[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004062995A - Substrate for vertical magnetic recording medium and its manufacturing method, and vertical magnetic recording medium and its manufacturing method - Google Patents

Substrate for vertical magnetic recording medium and its manufacturing method, and vertical magnetic recording medium and its manufacturing method Download PDF

Info

Publication number
JP2004062995A
JP2004062995A JP2002219994A JP2002219994A JP2004062995A JP 2004062995 A JP2004062995 A JP 2004062995A JP 2002219994 A JP2002219994 A JP 2002219994A JP 2002219994 A JP2002219994 A JP 2002219994A JP 2004062995 A JP2004062995 A JP 2004062995A
Authority
JP
Japan
Prior art keywords
magnetic recording
layer
recording medium
substrate
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002219994A
Other languages
Japanese (ja)
Inventor
Sadayuki Watanabe
渡辺 貞幸
Yasushi Sakai
酒井 泰志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002219994A priority Critical patent/JP2004062995A/en
Publication of JP2004062995A publication Critical patent/JP2004062995A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for a vertical magnetic recording medium being superior in flatness, patterning accuracy, and mechanical strength, and its manufacturing method, and a vertical magnetic recording medium using the substrate and its manufacturing method. <P>SOLUTION: Surface layers of thermoplastic resin such as polycarbonate, polymethylmethacrylate, or the like are laminated, this surface layer is heated, a stamper in which a desired uneven pattern is formed is pressed, the pattern is transferred, and a substrate for vertical magnetic recording medium is made. Also, after a magnetic layer is formed on a whole surface of the surface layer of this substrate, a magnetic layer on the projecting part of the surface layer is removed, a base layer consisting of metal of hexagonal fine packing structure or its alloy or metal of face-centered cubic lattice structure or its alloy and a CoCrPt group magnetic recording layer, a granular magnetic recording layer, an RE-TM group alloy layer or a magnetic recording layer of a lamination film of Co/P or Co/Pd or the like are formed on only on the recessed part of the surface layer, and the vertical magnetic recording medium is made. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、垂直磁気記録媒体用基板およびその製造方法並びに垂直磁気記録媒体およびその製造方法に関し、より詳細には、平坦性、パターニング精度および機械的強度に優れた垂直磁気記録媒体用基板およびその製造方法並びにその基板を用いた垂直磁気記録媒体およびその製造方法に関する。
【0002】
【従来の技術】
周知のように、磁気記録媒体はサーボライタによって書き込まれたサーボ信号により、アドレス情報が与えられる。従って、高記録密度化を目的として記録トラック幅の狭小化を行う場合には、サーボ信号やトラックの高精度化が必要となってくる。そのためにはサーボライタと媒体駆動装置との間の高い位置精度が求められるために装置が高価格となることに加え、サーボライタによるサーボ信号の書き込みには媒体1枚につき数分間を要する。これらの制限は、磁気ディスクの量産性向上の障害となっている。
【0003】
このような問題点を克服するために、サーボ信号やトラックを予め媒体に備えるようにすることが提案されており、例えば、特開平5−6535号公報では、射出成型方法により金型のサーボパターンを転写したプラスチック基板を用いた記録媒体が提案されている。
【0004】
一方、高記録密度化については、例えば、特開平11−185291号公報では、表面に凹凸パターンを形成したシート状の基板上に記録層を形成した高密度化対応の記録媒体の発明が開示されており、さらなる高記録密度化のために、従来の連続膜型の磁気記録層にかえて、記録ビットが物理的に分離されたパターンド記録媒体が提案されている。
【0005】
典型的なパターンド媒体の作製方法は以下の通りである。
【0006】
まず、基板に連続膜磁気記録層を成膜し、その上にレジストを塗布して電子線リソグラフィによりパターンを描画する。次に、マスク膜を成膜した後、レジストを除去し、マスクされていない部分をRIE(Reactive Ion Etching)により取り除いた後にマスク膜を除去する。このような工程により、パターニングされた磁気記録層が得られる。
【0007】
このような方法により作製されたパターンド記録媒体は高記録密度化が達成されるものの、上述したような複雑な工程を必要とされるために生産性が低いという問題点がある。
【0008】
これに対して、より生産性に優れた記録媒体の作製方法としては、あらかじめ凹凸パターン化された基板のパターン内に磁性材料を埋め込むことでパターンド記録媒体とする方法がある。そのような基板としては、射出成型によってパターニングを施したプラスチック基板があり、射出成型によって簡便かつ安価にサーボパターン或いはビットパターンを形成することが可能である。
【0009】
【発明が解決しようとする課題】
しかしながら、射出成型によってプラスチック基板にパターニングを施す方法には、以下の2つの大きな問題があった。
【0010】
その1つは、高精度なパターンを転写しようとする場合には、金型温度と型締め圧を高く設定する必要があり、金型温度を高くすると、基板を金型から取り出して室温まで冷却させる際の温度差が大きくなって熱応力が基板に残留し基板の平坦性を低下させてしまうという問題がある。このことは、型締め圧を高くした場合についても同様である。すなわち、基板の平坦性を向上させることと基板に微細なパターンを転写させることとが両立しない。
【0011】
他の1つは、プラスチックという材料は、磁気記録媒体用基板として一般的に用いられているアルミやガラスに比ベて凹凸パターンの形成が容易である反面、その機械的強度が低く基板の薄型化が困難であるという問題である。
