【0001】
【発明の属する技術分野】
本発明は水素貯蔵タンク,例えば燃料電池に水素を供給すべく車両に搭載される水素貯蔵タンクに関する。
【0002】
【従来の技術】
水素吸蔵材,例えば水素吸蔵合金粉末を有する水素貯蔵タンクへの水素充填過程において,その水素吸蔵合金粉末が水素を吸蔵すると,それに伴いその粉末は発熱する。この場合,水素充填作業を迅速に行うためには水素吸蔵合金粉末を効率良く冷却しなければならない。
【0003】
そこで,従来は水素貯蔵タンク内に冷却媒体用通路を設け,その通路に冷却媒体としての水,空気等を流通させる,といった手段を採用している。
【0004】
【発明が解決しようとする課題】
しかしながら,水は水素吸蔵合金粉末の水素吸蔵温度が100℃未満であれば冷却媒体として有効であるが,その水素吸蔵温度が100℃以上であるときは冷却媒体として適切ではない。
【0005】
これに対応するために,例えば,冷却媒体として空気が用いられている。しかしながら空気の熱容量および熱伝導率は水に比べて小さいので,それを補うためには空気の流量を極端に増加させなければならないが,これはエネルギコストおよび設備コストの上昇を招き,それにも拘らず,水素の充填率が低く,また充填時間も長い,という問題があった。
【0006】
【課題を解決するための手段】
本発明は,水素吸蔵材を効率良く冷却して水素充填率を向上させると共に水素充填時間を短縮することができるようにした前記水素貯蔵タンクを提供することを目的とする。
【0007】
前記目的を達成するため本発明によれば,水素を吸蔵することによって発熱する水素吸蔵材を有する内側タンクと,前記内側タンクを,それの外面との間に冷却用空間を存して囲む外側タンクと,前記水素吸蔵材による水素の吸蔵に伴い前記内側タンクの温度が前記水素吸蔵材の水素吸蔵温度に上昇したとき,その内側タンクを介して前記水素吸蔵材を冷却すべく,前記冷却用空間内に前記水素吸蔵温度よりも低い沸点を持つ液体を噴霧する少なくとも1つの噴霧器とを備えている水素貯蔵タンクが提供される。
【0008】
前記のように構成すると,液体の霧化による無数の微粒子を内側タンク外面で蒸発させ,その潜熱により内側タンクを介して水素吸蔵材を効率良く冷却することができる。
【0009】
前記のような液体をそのままの状態で急激に冷却用空間内に大量に供給すると,内側タンク外面で液体が沸騰し,その沸騰層によって熱伝導が妨げられるため水素吸蔵材の冷却効率が極度に低下する。
【0010】
前記液体の霧化による冷却は,内側タンクが冷却液に対してサーマルショックを起さなくなるまでとし,その後は大量の冷却液を前記空間に供給して流通させることにより水素吸蔵材を迅速に冷却し,これにより水素充填率の向上を図ると共に充填時間を短縮することが可能である。
【0011】
【発明の実施の形態】
図1において,水素貯蔵タンク1は燃料電池2に水素を供給すべく車両3に搭載されている。水素貯蔵タンク1への水素の充填は水素ステーション4にて行われる。
【0012】
水素貯蔵タンク1は,水素を吸蔵することによって発熱する水素吸蔵材,例えば水素吸蔵合金粉末を有する内側タンク5と,内側タンク5を,それの外面との間に冷却用空間6を存して囲む外側タンク6とを備えている。
【0013】
内側タンク5は,ステンレス鋼より構成された横断面円形の耐圧性筒体8と,軸線をほぼ水平にし,且つ筒体8の内面との間に,吸蔵用水素および放出された水素を流通させる通路9となる間隔を存してその筒体8内に収容された円筒状水素貯蔵モジュール10とを有する。筒体8は複数の支持部材11を介して外側タンク7の底壁12内面に支持されている。図2,図3にも示すように,円筒状水素貯蔵モジュール10は,水素吸蔵材としての水素吸蔵合金粉末MHを収容して外周面のほぼ全体を水素吸蔵放出面13とした複数の短円筒形水素貯蔵器14を備え,それら水素貯蔵器14は軸線をほぼ水平にしてその軸線方向に並び,相隣る両水素貯蔵器14間にそれぞれ円盤形をなす触媒式加熱器15が挟持されている。
