JP2004061845A - Ag ALLOY FILM FOR DISPLAY DEVICE, FLAT PANEL DISPLAY DEVICE, AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY FILM FORMATION - Google Patents
Ag ALLOY FILM FOR DISPLAY DEVICE, FLAT PANEL DISPLAY DEVICE, AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY FILM FORMATION Download PDFInfo
- Publication number
- JP2004061845A JP2004061845A JP2002219775A JP2002219775A JP2004061845A JP 2004061845 A JP2004061845 A JP 2004061845A JP 2002219775 A JP2002219775 A JP 2002219775A JP 2002219775 A JP2002219775 A JP 2002219775A JP 2004061845 A JP2004061845 A JP 2004061845A
- Authority
- JP
- Japan
- Prior art keywords
- film
- alloy film
- display device
- reflectance
- elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Optical Elements Other Than Lenses (AREA)
- Liquid Crystal (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、例えば液晶ディスプレイ(以下、LCDという)、プラズマディスプレイパネル(以下、PDPという)、フィールドエミッションディスプレイ(以下、FEDという)、エレクトロルミネッセンス(以下、ELという)等の平面表示装置(以下、FPDという)において、高い光学反射率と低い電気抵抗値および耐食性、パタニング性、密着性が要求されるAg合金膜、平面表示装置、およびAg合金膜形成用スパッタリングターゲット材に関するものである。
【0002】
【従来の技術】
従来、平面表示装置の代表であるLCDは、光源(ランプ)を内蔵し背面から照射することで高い表示品質を有する透過型LCDが一般的であった。しかし、透過型LCDは光源であるバックライトの消費電力が大きく、電池駆動の携帯情報端末や携帯ゲームとしては使用時間が短くなると言う問題があった。このため、近年、外光を効率よく利用しバックライトを基本的に使用しない反射型液晶ディスプレイの開発や、反射型と従来の透過型を組み合わせた半透過型液晶ディスプレイの開発が行われ、実用化されている。
【0003】
このような反射型、半透過型ディスプレイに用いる反射膜には、金属の中でも可視光範囲での反射率が高く、電気抵抗も低い元素であるAlまたはAl合金薄膜が多く用いられてきた。しかし、近年、ディスプレイの表示品質向上のために、その反射膜にはペーパーホワイトと呼ばれる可視光範囲での反射率が一定値となるフラットな反射特性とさらに高い反射率が要求されている。
また、反射膜のみでなく、金属の持つ低抵抗な利点を用いて反射膜と電極を兼ねそなえた反射電極膜としての利用や、液晶テレビやPDP、高精細が要求される携帯情報端末等の平面表示装置ではより低抵抗な配線材料が要求されている。
【0004】
【発明が解決しようとする課題】
上述のAl系反射膜の場合は、LCDの製造工程中の加熱工程で結晶粒の成長により反射率が低下する問題がある。このため、粒成長の抑制のために、Alに遷移金属であるTi、Ta等の元素を添加するAl合金が用いられている。このAl合金により液晶ディスプレイ製造時の反射率低減は抑制できる。しかし、このAlやAl合金膜の平均反射率は、90〜92%程度であり、添加元素により粒成長は抑制できても反射率そのものが低下してしまう問題がある。
【0005】
一方、Alよりさらに反射率の高いAgの場合、耐食性が低く、基板上に成膜した後、数日大気に放置しただけで変色し、黄色味を帯びた反射特性となったり、ディスプレイの製造時に使用する薬液により腐食され、反射率が低下する。さらに、ディスプレイの製造時にAg反射膜上に樹脂等を形成する際の大気加熱を伴う工程では粒成長や凝集により大幅に反射率が低下する等耐熱性にも問題がある。さらに平面表示装置の基板であるガラスやSiウェハ−に対しての密着性が低く、プロセス中に剥がれが生じるとともに、密着性が低いことに起因し、フォトエッチングにより加工する際に薬液の染み込みにより所定の形状より小さくなる等のパタニング性が低下する問題がある。
【0006】
以上の問題を解決するために、特開平9−324264にはAuを0.1〜2.5at%、Cuを0.3〜3at%添加したAg合金が、特開平11−119664には接着層上にPt、Pd、Au、Cu、Niを添加したAg合金が提案されている。さらに、用途は異なるが、反射膜として特開2000−109943にはAgにPdを0.5〜4.95at%添加した合金が、特開2001−192752にはAgにPdを0.1〜3wt%さらにAl、Au、Pt、Cu、Ta、Cr、Ti、Ni、Co,Si等を合計で0.1〜3wt%含有した合金を用いた電子部品用金属材料等が提案されている。
【0007】
しかし、これまで提案されている種々のAg合金では耐食性、耐熱性、密着性、パタニング性とAgの持つ高い反射率と低コスト化を両立できるものはない。上記の種々元素を添加した場合、種々の改善効果があることは知られている。しかし、密着性、耐食性、粒成長抑制による耐熱性を両立して改善するには添加元素量が多くなり、Agの持つ高い反射率と低い電気抵抗を有する特徴が失われてしまう問題がある。Pd、Ptや種々の遷移金属は添加すると耐食性の改善に効果は高いが、特に可視光範囲の低波長側での反射率の低下が大きくなる。また、Auは反射率の低下の少ない元素であるが、添加すると残さが生じ易くパタニング性が低下する。また、Au、Pd、Pt等の貴金属は高価な元素であり高コストであると言う問題がある。
【0008】
本発明の目的は、例えば反射型液晶ディスプレイ、FED、有機EL等のようなガラス基板やSiウェハ−上に形成する平面表示装置や樹脂フィルム基板等のフレキシブルな表示装置等において要求される高い反射率を維持した上で、可視光範囲での反射率が一定値になり、かつ低い電気抵抗を有し表示装置製造時のプロセス中での耐熱性、耐食性を兼ね備え、さらに基板への密着性とパタニング性を改善した低コストなAg合金膜とそのAg合金膜を形成するためのスパッタリングターゲットおよび、より高品位かつ低消費電力な平面表示装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するべく、鋭意検討を行った結果、Agに選択した元素を加えた反射膜とすることにより、表示装置用の反射膜に必要な本来Agの持つ可視光範囲での反射率が一定値となりかつ高反射率である反射特性を維持しつつ、耐熱性、耐食性を向上し、さらに基板への密着性とパタニング性も改善できる低コストなAg合金膜を見いだし、本発明に到達した。
【0010】
すなわち、本発明は添加元素として(Y、La、Pr、Nd、Sm、Gd、Tb、Dy)からなる第1の群から選択される1種または2種以上の元素を合計で0.1〜0.5at%、(Fe、Co、Ni、Si)からなる第2の群から選択される1種または2種以上の元素を合計で0.1〜0.5at%、さらに(Ti、Zr、Mn、Cu、Al、Ge)からなる第3の群から選択される1種または2種以上の元素を合計で0.1〜0.5at%、前記添加元素の総和が1.0at%以下であり、残部実質的にAgからなる表示装置用Ag合金膜である。また、上記組成のAg合金膜を用いた反射型液晶ディスプレイ用の反射膜であることを特徴とする上記組成の表示装置用Ag合金膜である。さらに、本発明は、ガラス基板やSiウェハー上に形成される表示装置用Ag合金膜である。また、上記組成を有したAg合金膜を用いた平面表示装置である。
【0011】
また、本発明は、添加元素として(Y、La、Pr、Nd、Sm、Gd、Tb、Dy)からなる第1の群から選択される1種または2種以上の元素を合計で0.1〜0.5at%、(Fe、Co、Ni、Si)からなる第2の群から選択される1種または2種以上の元素を合計で0.1〜0.5at%、さらに(Ti、Zr、Mn、Cu、Al、Ge)からなる第3の群から選択される1種または2種以上の元素を合計で0.1〜0.5at%、前記添加元素の総和が1.0at%以下であり、残部実質的にAgからなるAg合金膜形成用スパッタリングタ−ゲット材である。
【0012】
【発明の実施の形態】