【0012】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、平坦性、パターニング精度および機械的強度に優れた凹凸パターンド垂直磁気記録媒体用基板およびその製造方法、並びに、その基板を用いた垂直磁気記録媒体およびその製造方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、このような目的を達成するために、請求項1に記載の発明は、垂直磁気記録媒体用基板であって、少なくとも支持層と表面層とが順次積層された積層構造を有し、前記表面層は、凹凸パターンが形成された熱可塑性樹脂からなり、前記支持層は、前記表面層よりも融点、ガラス転移点及び機械強度が大きい材料からなることを特徴とする。
【0014】
また、請求項2に記載の発明は、請求項1に記載の垂直磁気記録媒体用基板において、前記熱可塑性樹脂は、ポリカーボネートまたはポリメタクリル酸メチルであることを特徴とする。
【0015】
また、請求項3に記載の発明は、請求項1または2に記載の垂直磁気記録媒体用基板において、前記支持層は、アルミまたはガラスであることを特徴とする。
【0016】
さらに、請求項4に記載の発明は、垂直磁気記録媒体用基板の製造方法であって、支持層上に熱可塑性樹脂の表面層を積層するステップと、当該表面層を加熱して所望のパターンが形成されているスタンパを押し付けることにより凹凸パターンを転写するステップとを備えることを特徴とする。
【0017】
請求項5に記載の発明は、垂直磁気記録媒体であって、凹凸パターンを有する熱可塑性樹脂の表面層と、当該表面層よりも融点、ガラス転移点及び機械強度が大きい材料からなる支持層とが積層されており、前記表面層の凹凸パターンの凹部にのみ、下地層と磁気記録層とが順次積層されていることを特徴とする。
【0018】
また、請求項6に記載の発明は、請求項5に記載の垂直磁気記録媒体において、前記下地層は、六方細密充填構造の金属或いはその合金、若しくは、面心立方格子構造の金属或いはその合金からなることを特徴とする。
【0019】
また、請求項7に記載の発明は、請求項5または6に記載の垂直磁気記録媒体において、前記磁気記録層が、CoCrPt系磁気記録層、グラニュラ磁気記録層、RE−TM系合金層、或いは、Co/PtまたはCo/Pdの積層膜の何れかであることを特徴とする。
【0020】
さらに、請求項8に記載の発明は、垂直磁気記録媒体の製造方法において、請求項1ないし3の何れかに記載の垂直磁気記録媒体用基板が備える表面層の全面に第1および第2の磁性層を順次成膜するステップと、前記表面層の凸部上の前記第1および第2の磁性層を除去して凹部にのみ前記第1の磁性層からなる下地層と前記第2の磁性層からなる磁気記録層とを形成するステップとを備えることを特徴とする。
【0021】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
【0022】
図1は、本発明の垂直磁気記録媒体用基板の構成を説明するための図で、この基板は少なくとも2層以上の積層構造を有しており、図1には、支持基体(支持層)11と表面層12とからなる2層の積層構造の例が示されている。
【0023】
支持基体11は機械的強度の高い材料で構成することが好ましく、例えば、アルミやガラス等である。また、支持基体11の表面は平坦性に優れていることが好ましく、その平坦度は概ね10μm以下とされる。
【0024】
凹凸形状のパターニングが施される表面層12は熱可塑性樹脂で構成され、この熱可塑性樹脂の例としては、ポリカーボネート(PC)やポリメタクリル酸メチル(PMMA)の他、ポリエステル系やポリオレフィン系の材料を用いることが可能である。
【0025】
図2は、本発明の垂直磁気記録媒体用基板の製造方法を説明するための図で、支持基体11の全面に表面層12を形成し、この表面層12にスタンパ13を押し付けることによりスタンパ13の凹凸形状を転写する。なお、支持基体11の全面に表面層12を形成する方法としては、例えば、スピンコート法やディップ法を用いることができ、また、パターンの凹凸形状はスタンパ13に施す凹凸形状により任意に設定することができる。
【0026】
図3は、本発明の垂直磁気記録媒体の構造を説明するための図で、この垂直磁気記録媒体は、図1に示した構成の垂直磁気記録媒体用基板の凹凸パターンの凹の部分には下地層14と磁気記録層15とが順次積層され、保護膜16と液体潤滑層17とが基板全面を覆うように積層されている。
【0027】
下地層14としては、例えば、六方細密充填構造の金属或いはその合金、若しくは、面心立方格子構造の金属或いはその合金が好ましい。そのような六方細密充填構造の金属としては例えばTi、Zr、Ru、Zn、Tc、Re等があり、面心立方格子構造の金属としては例えばCu、Rh、Pd、Ag、Ir、Pt、Au、Ni、Co等がある。また、下地層14の膜厚は薄い方が好ましいが、充分な結晶成長を行うために3nm以上であることが好ましい。なお、この下地層14は、異なる材料を複数積層して構成することも可能である。
【0028】
磁気記録層15としては、一般的に用いられているCoCrPt系磁気記録層の他、強磁性の結晶粒とその結晶粒を取り巻く非磁性非金属の粒界とを有するグラニュラ磁気記録層や、TbCo等のRE−TM系合金或いはCo/PtやCo/Pdの積層膜を用いることができる。なお、垂直磁気記録媒体として用いるためには、強磁性の結晶粒は膜面に対して垂直異方性をもつことが必要である。
【0029】
また、保護膜16には例えばカーボンを主体とする薄膜が用いられ、液体潤滑材層17には例えばパーフルオロポリエーテル系の潤滑剤を用いることができる。
【0030】
下地層14、磁気記録層15、保護膜16の形成には、磁気記録媒体の作製に一般的に用いられる、真空蒸着法、DCスパッタリング法、RFスパッタリング法などの成膜技術が利用可能であり、液体潤滑材層17の形成には、例えば、ディップ法やスピンコート法などを用いることができる。
【0031】
以下に、本発明の実施例および比較例について説明する。
(垂直磁気記録媒体用基板の実施例および比較例)
[実施例1]
非磁性の支持基体として、外径65mm、内径20mm、厚さ0.6mmの円盤状のガラスディスクを用い、これを洗浄後に、へキサンに溶解したPMMAをスピンコート法によりガラスディスク上に50nm形成して表面層とした。なお、このときのガラスディスクの平坦性は1μm、PMMAの濃度は0.5wt%とした。
【0032】
その後、真空加圧装置に導入し、支持基体とスタンパとを180℃になるまで加熱してスタンパにより圧力12MPaで表面層に型押してスタンパの凹凸パターンを転写した。その状態で100℃まで冷却した後に表面層とスタンパとを離型して真空加圧装置から取り出した。
【0033】
なお、本実施例で用いたスタンパには電子ビームリソグラフィを用いて、φ100nm、高さ50nmの円筒形の凹凸パターンが形成されている。
【0034】
[比較例1]
比較例として、熱可塑性樹脂材料としては実施例1と同様のPMMAを用い、外径65mm、内径20mmの円盤形状の熱可塑性樹脂ディスク(基板)を射出成型により形成した。この射出成型では、実施例1と同様のパターンを有する金型を用いている。なお、射出成型の際の樹脂温度は300℃とし、基板の厚さを0.6〜1.2mmまで変化させた。
【0035】
(垂直磁気記録媒体の実施例および比較例)
[実施例2]
実施例1で作製したものと全く同様の非磁性の基板を用い、これを洗浄後スパッタ装置内に導入し、Ni15Fe27Crターゲットを用いてArガス圧5mTorr下でNiFeCr層を15nm成膜した。これに続いてRuターゲットを用い、Arガス圧30mTorr下でRu層を15nm成膜してNiFeCr/Ru積層下地層とした。その後、Co20Cr10Ptターゲットを用いてCoCrPt磁気記録層をArガス圧5mTorr下で25nm成膜した後スパッタ装置から取り出した。
【0036】
次に、ダイヤモンドスラリを用い、基板に備える表面層の凸部の最表面まで研磨することにより、凸部上のNiFeCr/Ru/CoCrPt各層を全て除去した。なお、研磨量はレーザ変位計でモニタし、変位量の変化が急激に落ちたところを終点とした。
【0037】
これを洗浄後、スパッタ装置内に導入し、カーボンターゲットを用いてArガス圧8mTorr下でカーボンからなる保護層6nmを成膜後、真空装置から取り出した。その後、パーフルオロポリエーテルからなる液体潤滑材層2nmをディップ法により形成してパターンド垂直磁気記録媒体とした。なお、下地層、磁気記録層、保護層の成膜は、DCマグネトロンスパッタリング法により行った。
【0038】
[比較例2]
実施例2で用いた基板のうち、厚さ0.6mmのものと全く同様の基板を用いた以外は全て実施例2と同様の条件でパターンド垂直磁気記録媒体を作製した。
【0039】
[比較例3]
実施例2で用いた基板のうち、厚さ1.2mmのものと全く同様の基板を用いた以外は全て実施例2と同様の条件でパターンド垂直磁気記録媒体を作製した。
【0040】
[比較例4]
