the porous three-dimensional network structure layer in the present invention.
[0030]
The following is an example of a method for producing a porous three-dimensional network structure made of a thermoplastic polyurethane resin constituting the cuff member of the present invention. However, the method for producing a cuff member of the present invention is not limited to the following method. Not something.
[0031]
To manufacture a porous three-dimensional network structure made of a thermoplastic polyurethane resin, first, a polyurethane resin, a water-soluble polymer compound described later as a pore-forming agent, and an organic solvent that is a good solvent for the polyurethane resin are used. Mix to produce a polymer dope. Specifically, after a polyurethane resin is mixed with an organic solvent to form a uniform solution, a water-soluble polymer compound is mixed and dispersed in this solution. Examples of the organic solvent include N, N-dimethylformamide, N-methyl-2-pyrrolidinone, tetrahydrofuran and the like. However, this is not limited as long as the thermoplastic polyurethane resin can be dissolved. It is also possible to melt the polyurethane resin by the action of heat without using it and to mix the pore-forming agent therein.
[0032]
Examples of the water-soluble polymer compound as a pore-forming agent include polyethylene glycol, polypropylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, alginic acid, carboxymethylcellulose, hydroxypropylcellulose, methylcellulose, and ethylcellulose, which are homogeneously dispersed with a thermoplastic resin. This does not apply as long as it forms a polymer dope. Depending on the type of the thermoplastic resin, it is also possible to use lipophilic compounds such as phthalic acid esters and paraffin, and inorganic salts such as lithium chloride and calcium carbonate, instead of the water-soluble polymer compound. It is also possible to promote the formation of secondary particles during solidification, that is, the formation of a skeleton of a porous body, by using a crystal nucleating agent for a polymer or the like.
[0033]
The polymer dope produced from a thermoplastic polyurethane resin, an organic solvent, and a water-soluble polymer compound is then immersed in a coagulation bath containing a poor solvent of the thermoplastic polyurethane resin, and the organic solvent and the water-soluble polymer are mixed in the coagulation bath. Extract and remove molecular compounds. By removing a part or all of the organic solvent and the water-soluble polymer compound in this manner, a porous three-dimensional network material made of a polyurethane resin can be obtained. Examples of the poor solvent used here include water, lower alcohols, and ketones having a low carbon number. The solidified polyurethane resin may be finally washed with water or the like to remove the remaining organic solvent and pore-forming agent.
[0034]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist thereof.
[0035]
(Example 1)
A thermoplastic polyurethane resin (Milactran E980PNAT manufactured by Nippon Milactran Co., Ltd.) is dissolved in N-methyl-2-pyrrolidinone (Kanto Chemical Co., Inc., peptide synthesis reagent, NMP) using a dissolver (about 2,000 rpm) at room temperature. This gave a 7.5% solution (weight / weight). About 1.0 kg of this NMP solution was weighed and put into a planetary mixer (manufactured by Inoue Seisakusho, 2.0 L, PLM-2 type), and methylcellulose equivalent to half the weight of a polyurethane resin (manufactured by Kanto Kagaku Co., reagent, 50 cp grade) ) Was stirred at 40 ° C. for 20 minutes, and an operation of defoaming by reducing the pressure to 20 mmHg (2.7 kPa) for 10 minutes while continuing the stirring was added to obtain a polymer dope.
[0036]
Separately, two 150 mm × 150 mm square frames made of Teflon having a thickness of 3 mm and punched out of an inner 140 mm × 140 mm portion are stacked, and a 150 mm × 150 mm square filter paper for chemical experiment (manufactured by Toyo Roshi Kaisha, for quantitative analysis) , No. 1). The polymer dope was cast thereon, drained with a glass rod, and fixed with a 150 mm × 150 mm square filter paper for chemical experiment (manufactured by Toyo Roshi Kaisha, for quantitative analysis, No. 1). This was poured into methanol in a reflux state, and reflux was continued for 72 hours to extract and remove the NMP solvent from the upper and lower surfaces of the filter paper for chemical experiment, thereby coagulating the polyurethane resin. The methanol was replaced with a new solution at any time while maintaining the reflux state.
[0037]
After 72 hours, the solidified polyurethane resin was taken out of the Teflon frame and washed in purified water of the Japanese Pharmacopoeia for 72 hours to extract and remove methylcellulose, methanol and residual NMP. Fresh water was supplied as needed for washing water. This was dried under reduced pressure (20 mmHg) at room temperature for 24 hours to obtain a porous three-dimensional network structure material made of a thermoplastic polyurethane resin.