本発明の特徴は、Ag自体の高い反射率と可視光範囲での反射率が一定値となる光学的にフラットな反射特性をできる限り維持しながら、表示装置に要求される耐食性、耐熱性や密着性、パタニング性といった課題を解決するのに最適な低コストな合金構成を見いだしたところにある。
【0013】
通常、Agの反射膜を作製すると、膜としての反射率は高いものの、その反射膜を用いた表示装置(例えば液晶ディスプレイなど)を製造する際のプロセスにおいて反射率が低下してしまうという問題があることは、上述の通りである。つまり、加熱による膜成長や凝集等が起こり、膜表面はより凹凸のある形状となったり、ボイドが発生したりする。そして、その加熱雰囲気によっては膜表面が変色し、これも反射率の低下の原因となる。そこで、本発明ではAgに添加元素としてY、La、Pr、Nd、Sm、Gd、Tb、Dyから選ばれる1種または2種以上の元素とFe、Co、Ni、Siのうち1種または2種以上の元素と、さらにTi、Zr、Mn、Cu、Al、Geのうち1種または2種以上の元素を複合添加することで、膜自体の変質を抑制しAgの欠点である耐熱性、耐食性、さらに表示装置用のガラス基板やSiウェハー等上での密着性、フォトエッチングによるパタニング性を改善することが可能となる。このため優れた特性を有する表示装置を得ることができる。
【0014】
以下に本発明の表示装置用Ag合金系反射膜で、添加元素およびその添加量を選定した理由を説明する。Agに添加元素を加えると反射率は低下してしまう。しかし、添加元素による耐熱性、耐食性の改善効果は添加量の増加とともに向上し、より明確となる。このため、高い反射率を維持しながら上述のAgの欠点を改善するには添加元素は必要最少量でありながら十分な効果が得られるように調整する必要がある。
【0015】
先ず、各々の元素を単独で添加した際の効果について述べる。まず第1群となるY、La、Pr、Nd、Sm、Gd、Tb、Dyは一般的な希土類元素である。これらの元素を含有することによる効果はAg合金膜の加熱時の凝集を抑制して耐熱性を向上させることと密着性の改善によってパタニング性を向上させることである。これらの改善効果は含有量が0.1at%未満では改善効果が現れず、添加量が増加すると反射率の低下を生じる。しかし、上記の希土類元素のみでは耐食性の改善には効果が弱く、また、表示装置を製造する洗浄工程等で膜はがれを生じ、密着性の改善にも不充分である。
【0016】
また第2群となるFe、Co、Ni、Siの元素はAgに対して融点の高い元素であり、Agとほとんど混ざらないで分離するか、わずかに固溶する元素であり、また表示装置用のガラス基板、Siウェハ−や樹脂に対して密着性の良い元素である。これらの元素を加えることで、耐食性の向上と密着性の改善によるパタニング性の向上に効果がある。これらの改善効果は含有量が0.1at%未満では改善効果が現れず、添加量が増加すると反射率の低下を生じる。しかし、これらの元素のみでは耐熱性の改善には不充分である。
【0017】
また第3群となるTi、Zr、Mn、Cu、Al、Geの元素はAgに加えると耐食性が向上する。しかし、これらの元素のみでは耐熱性と密着性の改善には不充分である。
【0018】
このため、耐食性、耐熱性、密着性、パタニング性を兼ね備えたAg合金膜を得るために、耐熱性と密着性の改善に効果のある第1群のY、La、Pr、Nd、Sm、Gd、Tb、Dyから選ばれる元素と、耐食性と密着性の改善に効果のある第2群のFe、Co、Ni、Siから選ばれる元素と、さらに耐食性の改善に効果のある第3群のTi、Zr、Mn、Cu、Al、Geを複合添加した。その際の各々の最少添加量は0.1at%であり、これ未満の添加量では膜特性の改善効果があらわれるのに十分でない点は上述のとおりである。このため、本発明において、複合添加する場合の添加最少量は0.3at%である。
【0019】
本発明において、Agに第1群、第2群、さらに第3群を各々単独で添加するよりも、複合添加することにより、さらに微量な添加量で高い改善効果を得ることが可能なAg合金膜とすることが可能となる。さらに、複合添加する場合の各添加上限量を第1群であるY、La、Pr、Nd、Sm、Gd、Tb、Dyから選ばれる元素は合計で0.5at%、第2群であるFe、Co、Ni、Siから選ばれる元素を合計で0.5at%、さらに第3群であるTi、Zr、Mn、Cu、Al、Geから選ばれる元素を合計で0.5at%、添加元素の総和が1.0at%以下とした。この添加量を超えると可視光範囲の低波長側での反射率が低下し、反射率が一定値になる特性が得づらくなるためである。
【0020】
さらに、第1群の添加量は0.2〜0.4at%、第2群の添加量は0.1〜0.3at%、第3群の添加量は0.2〜0.4at%、添加量の総和が0.7at%以下とすることが好ましい。さらにより望ましくは第1群の添加上限量を0.3at%、第3群の添加量を0.3at%とすることである。また、Agに対してわずかな元素の添加量で膜特性を改善しているため、容易に比抵抗で5μΩcm以下の低い電気抵抗も得ることが可能であり、配線材料としても最適である。
【0021】
本発明の上記添加元素による膜特性の改善効果の理由は明確ではないが次のように推測される。一般に表示装置で金属膜を形成する方法として、スパッタリング法が用いられているが、基板上に薄膜を形成した際に添加元素は非平衡状態で固溶される。Y、La、Pr、Nd、Sm、Gd、Tb、Dyから選ばれる第1群の元素は希土類元素である。これらの元素は融点もAgの961℃に近く800〜1500℃程であり、Agと化合物を形成する元素である。化合物を形成する元素は原子を拘束するためAgの原子の移動を抑制することで結晶粒の成長を阻害し、微細で緻密な結晶粒を有する膜となる。このため、加熱時の凝集を抑制し耐熱性の向上と密着性の改善によるパタニング性の向上に効果がある。
【0022】
Fe、Co、Ni、Siから選ばれる第2群の元素は表示装置用のガラス基板、Siウェハ−や樹脂に対して密着性の良い元素であり、Agに対して融点が高く、Agとほとんど混ざらないで分離するか、わずかに固溶する元素であるため、Agに添加した場合にAgと基板の密着性の改善によるパタニング性の向上と表示装置の加熱工程で膜表面に拡散し、Agの表面を保護する効果により耐食性が向上すると考えられる。
また、Ti、Zr、Mn、Cu、Al、Geから選ばれる第3群の元素はAgに対して固溶域を有するか化合物を形成する元素であり、Agに加えることでAgの原子移動の抑制とAgそのものの性質を変化させることで耐食性を向上させる効果があると考えられる。
【0023】
上述したように各元素には種々の改善効果があるが、これら第2群、第3群の元素は第1群の希土類元素と化合物を形成する元素である。このため、第1群の元素から選ばれる元素と第2群、第3群から選ばれる元素を微量に複合添加することによって、各々を単独で添加するよりも、添加元素を含む化合物を形成し易い元素が膜中に均一に分散されるため、膜の粒成長を抑制し、緻密で平滑な表面形態と低膜応力のAg合金膜となる。このため表示装置を製造する際のプロセスにおける加熱工程での膜成長や凝集を抑制することで耐熱性を向上させ、膜中ボイドの減少と粒界腐食の抑制による薬液等に対する耐食性の向上、さらに密着性の改善によるパタニング性の向上を図りながら、Agが本来有する可視光範囲での反射率が一定値でかつ高い反射特性を維持できるAg合金膜とすることができるものと考えられる。
【0024】
純Agは波長400nmから700nmの可視光範囲で、700nmの高波長側では99%以上と高く、400nmの低波長側で低下する反射特性を有しているが、加熱工程や薬液に腐食されると低波長側が大きく低下し黄色みがかった反射特性となっている。しかし、本発明によれば、可視光範囲で黄色みがなく、反射率が一定値となり、かつ高い反射特性を有するAg合金膜として、400nmから700nmの反射率の最大値と最小値の差が10%以内でかつ平均反射率95%以上という従来にない膜を得ることができる。
【0025】
本発明の表示装置用Ag合金膜を形成する際に用いる基板として、ガラス基板、Siウェハーを用いることが好適である。これらの基板は表示装置を製造する上でプロセス安定性に優れるとともに、本発明のAg合金膜を形成する際に基板を加熱することで、室温で成膜する場合よりも高い反射率と密着性を有するAg合金膜を得ることが可能となる。また、高い反射特性とともに低い電気抵抗値も得ることが可能であり、配線膜としての利用も可能である。
【0026】