非磁性の基板として、表面が平滑な化学強化ガラス基板(例えばHOYA社製N−5ガラス基板)を用い、これを洗浄後スパッタ装置内に導入し、Ni15Fe27Crターゲットを用いてArガス圧5mTorr下でNiFeCr層を15nm成膜した。これに続いて、Ruターゲットを用い、Arガス圧30mTorr下でRu層を15nm成膜し、NiFeCr/Ru積層下地層とした。
【0041】
さらに、Co20Cr10Ptターゲットを用いてCoCrPt磁気記録層をArガス圧5mTorr下で20nm成膜し、引き続いて、カーボンターゲットを用いてArガス圧8mTorr下でカーボンからなる保護層6nmを成膜後、真空装置から取り出した。その後、パーフルオロポリエーテルからなる液体潤滑材層2nmをディップ法により形成して垂直磁気記録媒体とした。なお、下地層、磁気記録層、保護層の成膜は、DCマグネトロンスパッタリング法により行った。
【0042】
以下に、これらの各実施例及び比較例の評価結果について説明する。
【0043】
実施例1及び比較例1で得られた垂直磁気記録媒体用基板については、これらの基板の平坦度及びパターンの転写率について評価した。その結果を表1に示す。
【0044】
【表1】

Figure 2004062995
【0045】
ここで、平坦度は、基板中心から半径方向へ11mmから30mmまでの直線領域に関して基板表面形状の変位量を非接触光学式表面粗さ計にて真直度を求めた。具体的には、各基板について、円周方向に90°おきに4箇所の測定を行い、その中で最大の真直度をその基板面の平坦度とした。
【0046】
また、転写率は、パターンの設計値φ100nm×深さ50nmに対して、±5%以内の誤差を合格その他を不合格とし、評価したパターン100個のうち合格したパターンの割合を転写率とした。なお、この評価にはAFM(原子間力顕微鏡)を用いた。
【0047】
平坦度に関しては、実施例1の垂直磁気記録媒体用基板は、支持基体として用いたガラスディスクの平坦性をそのまま反映して1μmであった。比較例1の射出成型で作製したプラスチック基板は、板厚を厚くすると平坦度が小さくなる傾向が認められるものの、最も平坦性に優れる板厚1.2mmのものでも実施例1の垂直磁気記録媒体用基板に比べると非常に大きい。
【0048】
また、転写率に関しては、実施例1では100%の確率が得られたのに対し、比較例1では全ての板厚で80〜84%に留まっており、本発明の優位性が確認された。
【0049】
このように、本発明によれば、平坦性に優れ、かつ、パターンの転写性にも優れた垂直磁気記録媒体用基板が作製できることがわかる。また、射出成型により作製される熱可塑性樹脂基板では困難な薄型化が可能であることもわかる。
【0050】
実施例2及び比較例2〜4については、垂直磁気記録媒体の保磁力と、磁気ヘッドのGlide Hight特性(G.H.特性)について評価した。その結果を表2に示す。
【0051】
【表2】
Figure 2004062995
【0052】
ここで、保磁力はVSMで得られたM‐Hループより求めた。G.H.特性試験は、回転させた媒体の上に試験用のへッドを飛ばし、媒体表面の突起、パーティクル、うねり等を検知するもので、試験条件は、周速7m/sec、G.H.12.5nmとし、各々100枚ずつ評価を行って合格率を求めた。
【0053】
まず、保磁力の評価結果について説明する。磁気記録層が連続膜になっている比較例4の垂直磁気記録媒体の保磁力は410Oeと小さく、磁性粒間の相互作用が非常に大きくなっていることがわかる。これに比ベ、磁気記録層がパターニングされている実施例2、比較例2及び3の垂直磁気記録媒体の各々は大きな保磁力を示している。このことから、実施例2、比較例2及び3の垂直磁気記録媒体の磁性粒間の相互作用が小さいこと、すなわちbitが物理的に分離していることが確認できる。
【0054】
ただし、比較例2と3の垂直磁気記録媒体の保磁力は、実施例2の垂直磁気記録媒体の保磁力に比ベて小さい。また、比較例2と3の垂直磁気記録媒体を比較すると、基板厚さの薄い比較例2の方が保磁力が小さい。
【0055】
この結果と上述の比較例2及び3の平坦性及びパターン転写率が低いことを併せて考えると、実施例1に比べ比較例2及び3では基板表面の平坦性が低いために研磨の正確度が低下して磁気的に繋がったビットが存在することや、パターンの転写率が低く形状にばらつきが多く存在することがわかる。
【0056】
G.H.試験特性の評価結果をみると、実施例1の垂直磁気記録媒体では、パターニングを施さない比較例4の垂直磁気記録媒体とほぼ同等の合格率であり、研磨等の工程を経た後でも優れた基板表面特性を示すことが分かる。これに対して、既に説明したように、基板作製後に平坦性の低い比較例2及び3の垂直磁気記録媒体は、この試験をほとんど合格することができないことから、パターンド記録媒体とした後もそれを反映した結果となることがわかる。
【0057】
【発明の効果】
以上述べたように、本発明によれば、アルミまたはガラス等の支持基板(支持層)上に、ポリカーボネートまたはポリメタクリル酸メチル等の熱可塑性樹脂の表面層を積層し、この表面層を加熱して所望のパターンが形成されているスタンパを押し付けて凹凸パターンを転写することとしたので、基板にとって重要な平滑性を確保しつつ表面に凹凸パターンを備えた垂直磁気記録媒体用基板を提供することができ、かつ、基板の薄型化も可能となる。
【0058】
また、本発明の垂直磁気記録媒体用基板を用いることにより、優れた表面形状のパターンド垂直磁気記録媒体を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の垂直磁気記録媒体用基板の構成を説明するための図である。
【図2】本発明の垂直磁気記録媒体用基板の製造方法を説明するための図である。
【図3】本発明の垂直磁気記録媒体の構造を説明するための図である。
【符号の説明】
11 支持基体
12 表面層
13 スタンパ
14 下地層
15 磁気記録層
16 保護膜
17 液体潤滑層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a substrate for a perpendicular magnetic recording medium and a method for manufacturing the same, and a perpendicular magnetic recording medium and a method for manufacturing the same. More specifically, the present invention relates to a substrate for a perpendicular magnetic recording medium having excellent flatness, patterning accuracy and mechanical strength, and a method for manufacturing the same. The present invention relates to a manufacturing method, a perpendicular magnetic recording medium using the substrate, and a manufacturing method thereof.
[0002]
[Prior art]
As is well known, a magnetic recording medium is provided with address information by a servo signal written by a servo writer. Therefore, when narrowing the recording track width for the purpose of increasing the recording density, it is necessary to increase the accuracy of servo signals and tracks. For this purpose, a high positional accuracy between the servo writer and the medium driving device is required, so that the device becomes expensive, and writing of a servo signal by the servo writer requires several minutes per medium. These restrictions are an obstacle to improving the mass productivity of magnetic disks.
[0003]
