【0001】
【発明の属する技術分野】
この発明は光エネルギーを電気エネルギーに変換する太陽電池、とくに色素増感型太陽電池とその製造方法に関する。
【0002】
【従来の技術】
色素増感型太陽電池はグレッツェル電池とも呼ばれているが、この電池は、酸化チタンなどの半導体電極にルテニウム錯体などの増感色素を付着させた光電極を使用し、この光電極と対向電極の間に電解質溶液を介在させて形成される。光電極に光を照射すると、増感色素が光を吸収して電子とホール(正孔)が発生する。ホールは電解質溶液から対向電極側へ移動する一方、電子は外部回路を経由して対向電極側へ移動する。このホールと電子の移動に伴って起電力が得られる。ホールが移動する電解質溶液はホール輸送層とも呼ばれる。このホール輸送層には通常、酸化還元対としてI3 −/I−を含む溶液が使用されている。
【0003】
【発明が解決しようとする課題】
色素増感型太陽電池において、上述した電解質溶液をホール輸送層に用いた場合、その溶液の揮発や劣化などにより、長期信頼性・耐久性の確保が困難であるという問題が生じる。そこで、ホール輸送層の固体化が検討されている。具体的には、CuIやCuSCNなどの一価の銅を含むp型無機半導体、ポリピロールやポリチオフェンなどの導電性高分子の使用が検討されている。特に導電性高分子を試用して構成した色素増感型太陽電池は光電変換率が非常に低くなってしまうという問題があった。つまり、ホール輸送層の固体化は、長期信頼性・耐久性の確保に有利であるが、光電変換効率の確保には著しく不利であり、このことが色素増感型太陽電池の高信頼化と高性能化を阻む大きな阻害要因となっていた。
【0004】
この発明は以上のような問題を鑑みてなされたもので、固体化されたホール輸送層を用いて形成される色素増感型太陽電池の光電変換効率を向上させることを目的とする。
【0005】
【課題を解決するための手段】
本発明は次のような手段を提供する。
すなわち、導電性基板上に増感色素が吸着された多孔質状の半導体電極を形成してなる光電極を使用し、この光電極と対向電極の間にホール輸送層を介在させることにより形成される色素増感型太陽電池とその製造方法において、上記ホール輸送層を化学酸化重合により形成される導電性高分子を用いて形成するとともに、その導電性高分子にヨウ化物イオンがドープされる。これにより、固体化されたホール輸送層を用いて形成される色素増感型太陽電池の光電変換効率を向上させることができる。
【0006】
上記手段において、ヨウ化物イオンは、導電性高分子化合物を形成するモノマーを過ヨウ素酸またはヨウ素酸を含む溶液を用いて化学酸化重合させることにより生じさせることできる。導電性高分子化合物を形成するモノマーとしては、たとえば、エチレンジオキシチオフェンまたはピロールを用いることができる。これにより、導電性高分子のモノマーを重合して高分子化することができるとともに、その高分子中にヨウ化物イオンをドープすることができる。
【0007】
【発明の実施の形態】
図1は、本発明による色素増感型太陽電池の構造モデルを示す。同図にモデル化して示す色素増感型太陽電池は、光電極10と対向電極30の間にホール輸送層20を介在させることにより形成されている。
【0008】
光電極10は、透明基板11上に透明導電膜12を形成し、この透明導電膜12上に多孔質状の金属酸化物半導体電極13を膜状に形成したものであって、金属半導体電極13には増感色素が吸着させられている。透明基板11と透明導電膜12は透明な導電性基板を形成する。ホール輸送層20は、化学酸化重合により形成された導電性高分子であって、ヨウ化物イオンがドープされている。対向電極30は透明基板31上に透明導電膜32を形成したものを使用する。以下、各構成要素の好適な形態を示す。
【0009】
[透明基板]