また、本発明のAg合金膜は表面に樹脂等を形成する等の大気加熱を行う工程を含む場合でも、その反射率の変化は少なく反射型液晶ディスプレイ等に好適である。また、本発明のAg合金膜は、膜形成後に特に真空中で加熱処理することで、さらに可視光範囲での反射率が一定値でありかつ高反射率である光学反射特性と低い電気抵抗値を有したAg合金膜となる。このため、真空中で加熱したり、その他の保護膜を形成する際に加熱工程を有する多くの平面表示装置に用いることが可能である。これまで提案されている多くのAg−Cu合金やAg−Pd合金では膜特性改善のために加える添加量が0.5at%以上と多いため、真空中での加熱処理を行うとよりAgと固溶していき、反射率が低下する場合が多い。しかし、本発明のAg合金膜のように反射率が向上するものは表示装置用反射膜として非常に有用であるとともに、本発明のAg合金膜の優れた特徴の一つである。
【0027】
また、本発明の表示装置用のAg合金膜を形成する場合、ターゲット材を用いたスパッタリングが最適である。スパッタリング法ではターゲット材とほぼ同組成の膜が形成できるためであり、本発明のAg合金膜を安定に形成することが可能となる。このため本発明は、表示装置用Ag合金膜と同じ組成を有するAg合金膜形成用スパッタリングターゲット材である。
【0028】
ターゲット材の製造方法については種々あるが、一般にターゲット材に要求される高純度、均一組織、高密度等を達成できるものであれば良い。例えば、真空溶解法により所定の組成に調整した溶湯を金属製の鋳型に鋳込み、さらにその後、鍛造、圧延等の塑性加工により板状に加工し、機械加工により所定の形状のターゲットに仕上げることで製造できる。また、さらに均一な組織を得るために粉末燒結法、またはスプレ−フォ−ミング法(液滴堆積法)等の急冷凝固したインゴットを用いても良い。
【0029】
なお、本発明の表示装置用Ag合金膜形成用スパッタリングターゲット材は、第1群、第2群および第3群の添加元素以外の成分元素は実質的にAgとしているが、本発明の作用を損なわない範囲で、ガス成分である酸素、窒素、炭素等の不可避的不純物を含んでもよい。例えば、ガス成分の酸素、窒素、炭素は各々50ppm以下であり、ガス成分を除いた純度として99.9%以上であれば良い。
【0030】
また、表示素子を製造する場合に用いる基板は、上述のようにガラス基板、Siウェハー等が好適であるが、スパッタリングで薄膜を形成できるものであればよく、例えば樹脂基板、金属基板、その他樹脂箔、金属箔等でもよい。
【0031】
本発明の表示装置用Ag合金膜は、安定した反射率を得るために膜厚としては100〜300nmとすることが好ましい。膜厚が100nm未満であると、膜が薄いために光が透過してしまい反射率が低下するとともに、膜の表面形態が変化し易くなる。一方、膜厚が300nmを超えると、結晶粒が成長して膜表面形態の凹凸が大きくなり反射率が低下してくるとともに、膜応力によって膜が剥がれ易くなったり、膜を形成する際に時間が掛かり、生産性が低下するためである。
【0032】
また、第1群であるY、La、Pr、Nd、Sm、Gd、Tb、Dyのから選ばれる希土類元素の中では特にSm、Dyが好ましい。これらの元素はAgに添加した場合の反射率の低下が少なく、特に低波長側での反射率の低下が少ない。すなわち可視光範囲での反射率が一定値となりかつ高反射率である反射特性を有したAg合金膜となるためである。この理由は明確ではないが、これらの元素は原子半径が小さくAgに近いために、添加した場合にAgの結晶格子の乱れ少なく、自由電子の動きを阻害する効果が低いためと考えられる。さらに、その中では特にSmが望ましい。Smは希土類元素の中では酸化されにくく、さらに蒸気圧が高いために高純度の原料を安定に入手できる。このためAg合金膜を形成する際に用いるスパッタリングターゲットを安定に製造することが可能となることと、Dyに比較して低価格であるため工業的にはSmがもっとも適している。
【0033】
また、第2群であるFe、Co、Ni、Siから選ばれるの中ではNi、Siが好ましい。これらの元素は他の元素に比較してAgにわずかな量を添加するだけで、耐食性の向上の効果が著しく、このため、低波長側での反射率の低下が少なく可視光範囲での反射率が一定値となる反射特性を有したAg合金膜となるとともに、比較的安価である。この理由は明確ではないが、これらの元素の原子半径がAgと近く添加した場合にAgの結晶格子の乱れ少なく、自由電子の動きを阻害する効果が低いためと考えられる。
【0034】
さらに第3群であるTi、Zr、Mn、Cu、Al、Geから選ばれる元素の中ではCu、Al、Geが好ましい。これらの元素はAgにわずかな量を添加するだけで、耐食性の向上の効果が著しいためである。また、添加した場合の抵抗値の増加が少なく配線材料に用いる場合に最適な元素である。この理由は明確ではないが、これらの元素はAgに固溶域を有しているため、添加した場合のAgの結晶格子の乱れ少なく、自由電子の動きを阻害する効果が低いためと考えられる。また、高価であるがこれらの元素と同様の効果あるPdを加えても良い。
【0035】
【実施例】
(実施例1)
Agに各種の添加元素を加えたAg合金膜の目標組成と実質的に同一となるように原料を配合し真空溶解炉にて溶解した後、鋳造することでAg合金インゴットを作製した。次に塑性加工により板状に加工した後、機械加工により直径100mm、厚さ5mmのスパッタリングターゲット材を作製した。そのターゲット材を用いてスパッタリング法により平滑なガラス基板上に膜厚200nmのAg合金膜を形成し、膜特性として、分光測色計(ミノルタ製CM2002)を用いて可視光範囲である波長400〜700nmの平均反射率を、また4探針法により比抵抗を測定した。
【0036】
さらに、表示装置としての所定の製造工程を経た後での膜特性の変化を評価するために、上記で作製した純Ag膜およびAg合金膜を以下の条件で評価した。耐熱性評価としては、大気中で温度250℃、1時間の加熱処理を施した後の平均反射率を評価した。また、膜の密着性を評価するために、加熱処理を行なった純Ag膜、Ag合金膜に2mm間隔で碁盤の目状に切れ目を入れた後、膜表面にテープを貼り、引き剥がした。その際に基板上に残った桝目を面積率で表わし、密着力として評価した。膜の耐食性評価としては、温度80℃、湿度90%の大気中に24時間放置した後の反射特性を評価した。パタニング性の評価としては、純Ag膜およびAg合金膜上に東京応化製OFPR−800レジストをスピンコートにより形成し、フォトマスクを用いて紫外線でレジストを露光後、有機アルカリ現像液NMD−3で現像し、レジストパターンを作製し、その後、リン酸、硝酸、酢酸の混合液でエッチングし、金属膜パタ−ンを作成した。その純Ag膜およびAg合金膜パターンの剥れ、エッジの形状およびその周囲の残さ等について光学顕微鏡で観察し、膜剥れがなく残さがないものを良好と評価した。以上の測定結果を表1に示す。
【0037】
【表1】
【0038】
表1から、純Ag膜(試料No.1)は、成膜時には98%を超える高い平均反射率を有するが、加熱処理、耐食試験を行なうと大幅に平均反射率が低下するとともに、その密着性も低いことがわかる。また、従来提案されているAgにPd、Cuを添加したAg合金膜(試料No.2)では、成膜時の平均反射率が低く、耐熱試験、耐食試験を行った後95%以上の平均反射率を確保できない。AgにCuとAuを添加したAg合金膜(試料No.3)は成膜時の平均反射率が高く、耐熱試験、耐食試験を行った後も高い平均反射率を維持できるが、密着性が低く、パタニング性評価では残さが残ってしまう。また、AgにCuのみを加えたAg合金膜(試料No.4)では成膜時には98%を超える高い平均反射率を有するが耐熱性に劣ることがわかる。また、Agに希土類元素であるNdを加えたAg合金膜(試料No.5)は成膜時の反射率は高いが、耐食性が低く反射率が大きく低下してしまう。
【0039】
一方、本発明のAg合金膜(試料No.7〜14)は、成膜時の平均反射率、熱処理後と耐食試験後の平均反射率ともに95%以上と高い反射率を維持し、密着性も75%以上が維持されている。また、パタニング性も良好である。さらに、試料No.15〜18のAg合金膜から、95%以上の高い平均反射率を得るためには第1群、第2群と第3群の添加元素の総和を1.0at%以下とすることが必要であり、各群の添加量の最大値は0.5at%であることがわかる。また、さらに高い96%以上の反射率を維持した上で、耐熱性、耐食性、密着性およびパタニング性を得るためには、第1群および第3群の添加量を0.2〜0.4at%とし、第2群の添加量は0.1〜0.3at%であり、第1群、第2群と第3群をあわせた添加元素の総和を0.7at%以下とすることが好ましいことが分かる。
【0040】
(実施例2)
実施例1の純Ag膜およびAg合金膜を、1×10−3Pa以下に排気した真空加熱装置内で250℃に加熱して1時間放置し、100℃以下に冷却後、真空装置から取り出した際の平均反射率および比抵抗を実施例1と同様に測定した。また、実施例1の各試料および上記の真空加熱処理後の各試料の波長400nmから700nmの可視光範囲での反射率を分光測色機(ミノルタ製CM2002)を用いて測定し、可視光範囲での各試料の反射率の最大値と最小値の差を反射率差として評価した。成膜時と真空加熱処理後の平均反射率、反射率差および比抵抗の変化を表2に示す。