In order to overcome such a problem, it has been proposed to provide a servo signal and a track on a medium in advance. For example, in Japanese Patent Application Laid-Open No. 5-6535, a servo pattern of a mold is formed by an injection molding method. There has been proposed a recording medium using a plastic substrate onto which is transferred.
[0004]
On the other hand, with respect to increasing the recording density, for example, Japanese Patent Application Laid-Open No. H11-185291 discloses the invention of a high-density recording medium in which a recording layer is formed on a sheet-like substrate having an uneven pattern formed on the surface. In order to further increase the recording density, a patterned recording medium in which recording bits are physically separated has been proposed in place of the conventional continuous film type magnetic recording layer.
[0005]
A typical method for producing a patterned medium is as follows.
[0006]
First, a continuous magnetic recording layer is formed on a substrate, a resist is applied thereon, and a pattern is drawn by electron beam lithography. Next, after forming a mask film, the resist is removed, and the unmasked portion is removed by RIE (Reactive Ion Etching), and then the mask film is removed. Through these steps, a patterned magnetic recording layer is obtained.
[0007]
Although the patterned recording medium manufactured by such a method achieves a high recording density, it has a problem that productivity is low because the above-described complicated steps are required.
[0008]
On the other hand, as a method of manufacturing a recording medium with higher productivity, there is a method of embedding a magnetic material in a pattern of a substrate which has been previously patterned into a patterned recording medium. As such a substrate, there is a plastic substrate patterned by injection molding, and a servo pattern or a bit pattern can be formed easily and inexpensively by injection molding.
[0009]
[Problems to be solved by the invention]
However, the method of patterning a plastic substrate by injection molding has the following two major problems.
[0010]
One of them is that when transferring high-precision patterns, it is necessary to set the mold temperature and the mold clamping pressure high. When the mold temperature is increased, the substrate is taken out of the mold and cooled to room temperature. There is a problem that a temperature difference at the time of performing the heat treatment becomes large, and thermal stress remains on the substrate, thereby reducing the flatness of the substrate. This is the same when the mold clamping pressure is increased. That is, improving the flatness of the substrate and transferring a fine pattern to the substrate are not compatible.
[0011]
On the other hand, a plastic material is easier to form a concavo-convex pattern than aluminum or glass, which is generally used as a substrate for a magnetic recording medium, but has a low mechanical strength and a thin substrate. This is a problem that is difficult to achieve.
[0012]
The present invention has been made in view of such a problem, and its object is to provide a substrate for an uneven patterned perpendicular magnetic recording medium excellent in flatness, patterning accuracy and mechanical strength, and a method for manufacturing the same, and And a method of manufacturing the perpendicular magnetic recording medium using the substrate.
[0013]
[Means for Solving the Problems]
In order to achieve such an object, the present invention provides a substrate for a perpendicular magnetic recording medium, which has a laminated structure in which at least a support layer and a surface layer are sequentially laminated. The surface layer is made of a thermoplastic resin having a concavo-convex pattern, and the support layer is made of a material having a higher melting point, glass transition point, and mechanical strength than the surface layer.