透明基板11としては、シリコン太陽電池や液晶表示パネル等に用いられているものを使用できる。具体的には、透明なガラス基板が好適に使用できる。ガラス基板は、表面を平滑に仕上げて光線透過性をもたせたもの、表面を適当に荒らすなどして光の反射を防止するようにしたもの、半透明のすりガラス状のものなどが使用できる。また、透明基板の材質はガラスに限らず、光を透過するものであれば、透明プラスチック板、無機物透明結晶体などでもよい。
【0010】
[透明導電膜]
透明導電膜12としては、シリコン太陽電池や液晶表示パネル等に用いられているものを使用できる。たとえば、透明基板上に酸化スズを付着させることにより、本発明での使用に適した透明導電膜を形成することができる。とくに、インジウム・スズ酸化物(ITO)や、フッ素をドープした酸化スズ(FTO)などの金属酸化物は、好適な透明導電膜を形成することができる。
【0011】
[半導体電極]
半導体電極13は、その材料としてたとえば、チタン、ニオブ、亜鉛、スズ、インジウム、ジルコニウム、イットリウム、ランタン、タンタルなどの酸化物が好適である。また、SrTiO3やCaTiO3などのベロブスカイト系酸化物も、本発明での使用に適している。これらの半導体材料を微結晶または多結晶状態にして薄膜化することにより、良好な多孔質状半導体電極を形成することができる。とくに、酸化チタンを用いた半導体電極層は上記光電極10に使用して好適である。
【0012】
[半導体電極の形成]
半導体電極は多孔質状とすることが好ましい。酸化チタンなどの金属酸化物半導体は、次のようにして多孔質状の半導体電極膜とすることができる。
まず、金属酸化物の微粒子を分散させた分散液を調製する。微粒子のサイズは1〜100nm(平均粒径)程度が適当であるが、好ましくは1〜50nm(平均粒径)とする。分散液としては、水、有機溶媒、または両者の混合物などであって、上記微粒子を分散させることができる溶媒を使用する。分散液中には、界面活性剤、粘度調節剤などを必要に応じて加えてもよい。
【0013】
次に、上記分散液を、透明導電膜で表面を導電化されたガラス基板上に塗布して乾燥する。塗布法としては、バーコーター法、ドクターブレード法、スクリーン印刷法などを用いることができる。塗布および乾燥の後、焼成して多孔質半導体膜を形成する。焼成は、空気、不活性ガス、窒素などの雰囲気条件下で行う。焼成温度は300〜600℃の範囲が適している。この範囲よりも焼成温度が低いと、金属酸化物半導体の粒子間での固着が十分に進まず、基板への付着力が弱くなって、十分な強度が得られなくなる。また、上記範囲よりも焼成温度が高いと、粒子間の固着が進みすぎて、表面積の大きな多孔質膜を形成できなくなる。
【0014】
[増感色素]
増感色素は、可視光領域および/または赤外領域に吸収を持つが望ましい。このような増感色素としては、金属錯体や有機色素を用いることができる。たとえば、ルテニウム錯体などの色素が好適である。この増感色素を上記多孔質状の半導体電極に付着させる。付着は、化学吸着、物理吸着または堆積などによって行うことができる。
【0015】
[ホール輸送層]
ホール輸送層20は、化学酸化重合により形成された導電性高分子を用いて形成する。この導電性高分子にはヨウ化物イオンをドープさせる。導電性高分子にヨウ化物イオンを含ませる方法として、まず、ヨウ化物イオン溶液中でモノマーを高分子に電解酸化重合させることを検討したが、これだと、ヨウ化物イオンが重合禁止剤として作用し、重合による高分子化が阻害されるという不具合が生じる。そこで、本発明では、導電性高分子を形成するモノマーを過ヨウ素酸またはヨウ素酸を含む溶液を用いて化学酸化重合させるにより、その重合された高分子中にヨウ化物イオンを生じさせるようにした。これより、上記モノマーを重合して高分子化することができるとともに、その高分子中にヨウ化物イオンをドープさせることができる。
【0016】
[対向電極]