[0038]
Next, a 140 mm × 140 mm polyester fabric velor (Bird, Boveyy Double Velor Fabric, perforated 3,800 cc / cm) 2 / Min, thickness 1.5 mm) is impregnated with tetrahydrofuran (Kanto Chemical Co., reagent grade) and squeezed with two rolls to reduce the impregnation amount to 0.104 ± 0.002 g / cm. 2 Then, the porous three-dimensional network structure material is superimposed thereon, and the load is 1.0 kg / cm. 2 To obtain a cuff member of the present invention.
[0039]
FIGS. 1 and 2 are images of the cuff member taken by a scanning electron microscope (SM200, manufactured by Topcon Corporation). The obtained cuff member has a porous three-dimensional network structure having a pore diameter of about 350 μm. It turns out that it is.
[0040]
With respect to the porous three-dimensional network structure portion (2.3 mm thick) of the obtained cuff member, the average pore diameter and the apparent density were measured by the following methods, and the results are shown in Table 1. In the measurement of the average pore size and the apparent density, cutting of the sample was performed at room temperature using a double-edged razor (manufactured by Feather, high stainless steel).
[0041]
[Measurement of average pore size]
Using a photograph of a plane (cut surface) of a sample cut with a double-edged razor taken with an electron microscope (SM200 manufactured by Topcon Corporation), individual holes on the same plane were surrounded by a skeleton of a three-dimensional network structure. Image processing was performed on the figures (using an image processing apparatus using LUZEX AP manufactured by Nireco, and using an image capturing CCD camera using SONY LE 50). The area of each figure was measured. This was defined as the area of a perfect circle, and the diameter of the corresponding circle was determined as the hole diameter. Fine pores formed in the skeleton of the porous body were ignored, and only the communicating holes on the same plane were measured. At the same time, the pore size distribution was measured for all the measured pores, and is shown in FIG. Further, the contribution ratio of the pores having a pore diameter of 150 to 400 μm was measured from the pore diameter distribution measurement results.
[0042]
[Measurement of apparent density]
The three-dimensional network structure manufactured in Example 1 and before the second layer was laminated was cut into a rectangular parallelepiped of about 10 mm × 10 mm × 3 mm using a double-edged razor. The volume was determined from the dimensions obtained by measuring the sample with a projector (Nikon, V-12), and the volume was determined by dividing the weight by the volume.
[0043]
[Table 1]
Figure 2004097267
[0044]
From Table 1, it is clear that the first porous three-dimensional network structure layer is a porous three-dimensional network structure mainly composed of pores having a size effective for cell adhesion.
[0045]
(Example 2)
Adult goats (female, weighing 54 kg) were used as specimens, and the abdominal epidermis from the shaved left chest was used as a test site. At the time of surgery, the specimen was immediately intubated in the trachea in the left lateral position using conventional techniques, and maintained under general anesthesia with isoflurane. After the epidermis around the thorax and abdomen was disinfected with isodine, the epidermis was incised by 20 mm, half of the sample piece of the cuff member prepared in Example 1 was embedded, and the subcutaneous tissue was sutured and fixed through (FIG. 4). The cuff member was cut into a test piece of 10 mm × 10 mm and subjected to ethylene oxide gas sterilization. After the operation, the test site was disinfected twice a day with acidic water or isodine. The sample was supplied with water freely, and an appropriate amount (about 1 kg) of Hay Cube was fed as feed 5 times a day. Two weeks after the operation, the test piece previously implanted and the surrounding tissue were removed under general anesthesia. The test piece and the surrounding tissue adhered densely, and it was difficult to separate them from each other. No findings such as infection or inflammation were observed in the surroundings.
[0046]
FIG. 5A shows a photograph in which the engrafted portion of the cuff member is enlarged with a loupe. An indistinct milky layer indicated by an arrow in FIG. 5 (a) is also continuous inside the cuff member, and the inside of the cuff member is filled with a transparent tissue, and the granulation tissue is infiltrated. It was confirmed that.