【0041】
【表2】
【0042】
純Ag膜は平均反射率が高く、反射率差が少なく、真空加熱後もその平均反射率の低下は少ない。しかし、実施例1に示したように、大気加熱時の平均反射率の低下や耐食性、密着性が劣る。また、AgにPd、Cu、Au等を加えたAg合金膜(試料No.2〜4)は真空加熱後の平均反射率は低下し、特に可視光範囲である400〜700nmの領域での反射率の最大値と最小値の差である反射率差が大きくなり、10%を越えるため可視光範囲での均一な反射特性が維持できない。一方、本発明のAg合金膜(試料No.7〜14)は真空加熱後の反射率の低下は少なく、反射率差も10%以下を維持できる。さらに添加量によっては真空加熱後の平均反射率が向上し、反射率差はむしろ減少していることから、可視光範囲でより均一な反射特性となることが分かる。しかし、添加量の総和が1.0at%を越えたり、各群の添加量が0.5at%を越えると、真空加熱処理後の反射特性が成膜時に比べて向上するが、成膜時に95%以上の高い平均反射率と10%以下の低い反射率差を有する特性を得づらくなることがわかる。また、本発明のAg合金膜は必要最少量の添加元素を加えることで、比抵抗は成膜時で5μΩcm以下、加熱処理後には4μΩcm以下となり低抵抗な配線膜としての使用も可能であることがわかる。
【0043】
また、実施例1、実施例2より、さらに高い96%以上の反射率と5%以下の反射率差を安定的に得るには添加元素の総和が0.7%以下であり、第1群の添加量は0.2〜0.3at%、第2の添加量は0.1〜0.2at%、第1群の添加量は0.2〜0.3at%、であることがわかる。
【0044】
【発明の効果】
以上のように本発明であれば、高い反射率と可視光範囲での反射率が一定値となる反射特性と低い電気抵抗値を有し、耐熱性、耐食性、基板との密着性、そしてパタ−ンニング性を改善した表示装置用Ag合金膜を得ることが可能であり、低消費電力が要求される反射型液晶ディスプレイ等の平面表示装置に有用である。また、高い反射特性と低い電気抵抗を兼ねそなえているため、ガラス基板、Siウェハ−等に形成する幅広い分野の表示装置用の反射膜、配線膜として有用であり、産業上の価値は高い。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to flat display devices (hereinafter, referred to as liquid crystal displays (hereinafter, referred to as LCDs), plasma display panels (hereinafter, referred to as PDPs), field emission displays (hereinafter, referred to as FEDs), and electroluminescence (hereinafter, referred to as ELs). The present invention relates to an Ag alloy film, a flat panel display, and a sputtering target material for forming an Ag alloy film, which are required to have high optical reflectance, low electric resistance, corrosion resistance, patterning property, and adhesion in FPD.
[0002]
[Prior art]
Conventionally, as a typical LCD of a flat display device, a transmissive LCD having a high display quality by incorporating a light source (lamp) and illuminating from the back has been generally used. However, the transmissive LCD has a problem that the power consumption of the backlight which is a light source is large, and the use time is short in a battery-driven portable information terminal or a portable game. For this reason, in recent years, a reflective liquid crystal display that efficiently uses external light and basically does not use a backlight, and a transflective liquid crystal display that combines a reflective type and a conventional transmissive type have been developed. Has been
[0003]
As a reflective film used for such a reflective or transflective display, an Al or Al alloy thin film, which is an element having high reflectivity in the visible light range and low electric resistance among metals, has been often used. However, in recent years, in order to improve the display quality of a display, the reflective film is required to have a flat reflection characteristic called a paper white, which has a constant reflectance in a visible light range, and a higher reflectance.
In addition to the use of a reflective film, it can be used as a reflective electrode film having both a reflective film and an electrode by utilizing the low resistance advantage of metal, and can be used for a liquid crystal television, a PDP, and a portable information terminal that requires high definition. Flat display devices require a wiring material with lower resistance.
[0004]
[Problems to be solved by the invention]
In the case of the above-mentioned Al-based reflective film, there is a problem that the reflectance is lowered due to the growth of crystal grains in the heating step in the LCD manufacturing process. For this reason, an Al alloy in which elements such as Ti and Ta, which are transition metals, are added to Al is used to suppress grain growth. With this Al alloy, it is possible to suppress a decrease in reflectance during the production of a liquid crystal display. However, the average reflectance of this Al or Al alloy film is about 90 to 92%, and there is a problem that the reflectance itself decreases even though grain growth can be suppressed by the added element.