対向電極30はガラス等の透明基板31上に透明導電膜32を形成したものであって、光電極10側の透明基板11および透明導電膜12と同様に形成することができる。さらに、この対向電極30では、透明導電膜32に白金を少量付着させたものがとくに好適である。また、導電膜32には、白金などの金属薄膜や炭素などの導電性膜なども好適に使用できる。
以下、本発明の具体的な実施例を示す。
【0017】
[実施例1,2]
(1)酸化チタン半導体電極の調製:
まず、酸化チタンの分散液を調製する。分散媒質である酸化チタンは、日本エアロゾル製超微粒子酸化チタン(P−25)を使用した。分散媒体である水は、界面活性剤(和光純薬製:TritonX−100)を0.5重量%含むとともに、粘度調製剤としてポリエチレングリコール(メルク製:分子量20,000)を溶解させたものを使用した。
【0018】
透明ガラス基板の表面に透明導電膜を形成した透明な導電性ガラス基板(50mm×50mm)を用意した。この導電性ガラス基板の導電面に上記分散液をパーコーターで塗布し、乾燥後に450℃で1時間焼成することにより、厚さ10μの多孔質状酸化チタン半導体電極膜を形成することができた。
【0019】
(2)増感色素の付着:
増感色素としてはシス−ジシアネート−ビス(2,2’−ビピリジル−4,4’−ジカルポキシレート)ルテニウム(II)を使用した。この色素を0.5m[mol]含むエタノール溶液に上記酸化チタン半導体電極付き基板(被処理基板)を浸漬し、溶液の沸点まで加熱して2時間還流させることにより色素を付着させ、光電極を形成した。
【0020】
(3)ホール輸送層の作製:
[実施例1]
EDOT(エチレンジオキシチオフェン)モノマー溶液を上記光電極上に塗布した後、酸化剤溶液を滴下し、室温で所定時間放置した。これを水洗した後、乾燥させて導電性高分子膜を形成した。これをホール輸送層と用いる。この場合、EDOTモノマー溶液は溶媒にアルコールを用いる。酸化剤溶液には過ヨウ素酸水溶液またはヨウ素酸水溶液を用いる。EDOTは化学酸化重合により高分子化され、また化学酸化重合に伴い、過ヨウ素酸またはヨウ素酸は、ヨウ化物イオンになると同時に高分子化されたEDOT(PEDOT)中に取り込まれる。
【0021】
上記のような反応は導電性高分子モノマーの化学酸化重合とともに酸化剤である過ヨウ素酸、またはヨウ素酸が還元され、導電性高分子中にヨウ化物イオンとしてドープされる。このようにしてホール輸送層が作製された光電極に対向電極を重ね合わせて本発明の色素増感型太陽電池(実施例1)を作製した。
【0022】
[実施例2]
ピロールモノマー溶液を、EDOTの場合と同様に上記光電極上に塗布した後、酸化剤溶液を滴下し、室温で所定時間放置した。これを水洗した後、乾燥させてホール輸送層を作製した。酸化剤溶液には過ヨウ素酸水溶液またはヨウ素酸水溶液を用いる。導電性高分子中にヨウ化物イオンをドープさせることができる。このようにしてホール輸送層が作製された光電極に対向電極を重ね合わせて本発明の色素増感型太陽電池(実施例2)を作製した。
【0023】
[比較例1,2]
実施例1,2の色素増感型太陽電池を評価するために、次のような比較例1,2を作製した。
[比較例1]
ホール輸送層として、上記光電極上にEDOTを電解酸化重合させて導電性高分子を形成した。電解酸化重合は、EDOTモノマー、支持電解質、溶媒から構成される電解液を用いて行った。溶媒はプロピレンカーボネート、アセトリニトリルなどを用いた。支持電解質としてはLiClO4、(n−C4H9)4NBF4、(n−C4H9)4NPF4、p−トルエンスルホン酸塩、ドデシルベンゼンスルホン酸塩を用いた。このようにしてホール輸送層が作製された光電極に対向電極を重ね合わせて色素増感型太陽電池(比較例1)を作製した。
【0024】
[比較例2]
ホール輸送層として、上記光電極上にピロールモノマーを電解酸化重合させて導電性高分子を形成した。電解酸化重合は比較例1と同様に行った。このようにしてホール輸送層が作製された光電極に対向電極を重ね合わせて色素増感型太陽電池(比較例2)を作製した。