[0047]
FIG. 5 (b) is an enlarged photograph of a loupe when a test is performed in the same manner as described above using only a woven fabric (polyester fabric velor used in Example 1 (Birdow, Boveyy Double Velor Fabric)). A so-called down-growth phenomenon was observed in which the milky white layer infiltrated only in the direction deep from the epidermis along the surface of the woven fabric.
[0048]
On the other hand, in the cuff member of the present invention, it was confirmed that the milky white layer was continuously present near the epidermis, and that the downgrowth was suppressed.
[0049]
After the above test, the extracted sample pieces were immediately fixed in 10% neutral buffered formalin, and HE stained specimens were prepared by a conventional method, and observed with an optical microscope. As a result, the porous three-dimensional network structure layer of the cuff member of the present invention is infiltrated with granulation tissue mainly composed of extracellular matrix such as fibroblasts, macrophages and collagen fibers extended from surrounding tissues, and angiogenesis. Was confirmed.
[0050]
Four weeks later, a specimen obtained by the same procedure showed that a large amount of granulation tissue had spread within the buried test piece, and that more mature connective tissue had been formed. It has been confirmed that progress has been made.
[0051]
The above suggests that the cuff member of the present invention is organized by the infiltration of living cells into the porous three-dimensional network structure layer, isolates the wound from the outside, and protects against exacerbation factors such as bacterial infection in the healing process. Was done.
[0052]
【The invention's effect】
As described in detail above, according to the cuff member of the present invention, cells easily invade and engraft from the subcutaneous tissue of a living body, and capillary blood vessels are constructed, whereby adhesion to the subcutaneous tissue is obtained, and as a result, The present invention provides a cuff member that isolates a wound from the outside world, protects against aggravating factors such as bacterial infection in the healing process, suppresses the progress of downgrowth, and reduces various infection troubles such as tunnel infection.
[0053]
Such a cuff member of the present invention can be used for a living skin such as a blood circulation method using an assisted artificial heart, a therapy for subcutaneously inserting a cannula or catheters, peritoneal dialysis therapy, central parenteral nutrition, transcannula DDS and transcatheter DDS. It can be suitably used for an insertion portion.
[Brief description of the drawings]
FIG. 1 is a SEM image (magnification: 50) of the surface of the cuff member manufactured in Example 1 on the tissue contact side.
FIG. 2 is an SEM image (magnification: 50) of the internal cross section of the cuff member manufactured in Example 1.
FIG. 3 is a distribution diagram obtained by measuring a pore size distribution of the cuff member manufactured in Example 1.
FIG. 4 is a photograph immediately after the operation of embedding the cuff member manufactured in Example 1 into a goat chest incision site and suturing and penetrating a subcutaneous tissue has been completed.
FIG. 5 (a) is an enlarged photograph of a tissue around a test piece when the cuff member manufactured in Example 1 is embedded in a goat chest incision site for 2 weeks and extracted, and FIG. 5 (b) is an enlarged photograph. 4 is an enlarged photograph of an enlarged photograph of a tissue around a test piece when a similar test is performed using a woven fabric for comparison.