[0005]
On the other hand, Ag, which has a higher reflectivity than Al, has low corrosion resistance, and after forming a film on a substrate, discolors only by leaving it in the air for a few days, resulting in yellowish reflection characteristics or display manufacturing. Occasionally, it is corroded by the chemicals used, and the reflectance decreases. Further, there is a problem in heat resistance, for example, in a process involving heating in the air when forming a resin or the like on the Ag reflective film at the time of manufacturing a display, the reflectance is greatly reduced due to grain growth or aggregation and the like. Furthermore, adhesion to glass or Si wafers, which are substrates of flat panel display devices, is low, and peeling occurs during the process. There is a problem that the patterning property is reduced, such as being smaller than a predetermined shape.
[0006]
In order to solve the above problem, JP-A-9-324264 discloses an Ag alloy containing 0.1 to 2.5 at% of Au and 0.3 to 3 at% of Cu, and JP-A-11-119664 discloses an adhesive layer. An Ag alloy to which Pt, Pd, Au, Cu, and Ni are added has been proposed. Further, although the application is different, an alloy obtained by adding 0.5 to 4.95 at% of Pd to Ag is disclosed in JP-A-2000-109943 as a reflective film, and 0.1 to 3 wt% of Pd is added to Ag in JP-A-2001-192754. Further, a metal material for electronic parts using an alloy containing 0.1 to 3 wt% in total of Al, Au, Pt, Cu, Ta, Cr, Ti, Ni, Co, Si and the like has been proposed.
[0007]
However, none of the various Ag alloys proposed so far can achieve both the corrosion resistance, heat resistance, adhesion, and patterning properties, and the high reflectance and low cost of Ag. It is known that the addition of the various elements described above has various improvement effects. However, in order to simultaneously improve adhesion, corrosion resistance, and heat resistance by suppressing grain growth, the amount of added elements increases, and there is a problem that the characteristics of Ag having high reflectance and low electric resistance are lost. Addition of Pd, Pt, and various transition metals is highly effective in improving corrosion resistance, but particularly causes a large decrease in reflectance on the low wavelength side in the visible light range. Au is an element that hardly causes a decrease in reflectivity. Further, there is a problem that noble metals such as Au, Pd, and Pt are expensive elements and are expensive.
[0008]
An object of the present invention is to provide a high reflection required in a flexible display device such as a flat display device formed on a Si substrate or a glass substrate such as a reflective liquid crystal display, an FED, and an organic EL device, and a resin film substrate. While maintaining the reflectance, the reflectance in the visible light range becomes a constant value, has low electrical resistance, and has both heat resistance and corrosion resistance during the process of manufacturing the display device, and furthermore, it has good adhesion to the substrate. An object of the present invention is to provide a low-cost Ag alloy film with improved patterning properties, a sputtering target for forming the Ag alloy film, and a flat panel display with higher quality and lower power consumption.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-described problems, and as a result, by using a reflective film obtained by adding a selected element to Ag, the visible light inherent to Ag which is necessary for a reflective film for a display device has been obtained. A low-cost Ag alloy film that can improve heat resistance and corrosion resistance, and also improve adhesion and patterning properties to substrates, while maintaining the reflectance characteristics that the reflectance in the light range is constant and high reflectance. Found and arrived at the present invention.
[0010]
That is, in the present invention, one or two or more elements selected from the first group consisting of (Y, La, Pr, Nd, Sm, Gd, Tb, and Dy) as additive elements in a total amount of 0.1 to 0.5 at%, a total of 0.1 to 0.5 at% of one or more elements selected from the second group consisting of (Fe, Co, Ni, Si), and (Ti, Zr, One or more elements selected from the third group consisting of Mn, Cu, Al, and Ge) in a total amount of 0.1 to 0.5 at%; The remaining is an Ag alloy film for a display device substantially composed of Ag. Further, there is provided an Ag alloy film for a display device having the above composition, which is a reflection film for a reflective liquid crystal display using the Ag alloy film having the above composition. Further, the present invention is an Ag alloy film for a display device formed on a glass substrate or a Si wafer. Further, it is a flat panel display using an Ag alloy film having the above composition.
[0011]
In addition, the present invention provides a total of 0.1 or more elements selected from the first group consisting of (Y, La, Pr, Nd, Sm, Gd, Tb, and Dy) as additional elements. 0.5 to 0.5 at%, a total of 0.1 to 0.5 at% of one or more elements selected from the second group consisting of (Fe, Co, Ni, Si), and (Ti, Zr , Mn, Cu, Al, Ge) in a total of 0.1 to 0.5 at% of one or more elements selected from the third group consisting of the third group, and the sum of the additional elements is 1.0 at% or less. And a sputtering target material for forming an Ag alloy film substantially consisting of Ag.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The feature of the present invention is that the corrosion resistance and heat resistance required for the display device are maintained while maintaining as high as possible the optically flat reflection characteristics in which the reflectance of Ag itself and the reflectance in the visible light range are constant. They have found a low-cost alloy composition that is optimal for solving issues such as adhesion and patterning.
[0013]
Usually, when a reflective film of Ag is produced, although the reflectivity as a film is high, there is a problem that the reflectivity is reduced in a process of manufacturing a display device (for example, a liquid crystal display) using the reflective film. Something is as described above. That is, film growth, aggregation, and the like occur due to heating, and the film surface has a more uneven shape and voids are generated. Then, depending on the heating atmosphere, the film surface is discolored, which also causes a decrease in reflectance. Therefore, in the present invention, one or two or more elements selected from Y, La, Pr, Nd, Sm, Gd, Tb, and Dy are added to Ag and one or two of Fe, Co, Ni, and Si are added. By adding more than one kind of element and one or more kinds of elements among Ti, Zr, Mn, Cu, Al, and Ge in combination, the deterioration of the film itself is suppressed and heat resistance, which is a disadvantage of Ag, It is possible to improve the corrosion resistance, the adhesion on a glass substrate for a display device, a Si wafer or the like, and the patterning by photo-etching. Thus, a display device having excellent characteristics can be obtained.
[0014]
The reason why the additive element and the additive amount thereof are selected in the Ag alloy-based reflective film for a display device of the present invention will be described below. When an additive element is added to Ag, the reflectance decreases. However, the effect of improving the heat resistance and corrosion resistance by the added element increases with an increase in the added amount, and becomes clearer. For this reason, in order to improve the above-mentioned disadvantages of Ag while maintaining a high reflectance, it is necessary to adjust the additive element so that a sufficient effect can be obtained although the necessary amount of the additive element is minimal.
[0015]
First, the effect of adding each element alone will be described. First, Y, La, Pr, Nd, Sm, Gd, Tb, and Dy which are the first group are general rare earth elements. The effect of containing these elements is to suppress aggregation of the Ag alloy film during heating to improve heat resistance, and to improve patterning by improving adhesion. These improvement effects do not appear when the content is less than 0.1 at%, and the reflectance decreases when the content is increased. However, the use of only the above-mentioned rare earth elements is weak in improving the corrosion resistance, and the film is peeled off in a cleaning step for manufacturing a display device, and is insufficient for improving the adhesion.
[0016]
The elements of the second group, Fe, Co, Ni, and Si, are elements that have a high melting point with respect to Ag, and are elements that are hardly mixed with Ag and are separated or slightly solid-solved. Is an element having good adhesion to glass substrates, Si wafers and resins. The addition of these elements is effective in improving the corrosion resistance and the patterning property by improving the adhesion. These improvement effects do not appear when the content is less than 0.1 at%, and the reflectance decreases when the content is increased. However, these elements alone are not enough to improve heat resistance.
[0017]
When the third group of elements of Ti, Zr, Mn, Cu, Al, and Ge are added to Ag, the corrosion resistance is improved. However, these elements alone are insufficient for improving heat resistance and adhesion.