【0025】
実施例1,2と比較例1,2の各色素増感型太陽電池の特性を調べたところ、次のような結果が得られた。
まず、実施例1と比較例1の各電池特性を擬似太陽光を用いて測定した。擬似太陽光は、キセノンランプの光をUVカットフィルタとM1.5フィルターを通して得た。強度1kW/m2の擬似太陽光を上記太陽電池セルに当てて、開路電圧(Voc)、短絡電流(Isc)、形状因子(F.F.)、および変換効率をそれぞれ同一条件で測定したところ、次のような結果を得た。
【0026】
[実施例1の測定結果]
開路電圧(Voc):0.6V
短絡電流(Isc):2mA/cm2
形状因子(F.F.):0.45
変換効率:0.54%
[比較例1の測定結果]
開路電圧(Voc):0.48V
短絡電流(Isc):1.64mA/cm2
形状因子(F.F.):0.35
変換効率:0.28%
【0027】
上記測定結果からもあきらかなように、本発明による電池では変換効率が大幅に向上している。この変換効率の向上は、PEDOT膜中にヨウ化物イオンがドープされたことにより、ホール輸送層内の電子伝導が、導電性高分子によるものだけではなく、ヨウ化物イオンによる伝導も行われるようになっているためと考えられる。
【0028】
なお、形状因子(F.F.)は、図2に示すように、最大出力時(Pmax)の電圧値Vと電流値Iとの積を閉路電圧Vocと短絡電流Iscとの積で割った値であると定義される。この形状因子(F.F.)の数値が大きいほど、実用電池としての特性が良好であることを示すが、本発明の電池(実施例1)では、その形状因子(F.F.)についても特性が向上している。
【0029】
次に、実施例2と比較例2の各電池特性を擬似太陽光を用いて測定した。測定の項目と条件は上述の場合と同様であって、ここでは次のような結果を得た。
【0030】
[実施例2の測定結果]
開路電圧(Voc):0.6V
短絡電流(Isc):0.5mA/cm2
形状因子(F.F.):0.6
変換効率:0.18%
[比較例2の測定結果]
開路電圧(Voc):0.3V
短絡電流(Isc):0.03mA/cm2
形状因子(F.F.):0.3
変換効率:0.03%
【0031】
上記測定結果からもあきらかなように、この場合も本発明による電池では変換効率が大幅に向上している。この変換効率の向上は、ポリピロール膜中にヨウ化物イオンがドープされたことにより、ホール輸送層内の電子伝導が、導電性高分子によるものだけではなく、ヨウ化物イオンによる伝導も行われるようになっているためと考えられる。
【0032】
以上、本発明をその代表的な実施例に基づいて説明したが、本発明は上述した以外にも種々の態様が可能である。たとえば、光電極は酸化物半導体以外の半導体を用いて形成することも可能である。
【0033】
【発明の効果】
本発明によれば、固体化されたホール輸送層を用いて形成される色素増感型太陽電池の光電変換効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明による色素増感型太陽電池の構造モデル図である。
【図2】色素増感型太陽電池の性能指標となる曲線因子の説明図である。
【符号の説明】
10 光電極
11 透明基板
12 透明導電膜
13 多孔質状の金属酸化物半導体電極
20 ホール輸送層
30 対向電極
31 透明基板
32 透明導電膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solar cell that converts light energy into electric energy, and more particularly to a dye-sensitized solar cell and a method for manufacturing the same.