[0014]
According to a second aspect of the present invention, in the substrate for a perpendicular magnetic recording medium according to the first aspect, the thermoplastic resin is polycarbonate or polymethyl methacrylate.
[0015]
According to a third aspect of the present invention, in the perpendicular magnetic recording medium substrate according to the first or second aspect, the support layer is made of aluminum or glass.
[0016]
Further, the invention according to claim 4 is a method for manufacturing a substrate for a perpendicular magnetic recording medium, comprising the steps of: laminating a surface layer of a thermoplastic resin on a support layer; and heating the surface layer to obtain a desired pattern. Transferring a concave and convex pattern by pressing a stamper on which the pattern is formed.
[0017]
The invention according to claim 5 is a perpendicular magnetic recording medium, wherein a surface layer of a thermoplastic resin having a concavo-convex pattern, and a support layer made of a material having a higher melting point, glass transition point, and mechanical strength than the surface layer. Are laminated, and the underlayer and the magnetic recording layer are sequentially laminated only in the concave portions of the concavo-convex pattern of the surface layer.
[0018]
According to a sixth aspect of the present invention, in the perpendicular magnetic recording medium according to the fifth aspect, the underlayer is a metal having a hexagonal close-packed structure or an alloy thereof, or a metal having a face-centered cubic lattice structure or an alloy thereof. It is characterized by comprising.
[0019]
According to a seventh aspect of the present invention, in the perpendicular magnetic recording medium according to the fifth or sixth aspect, the magnetic recording layer is a CoCrPt-based magnetic recording layer, a granular magnetic recording layer, a RE-TM-based alloy layer, or , Co / Pt or Co / Pd laminated film.
[0020]
Further, according to an eighth aspect of the present invention, in the method for manufacturing a perpendicular magnetic recording medium, the first and second surfaces are provided on the entire surface layer of the substrate for a perpendicular magnetic recording medium according to any one of the first to third aspects. Forming a magnetic layer in order, removing the first and second magnetic layers on the protrusions of the surface layer and removing the underlayer consisting of the first magnetic layer only in the recesses and the second magnetic layer. Forming a magnetic recording layer composed of a layer.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022]
FIG. 1 is a view for explaining the structure of a substrate for a perpendicular magnetic recording medium according to the present invention. This substrate has a laminated structure of at least two layers, and FIG. 1 shows a support base (support layer). 1 shows an example of a two-layer laminated structure including a surface layer 11 and a surface layer 12.
[0023]
The support base 11 is preferably made of a material having high mechanical strength, for example, aluminum or glass. Further, the surface of the support base 11 is preferably excellent in flatness, and the flatness is generally set to 10 μm or less.
[0024]
The surface layer 12 on which the uneven pattern is formed is made of a thermoplastic resin. Examples of the thermoplastic resin include, for example, polycarbonate (PC) and polymethyl methacrylate (PMMA), as well as polyester and polyolefin materials. Can be used.
[0025]
FIG. 2 is a view for explaining a method for manufacturing a substrate for a perpendicular magnetic recording medium according to the present invention. A surface layer 12 is formed on the entire surface of a support base 11, and the stamper 13 is pressed against the surface layer 12. Is transferred. In addition, as a method of forming the surface layer 12 on the entire surface of the support base 11, for example, a spin coating method or a dipping method can be used, and the uneven shape of the pattern is arbitrarily set by the uneven shape applied to the stamper 13. be able to.
[0026]
FIG. 3 is a diagram for explaining the structure of the perpendicular magnetic recording medium of the present invention. This perpendicular magnetic recording medium has a concave portion of the concave / convex pattern of the perpendicular magnetic recording medium substrate having the structure shown in FIG. The underlayer 14 and the magnetic recording layer 15 are sequentially laminated, and the protective film 16 and the liquid lubrication layer 17 are laminated so as to cover the entire surface of the substrate.
[0027]
As the underlayer 14, for example, a metal having a hexagonal close-packed structure or an alloy thereof, or a metal having a face-centered cubic lattice structure or an alloy thereof is preferable. Such metals having a hexagonal close-packed structure include, for example, Ti, Zr, Ru, Zn, Tc, and Re, and metals having a face-centered cubic lattice structure include, for example, Cu, Rh, Pd, Ag, Ir, Pt, and Au. , Ni, Co and the like. The thickness of the underlayer 14 is preferably thin, but is preferably 3 nm or more for sufficient crystal growth. The underlayer 14 may be formed by laminating a plurality of different materials.
[0028]
Examples of the magnetic recording layer 15 include a generally used CoCrPt-based magnetic recording layer, a granular magnetic recording layer having ferromagnetic crystal grains and a non-magnetic, non-metallic grain boundary surrounding the crystal grains, and a TbCo. Or a laminated film of Co / Pt or Co / Pd. For use as a perpendicular magnetic recording medium, ferromagnetic crystal grains need to have perpendicular anisotropy with respect to the film surface.
[0029]
For example, a thin film mainly composed of carbon is used for the protective film 16, and a perfluoropolyether-based lubricant can be used for the liquid lubricant layer 17, for example.
[0030]
For formation of the underlayer 14, the magnetic recording layer 15, and the protective film 16, a film forming technique such as a vacuum evaporation method, a DC sputtering method, and an RF sputtering method, which is generally used for manufacturing a magnetic recording medium, can be used. The liquid lubricant layer 17 can be formed by, for example, a dipping method or a spin coating method.
[0031]
Hereinafter, Examples and Comparative Examples of the present invention will be described.
(Example and Comparative Example of Substrate for Perpendicular Magnetic Recording Medium)
[Example 1]
A disc-shaped glass disk having an outer diameter of 65 mm, an inner diameter of 20 mm, and a thickness of 0.6 mm was used as a non-magnetic support base, and after washing, a 50 nm PMMA dissolved in hexane was formed on the glass disk by spin coating. To form a surface layer. At this time, the flatness of the glass disk was 1 μm, and the concentration of PMMA was 0.5 wt%.