[0018]
For this reason, in order to obtain an Ag alloy film having both corrosion resistance, heat resistance, adhesion, and patterning properties, a first group of Y, La, Pr, Nd, Sm, and Gd effective for improving heat resistance and adhesion. , Tb, and Dy, a second group of elements selected from the group consisting of Fe, Co, Ni, and Si that are effective in improving corrosion resistance and adhesion, and a third group of Ti that is further effective in improving corrosion resistance. , Zr, Mn, Cu, Al, and Ge were added in combination. At that time, the minimum addition amount of each is 0.1 at%, and as described above, the addition amount less than this is not enough to exhibit the effect of improving the film characteristics. For this reason, in the present invention, the minimum addition amount in the case of composite addition is 0.3 at%.
[0019]
In the present invention, an Ag alloy capable of obtaining a high improvement effect with a much smaller amount of addition by using a composite addition than by adding the first group, the second group, and the third group to Ag alone, respectively. It becomes possible to form a film. Further, in the case of compound addition, the upper limit of each addition is 0.5 at% in total for elements selected from the first group, Y, La, Pr, Nd, Sm, Gd, Tb, and Dy, and Fe in the second group. , Co, Ni, and Si in a total of 0.5 at%, and a third group of elements selected from Ti, Zr, Mn, Cu, Al, and Ge in a total of 0.5 at%. The sum was 1.0 at% or less. If the amount exceeds the above range, the reflectance on the low wavelength side of the visible light range decreases, and it becomes difficult to obtain a characteristic in which the reflectance is constant.
[0020]
Further, the addition amount of the first group is 0.2 to 0.4 at%, the addition amount of the second group is 0.1 to 0.3 at%, the addition amount of the third group is 0.2 to 0.4 at%, It is preferable that the total amount of addition be 0.7 at% or less. Still more preferably, the upper limit of the first group is 0.3 at%, and the upper limit of the third group is 0.3 at%. In addition, since the film characteristics are improved with a small amount of an element added to Ag, a low electrical resistance of 5 μΩcm or less in specific resistance can be easily obtained, which is optimal as a wiring material.
[0021]
The reason for the effect of improving the film properties by the above-mentioned additional element of the present invention is not clear, but is presumed as follows. Generally, a sputtering method is used as a method for forming a metal film in a display device. However, when a thin film is formed on a substrate, an additive element is dissolved in a non-equilibrium state. The first group of elements selected from Y, La, Pr, Nd, Sm, Gd, Tb, and Dy are rare earth elements. These elements also have melting points close to 961 ° C. of Ag and about 800 to 1500 ° C., and form elements with Ag. The elements forming the compound restrain atoms, so that the movement of Ag atoms is suppressed, thereby inhibiting the growth of crystal grains and forming a film having fine and dense crystal grains. For this reason, it is effective in suppressing aggregation at the time of heating, improving heat resistance, and improving patterning by improving adhesion.
[0022]
The second group of elements selected from Fe, Co, Ni, and Si are elements that have good adhesion to glass substrates for display devices, Si wafers and resins, have a high melting point with respect to Ag, and are almost the same as Ag. Since it is an element that separates without mixing or is slightly dissolved in Ag, when it is added to Ag, it improves the patterning property by improving the adhesion between Ag and the substrate, and diffuses to the film surface in the heating step of the display device, and It is thought that the corrosion resistance is improved due to the effect of protecting the surface of.
Further, a third group of elements selected from Ti, Zr, Mn, Cu, Al, and Ge are elements that have a solid solution region or form a compound with Ag, and when added to Ag, transfer of Ag atoms can be performed. It is considered that there is an effect of improving the corrosion resistance by suppressing and changing the properties of Ag itself.
[0023]
As described above, each element has various improving effects, but the elements of the second and third groups are elements that form compounds with the rare earth elements of the first group. For this reason, a compound containing an additional element is formed by adding a trace amount of an element selected from the first group of elements and an element selected from the second and third groups, rather than adding each alone. Since the easy elements are uniformly dispersed in the film, the grain growth of the film is suppressed, and the Ag alloy film has a dense and smooth surface morphology and low film stress. For this reason, heat resistance is improved by suppressing film growth and aggregation in a heating step in a process of manufacturing a display device, thereby improving corrosion resistance to chemicals and the like by reducing voids in the film and suppressing intergranular corrosion, and It is considered that an Ag alloy film capable of maintaining a constant reflectance and a high reflection characteristic in a visible light range that Ag originally has, while improving the patterning property by improving the adhesion, can be obtained.
[0024]
Pure Ag has a reflection characteristic of as high as 99% or more on the high wavelength side of 700 nm in the visible light range of wavelengths from 400 nm to 700 nm and decreases on the low wavelength side of 400 nm, but is corroded by the heating step and chemicals. In this case, the low wavelength side is greatly reduced, and the reflection characteristic is yellowish. However, according to the present invention, the difference between the maximum value and the minimum value of the reflectance from 400 nm to 700 nm as an Ag alloy film having no yellowish color in the visible light range, having a constant reflectance, and having high reflection characteristics is obtained. An unconventional film having an average reflectance of 95% or more within 10% can be obtained.
[0025]
It is preferable to use a glass substrate or a Si wafer as a substrate used when forming the Ag alloy film for a display device of the present invention. These substrates are excellent in process stability in manufacturing a display device, and by heating the substrate when forming the Ag alloy film of the present invention, have higher reflectivity and adhesiveness than when the film is formed at room temperature. It is possible to obtain an Ag alloy film having the following. In addition, a low electric resistance value can be obtained together with a high reflection characteristic, and it can be used as a wiring film.
[0026]
Further, the Ag alloy film of the present invention is suitable for a reflection type liquid crystal display and the like, even when a step of performing atmospheric heating such as forming a resin or the like on the surface is included, with little change in reflectance. Further, the Ag alloy film of the present invention is subjected to a heat treatment, particularly in vacuum, after the film is formed, so that the reflectance in the visible light range is constant, the optical reflectance is high, and the electrical resistance is low. Is obtained. Therefore, it can be used for many flat panel display devices having a heating step when heating in vacuum or forming another protective film. Many of the Ag-Cu alloys and Ag-Pd alloys that have been proposed so far have a large addition amount of 0.5 at% or more for improving the film properties. As it melts, the reflectance often decreases. However, a film having improved reflectivity, such as the Ag alloy film of the present invention, is very useful as a reflective film for a display device, and is one of the excellent features of the Ag alloy film of the present invention.
[0027]
Further, when forming an Ag alloy film for a display device of the present invention, sputtering using a target material is optimal. This is because a film having substantially the same composition as the target material can be formed by the sputtering method, so that the Ag alloy film of the present invention can be formed stably. Therefore, the present invention is a sputtering target material for forming an Ag alloy film having the same composition as the Ag alloy film for a display device.
[0028]
Although there are various methods for manufacturing the target material, any method can be used as long as it can achieve high purity, uniform structure, high density, and the like generally required for the target material. For example, a molten metal adjusted to a predetermined composition by a vacuum melting method is cast into a metal mold, and then further processed into a plate shape by plastic working such as forging and rolling, and finished into a target having a predetermined shape by machining. Can be manufactured. Further, in order to obtain a more uniform structure, an ingot solidified by rapid cooling such as a powder sintering method or a spray forming method (droplet deposition method) may be used.
[0029]
In the sputtering target material for forming an Ag alloy film for a display device according to the present invention, the constituent elements other than the first, second and third groups are substantially made of Ag. The gas may contain unavoidable impurities such as oxygen, nitrogen, and carbon, which are gas components, as long as they are not damaged. For example, oxygen, nitrogen, and carbon in the gas components are each 50 ppm or less, and the purity excluding the gas components may be 99.9% or more.
[0030]
The substrate used for manufacturing the display element is preferably a glass substrate, a Si wafer, or the like as described above, but may be any as long as a thin film can be formed by sputtering, such as a resin substrate, a metal substrate, or another resin. Foil, metal foil, etc. may be used.