[0002]
[Prior art]
Dye-sensitized solar cells are also called Gretzell cells, which use a photoelectrode in which a sensitizing dye such as a ruthenium complex is attached to a semiconductor electrode such as titanium oxide. It is formed with an electrolyte solution interposed therebetween. When light is applied to the photoelectrode, the sensitizing dye absorbs the light to generate electrons and holes. The holes move from the electrolyte solution to the counter electrode side, while the electrons move to the counter electrode side via an external circuit. An electromotive force is obtained as the holes and electrons move. The electrolyte solution in which holes move is also called a hole transport layer. Usually, a solution containing I 3 − / I − as a redox couple is used for the hole transport layer.
[0003]
[Problems to be solved by the invention]
In the dye-sensitized solar cell, when the above-described electrolyte solution is used for the hole transport layer, there is a problem that it is difficult to secure long-term reliability and durability due to volatilization and deterioration of the solution. Therefore, solidification of the hole transport layer has been studied. Specifically, the use of a p-type inorganic semiconductor containing monovalent copper such as CuI or CuSCN, or a conductive polymer such as polypyrrole or polythiophene has been studied. In particular, the dye-sensitized solar cell formed by using a conductive polymer has a problem that the photoelectric conversion rate is extremely low. In other words, the solidification of the hole transport layer is advantageous for securing long-term reliability and durability, but is extremely disadvantageous for securing photoelectric conversion efficiency, which leads to high reliability of the dye-sensitized solar cell. It was a major obstacle to high performance.
[0004]
The present invention has been made in view of the above problems, and has as its object to improve the photoelectric conversion efficiency of a dye-sensitized solar cell formed using a solidified hole transport layer.
[0005]
[Means for Solving the Problems]
The present invention provides the following means.
That is, it is formed by using a photoelectrode formed by forming a porous semiconductor electrode having a sensitizing dye adsorbed on a conductive substrate, and interposing a hole transport layer between the photoelectrode and the counter electrode. In the dye-sensitized solar cell and the method of manufacturing the same, the hole transport layer is formed using a conductive polymer formed by chemical oxidation polymerization, and the conductive polymer is doped with iodide ions. Thereby, the photoelectric conversion efficiency of the dye-sensitized solar cell formed using the solidified hole transport layer can be improved.
[0006]
In the above means, iodide ions can be generated by chemically oxidatively polymerizing a monomer forming a conductive polymer compound using a solution containing periodic acid or iodic acid. As the monomer forming the conductive polymer compound, for example, ethylenedioxythiophene or pyrrole can be used. Accordingly, the monomer of the conductive polymer can be polymerized to be polymerized, and the polymer can be doped with iodide ions.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a structural model of a dye-sensitized solar cell according to the present invention. The dye-sensitized solar cell modeled and shown in FIG. 1 is formed by interposing a hole transport layer 20 between a photoelectrode 10 and a counter electrode 30.
[0008]
The photoelectrode 10 is obtained by forming a transparent conductive film 12 on a transparent substrate 11 and forming a porous metal oxide semiconductor electrode 13 on the transparent conductive film 12 in a film shape. Has a sensitizing dye adsorbed thereon. The transparent substrate 11 and the transparent conductive film 12 form a transparent conductive substrate. The hole transport layer 20 is a conductive polymer formed by chemical oxidation polymerization, and is doped with iodide ions. The counter electrode 30 is formed by forming a transparent conductive film 32 on a transparent substrate 31. Hereinafter, preferred modes of each component will be described.
[0009]
[Transparent substrate]
As the transparent substrate 11, a substrate used for a silicon solar cell, a liquid crystal display panel, or the like can be used. Specifically, a transparent glass substrate can be suitably used. As the glass substrate, those having a smooth surface to impart light transmittance, those having a surface roughened to prevent light reflection, and those having a semi-transparent ground glass can be used. The material of the transparent substrate is not limited to glass, but may be a transparent plastic plate, an inorganic transparent crystal, or the like as long as it transmits light.