Claims (42)

熱可塑性樹脂又は熱硬化性樹脂よりなる基材樹脂で形成された,平均孔径100〜1,000μmで,見掛け密度が0.01〜0.5g/cmの,連通性のある多孔性三次元網状構造部を有することを特徴とするカフ部材。An interconnected porous three-dimensional material having an average pore diameter of 100 to 1,000 μm and an apparent density of 0.01 to 0.5 g / cm 3 formed of a base resin made of a thermoplastic resin or a thermosetting resin. A cuff member having a net-like structure. 請求項1において,該多孔性三次元網状構造の平均孔径が200〜600μmで,見掛け密度が0.01〜0.5g/cmであることを特徴とするカフ部材。2. The cuff member according to claim 1, wherein the porous three-dimensional network has an average pore size of 200 to 600 [mu] m and an apparent density of 0.01 to 0.5 g / cm < 3 >. 請求項2において,該多孔性三次元網状構造の平均孔径が200〜500μmで,見掛け密度が0.01〜0.5g/cmであることを特徴とするカフ部材。 3. The cuff member according to claim 2, wherein the porous three-dimensional network structure has an average pore size of 200 to 500 μm and an apparent density of 0.01 to 0.5 g / cm 3 . 請求項1ないし3のいずれか1項において,該多孔性三次元網状構造の見掛け密度が0.05〜0.3g/cmであることを特徴とするカフ部材。In any one of claims 1 to 3, the cuff member apparent density of the porous three-dimensional network structure is characterized by a 0.05 to 0.3 g / cm 3. 請求項4において,該多孔性三次元網状構造の見掛け密度が0.05〜0.2g/cmであることを特徴とするカフ部材。In claim 4, the cuff member apparent density of the porous three-dimensional network structure is characterized by a 0.05 to 0.2 g / cm 3. 請求項1ないし5のいずれか1項において,該多孔性三次元網状構造の平均孔径における孔径150〜400μmの孔の寄与率が10%以上であることを特徴とするカフ部材。The cuff member according to any one of claims 1 to 5, wherein a contribution ratio of pores having a pore diameter of 150 to 400 m in an average pore diameter of the porous three-dimensional network structure is 10% or more. 請求項6において,該多孔性三次元網状構造の平均孔径における孔径150〜400μmの孔の寄与率が20%以上であることを特徴とするカフ部材。7. The cuff member according to claim 6, wherein a contribution ratio of pores having a pore diameter of 150 to 400 [mu] m in an average pore diameter of the porous three-dimensional network structure is 20% or more. 請求項7において,該多孔性三次元網状構造の平均孔径における孔径150〜400μmの孔の寄与率が30%以上であることを特徴とするカフ部材。8. The cuff member according to claim 7, wherein a contribution ratio of pores having a pore diameter of 150 to 400 [mu] m in the average pore diameter of the porous three-dimensional network structure is 30% or more. 請求項8において,該多孔性三次元網状構造の平均孔径における孔径150〜400μmの孔の寄与率が40%以上であることを特徴とするカフ部材。9. The cuff member according to claim 8, wherein a contribution rate of pores having a pore diameter of 150 to 400 [mu] m in an average pore diameter of the porous three-dimensional network structure is 40% or more. 請求項9において,該多孔性三次元網状構造の平均孔径における孔径150〜400μmの孔の寄与率が50%以上であることを特徴とするカフ部材。10. The cuff member according to claim 9, wherein a contribution ratio of pores having a pore diameter of 150 to 400 [mu] m in the average pore diameter of the porous three-dimensional network structure is 50% or more. 請求項1ないし10のいずれか1項において,該多孔性三次元網状構造部の厚みが0.2〜500.0mmであることを特徴とするカフ部材。The cuff member according to any one of claims 1 to 10, wherein the thickness of the porous three-dimensional network structure is 0.2 to 500.0 mm. 請求項11において,該多孔性三次元網状構造部の厚みが0.2〜100.0mmであることを特徴とするカフ部材。The cuff member according to claim 11, wherein the thickness of the porous three-dimensional network structure is 0.2 to 100.0 mm. 請求項12において,該多孔性三次元網状構造部の厚みが0.2〜50.0mmであることを特徴とするカフ部材。13. The cuff member according to claim 12, wherein the thickness of the porous three-dimensional network structure is 0.2 to 50.0 mm. 請求項13において,該多孔性三次元網状構造部の厚みが0.2〜10.0mmであることを特徴とするカフ部材。14. The cuff member according to claim 13, wherein the thickness of the porous three-dimensional network structure is 0.2 to 10.0 mm. 