[0032]
Thereafter, the substrate was introduced into a vacuum pressurizing apparatus, the support base and the stamper were heated until the temperature reached 180 ° C., and the stamper was embossed on the surface layer at a pressure of 12 MPa to transfer the pattern of the stamper. After cooling to 100 ° C. in that state, the surface layer and the stamper were released from the mold and taken out of the vacuum pressurizing device.
[0033]
The stamper used in this embodiment has a cylindrical concavo-convex pattern having a diameter of 100 nm and a height of 50 nm formed by electron beam lithography.
[0034]
[Comparative Example 1]
As a comparative example, a disc-shaped thermoplastic resin disk (substrate) having an outer diameter of 65 mm and an inner diameter of 20 mm was formed by injection molding using the same PMMA as in Example 1 as the thermoplastic resin material. In this injection molding, a mold having a pattern similar to that of the first embodiment is used. In addition, the resin temperature at the time of injection molding was set to 300 ° C., and the thickness of the substrate was changed from 0.6 to 1.2 mm.
[0035]
(Example and Comparative Example of Perpendicular Magnetic Recording Medium)
[Example 2]
A non-magnetic substrate exactly the same as that prepared in Example 1 was used, washed, introduced into a sputtering apparatus, and a NiFeCr layer was formed to a thickness of 15 nm under an Ar gas pressure of 5 mTorr using a Ni15Fe27Cr target. Subsequently, a Ru layer was formed to a thickness of 15 nm under an Ar gas pressure of 30 mTorr using a Ru target to form a NiFeCr / Ru laminated underlayer. Thereafter, using a Co20Cr10Pt target, a CoCrPt magnetic recording layer was formed to a thickness of 25 nm under an Ar gas pressure of 5 mTorr and then taken out of the sputtering apparatus.
[0036]
Next, all the NiFeCr / Ru / CoCrPt layers on the projection were removed by polishing the surface of the surface layer provided on the substrate to the outermost surface of the projection using a diamond slurry. The amount of polishing was monitored with a laser displacement meter, and the point at which the change in the amount of displacement sharply dropped was taken as the end point.
[0037]
After washing, it was introduced into a sputtering apparatus, and a protective layer made of carbon having a thickness of 6 nm was formed under a Ar gas pressure of 8 mTorr using a carbon target, and then taken out of the vacuum apparatus. Thereafter, a 2 nm liquid lubricant layer made of perfluoropolyether was formed by dipping to obtain a patterned perpendicular magnetic recording medium. The formation of the underlayer, the magnetic recording layer, and the protective layer was performed by a DC magnetron sputtering method.
[0038]
[Comparative Example 2]
A patterned perpendicular magnetic recording medium was manufactured under the same conditions as in Example 2 except that the substrate used in Example 2 was exactly the same as that having a thickness of 0.6 mm.
[0039]
[Comparative Example 3]
A patterned perpendicular magnetic recording medium was manufactured under the same conditions as in Example 2 except that the substrate used in Example 2 was exactly the same as that having a thickness of 1.2 mm.
[0040]
[Comparative Example 4]
As a non-magnetic substrate, a chemically strengthened glass substrate (for example, N-5 glass substrate manufactured by HOYA) having a smooth surface is used, washed, introduced into a sputtering apparatus, and a Ni15Fe27Cr target is used under an Ar gas pressure of 5 mTorr. A 15 nm NiFeCr layer was formed. Subsequently, a Ru layer was formed to a thickness of 15 nm under an Ar gas pressure of 30 mTorr using a Ru target to form a NiFeCr / Ru laminated underlayer.
[0041]
Furthermore, a CoCrPt magnetic recording layer was formed to a thickness of 20 nm under an Ar gas pressure of 5 mTorr using a Co20Cr10Pt target, and subsequently a protective layer made of carbon was formed to a thickness of 6 nm under an Ar gas pressure of 8 mTorr using a carbon target. Removed from Thereafter, a 2 nm liquid lubricant layer made of perfluoropolyether was formed by dipping to obtain a perpendicular magnetic recording medium. The formation of the underlayer, the magnetic recording layer, and the protective layer was performed by a DC magnetron sputtering method.
[0042]
Hereinafter, evaluation results of each of these examples and comparative examples will be described.
[0043]
The substrates for perpendicular magnetic recording media obtained in Example 1 and Comparative Example 1 were evaluated for flatness and pattern transfer rate of these substrates. Table 1 shows the results.
[0044]
[Table 1]
Figure 2004062995
[0045]
Here, as for the flatness, the straightness of the displacement of the substrate surface shape in a linear region from 11 mm to 30 mm in the radial direction from the substrate center was obtained by a non-contact optical surface roughness meter. Specifically, for each substrate, four measurements were made at 90 ° intervals in the circumferential direction, and the maximum straightness was defined as the flatness of the substrate surface.
[0046]
Regarding the transfer rate, an error within ± 5% with respect to the design value of the pattern φ100 nm × depth 50 nm was accepted as pass or unacceptable, and the ratio of the passed pattern out of 100 evaluated patterns was taken as the transfer rate. . In addition, AFM (atomic force microscope) was used for this evaluation.
[0047]
The flatness of the substrate for a perpendicular magnetic recording medium of Example 1 was 1 μm, reflecting the flatness of the glass disk used as the supporting base. In the plastic substrate manufactured by injection molding of Comparative Example 1, although the flatness tends to decrease as the plate thickness increases, the perpendicular magnetic recording medium of Example 1 has a flatness of 1.2 mm which is the most excellent in flatness. It is very large compared to the substrate for use.
[0048]
Regarding the transfer rate, in Example 1, a probability of 100% was obtained, while in Comparative Example 1, the thickness remained at 80 to 84% at all plate thicknesses, confirming the superiority of the present invention. .
[0049]
Thus, according to the present invention, it can be seen that a substrate for a perpendicular magnetic recording medium having excellent flatness and excellent pattern transferability can be manufactured. Further, it can be seen that it is possible to reduce the thickness of the thermoplastic resin substrate manufactured by injection molding, which is difficult.
[0050]
In Example 2 and Comparative Examples 2 to 4, the coercive force of the perpendicular magnetic recording medium and the Glide High characteristics (GH characteristics) of the magnetic head were evaluated. Table 2 shows the results.