[0010]
[Transparent conductive film]
As the transparent conductive film 12, a material used for a silicon solar cell, a liquid crystal display panel, or the like can be used. For example, by depositing tin oxide on a transparent substrate, a transparent conductive film suitable for use in the present invention can be formed. In particular, metal oxides such as indium tin oxide (ITO) and fluorine-doped tin oxide (FTO) can form a suitable transparent conductive film.
[0011]
[Semiconductor electrode]
As the material of the semiconductor electrode 13, for example, oxides such as titanium, niobium, zinc, tin, indium, zirconium, yttrium, lanthanum, and tantalum are preferable. Also, perovskite-based oxides such as SrTiO 3 and CaTiO 3 are suitable for use in the present invention. By forming these semiconductor materials into a microcrystalline or polycrystalline state and forming a thin film, a favorable porous semiconductor electrode can be formed. In particular, a semiconductor electrode layer using titanium oxide is suitable for use in the photoelectrode 10.
[0012]
[Formation of semiconductor electrode]
The semiconductor electrode is preferably made porous. A metal oxide semiconductor such as titanium oxide can be formed into a porous semiconductor electrode film as follows.
First, a dispersion liquid in which metal oxide fine particles are dispersed is prepared. The size of the fine particles is suitably about 1 to 100 nm (average particle diameter), but preferably 1 to 50 nm (average particle diameter). As the dispersion, a solvent that can disperse the fine particles, such as water, an organic solvent, or a mixture of both, is used. A surfactant, a viscosity modifier and the like may be added to the dispersion as needed.
[0013]
Next, the dispersion is applied to a glass substrate whose surface is made conductive with a transparent conductive film and dried. As a coating method, a bar coater method, a doctor blade method, a screen printing method, or the like can be used. After the application and drying, baking is performed to form a porous semiconductor film. The calcination is performed under atmospheric conditions such as air, inert gas, and nitrogen. The firing temperature is preferably in the range of 300 to 600 ° C. If the firing temperature is lower than this range, the fixation between the particles of the metal oxide semiconductor does not proceed sufficiently, the adhesion to the substrate becomes weak, and sufficient strength cannot be obtained. On the other hand, if the firing temperature is higher than the above range, sticking between particles proceeds too much, so that a porous film having a large surface area cannot be formed.
[0014]
[Sensitizing dye]
The sensitizing dye desirably has absorption in the visible light region and / or the infrared region. As such a sensitizing dye, a metal complex or an organic dye can be used. For example, a dye such as a ruthenium complex is suitable. The sensitizing dye is attached to the porous semiconductor electrode. Attachment can be performed by chemisorption, physical adsorption or deposition.
[0015]
[Hole transport layer]
The hole transport layer 20 is formed using a conductive polymer formed by chemical oxidation polymerization. The conductive polymer is doped with iodide ions. As a method of including iodide ions in a conductive polymer, we first studied the electrolytic oxidation polymerization of monomers into the polymer in an iodide ion solution. In this case, the iodide ions acted as polymerization inhibitors. However, there arises a problem that the polymerization by polymerization is inhibited. Thus, in the present invention, a monomer forming a conductive polymer is chemically oxidized and polymerized using a solution containing periodic acid or iodic acid, so that iodide ions are generated in the polymerized polymer. . Thus, the above monomer can be polymerized to form a polymer, and the polymer can be doped with iodide ions.
[0016]
[Counter electrode]
The counter electrode 30 is formed by forming a transparent conductive film 32 on a transparent substrate 31 such as glass, and can be formed in the same manner as the transparent substrate 11 and the transparent conductive film 12 on the photoelectrode 10 side. Further, as the counter electrode 30, one obtained by attaching a small amount of platinum to the transparent conductive film 32 is particularly preferable. In addition, as the conductive film 32, a metal thin film such as platinum or a conductive film such as carbon can be suitably used.
Hereinafter, specific examples of the present invention will be described.