【0014】
各水素貯蔵器14は,その外周壁を構成すべくステンレス鋼よりなる通気性フィルタ16を備え,そのフィルタ16は,水素が水素吸蔵放出面13を通じて出入りし得るように多数の微細孔,例えば,直径が0.1〜10μmの孔を有する。フィルタ16の水素吸蔵放出面13に,円周上等間隔に複数の熱伝導用フィン17が設けられ,それらフィン17の外端縁は筒体8内周面に接合されている。
【0015】
筒体8の一方の端壁18上部に,水素用出入口19が設けられており,その出入口19に管20の一端が接続され,その他端は三方弁21の第1ポートに接続される。三方弁21の第2ポートは管22を介して燃料電池2に接続される。また第3ポートには管23の一端が接続され,その他端のカップリング半体24は水素ステーション4の水素供給源25から延出する管26のカップリング半体27と着脱自在に接続されている。
【0016】
車両3には,各触媒式加熱器15に水素と空気とよりなるガス燃料を供給するガス燃料供給源28が搭載されている。そのガス燃料供給源28の出口から延出する供給管29は2本に分岐され,両分岐管30は,円筒状水素貯蔵モジュール10の外周部側において,その一端から他端側の触媒式加熱器15に至るように串通されていて,各触媒式加熱器15内に連通する複数の入口孔31を有する。また両分岐管30よりも大径の排気管32が,円筒状水素貯蔵モジュール10と同軸配置されるように,その他端から一端側の触媒式加熱器15に至るように串通されていて,各触媒式加熱器15内に連通する複数の出口孔33を有する。ガス燃料の水素としては水素貯蔵タンク1から放出された水素が用いられる。
【0017】
水素貯蔵タンク1と水素ステーション4との間には,水素吸蔵作業において,水素吸蔵合金粉末MHを冷却する1次冷却装置34と,2次冷却装置35と,排液装置36とが構成されるようになっている。1次冷却装置34は,水素吸蔵合金粉末MHによる水素の吸蔵に伴い内側タンク5,したがって筒体8の温度が水素吸蔵合金粉末MHの水素吸蔵温度(>100℃)に上昇したとき,その筒体8を介して水素吸蔵合金粉末を冷却すべく,冷却用空間6内に水素吸蔵温度よりも低い沸点を持つ液体,実施例では水を噴霧する,といった機能を有する。2次冷却装置34は,1次冷却過程後において,冷却用空間6内に冷却液である水を流通させて水素吸蔵合金粉末MHを冷却する,といった機能を有する。排液装置36は,水素吸蔵後,冷却用空間6内の冷却液である水を排出する,といった機能を有する。
【0018】
1次冷却装置34は次のように構成されている。
【0019】
即ち,少なくとも1つ,実施例では2つの噴霧器としてのインゼクタ37が,噴霧口を冷却用空間6内に配置して外側タンク7の両端壁38,39下部に取付けられている。一方,水素ステーション4において,水タンク40の出口から供給管41が延出し,その供給管41に,水タンク40側より順次,水ポンプ42および第2開閉弁43が装置され,端部にはカップリング半体44が設けられている。そのカップリング半体44に,車両3側に存する管45の一端に設けられたカップリング半体46が着脱自在に接続され,その管45の他端側は2本に分岐すると共に両分岐管47は両インゼクタ37にそれぞれ接続されている。
【0020】
また水素ステーション4において,水精製器48の入口側に戻し管49の一端が接続され,その戻し管49に,水精製器48側より順次,冷却器50,第2開閉弁51が装置され,端部にはカップリング半体52が設けられている。そのカップリング半体52に,車両3側に存する管53の一端に設けられたカップリング半体54が着脱自在に接続され,その管53の他端は,外側タンク7の他方の端壁39上部に設けられた,冷却用空間6の上側排出口55に接続される。
【0021】