請求項14において,該多孔性三次元網状構造部の厚みが0.2〜5.0mmであることを特徴とするカフ部材。The cuff member according to claim 14, wherein the thickness of the porous three-dimensional network structure is 0.2 to 5.0 mm. 請求項1ないし15のいずれか1項において,該基材樹脂が,ポリウレタン樹脂,ポリアミド樹脂,ポリ乳酸樹脂,ポリオレフィン樹脂,ポリエステル樹脂,フッ素樹脂,尿素樹脂,フェノール樹脂,エポシキ樹脂,ポリイミド樹脂,アクリル樹脂及びメタクリル樹脂並びにこれらの誘導体よりなる群から選択される1種又は2種以上であることを特徴とするカフ部材。16. The method according to claim 1, wherein the base resin is a polyurethane resin, a polyamide resin, a polylactic acid resin, a polyolefin resin, a polyester resin, a fluororesin, a urea resin, a phenol resin, an epoxy resin, a polyimide resin, an acrylic resin. A cuff member comprising one or more members selected from the group consisting of a resin, a methacrylic resin, and a derivative thereof. 請求項16において,該基材樹脂がポリウレタン樹脂であることを特徴とするカフ部材。17. The cuff member according to claim 16, wherein the base resin is a polyurethane resin. 請求項17において,該ポリウレタン樹脂がセグメント化ポリウレタン樹脂であることを特徴とするカフ部材。18. The cuff member according to claim 17, wherein the polyurethane resin is a segmented polyurethane resin. 請求項1ないし18のいずれか1項において,該多孔性三次元網状構造よりなる第1の層と,該第1の層とは異なる第2の層との積層体であることを特徴とするカフ部材。19. The laminate according to any one of claims 1 to 18, wherein the laminate is a laminate of a first layer having the porous three-dimensional network structure and a second layer different from the first layer. Cuff members. 請求項19において,該第2の層が繊維集合体,可撓性フィルム,及び,前記第1の層の多孔性三次元網状構造とは異なる平均孔径及び/又は見掛け密度の多孔性三次元網状構造層よりなる群から選択される1種又は2種以上であることを特徴とするカフ部材。20. The porous three-dimensional network according to claim 19, wherein the second layer has a fiber aggregate, a flexible film, and an average pore size and / or an apparent density different from the porous three-dimensional network structure of the first layer. A cuff member comprising one or more members selected from the group consisting of structural layers. 請求項20において,該繊維集合体が不織布又は織布であることを特徴とするカフ部材。The cuff member according to claim 20, wherein the fiber aggregate is a nonwoven fabric or a woven fabric. 請求項21において,該不織布又は織布の厚みが0.1〜100.0mmであることを特徴とするカフ部材。22. The cuff member according to claim 21, wherein the nonwoven fabric or the woven fabric has a thickness of 0.1 to 100.0 mm. 請求項22において,該不織布又は織布の厚みが0.1〜50.0mmであることを特徴とするカフ部材。23. The cuff member according to claim 22, wherein the nonwoven fabric or the woven fabric has a thickness of 0.1 to 50.0 mm. 請求項23において,該不織布又は織布の厚みが0.1〜10.0mmであることを特徴とするカフ部材。The cuff member according to claim 23, wherein the nonwoven fabric or the woven fabric has a thickness of 0.1 to 10.0 mm. 請求項24において,該不織布又は織布の厚みが0.1〜5.0mmであることを特徴とするカフ部材。25. The cuff member according to claim 24, wherein the nonwoven fabric or the woven fabric has a thickness of 0.1 to 5.0 mm. 請求項21ないし25のいずれか1項において,該不織布又は織布の有孔性が100〜5,000cc/cm/minであることを特徴とするカフ部材。In any one of claims 21 to 25, the cuff member porosity of the nonwoven fabric or woven fabric is characterized in that it is a 100~5,000cc / cm 2 / min. 請求項19ないし26のいずれか1項において,該繊維集合体がポリウレタン樹脂,ポリアミド樹脂,ポリ乳酸樹脂,ポリオレフィン樹脂,ポリエステル樹脂,フッ素樹脂,アクリル樹脂及びメタクリル樹脂並びにこれらの誘導体よりなる群から選択される1種又は2種以上で構成されることを特徴とするカフ部材。27. The fiber assembly according to claim 19, wherein the fiber assembly is selected from the group consisting of polyurethane resin, polyamide resin, polylactic acid resin, polyolefin resin, polyester resin, fluororesin, acrylic resin, methacrylic resin and derivatives thereof. A cuff member comprising one or more of the following. 請求項19ないし26のいずれか1項において,該繊維集合体がフィブロイン,キチン,キトサン及びセルロース並びにこれらの誘導体よりなる群から選択される1種又は2種以上で構成されることを特徴とするカフ部材。