[0017]
[Examples 1 and 2]
(1) Preparation of titanium oxide semiconductor electrode:
First, a dispersion of titanium oxide is prepared. Ultrafine titanium oxide (P-25) manufactured by Japan Aerosol was used as the titanium oxide as the dispersion medium. Water as a dispersion medium contains 0.5 wt% of a surfactant (manufactured by Wako Pure Chemical Industries, Ltd .: Triton X-100) and a solution in which polyethylene glycol (manufactured by Merck: molecular weight 20,000) is dissolved as a viscosity modifier. used.
[0018]
A transparent conductive glass substrate (50 mm × 50 mm) having a transparent conductive film formed on the surface of a transparent glass substrate was prepared. The dispersion liquid was applied to the conductive surface of the conductive glass substrate with a per coater, dried, and baked at 450 ° C. for 1 hour to form a porous titanium oxide semiconductor electrode film having a thickness of 10 μm.
[0019]
(2) Attachment of sensitizing dye:
As the sensitizing dye, cis-dicyanate-bis (2,2′-bipyridyl-4,4′-dicaroxylate) ruthenium (II) was used. The substrate with a titanium oxide semiconductor electrode (substrate to be processed) is immersed in an ethanol solution containing 0.5 m [mol] of the dye, heated to the boiling point of the solution and refluxed for 2 hours to attach the dye, and the photoelectrode is formed. Formed.
[0020]
(3) Preparation of hole transport layer:
[Example 1]
After applying an EDOT (ethylenedioxythiophene) monomer solution on the photoelectrode, an oxidizing agent solution was added dropwise and left at room temperature for a predetermined time. This was washed with water and dried to form a conductive polymer film. This is used as a hole transport layer. In this case, the EDOT monomer solution uses alcohol as a solvent. An aqueous solution of periodic acid or an aqueous solution of iodic acid is used as the oxidizing agent solution. EDOT is polymerized by chemical oxidative polymerization, and with the chemical oxidative polymerization, periodic acid or iodic acid is converted into iodide ions and incorporated into the polymerized EDOT (PEDOT).
[0021]
In the above-described reaction, periodic acid or iodic acid as an oxidizing agent is reduced together with chemical oxidative polymerization of the conductive polymer monomer, and is doped into the conductive polymer as iodide ions. The dye-sensitized solar cell of the present invention (Example 1) was produced by superposing the counter electrode on the photoelectrode on which the hole transport layer was produced in this manner.
[0022]
[Example 2]
After the pyrrole monomer solution was applied on the photoelectrode in the same manner as in the case of EDOT, the oxidizing agent solution was added dropwise and left at room temperature for a predetermined time. This was washed with water and dried to form a hole transport layer. An aqueous solution of periodic acid or an aqueous solution of iodic acid is used as the oxidizing agent solution. The conductive polymer can be doped with iodide ions. The counter electrode was superimposed on the photoelectrode on which the hole transport layer was formed in this way, to produce a dye-sensitized solar cell of the present invention (Example 2).
[0023]
[Comparative Examples 1 and 2]
In order to evaluate the dye-sensitized solar cells of Examples 1 and 2, Comparative Examples 1 and 2 described below were produced.
[Comparative Example 1]
As the hole transport layer, EDOT was electrolytically oxidized and polymerized on the photoelectrode to form a conductive polymer. The electrolytic oxidation polymerization was performed using an electrolytic solution composed of an EDOT monomer, a supporting electrolyte, and a solvent. The solvent used was propylene carbonate, acetonitrile, or the like. As the supporting electrolyte, LiClO 4 , (nC 4 H 9 ) 4 NBF 4 , (nC 4 H 9 ) 4 NPF 4 , p-toluenesulfonate, and dodecylbenzenesulfonate were used. The dye-sensitized solar cell (Comparative Example 1) was produced by superposing the counter electrode on the photoelectrode on which the hole transport layer was produced in this way.