水精製器48の出口側は管56を介して水タンク40の入口側に接続され,その管56に,蒸留水補給源57が第3開閉弁58を有する管59を介して接続されている。また外側タンク7の天井60において,上側排出口55近傍に貫通孔61が形成され,その貫通孔61に逃し弁62を備えた管63が接続される。
【0022】
2次冷却装置35は次のように構成されている。
【0023】
即ち,水タンク40の出口から延出する供給管41において,水ポンプ42および第1開閉弁43間に,第4開閉弁64を有する供給管65の一端が接続され,その他端にはカップリング半体66が設けられている。そのカップリング半体66に,車両3側に存する管67の一端に設けられたカップリング半体68が着脱自在に接続され,その管67の他端は,外側タンク7の一方の端壁38下部に設けられて冷却用空間6に連通する,冷却液,つまり水用供給口69に接続される。この場合の冷却液,つまり,水用排出系統としては,冷却液用排出口としての上側排出口55,管53,戻し管49,水精製器48および管56が兼用される。
【0024】
排液装置36は次のように構成されている。
【0025】
即ち,空気ポンプ70の吐出口から第5開閉弁71を有する供給管72が延出し,その供給管72は,水タンク40から延出する供給管41において,第1開閉弁43とカップリング半体44との間に接続される。したがって,空気供給系統として,水タンク40からの供給管41における第1開閉弁43の下流側,管45,両分岐管47,両インゼクタ37が兼用される。一方,水精製器48に接続された戻し管49において,冷却器50および第2開閉弁51間に第6開閉弁73を有する戻し管74の一端が接続され,その他端にはカップリング半体75が設けられている。そのカップリング半体75に,車両3側に存する管76の一端に設けられたカップリング半体77が着脱自在に接続され,その管76の他端は外側タンク7の底壁12中央部に存する下側排出口78に接続される。したがって,排液系統の戻し管49の第2開閉弁51下流側,水精製器48,管56および水タンク40が兼用される。
【0026】
以下,水素吸蔵作業について説明する。
【0027】
(a)水素吸蔵合金粉末MHとして,Mg系合金であるMg97Ni3 合金粉末(数値の単位は原子%)を用いた。この合金粉末MHの水素吸蔵温度は370℃,および水素吸蔵圧力は0.9MPaであり,また水素放出温度は,ゲージ圧0.1MPaにおいて,310℃である。
【0028】
(b)三方弁21を切換えて水素供給源25を内側タンク5の通路9に連通させた。また第1,第2開閉弁43,51を「開」にし,一方,第3,第4,第5,第6開閉弁58,64,71,73を「閉」にした。
【0029】
(c)水素供給源25より内側タンク5の通路9に水素を供給し,その水素を各水素貯蔵器14の通気性フィルタ16を通して水素吸蔵合金粉末MHに吸蔵させた。これにより水素吸蔵合金粉末MHが発熱し,その発生熱は通気性フィルタ16より各フィン17を経て耐圧性筒体8に伝播され,その筒体8の温度は水素吸蔵合金粉末MHのそれとほぼ同等になった。
【0030】
(d)耐圧性筒体8の温度が約370℃に上昇したとき,水ポンプ42を駆動し,水タンク40の水を各インゼクタ37に供給して冷却用空間6内に噴霧させた。水の霧化による無数の微粒子が耐圧性筒体8外面で蒸発し,その潜熱により耐圧性筒体8,各フィン17および通気性フィルタ16を介して水素吸蔵合金粉末MHが効率良く冷却された。
【0031】
冷却用空間6内の水蒸気は上側排出口55より冷却器50に至り,そこで凝縮されて水となり,その水は水精製器48にて純化され,次いで水タンク40に戻された。この間に,冷却用空間6内の水蒸気圧が所定値より高くなれば逃し弁62が開放され,また水タンク40内の水が規定量よりも減少すれば,その水タンク40には蒸留水補給源57より水が供給される。水の霧化による冷却は,耐圧性筒体8が,水に対してサーマルショックを起さなくなるまでとし,この例では耐圧性筒体8の温度が約120℃に下降するまでとした。