The fiber assembly according to any one of claims 19 to 26, wherein the fiber aggregate is composed of one or more selected from the group consisting of fibroin, chitin, chitosan, cellulose, and derivatives thereof. Cuff members. 請求項19ないし28のいずれか1項において,該可撓性フィルムが熱可塑性樹脂フィルムであることを特徴とするカフ部材。The cuff member according to any one of claims 19 to 28, wherein the flexible film is a thermoplastic resin film. 請求項29において,該熱可塑性樹脂がポリウレタン樹脂,ポリアミド樹脂,ポリ乳酸樹脂,ポリオレフィン樹脂,ポリエステル樹脂,フッ素樹脂,尿素樹脂,フェノール樹脂,エポシキ樹脂,ポリイミド樹脂,シリコン樹脂,アクリル樹脂及びメタクリル樹脂並びにこれらの誘導体よりなる群から選択される1種又は2種以上であることを特徴とするカフ部材。30. The thermoplastic resin according to claim 29, wherein the thermoplastic resin is a polyurethane resin, a polyamide resin, a polylactic acid resin, a polyolefin resin, a polyester resin, a fluororesin, a urea resin, a phenol resin, an epoxy resin, a polyimide resin, a silicone resin, an acrylic resin and a methacrylic resin. A cuff member comprising one or more members selected from the group consisting of these derivatives. 請求項30において,該熱可塑性樹脂がポリ塩化ビニール,ポリウレタン樹脂,フッ素樹脂及びシリコン樹脂よりなる群から選択される1種又は2種以上であることを特徴とするカフ部材。31. The cuff member according to claim 30, wherein the thermoplastic resin is one or more selected from the group consisting of polyvinyl chloride, polyurethane resin, fluororesin, and silicone resin. 請求項19ないし31のいずれか1項において,該可撓性フィルムの厚みが0.1〜500.0mmであることを特徴とするカフ部材。The cuff member according to any one of claims 19 to 31, wherein the thickness of the flexible film is 0.1 to 500.0 mm. 請求項32において,該可撓性フィルムの厚みが0.1〜100.0mmであることを特徴とするカフ部材。33. The cuff member according to claim 32, wherein the thickness of the flexible film is 0.1 to 100.0 mm. 請求項33において,該可撓性フィルムの厚みが0.1〜50.0mmであることを特徴とするカフ部材。34. The cuff member according to claim 33, wherein the thickness of the flexible film is 0.1 to 50.0 mm. 請求項34において,該可撓性フィルムの厚みが0.1〜10.0mmであることを特徴とするカフ部材。35. The cuff member according to claim 34, wherein the thickness of the flexible film is 0.1 to 10.0 mm. 請求項19ないし35のいずれか1項において,該第2の層の多孔性三次元網状構造層の平均孔径が0.1〜200μmで,見掛け密度が0.01〜1.0g/cmであることを特徴とするカフ部材。36. The method according to claim 19, wherein the porous three-dimensional network structure layer of the second layer has an average pore size of 0.1 to 200 μm and an apparent density of 0.01 to 1.0 g / cm 3 . A cuff member comprising: 請求項19ないし36のいずれか1項において,該第2の層の多孔性三次元網状構造層の厚みが0.2〜20.0mmであることを特徴とするカフ部材。The cuff member according to any one of claims 19 to 36, wherein the thickness of the porous three-dimensional network structure layer of the second layer is 0.2 to 20.0 mm. 請求項1ないし37のいずれか1項において,該多孔性三次元網状構造部に,コラーゲンタイプI,コラーゲンタイプII,コラーゲンタイプIII,コラーゲンタイプIV,アテロ型コラーゲン,フィブロネクチン,ゼラチン,ヒアルロン酸,ヘパリン,ケラタン酸,コンドロイチン,コンドロイチン硫酸,コンドロイチン硫酸B,エラスチン,ヘパラン硫酸,ラミニン,トロンボスポンジン,ビトロネクチン,オステオネクチン,エンタクチン,ヒドロキシエチルメタクリレートとジメチルアミノエチルメタクリレートの共重合体,ヒドロキシエチルメタクリレートとメタクリル酸の共重合体,アルギン酸,ポリアクリルアミド,ポリジメチルアクリルアミド及びポリビニルピロリドンよりなる群から選択される1種又は2種以上が保持されていることを特徴とするカフ部材。38. The method according to any one of claims 1 to 37, wherein the porous three-dimensional network structure comprises collagen type I, collagen type II, collagen type III, collagen type IV, atherocollagen, fibronectin, gelatin, hyaluronic acid, heparin. , Keratanic acid, chondroitin, chondroitin sulfate, chondroitin sulfate B, elastin, heparan sulfate, laminin, thrombospondin, vitronectin, osteonectin, entactin, copolymer of hydroxyethyl methacrylate and dimethylaminoethyl methacrylate, hydroxyethyl methacrylate and methacrylic acid Or one or more selected from the group consisting of copolymers of alginic acid, polyacrylamide, polydimethylacrylamide and polyvinylpyrrolidone Cuff member characterized by being. 