[0024]
[Comparative Example 2]
A pyrrole monomer was electrolytically oxidized and polymerized on the photoelectrode to form a conductive polymer as a hole transport layer. The electrolytic oxidation polymerization was performed in the same manner as in Comparative Example 1. A counter electrode was superimposed on the photoelectrode on which the hole transport layer was formed in this manner, to produce a dye-sensitized solar cell (Comparative Example 2).
[0025]
When the characteristics of each of the dye-sensitized solar cells of Examples 1 and 2 and Comparative Examples 1 and 2 were examined, the following results were obtained.
First, the battery characteristics of Example 1 and Comparative Example 1 were measured using simulated sunlight. The simulated sunlight obtained the light of a xenon lamp through a UV cut filter and an M1.5 filter. The simulated sunlight having an intensity of 1 kW / m 2 was applied to the solar cell, and the open-circuit voltage (Voc), short-circuit current (Isc), shape factor (FF), and conversion efficiency were measured under the same conditions. The following results were obtained.
[0026]
[Measurement result of Example 1]
Open circuit voltage (Voc): 0.6V
Short circuit current (Isc): 2 mA / cm 2
Form factor (FF): 0.45
Conversion efficiency: 0.54%
[Measurement Result of Comparative Example 1]
Open circuit voltage (Voc): 0.48V
Short circuit current (Isc): 1.64 mA / cm 2
Form factor (FF): 0.35
Conversion efficiency: 0.28%
[0027]
As is apparent from the above measurement results, the conversion efficiency of the battery according to the present invention is significantly improved. This improvement in conversion efficiency is achieved by doping the PEDOT film with iodide ions so that the electron conduction in the hole transport layer is not only conducted by the conductive polymer but also conducted by iodide ions. It is thought that it is.
[0028]
As shown in FIG. 2, the form factor (FF) is obtained by dividing the product of the voltage value V and the current value I at the maximum output (Pmax) by the product of the closed circuit voltage Voc and the short-circuit current Isc. Is defined as a value. The larger the numerical value of the form factor (FF), the better the characteristics as a practical battery, but the battery of the present invention (Example 1) has a larger shape factor (FF). The characteristics are also improved.
[0029]
Next, the battery characteristics of Example 2 and Comparative Example 2 were measured using simulated sunlight. The measurement items and conditions were the same as those described above, and the following results were obtained here.
[0030]
[Measurement result of Example 2]
Open circuit voltage (Voc): 0.6V
Short circuit current (Isc): 0.5 mA / cm 2
Form factor (FF): 0.6
Conversion efficiency: 0.18%
[Measurement result of Comparative example 2]
Open circuit voltage (Voc): 0.3V
Short circuit current (Isc): 0.03 mA / cm 2
Form factor (FF): 0.3
Conversion efficiency: 0.03%
[0031]
As is apparent from the above measurement results, in this case also, the conversion efficiency of the battery according to the present invention is significantly improved. This improvement in conversion efficiency is achieved by doping iodide ions into the polypyrrole film so that the electron conduction in the hole transport layer is not only conducted by the conductive polymer but also conducted by iodide ions. It is thought that it is.
[0032]
As described above, the present invention has been described based on the typical embodiments. However, the present invention can have various aspects other than those described above. For example, the photoelectrode can be formed using a semiconductor other than an oxide semiconductor.
[0033]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the photoelectric conversion efficiency of the dye-sensitized solar cell formed using the solidified hole transport layer can be improved.
[Brief description of the drawings]
FIG. 1 is a structural model diagram of a dye-sensitized solar cell according to the present invention.
FIG. 2 is an explanatory diagram of a fill factor serving as a performance index of a dye-sensitized solar cell.
[Explanation of symbols]
Reference Signs List 10 photoelectrode 11 transparent substrate 12 transparent conductive film 13 porous metal oxide semiconductor electrode 20 hole transport layer 30 counter electrode 31 transparent substrate 32 transparent conductive film