[0051]
[Table 2]
Figure 2004062995
[0052]
Here, the coercive force was obtained from the MH loop obtained by the VSM. G. FIG. H. The characteristic test is to fly a test head over a rotated medium to detect protrusions, particles, undulations, and the like on the medium surface. The test conditions are a peripheral speed of 7 m / sec, G. H. 12.5 nm was set, and 100 sheets were evaluated for each to obtain a pass rate.
[0053]
First, the evaluation results of the coercive force will be described. It can be seen that the coercive force of the perpendicular magnetic recording medium of Comparative Example 4 in which the magnetic recording layer is a continuous film is as small as 410 Oe, and the interaction between the magnetic grains is very large. By contrast, each of the perpendicular magnetic recording media of Example 2, Comparative Examples 2 and 3, in which the magnetic recording layer is patterned, has a large coercive force. From this, it can be confirmed that the interaction between the magnetic grains of the perpendicular magnetic recording media of Example 2 and Comparative Examples 2 and 3 is small, that is, that the bits are physically separated.
[0054]
However, the coercive force of the perpendicular magnetic recording media of Comparative Examples 2 and 3 is smaller than the coercive force of the perpendicular magnetic recording medium of Example 2. When the perpendicular magnetic recording media of Comparative Examples 2 and 3 are compared, the coercive force of Comparative Example 2 having a smaller substrate thickness is smaller.
[0055]
Considering this result and the fact that the flatness and the pattern transfer rate of Comparative Examples 2 and 3 are low, the accuracy of polishing is lower in Comparative Examples 2 and 3 than in Example 1 because the flatness of the substrate surface is lower. It can be seen that there is a bit that is magnetically connected due to a decrease in the pattern transfer rate, and that the pattern transfer rate is low and there are many variations in the shape.
[0056]
G. FIG. H. According to the evaluation results of the test characteristics, the pass rate of the perpendicular magnetic recording medium of Example 1 was almost the same as that of the perpendicular magnetic recording medium of Comparative Example 4 not subjected to patterning, and was excellent even after a process such as polishing. It can be seen that it shows substrate surface characteristics. On the other hand, as already described, the perpendicular magnetic recording media of Comparative Examples 2 and 3 having low flatness after the production of the substrate hardly pass this test, so that the perpendicular magnetic recording media can be used even after being patterned. It turns out that the result reflects that.
[0057]
【The invention's effect】
As described above, according to the present invention, a surface layer of a thermoplastic resin such as polycarbonate or polymethyl methacrylate is laminated on a support substrate (support layer) such as aluminum or glass, and the surface layer is heated. It is intended to provide a substrate for a perpendicular magnetic recording medium having an uneven pattern on the surface while securing an important smoothness for the substrate because the uneven pattern is transferred by pressing a stamper on which a desired pattern is formed. And the thickness of the substrate can be reduced.
[0058]
In addition, by using the substrate for a perpendicular magnetic recording medium of the present invention, it is possible to provide a patterned perpendicular magnetic recording medium having an excellent surface shape.
[Brief description of the drawings]
FIG. 1 is a view for explaining a configuration of a substrate for a perpendicular magnetic recording medium of the present invention.
FIG. 2 is a diagram illustrating a method of manufacturing a substrate for a perpendicular magnetic recording medium according to the present invention.
FIG. 3 is a diagram for explaining the structure of a perpendicular magnetic recording medium of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Support base 12 Surface layer 13 Stamper 14 Underlayer 15 Magnetic recording layer 16 Protective film 17 Liquid lubrication layer

Claims (8)

少なくとも支持層と表面層とが順次積層された積層構造を有し、
前記表面層は、凹凸パターンが形成された熱可塑性樹脂からなり、
前記支持層は、前記表面層よりも融点、ガラス転移点及び機械強度が大きい材料からなることを特徴とする垂直磁気記録媒体用基板。
Has a laminated structure in which at least the support layer and the surface layer are sequentially laminated,
The surface layer is made of a thermoplastic resin having an uneven pattern formed thereon,
The substrate for a perpendicular magnetic recording medium, wherein the support layer is made of a material having a higher melting point, glass transition point, and mechanical strength than the surface layer.
前記熱可塑性樹脂は、ポリカーボネートまたはポリメタクリル酸メチルであることを特徴とする請求項1に記載の垂直磁気記録媒体用基板。The substrate for a perpendicular magnetic recording medium according to claim 1, wherein the thermoplastic resin is polycarbonate or polymethyl methacrylate. 前記支持層は、アルミまたはガラスであることを特徴とする請求項1または2に記載の垂直磁気記録媒体用基板。3. The substrate for a perpendicular magnetic recording medium according to claim 1, wherein the support layer is made of aluminum or glass. 支持層上に熱可塑性樹脂の表面層を積層するステップと、
当該表面層を加熱して所望のパターンが形成されているスタンパを押し付けることにより凹凸パターンを転写するステップとを備えることを特徴とする垂直磁気記録媒体用基板の製造方法。
Laminating a surface layer of a thermoplastic resin on the support layer,
Transferring the concavo-convex pattern by heating the surface layer and pressing a stamper having a desired pattern formed thereon.
凹凸パターンを有する熱可塑性樹脂の表面層と、当該表面層よりも融点、ガラス転移点及び機械強度が大きい材料からなる支持層とが積層されており、
前記表面層の凹凸パターンの凹部にのみ、下地層と磁気記録層とが順次積層されていることを特徴とする垂直磁気記録媒体。
A surface layer of a thermoplastic resin having a concavo-convex pattern and a support layer made of a material having a higher melting point, glass transition point, and mechanical strength than the surface layer are laminated,
A perpendicular magnetic recording medium, wherein an underlayer and a magnetic recording layer are sequentially laminated only in the concave portions of the concavo-convex pattern of the surface layer.
前記下地層は、六方細密充填構造の金属或いはその合金、若しくは、面心立方格子構造の金属或いはその合金からなることを特徴とする請求項5に記載の垂直磁気記録媒体。6. The perpendicular magnetic recording medium according to claim 5, wherein the underlayer is made of a metal having a hexagonal close-packed structure or an alloy thereof, or a metal having a face-centered cubic lattice structure or an alloy thereof. 前記磁気記録層が、CoCrPt系磁気記録層、グラニュラ磁気記録層、RE−TM系合金層、或いは、Co/PtまたはCo/Pdの積層膜の何れかであることを特徴とする請求項5または6に記載の垂直磁気記録媒体。6. The magnetic recording layer according to claim 5, wherein the magnetic recording layer is one of a CoCrPt-based magnetic recording layer, a granular magnetic recording layer, a RE-TM-based alloy layer, and a laminated film of Co / Pt or Co / Pd. 7. The perpendicular magnetic recording medium according to item 6. 請求項1ないし3の何れかに記載の垂直磁気記録媒体用基板が備える表面層の全面に第1および第2の磁性層を順次成膜するステップと、
前記表面層の凸部上の前記第1および第2の磁性層を除去して凹部にのみ前記第1の磁性層からなる下地層と前記第2の磁性層からなる磁気記録層とを形成するステップとを備えることを特徴とする垂直磁気記録媒体の製造方法。
A step of sequentially forming a first and a second magnetic layer on the entire surface of a surface layer provided in the substrate for a perpendicular magnetic recording medium according to claim 1,
The first and second magnetic layers on the convex portions of the surface layer are removed to form an underlayer composed of the first magnetic layer and a magnetic recording layer composed of the second magnetic layer only in the concave portions. And a method for manufacturing a perpendicular magnetic recording medium.
JP2002219994A 2002-07-29 2002-07-29 Substrate for vertical magnetic recording medium and its manufacturing method, and vertical magnetic recording medium and its manufacturing method Pending JP2004062995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219994A JP2004062995A (en) 2002-07-29 2002-07-29 Substrate for vertical magnetic recording medium and its manufacturing method, and vertical magnetic recording medium and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219994A JP2004062995A (en) 2002-07-29 2002-07-29 Substrate for vertical magnetic recording medium and its manufacturing method, and vertical magnetic recording medium and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004062995A true JP2004062995A (en) 2004-02-26

Family

ID=31940758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219994A Pending JP2004062995A (en) 2002-07-29 2002-07-29 Substrate for vertical magnetic recording medium and its manufacturing method, and vertical magnetic recording medium and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004062995A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670696B2 (en) 2007-05-01 2010-03-02 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium with patterned magnetic islands and nonmagnetic trenches and manufacturing method for suppressing surface diffusion of trench material
US7732071B2 (en) 2006-11-10 2010-06-08 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording system with patterned medium and manufacturing process for the medium
US7998605B2 (en) 2005-09-28 2011-08-16 Hitachi Global Storage Technologies Netherlands B.V. Magnetic recording medium and method for production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7998605B2 (en) 2005-09-28 2011-08-16 Hitachi Global Storage Technologies Netherlands B.V. Magnetic recording medium and method for production thereof
US7732071B2 (en) 2006-11-10 2010-06-08 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording system with patterned medium and manufacturing process for the medium
US7670696B2 (en) 2007-05-01 2010-03-02 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium with patterned magnetic islands and nonmagnetic trenches and manufacturing method for suppressing surface diffusion of trench material
US7846565B2 (en) 2007-05-01 2010-12-07 Hitachi Golbal Storage Technologies Netherlands B.V. Perpendicular magnetic recording disk drive with patterned disk having capping layer for suppression of surface diffusion of trench material

Similar Documents

Publication Publication Date Title
US7608193B2 (en) Perpendicular magnetic discrete track recording disk
US7549209B2 (en) Method of fabricating a magnetic discrete track recording disk
US20120147718A1 (en) PATTERNED PERPENDICULAR MAGNETIC RECORDING MEDIUM WITH EXCHANGE-COUPLED COMPOSITE RECORDING STRUCTURE OF A FePt LAYER AND A Co/X MULTILAYER
JP2013077370A (en) METHOD FOR MAKING PATTERNED PERPENDICULAR MAGNETIC RECORDING DISK HAVING CHEMICALLY-ORDERED FePt OR CoPt RECORDING LAYER
JP2001256644A (en) Master carrier for magnetic transfer
JP4850671B2 (en) MOLD, MANUFACTURING METHOD THEREOF, AND MAGNETIC RECORDING MEDIUM
JP2004164692A (en) Magnetic recording medium and manufacturing method thereof
JP2006346820A (en) Nano-hole structure and its manufacturing method, stamper and its manufacturing method, magnetic recording medium and its manufacturing method, and magnetic recording device and magnetic recording method
JP2012195046A (en) Patterned perpendicular magnetic recording medium with ultrathin oxide film and reduced switching field distribution
JP2013025862A (en) Patterned perpendicular magnetic recording medium with multiple magnetic layers and interlayers
JP2009184338A (en) Mold structural body, imprinting method using the same, magnetic recording medium and its manufacturing method
JP5033003B2 (en) Mold structure, imprint method using the same, magnetic recording medium and method for manufacturing the same
JP2003178431A (en) Perpendicular two-layer patterned medium and method for manufacturing the same
EP2006842A1 (en) Method for producing magnetic recording medium, magnetic recording medium, produced by the production method, and mold structure for use in the production method
JP2004062995A (en) Substrate for vertical magnetic recording medium and its manufacturing method, and vertical magnetic recording medium and its manufacturing method
SG187650A1 (en) Method and system for thermal imprint lithography
JP4853293B2 (en) Patterned media manufacturing method
JP4123944B2 (en) Vertical double-layer patterned medium and manufacturing method thereof
US8771529B1 (en) Method for imprint lithography
JP3680761B2 (en) Magnetic recording medium
EP2009624A1 (en) Method for producing magnetic recording medium, magnetic recording medium produced by the production method, and mold structure for use in the production method
US20080220290A1 (en) Magnetic recording medium and manufacturing method for the same
JP3986951B2 (en) Master carrier for magnetic transfer and magnetic transfer method
US20090147405A1 (en) Method for manufacturing magnetic recording medium, magnetic recording medium manufactured by the same, and magnetic recording apparatus incorporating the magnetic recording medium
JP2001067660A (en) Production of magnetic recording medium