【0032】
(e)第1開閉弁43を「閉」にし,また第4開閉弁64を「開」にして,室温下の水を水用供給口69を通じ冷却用空間6に供給した。水は,冷却用空間6をほぼ満たすと共に水素吸蔵合金粉末MHを冷却して約80℃に温度上昇し,次いで,上側排出口55より冷却器50に至り,そこで室温付近まで冷却され,さらに水精製器48にて純化された後,水タンク40に戻され,再び冷却用空間6に供給される,といったように循環する。このように大量の水を循環させることにより,水素吸蔵合金粉末MHの冷却を迅速に行って水素の充填率の向上を図ると共に充填時間を短縮することができる。
【0033】
(f)水素の吸蔵を終了した後,水ポンプ42の駆動を停止し,また第4,第2開閉弁64,51を「閉」にし,さらに第5,第6開閉弁71,73を「開」にした。
【0034】
(g)空気ポンプ70を駆動して,加圧空気を各インゼクタ37より冷却用空間6内に噴出させ,その空気圧によって水を下側排出口78より冷却器50を経て水精製器48に排出し,そこで純化した後水タンク40に回収した。
【0035】
(h)水回収後,両カップリング半体24,27;44,46,52,54;66,68;75,77間を切離した。
【0036】
前記(c)〜(g)過程に要した時間,つまり水素貯蔵タンク1における有効水素量100%を達成するための水素充填時間は約15分間であった。一方,冷却用空間6に冷却媒体としての空気を流通させて水素の吸蔵を行ったところ,水素貯蔵タンク1における有効水素量は80%が限度であり,またそれを達成するために30分間以上を要した。
【0037】
燃料電池の運転に当っては,三方弁21を切換えて水素貯蔵タンク1の水素用出入口19を燃料電池2に連通させ,次いでガス燃料供給源28より各触媒式加熱器15に水素と空気とよりなるガス燃料を供給して燃焼させる。これにより水素吸蔵合金粉末MHから水素が放出されて燃料電池2に供給される。
【0038】
【発明の効果】
本発明によれば,前記のように構成することによって,水素吸蔵材を効率良く冷却して水素充填率を向上させると共に水素充填時間を短縮することが可能な水素貯蔵タンクを提供することができる。
【図面の簡単な説明】
【図1】水素貯蔵タンクおよびそれと水素ステーションとの関係を示す説明図である。
【図2】図1の2−2線拡大断面図である。
【図3】水素貯蔵器の側面図で,図2の3矢視図に相当する。
【符号の説明】
1 水素貯蔵タンク
5 内側タンク
6 冷却用空間
7 外側タンク
37 インゼクタ(噴霧器)
55 上側排出口(冷却液用排出口)
69 水用供給口(冷却液用供給口)
MH 水素吸蔵合金粉末(水素吸蔵材)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen storage tank, for example, a hydrogen storage tank mounted on a vehicle for supplying hydrogen to a fuel cell.
[0002]
[Prior art]
In the process of filling hydrogen into a hydrogen storage tank having a hydrogen storage material, for example, a hydrogen storage alloy powder, when the hydrogen storage alloy powder stores hydrogen, the powder generates heat. In this case, the hydrogen storage alloy powder must be cooled efficiently in order to quickly perform the hydrogen filling operation.
[0003]
Therefore, conventionally, means for providing a cooling medium passage in the hydrogen storage tank and allowing water, air, or the like as a cooling medium to flow through the passage has been adopted.
[0004]
[Problems to be solved by the invention]
However, water is effective as a cooling medium when the hydrogen storage temperature of the hydrogen storage alloy powder is lower than 100 ° C., but is not suitable as a cooling medium when the hydrogen storage temperature is 100 ° C. or higher.
[0005]
To cope with this, for example, air is used as a cooling medium. However, since the heat capacity and thermal conductivity of air are smaller than that of water, the flow rate of air must be extremely increased to make up for this, but this raises energy costs and equipment costs, and in spite of that, And the filling rate of hydrogen is low and the filling time is long.
[0006]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a hydrogen storage tank capable of efficiently cooling a hydrogen storage material to improve a hydrogen filling rate and shortening a hydrogen filling time.
[0007]
According to the present invention, there is provided an inner tank having a hydrogen storage material that generates heat by storing hydrogen, and an outer tank surrounding the inner tank with a cooling space between the inner tank and an outer surface thereof. When the temperature of the inner tank rises to the hydrogen storage temperature of the hydrogen storage material due to the storage of hydrogen by the hydrogen storage material, the cooling means is used to cool the hydrogen storage material via the inner tank. There is provided a hydrogen storage tank comprising at least one atomizer for atomizing a liquid having a boiling point lower than the hydrogen storage temperature into a space.
[0008]
With the above-described configuration, the innumerable fine particles due to atomization of the liquid are evaporated on the outer surface of the inner tank, and the latent heat can efficiently cool the hydrogen storage material via the inner tank.
[0009]
If a large amount of the above liquid is supplied to the cooling space as it is, the liquid will boil on the outer surface of the inner tank and the boiling layer will hinder heat conduction, resulting in extremely low cooling efficiency of the hydrogen storage material. descend.
[0010]
The cooling by atomization of the liquid is performed until the inner tank does not cause thermal shock to the cooling liquid, and thereafter, a large amount of the cooling liquid is supplied to the space and circulated to quickly cool the hydrogen storage material. However, this makes it possible to improve the hydrogen filling rate and shorten the filling time.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In FIG. 1, a hydrogen storage tank 1 is mounted on a vehicle 3 to supply hydrogen to a fuel cell 2. The hydrogen storage tank 1 is filled with hydrogen at a hydrogen station 4.
[0012]
The hydrogen storage tank 1 has an inner tank 5 having a hydrogen storage material that generates heat by storing hydrogen, for example, a hydrogen storage alloy powder, and a cooling space 6 between the inner tank 5 and the outer surface thereof. An outer tank 6 is provided.
[0013]
The inner tank 5 has a pressure-resistant cylinder 8 made of stainless steel having a circular cross section and an axis substantially horizontal, and circulates occluded hydrogen and released hydrogen between the inner surface of the cylinder 8. And a cylindrical hydrogen storage module 10 housed in the cylindrical body 8 with an interval serving as a passage 9. The cylinder 8 is supported on the inner surface of the bottom wall 12 of the outer tank 7 via a plurality of support members 11. As shown in FIGS. 2 and 3, the cylindrical hydrogen storage module 10 includes a plurality of short cylinders that store a hydrogen storage alloy powder MH as a hydrogen storage material and have a hydrogen storage and discharge surface 13 substantially over the entire outer peripheral surface. The hydrogen storages 14 are arranged in the axial direction with their axes substantially horizontal, and a disk-shaped catalytic heater 15 is sandwiched between two adjacent hydrogen storages 14. I have.
[0014]
Each hydrogen storage device 14 is provided with a gas permeable filter 16 made of stainless steel so as to form an outer peripheral wall thereof, and the filter 16 has a large number of micropores such as hydrogen, for example, for allowing hydrogen to enter and exit through the hydrogen storage / release surface 13. It has pores with a diameter of 0.1 to 10 μm. A plurality of heat conducting fins 17 are provided on the hydrogen storage / release surface 13 of the filter 16 at equal intervals on the circumference, and the outer edges of the fins 17 are joined to the inner peripheral surface of the cylinder 8.
[0015]
An inlet / outlet 19 for hydrogen is provided above one end wall 18 of the cylindrical body 8, one end of a pipe 20 is connected to the inlet / outlet 19, and the other end is connected to a first port of a three-way valve 21. The second port of the three-way valve 21 is connected to the fuel cell 2 via a pipe 22. One end of a pipe 23 is connected to the third port, and the coupling half 24 at the other end is detachably connected to a coupling half 27 of a pipe 26 extending from a hydrogen supply source 25 of the hydrogen station 4. I have.
[0016]
The vehicle 3 is equipped with a gas fuel supply source 28 that supplies a gas fuel consisting of hydrogen and air to each catalytic heater 15. The supply pipe 29 extending from the outlet of the gaseous fuel supply source 28 is branched into two, and both branch pipes 30 are provided on the outer peripheral side of the cylindrical hydrogen storage module 10 by catalytic heating from one end to the other end. Each catalytic heater 15 has a plurality of inlet holes 31 which are connected to the heater 15 and communicate with each other. An exhaust pipe 32 having a larger diameter than the two branch pipes 30 is pierced from the other end to the catalytic heater 15 on one end side so as to be coaxially arranged with the cylindrical hydrogen storage module 10. It has a plurality of outlet holes 33 communicating with the catalytic heater 15. The hydrogen released from the hydrogen storage tank 1 is used as the hydrogen of the gas fuel.
[0017]
Between the hydrogen storage tank 1 and the hydrogen station 4, a primary cooling device 34 for cooling the hydrogen storage alloy powder MH, a secondary cooling device 35, and a drainage device 36 are configured in the hydrogen storage operation. It has become. When the temperature of the inner tank 5 and thus the cylinder 8 rises to the hydrogen storage temperature (> 100 ° C.) of the hydrogen storage alloy powder MH due to the storage of hydrogen by the hydrogen storage alloy powder MH, the primary cooling device 34 In order to cool the hydrogen storage alloy powder through the body 8, it has a function of spraying a liquid having a boiling point lower than the hydrogen storage temperature, in this embodiment, water into the cooling space 6. The secondary cooling device 34 has a function of cooling the hydrogen storage alloy powder MH by circulating water as a cooling liquid in the cooling space 6 after the primary cooling process. The drainage device 36 has a function of discharging water as a cooling liquid in the cooling space 6 after absorbing hydrogen.
[0018]
The primary cooling device 34 is configured as follows.
[0019]
That is, at least one, in this embodiment, two injectors 37 as sprayers are attached to the lower part of both end walls 38, 39 of the outer tank 7 with the spray ports arranged in the cooling space 6. On the other hand, at the hydrogen station 4, a supply pipe 41 extends from the outlet of the water tank 40, and a water pump 42 and a second on-off valve 43 are sequentially installed on the supply pipe 41 from the water tank 40 side. A coupling half 44 is provided. A coupling half 46 provided at one end of a pipe 45 existing on the vehicle 3 side is detachably connected to the coupling half 44, and the other end of the pipe 45 is branched into two pipes. 47 is connected to both injectors 37, respectively.
[0020]
Further, at the hydrogen station 4, one end of a return pipe 49 is connected to the inlet side of the water purifier 48, and a cooler 50 and a second on-off valve 51 are sequentially installed on the return pipe 49 from the water purifier 48 side. A coupling half 52 is provided at the end. A coupling half 54 provided at one end of a pipe 53 existing on the vehicle 3 side is detachably connected to the coupling half 52, and the other end of the pipe 53 is connected to the other end wall 39 of the outer tank 7. It is connected to the upper discharge port 55 of the cooling space 6 provided at the upper part.
[0021]
The outlet side of the water purifier 48 is connected to the inlet side of the water tank 40 via a pipe 56, and a distilled water supply source 57 is connected to the pipe 56 via a pipe 59 having a third on-off valve 58. . In the ceiling 60 of the outer tank 7, a through hole 61 is formed near the upper discharge port 55, and a pipe 63 having a relief valve 62 is connected to the through hole 61.
[0022]
The secondary cooling device 35 is configured as follows.
[0023]
That is, in the supply pipe 41 extending from the outlet of the water tank 40, one end of a supply pipe 65 having a fourth on-off valve 64 is connected between the water pump 42 and the first on-off valve 43, and the other end is coupled. A half 66 is provided. A coupling half 68 provided at one end of a pipe 67 on the vehicle 3 side is detachably connected to the coupling half 66, and the other end of the pipe 67 is connected to one end wall 38 of the outer tank 7. It is connected to a cooling liquid, that is, a water supply port 69 which is provided at a lower portion and communicates with the cooling space 6. In this case, as the coolant, that is, the water discharge system, the upper discharge port 55 serving as the coolant discharge port, the pipe 53, the return pipe 49, the water purifier 48, and the pipe 56 are also used.
[0024]
The drainage device 36 is configured as follows.
[0025]
That is, a supply pipe 72 having a fifth on-off valve 71 extends from the discharge port of the air pump 70, and the supply pipe 72 is connected to the first on-off valve 43 and the coupling half in the supply pipe 41 extending from the water tank 40. It is connected between the body 44. Therefore, the downstream side of the first on-off valve 43 in the supply pipe 41 from the water tank 40, the pipe 45, the two branch pipes 47, and the two injectors 37 are also used as the air supply system. On the other hand, in a return pipe 49 connected to the water purifier 48, one end of a return pipe 74 having a sixth on-off valve 73 between the cooler 50 and the second on-off valve 51 is connected, and a coupling half is connected to the other end. 75 are provided. A coupling half 77 provided at one end of a pipe 76 on the vehicle 3 side is detachably connected to the coupling half 75, and the other end of the pipe 76 is provided at the center of the bottom wall 12 of the outer tank 7. Connected to the existing lower outlet 78. Therefore, the downstream side of the second on-off valve 51 of the return pipe 49 of the drainage system, the water purifier 48, the pipe 56, and the water tank 40 are also used.
[0026]
Hereinafter, the hydrogen storage operation will be described.
[0027]
(A) As the hydrogen storage alloy powder MH, Mg 97 Ni 3 alloy powder (unit of numerical value is atomic%) which is a Mg-based alloy was used. This alloy powder MH has a hydrogen storage temperature of 370 ° C., a hydrogen storage pressure of 0.9 MPa, and a hydrogen release temperature of 310 ° C. at a gauge pressure of 0.1 MPa.
[0028]
(B) The three-way valve 21 was switched to allow the hydrogen supply source 25 to communicate with the passage 9 of the inner tank 5. The first and second on-off valves 43 and 51 were set to "open", while the third, fourth, fifth and sixth on-off valves 58, 64, 71 and 73 were set to "closed".
[0029]
(C) Hydrogen was supplied from the hydrogen supply source 25 to the passage 9 of the inner tank 5, and the hydrogen was stored in the hydrogen storage alloy powder MH through the gas permeable filters 16 of the respective hydrogen storages 14. As a result, the hydrogen storage alloy powder MH generates heat, and the generated heat is transmitted from the gas permeable filter 16 to the pressure-resistant cylinder 8 through the fins 17, and the temperature of the cylinder 8 is substantially equal to that of the hydrogen storage alloy powder MH. Became.