[0031]
The Ag alloy film for a display device of the present invention preferably has a thickness of 100 to 300 nm in order to obtain a stable reflectance. When the film thickness is less than 100 nm, light is transmitted because the film is thin, and the reflectance is reduced, and the surface morphology of the film is easily changed. On the other hand, if the film thickness exceeds 300 nm, crystal grains grow, the unevenness of the film surface morphology becomes large and the reflectance decreases, and the film is easily peeled off by the film stress. , And productivity is reduced.
[0032]
Further, among the rare earth elements selected from the first group, Y, La, Pr, Nd, Sm, Gd, Tb, and Dy, Sm and Dy are particularly preferable. These elements have a small decrease in reflectance when added to Ag, and in particular, a small decrease in reflectance on the low wavelength side. That is, this is because the Ag alloy film has a constant reflectance in the visible light range and has a reflection characteristic of high reflectance. Although the reason for this is not clear, it is considered that since these elements have a small atomic radius and are close to Ag, when added, the crystal lattice of Ag is less disturbed and the effect of inhibiting the movement of free electrons is low. Further, among them, Sm is particularly desirable. Sm is hardly oxidized among rare earth elements and has a high vapor pressure, so that a high-purity raw material can be stably obtained. Therefore, Sm is most suitable industrially because a sputtering target used for forming an Ag alloy film can be manufactured stably and the price is lower than Dy.
[0033]
Further, among the second group selected from Fe, Co, Ni, and Si, Ni and Si are preferable. These elements have a remarkable effect of improving corrosion resistance by adding a small amount to Ag as compared with other elements, and therefore, a decrease in reflectance on a low wavelength side is small and reflection in a visible light range is small. An Ag alloy film having a reflection characteristic with a constant rate is obtained, and is relatively inexpensive. Although the reason for this is not clear, it is considered that when the atomic radius of these elements is close to that of Ag, the crystal lattice of Ag is less disordered and the effect of inhibiting the movement of free electrons is low.
[0034]
Further, among the elements selected from the third group, Ti, Zr, Mn, Cu, Al and Ge, Cu, Al and Ge are preferable. This is because the effect of improving the corrosion resistance is remarkable when only a small amount of these elements is added to Ag. Further, when added, the resistance value increases little and is an optimal element when used for a wiring material. Although the reason for this is not clear, it is considered that since these elements have a solid solution region in Ag, the crystal lattice of Ag is less disordered when added, and the effect of inhibiting the movement of free electrons is low. . Also, Pd which is expensive but has the same effect as these elements may be added.
[0035]
【Example】
(Example 1)
Raw materials were blended so as to be substantially the same as the target composition of the Ag alloy film in which Ag was added with various additive elements, melted in a vacuum melting furnace, and then cast to produce an Ag alloy ingot. Next, after forming into a plate shape by plastic working, a sputtering target material having a diameter of 100 mm and a thickness of 5 mm was produced by machining. Using the target material, an Ag alloy film having a thickness of 200 nm is formed on a smooth glass substrate by a sputtering method, and as a film characteristic, a wavelength of 400 to 400 nm, which is a visible light range, is measured using a spectrophotometer (CM2002 manufactured by Minolta). The average reflectance at 700 nm and the specific resistance were measured by the four probe method.
[0036]
Further, in order to evaluate a change in film characteristics after a predetermined manufacturing process as a display device, the pure Ag film and the Ag alloy film produced above were evaluated under the following conditions. As the heat resistance evaluation, the average reflectance after heat treatment at 250 ° C. for 1 hour in the air was evaluated. Further, in order to evaluate the adhesion of the film, a cut was made in a grid pattern at intervals of 2 mm in the heat-treated pure Ag film and Ag alloy film, and then a tape was attached to the film surface and peeled off. At that time, the cells remaining on the substrate were represented by the area ratio and evaluated as the adhesion. For the evaluation of the corrosion resistance of the film, the reflection characteristics after leaving the film in air at a temperature of 80 ° C. and a humidity of 90% for 24 hours were evaluated. For evaluation of the patterning property, an OFPR-800 resist manufactured by Tokyo Ohka Co., Ltd. was formed on the pure Ag film and the Ag alloy film by spin coating, the resist was exposed to ultraviolet light using a photomask, and the organic alkali developing solution NMD-3 was used. It was developed to form a resist pattern, and then etched with a mixed solution of phosphoric acid, nitric acid and acetic acid to form a metal film pattern. The peeling of the pure Ag film and the Ag alloy film pattern, the shape of the edge, the residue around the edge, and the like were observed with an optical microscope, and those having no film peeling and no residue were evaluated as good. Table 1 shows the above measurement results.
[0037]
[Table 1]
[0038]
From Table 1, it can be seen that the pure Ag film (Sample No. 1) has a high average reflectance of more than 98% at the time of film formation, but the average reflectance is significantly reduced by heat treatment and a corrosion resistance test, and the adhesion is high. It is understood that the property is low. Further, in the Ag alloy film obtained by adding Pd and Cu to Ag that has been conventionally proposed (Sample No. 2), the average reflectance at the time of film formation is low, and after performing a heat resistance test and a corrosion resistance test, the average reflectance is 95% or more. The reflectance cannot be secured. The Ag alloy film obtained by adding Cu and Au to Ag (Sample No. 3) has a high average reflectance at the time of film formation and can maintain a high average reflectance even after performing a heat resistance test and a corrosion resistance test. It is low and remains in the patterning evaluation. In addition, it can be seen that the Ag alloy film obtained by adding only Cu to Ag (Sample No. 4) has a high average reflectance exceeding 98% at the time of film formation, but is inferior in heat resistance. Further, the Ag alloy film (Sample No. 5) in which Nd which is a rare earth element is added to Ag has a high reflectance at the time of film formation, but has a low corrosion resistance and a large decrease in the reflectance.
[0039]
On the other hand, the Ag alloy film of the present invention (Sample Nos. 7-14) maintains a high reflectance of 95% or more in both the average reflectance at the time of film formation and the average reflectance after the heat treatment and after the corrosion resistance test. Is maintained at 75% or more. Also, the patterning properties are good. Further, the sample No. In order to obtain a high average reflectance of 95% or more from the Ag alloy films of 15 to 18, it is necessary to make the total sum of the additional elements of the first group, the second group, and the third group 1.0 at% or less. It can be seen that the maximum value of the added amount of each group is 0.5 at%. Further, in order to obtain heat resistance, corrosion resistance, adhesiveness and patterning property while maintaining a higher reflectance of 96% or more, the addition amount of the first and third groups should be 0.2 to 0.4 at. %, The addition amount of the second group is 0.1 to 0.3 at%, and the total sum of the additional elements of the first group, the second group, and the third group is preferably 0.7 at% or less. You can see that.
[0040]
(Example 2)
The pure Ag film and the Ag alloy film of Example 1 were heated to 250 ° C. in a vacuum heating device evacuated to 1 × 10 −3 Pa or less, left for 1 hour, cooled to 100 ° C. or less, and then taken out of the vacuum device. The average reflectance and the specific resistance were measured in the same manner as in Example 1. The reflectance of each sample of Example 1 and each sample after the above vacuum heat treatment in the visible light range of wavelengths from 400 nm to 700 nm was measured using a spectral colorimeter (CM2002 manufactured by Minolta), and the visible light range was measured. The difference between the maximum value and the minimum value of the reflectance of each sample was evaluated as a reflectance difference. Table 2 shows the changes in average reflectance, reflectance difference, and specific resistance during film formation and after vacuum heat treatment.