請求項38において,該多孔性三次元網状構造部に更に血小板由来増殖因子,上皮増殖因子,形質転換増殖因子α,インスリン様増殖因子,インスリン様増殖因子結合蛋白,肝細胞増殖因子,血管内皮増殖因子,アンジオポイエチン,神経増殖因子,脳由来神経栄養因子,毛様体神経栄養因子,形質転換増殖因子β,潜在型形質転換増殖因子β,アクチビン,骨形質タンパク,繊維芽細胞増殖因子,腫瘍増殖因子β,二倍体繊維芽細胞増殖因子,ヘパリン結合性上皮増殖因子様増殖因子,シュワノーマ由来増殖因子,アンフィレグリン,ベーターセルリン,エピグレリン,リンホトキシン,エリスロエポイエチン,腫瘍壊死因子α,インターロイキン−1β,インターロイキン−6,インターロイキン−8,インターロイキン−17,インターフェロン,抗ウイルス剤,抗菌剤及び抗生物質よりなる群から選択される1種又は2種以上が保持されていることを特徴とするカフ部材。39. The method according to claim 38, wherein the porous three-dimensional network further comprises platelet-derived growth factor, epidermal growth factor, transforming growth factor α, insulin-like growth factor, insulin-like growth factor-binding protein, hepatocyte growth factor, vascular endothelial growth. Factor, angiopoietin, nerve growth factor, brain-derived neurotrophic factor, ciliary neurotrophic factor, transforming growth factor β, latent transforming growth factor β, activin, bone plasma protein, fibroblast growth factor, tumor Growth factor β, diploid fibroblast growth factor, heparin-binding epidermal growth factor-like growth factor, schwanoma-derived growth factor, amphiregulin, betacellulin, epigrelin, lymphotoxin, erythropoietin, tumor necrosis factor α, Leukin-1β, interleukin-6, interleukin-8, interleukin-17, interleukin Ron, anti-viral agents, the cuff member, characterized in that one or more are selected from the group consisting of antimicrobial agents and antibiotics have been held. 請求項39において,該多孔性三次元網状構造部に細胞接着されていることを特徴とするカフ部材。40. The cuff member according to claim 39, wherein the cuff member is cell-adhered to the porous three-dimensional network structure. 請求項40において,該細胞が胚性幹細胞,血管内皮細胞,中胚葉性細胞,平滑筋細胞,末梢血管細胞及び中皮細胞よりなる群から選択される1種又は2種以上であることを特徴とするカフ部材。41. The method according to claim 40, wherein the cells are one or more selected from the group consisting of embryonic stem cells, vascular endothelial cells, mesodermal cells, smooth muscle cells, peripheral vascular cells, and mesothelial cells. Cuff member. 請求項41において,該胚性幹細胞が分化されたものであることを特徴とするカフ部材。42. The cuff member according to claim 41, wherein the embryonic stem cells are differentiated.
JP2002259848A 2002-03-28 2002-09-05 Cuff member Pending JP2004097267A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002259848A JP2004097267A (en) 2002-09-05 2002-09-05 Cuff member
PCT/JP2003/003594 WO2003082366A1 (en) 2002-03-28 2003-03-25 Tissue engineering scaffold material, aritficial vessel, cuff member and coating for implants
AU2003221090A AU2003221090C1 (en) 2002-03-28 2003-03-25 Tissue engineering scaffold material, artificial vessel, cuff member and coating for implants
CA2484012A CA2484012C (en) 2002-03-28 2003-03-25 Scaffold for tissue engineering, artificial blood vessel, cuff, and biological implant covering member
DE10392444T DE10392444T5 (en) 2002-03-28 2003-03-25 Scaffold for tissue processing, artificial blood vessel, cuff and biological implant covering member
TW92106841A TW200400811A (en) 2002-03-28 2003-03-26 Tissue engineering scaffold material, artificial vessel, cuff member and coating for implants
US10/950,620 US20050107868A1 (en) 2002-03-28 2004-09-28 Scaffold for tissue engineering, artificial blood vessel, cuff, and biological implant covering member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259848A JP2004097267A (en) 2002-09-05 2002-09-05 Cuff member

Publications (1)

Publication Number Publication Date
JP2004097267A true JP2004097267A (en) 2004-04-02

Family

ID=32260731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259848A Pending JP2004097267A (en) 2002-03-28 2002-09-05 Cuff member

Country Status (1)

Country Link
JP (1) JP2004097267A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1754495A2 (en) 2005-08-19 2007-02-21 Sun Medical Technology Research Corporation Sheet-like covering member used for implant medical device
JP2007068921A (en) * 2005-09-09 2007-03-22 National Cardiovascular Center Stoma
JP2007098116A (en) * 2005-09-09 2007-04-19 National Cardiovascular Center Cuff member and cuff member unit
JP2008544769A (en) * 2005-05-10 2008-12-11 アビオメッド・インコーポレイテッド Impregnated polymer compositions and devices using these compositions
JP2008295546A (en) * 2007-05-29 2008-12-11 National Cardiovascular Center Cuffed tube
JP2013520243A (en) * 2010-02-23 2013-06-06 エル−ヴイエイディー テクノロジー インコーポレイティッド Vacuum-assisted transcutaneous device
JP2015089433A (en) * 2013-11-06 2015-05-11 学校法人慈恵大学 Tissue regeneration material, manufacturing method thereof, and scaffold for tissue regeneration material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544769A (en) * 2005-05-10 2008-12-11 アビオメッド・インコーポレイテッド Impregnated polymer compositions and devices using these compositions
EP1754495A2 (en) 2005-08-19 2007-02-21 Sun Medical Technology Research Corporation Sheet-like covering member used for implant medical device
EP1754495A3 (en) * 2005-08-19 2009-05-06 Sun Medical Technology Research Corporation Sheet-like covering member used for implant medical device
JP2007068921A (en) * 2005-09-09 2007-03-22 National Cardiovascular Center Stoma
JP2007098116A (en) * 2005-09-09 2007-04-19 National Cardiovascular Center Cuff member and cuff member unit
JP4743501B2 (en) * 2005-09-09 2011-08-10 独立行政法人国立循環器病研究センター Stoma
JP2008295546A (en) * 2007-05-29 2008-12-11 National Cardiovascular Center Cuffed tube
JP2013520243A (en) * 2010-02-23 2013-06-06 エル−ヴイエイディー テクノロジー インコーポレイティッド Vacuum-assisted transcutaneous device
US10065030B2 (en) 2010-02-23 2018-09-04 Viaderm Llc Vacuum assisted percutaneous appliance
US10258784B2 (en) 2010-02-23 2019-04-16 Viaderm Llc Vacuum assisted percutaneous appliance
US11197988B2 (en) 2010-02-23 2021-12-14 Viaderm Llc Vacuum assisted percutaneous appliance
JP2015089433A (en) * 2013-11-06 2015-05-11 学校法人慈恵大学 Tissue regeneration material, manufacturing method thereof, and scaffold for tissue regeneration material

Similar Documents

Publication Publication Date Title
US20050107868A1 (en) Scaffold for tissue engineering, artificial blood vessel, cuff, and biological implant covering member
US20070198053A1 (en) Cuff member
JP2678945B2 (en) Artificial blood vessel, method for producing the same, and substrate for artificial blood vessel
EP0223415B1 (en) Biocompatible microporous polymeric materials and methods of making same
JP4777462B2 (en) Biocompatible wound dressing
JP3221690B2 (en) Collagen structure
JP2010088792A (en) Cuff member and cuff member unit
KR20160147719A (en) Systems and methods for tissue healing
DE2945138A1 (en) BIOCOMPATIBLE MATERIAL AND ITS USE
JP2004097267A (en) Cuff member
JP2007098116A (en) Cuff member and cuff member unit
AU2003221090B2 (en) Tissue engineering scaffold material, artificial vessel, cuff member and coating for implants
JP2011188989A (en) Cuff member and cuff member unit
JP2011160826A (en) Cuff member and cuff member unit
JP2010069224A (en) Cuff member, and cuff member unit
JP2008295480A (en) Tube with cuff member
JP2003284767A (en) Scaffolding material for system engineering and artificial blood vessel
JP2004097687A (en) Resin base material for living body, and production method therefor
JP2004097268A (en) Coating material for biological implantation member
JP2008104847A (en) Cuff member
JP4576143B2 (en) Hemostatic patch
JP2009028150A (en) Cuff member and cuff member unit
JP2008104848A (en) Cuff member
JP4743501B2 (en) Stoma
JP2011115273A (en) Cuff member and catheter with the same