[0030]
(D) When the temperature of the pressure-resistant cylinder 8 rose to about 370 ° C., the water pump 42 was driven to supply the water in the water tank 40 to each of the injectors 37 and spray it into the cooling space 6. A myriad of fine particles were evaporated on the outer surface of the pressure-resistant cylinder 8 due to the atomization of water, and the latent heat allowed the hydrogen-absorbing alloy powder MH to be efficiently cooled through the pressure-resistant cylinder 8, each fin 17 and the gas permeable filter 16. .
[0031]
The water vapor in the cooling space 6 reaches the cooler 50 from the upper outlet 55, and is condensed there to become water. The water is purified by the water purifier 48 and then returned to the water tank 40. During this time, if the water vapor pressure in the cooling space 6 becomes higher than a predetermined value, the relief valve 62 is opened, and if the water in the water tank 40 becomes smaller than a specified amount, distilled water is supplied to the water tank 40. Water is supplied from a source 57. Cooling by atomization of water was performed until the pressure-resistant cylinder 8 did not cause thermal shock to water. In this example, the cooling was performed until the temperature of the pressure-resistant cylinder 8 dropped to about 120 ° C.
[0032]
(E) The first on-off valve 43 was closed and the fourth on-off valve 64 was opened, and water at room temperature was supplied to the cooling space 6 through the water supply port 69. Water substantially fills the cooling space 6 and cools the hydrogen storage alloy powder MH to a temperature of about 80 ° C., and then reaches the cooler 50 from the upper outlet 55, where it is cooled to near room temperature, and further cooled. After being purified by the purifier 48, the water is returned to the water tank 40 and circulated so as to be supplied to the cooling space 6 again. By circulating a large amount of water in this manner, the hydrogen storage alloy powder MH can be rapidly cooled to improve the hydrogen filling rate and shorten the filling time.
[0033]
(F) After ending the storage of hydrogen, the operation of the water pump 42 is stopped, the fourth and second on-off valves 64 and 51 are closed, and the fifth and sixth on-off valves 71 and 73 are turned on. Open ".
[0034]
(G) By driving the air pump 70, pressurized air is jetted from each injector 37 into the cooling space 6, and the air pressure discharges water from the lower outlet 78 through the cooler 50 to the water purifier 48. Then, it was purified and recovered in a water tank 40.
[0035]
(H) After water recovery, the coupling halves 24, 27; 44, 46, 52, 54; 66, 68; 75, 77 were cut off.
[0036]
The time required for the processes (c) to (g), that is, the hydrogen filling time for achieving the effective hydrogen amount of 100% in the hydrogen storage tank 1 was about 15 minutes. On the other hand, when hydrogen as a cooling medium was circulated through the cooling space 6 to store hydrogen, the effective hydrogen amount in the hydrogen storage tank 1 was limited to 80%, and more than 30 minutes was required to achieve this. Cost.
[0037]
In the operation of the fuel cell, the three-way valve 21 is switched to make the hydrogen inlet / outlet 19 of the hydrogen storage tank 1 communicate with the fuel cell 2, and then the gas fuel supply source 28 supplies hydrogen and air to each catalytic heater 15. A gaseous fuel is supplied and burned. Thereby, hydrogen is released from the hydrogen storage alloy powder MH and supplied to the fuel cell 2.
[0038]
【The invention's effect】
According to the present invention, with the above-described configuration, it is possible to provide a hydrogen storage tank capable of efficiently cooling the hydrogen storage material, improving the hydrogen filling rate, and shortening the hydrogen filling time. .
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a hydrogen storage tank and a relation between the hydrogen storage tank and a hydrogen station.
FIG. 2 is an enlarged sectional view taken along line 2-2 of FIG.
FIG. 3 is a side view of the hydrogen storage device, and corresponds to a view taken in the direction of arrow 3 in FIG. 2;
[Explanation of symbols]
1 hydrogen storage tank 5 inner tank 6 cooling space 7 outer tank 37 injector (sprayer)
55 Upper outlet (coolant outlet)
69 Water supply port (coolant supply port)
MH hydrogen storage alloy powder (hydrogen storage material)