[0041]
[Table 2]
[0042]
The pure Ag film has a high average reflectance, a small difference in reflectance, and a small decrease in the average reflectance even after vacuum heating. However, as shown in Example 1, the average reflectance at the time of heating in the atmosphere is lowered, and the corrosion resistance and the adhesion are inferior. Further, the average reflectivity of the Ag alloy film obtained by adding Pd, Cu, Au or the like to Ag (sample Nos. 2 to 4) after vacuum heating is reduced, and particularly, the reflection in the visible light range of 400 to 700 nm. The reflectance difference, which is the difference between the maximum value and the minimum value of the ratio, is large and exceeds 10%, so that uniform reflection characteristics in the visible light range cannot be maintained. On the other hand, the Ag alloy films of the present invention (Samples Nos. 7-14) have a small decrease in reflectance after vacuum heating, and can maintain a reflectance difference of 10% or less. Furthermore, depending on the amount of addition, the average reflectance after vacuum heating is improved, and the reflectance difference is rather reduced, indicating that the reflection characteristics become more uniform in the visible light range. However, when the total amount of addition exceeds 1.0 at% or the addition amount of each group exceeds 0.5 at%, the reflection characteristics after the vacuum heat treatment are improved as compared with the film formation. It is understood that it is difficult to obtain a characteristic having a high average reflectance of not less than 10% and a low reflectance difference of not more than 10%. In addition, the Ag alloy film of the present invention has a specific resistance of 5 μΩcm or less at the time of film formation and 4 μΩcm or less after heat treatment by adding a minimum necessary amount of additional elements, and can be used as a low-resistance wiring film. I understand.
[0043]
In addition, in order to stably obtain a higher reflectance difference of 96% or more and a reflectance difference of 5% or less than Examples 1 and 2, the total sum of the added elements is 0.7% or less. Is 0.2 to 0.3 at%, the second addition amount is 0.1 to 0.2 at%, and the addition amount of the first group is 0.2 to 0.3 at%.
[0044]
【The invention's effect】
As described above, according to the present invention, it has a high reflectance and a reflectance characteristic in which the reflectance in the visible light range is constant and a low electric resistance value, and has heat resistance, corrosion resistance, adhesion to a substrate, and pattern. -It is possible to obtain an Ag alloy film for a display device with improved thinning properties, and it is useful for a flat display device such as a reflection type liquid crystal display which requires low power consumption. Further, since it has both high reflection characteristics and low electric resistance, it is useful as a reflection film and a wiring film for display devices in a wide range of fields formed on glass substrates, Si wafers and the like, and has high industrial value.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002219775A JP4062599B2 (en) | 2002-07-29 | 2002-07-29 | Ag alloy film for display device, flat display device, and sputtering target material for forming Ag alloy film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002219775A JP4062599B2 (en) | 2002-07-29 | 2002-07-29 | Ag alloy film for display device, flat display device, and sputtering target material for forming Ag alloy film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004061845A true JP2004061845A (en) | 2004-02-26 |
JP4062599B2 JP4062599B2 (en) | 2008-03-19 |
Family
ID=31940594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002219775A Expired - Fee Related JP4062599B2 (en) | 2002-07-29 | 2002-07-29 | Ag alloy film for display device, flat display device, and sputtering target material for forming Ag alloy film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4062599B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010097066A (en) * | 2008-10-17 | 2010-04-30 | Kobe Steel Ltd | Reflector for lightening, for mirror or for display panel |
JP2010097065A (en) * | 2008-10-17 | 2010-04-30 | Kobe Steel Ltd | Reflector |
JP2010225572A (en) * | 2008-11-10 | 2010-10-07 | Kobe Steel Ltd | Reflective anode and wiring film for organic el display device |
US8178174B2 (en) | 2002-08-08 | 2012-05-15 | Kobe Steel, Ltd. | Ag base alloy thin film and sputtering target for forming Ag base alloy thin film |
-
2002
- 2002-07-29 JP JP2002219775A patent/JP4062599B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8178174B2 (en) | 2002-08-08 | 2012-05-15 | Kobe Steel, Ltd. | Ag base alloy thin film and sputtering target for forming Ag base alloy thin film |
US8936856B2 (en) | 2002-08-08 | 2015-01-20 | Kobe Steel, Ltd. | AG base alloy thin film and sputtering target for forming AG base alloy thin film |
JP2010097066A (en) * | 2008-10-17 | 2010-04-30 | Kobe Steel Ltd | Reflector for lightening, for mirror or for display panel |
JP2010097065A (en) * | 2008-10-17 | 2010-04-30 | Kobe Steel Ltd | Reflector |
JP2010225572A (en) * | 2008-11-10 | 2010-10-07 | Kobe Steel Ltd | Reflective anode and wiring film for organic el display device |
US8431931B2 (en) | 2008-11-10 | 2013-04-30 | Kobe Steel, Ltd. | Reflective anode and wiring film for organic EL display device |
Also Published As
Publication number | Publication date |
---|---|
JP4062599B2 (en) | 2008-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100506474B1 (en) | Ag FILM AND SPUTTERING-TARGET FOR FORMING THE Ag FILM | |
KR100638977B1 (en) | Ag-BASE ALLOY WIRING/ELECTRODE FILM FOR FLAT PANEL DISPLAY, Ag-BASE ALLOY SPUTTERING TARGET, AND FLAT PANEL DISPLAY | |
JP4496518B2 (en) | Thin film wiring | |
JP4305809B2 (en) | Ag alloy-based sputtering target material | |
TWI452161B (en) | Method for producing oxygen-containing copper alloy film | |
KR101804660B1 (en) | Laminated wiring film for electronic components and sputtering target material for forming coating layer | |
JP3656898B2 (en) | Ag alloy reflective film for flat panel display | |
WO2006132412A1 (en) | Silver alloy for electrode, wiring and electromagnetic shielding | |
JP2004061844A (en) | Ag ALLOY FILM FOR DISPLAY DEVICE, Ag ALLOY REFLECTING FILM FOR DISPLAY DEVICE, FLAT PANEL DISPLAY DEVICE AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY FILM DEPOSITION | |
JP4062599B2 (en) | Ag alloy film for display device, flat display device, and sputtering target material for forming Ag alloy film | |
JPWO2008047511A1 (en) | Al-Ni-B alloy material for reflective film | |
JP4103067B2 (en) | Ag alloy reflective film for flat panel display | |
JP4918231B2 (en) | Method for producing Ag alloy film | |
JP4714477B2 (en) | Ag alloy film and manufacturing method thereof | |
JP6380837B2 (en) | Sputtering target material for forming coating layer and method for producing the same | |
JP3778425B2 (en) | Ag alloy film for electronic parts used for display device and sputtering target material for forming Ag alloy film for electronic parts used for display device | |
JP3994386B2 (en) | Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film | |
JP3982793B2 (en) | Ag alloy reflective film for display device | |
JP2003293054A (en) | Ag ALLOY FILM FOR ELECTRONIC PART AND SPUTTERING TARGET MATERIAL FOR FORMING Ag ALLOY FILM | |
EP3064603B1 (en) | Silver alloy film, and sputtering target for forming silver alloy film | |
JP3778443B2 (en) | Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film | |
JP2004238648A (en) | Ag-ALLOY FILM FOR ELECTRONIC PART, FLAT PANEL DISPLAY DEVICE, AND SPUTTERING TARGET MATERIAL FOR DEPOSITING Ag-ALLOY FILM FOR ELECTRONIC PART | |
JP4001823B2 (en) | Sputtering target material for thin film formation, thin film, electrode wiring layer, optical recording medium, electronic component, electro-optical component, and electronic equipment | |
JP5099504B2 (en) | Wiring and electrodes for liquid crystal display devices with excellent adhesion | |
JP6033493B1 (en) | Copper-based alloy sputtering target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050614 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071220 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110111 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110111 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120111 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130111 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130111 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |