【0001】
【発明の属する技術分野】
本発明は、多孔性誘電体シートに液体を噴射する工程を含むエレクトレット濾材の製造方法に関し、特にそのエレクトレット化レベルを向上する方法に関する。
【0002】
【従来の技術】
誘電体の表面に液体を噴射してこれをエレクトレット化する方法は既に公知である。例えば特開昭55−138223号公報には、高分子誘電体フィルムに水や四塩化炭素等の液体を高圧(10kg/cm2、20kg/cm2等)で噴射することによりエレクトレット化する技術が開示されている。しかしこの公報には多孔性シート状誘電体のエレクトレット化レベルを向上させる方策については記載がない。
【0003】
特表平9−501604号公報には、エレクトレット濾過材の製造方法として、非導電性熱可塑性微小繊維の不織ウェブに、水の噴流または水滴流を衝突させる方法が開示されている。この公報中にはスプレーオリフィスの形状や水圧、処理回数等の記載はあるものの、不織ウェブの支持手段については多孔性の篩またはファブリックと記載されているのみであり、エレクトレット化レベルを向上させる製法上の方策について具体的な記載がほとんどない。
【0004】
【発明が解決しようとする課題】
本発明は多孔性誘電体シートに液体を噴射する工程を含むエレクトレット濾材の製造方法に関して鋭意検討した結果、到達したものであり、従来公知の液体噴射によるエレクトレット濾材の製法に比べて、その内部まで十分に、かつ高度にエレクトレット化されたエレクトレット濾材の製造方法を提供するものである。
【0005】
【発明が解決しようとする手段】
本発明は多孔性誘電体シートに液体を噴射する工程を含むエレクトレット濾材の製造方法であって、多孔性誘電体シートを通気度50〜400cm3/cm2/秒の網状支持体に載せ、この上方より液体を噴射するとともに、該網状支持体の下方を減圧状態とする製造方法である。
【0006】
本発明の好ましい実施態様は、前記液体が酸解離指数(pKa)3.0以上の有機もしくは無機化合物を少なくとも一種類以上含有する水溶液である、エレクトレット濾材の製造方法である。
【0007】
本発明の好ましい実施態様は、前記液体噴射工程の前に、多孔性誘電体シートに直流コロナ荷電処理を行うエレクトレット濾材の製造方法である。
【0008】
【発明の実施の形態】
本発明における多孔性誘電体シートは、織物、編み物、不織布、及びこれらの複合体等の繊維シートであり、好ましくはメルトブロー不織布のような極細繊維不織布である。
【0009】
被荷電処理体としての多孔性誘電体シートは、一枚、あるいは、複数枚積層した構成であってもよい。またシート強度を高めるためにスパンボンド等の補強材を積層して液体噴射処理を施してもよい。
【0010】
多孔性誘電体シートの材質としては、一種類、あるいは、複数の種類から構成されてもよいが、電荷保持の点から体積抵抗率1014Ωcm以上の材質を少なくとも一種類以上含むことが好ましい。もし、該多孔性誘電体シートが体積抵抗率1014Ωcm未満の材質のみで構成されていれば、電荷が蓄積しにくく、高度にエレクトレット化することはできない。また、電荷寿命が極端に短くなってしまうという問題が生じる。具体的な材質としては、ポリオレフィン、ポリエステル、ポリ乳酸、ポリカーボネート、ポリ塩化ビニル、ポリ塩化ビニリデン等であるが、ポリオレフィンが好ましく、なかでもポリプロピレンが特に好ましい。
【0011】
本発明における多孔性誘電体シートが、ポリプロピレンからなるメルトブロー不織布の場合、目付は5〜100g/m2であり、好ましくは10〜60g/m2である。平均繊維径は1〜20μmであり、好ましくは1〜10μmである。
【0012】
本発明において多孔性誘電体シートに液体を噴射する場合、多孔性誘電体シートを通気度50〜400cm3/cm2/秒の網状支持体に載せ、この上方より液体を噴射するとともに、該網状支持体の下方を減圧状態とすることが重要である。通気度はJIS−L1096に記載のフランジール形試験機を用いて測定される。網状支持体とは具体的には金属ヤーンやプラスチックヤーンの織物からなる多孔構造物であり、平織り、綾織り、朱子織りなどの織り形状が挙げられる。金属素材としてはステンレス、ブロンズ等、またプラスチック素材としてはポリプロピレン、ポリエステル、ポリウレタン、ナイロン、ポリフェニレンサルファイドなどがある。通気度はヤーンの径、メッシュ(1インチあたりのヤーンの本数)、および空間率等に依存する。それぞれの好ましい範囲を例示すると、ヤーンの径は0.05〜0.4mm、メッシュは30〜120メッシュ、空間率は5〜30%である。これらの範囲を外れると、通気度を50〜400cm3/cm2/秒にコントロールすることが困難となる。
【0013】
液体の噴射は多孔性誘電体シートの数cm上方に設置した、シートの幅方向に沿って多数のオリフィスを有するノズルより、液体が該シートを通過するのに十分な圧力で噴射する。通過するのに十分な圧力は、多孔性誘電体シートの目付によって異なる。例えば、目付が5〜20g/m2のものでは、0.3〜2MPa、20〜50g/m2のものでは、0.6〜3MPa、50〜100g/m2のものでは、1〜4MPaであることが好ましい。圧力が高すぎると、多孔性誘電体シートにピンホールが開き、濾過性能が低下してしまう。また圧力が低すぎることが原因で多孔性誘電体シート内を液体が十分に通過することができなければ、多孔性誘電体シートを高度にエレクトレット化することができない。ノズルは直径0.05〜0.2mmのオリフィスをピッチ0.5〜3mmで1列あるいは複数列配置したものが好ましい。また網状支持体を可動とし、多孔性誘電体シートをその長手方向に搬送させることにより噴射処理を連続的に行うことが出来る。その搬送速度は特に限定されないが、好ましい範囲を挙げると1〜100m/分である。また最適な噴射回数や処理面(片面か両面か)は多孔性誘電体シートの目付や平均繊維径に依存するため特に限定されない。
【0014】
また液体の噴射と同時に、網状支持体の下方を、排気ブロアー等を用いて減圧状態とすることが好ましい。吸引負圧は特に限定されないが、200〜2000mmAqが好適である。減圧状態にすると、多孔性誘電体シート内を液体が十分に通過でき、多孔性誘電体シートを高度にエレクトレット化することができる。
【0015】
本発明において多孔性誘電体シートに噴射する液体は、好ましくは水であり、より好ましくは、酸解離指数(pKa)3.0以上の有機もしくは無機化合物を少なくとも一種類以上含有する水溶液である。酸解離指数(pKa)とは酸解離定数(Ka)より以下の式に従って算出される。また、ここで言う酸解離定数(Ka)とは常温常圧の条件における水中での酸解離定数(Ka)のことを指す。
【0016】
【数1】
【0017】
ここで多段階の解離平衡が存在する化合物の場合は、その最も小さい酸解離指数(pKa)が3.0以上であることが必須である。酸解離指数(pKa)が3.0より小さい化合物のみ含有する水溶液を使用した場合は、多孔性誘電体シートを高度にエレクトレット化することができない。好ましい有機もしくは無機化合物の具体例として、カルボン酸、カルボン酸塩、アンモニア、アンモニウム塩、アミン類、炭酸塩、炭酸水素塩、次亜塩素酸塩等が挙げられ、特に好ましくは、常温常圧で揮発性であるアンモニアである。なお、界面活性剤や有機溶剤は多孔性誘電体シートへの水溶液の浸透性を高めるだけでなく、多孔性誘電体シート表面に被膜を形成し、多孔性誘電体シートの高エレクトレット化を妨げるため、該水溶液中に含有されるべきではない。
【0018】
上記有機および無機化合物の水溶液中での濃度は、その化合物により異なるが、1〜105ppmである。1ppm以下であると高度にエレクトレット化されず効果が不十分であり、逆に105ppmよりも大きいと水溶液の導電率が大きくなって不織布に蓄積された電荷が流出してしまい、結果として高度にエレクトレット化することができない。
【0019】
本発明の多孔性誘電体シートには、ヒンダードフェノール系安定剤、硫黄系安定剤、リン系安定剤、脂肪酸金属塩、結晶核剤等の添加剤が含有されることが好ましい。これらの添加剤を含有することにより、多孔性誘電体シートのエレクトレット性が飛躍的に向上する。これらの添加剤の含有量は、多孔性誘電体シート100重量部に対して、0.025〜5重量部であり、好ましくは0.05〜3重量部、最も好ましくは0.1〜1重量部である。含有量が少ないとエレクトレット化効果が十分ではなく、逆に含有量が多くても効果は飽和し、ブリードアウトするため好ましくない。
【0020】
通気度50〜400cm3/cm2/秒の網状支持体を用いること、および網状支持体の下方を減圧状態とすることによって、エレクトレット化レベルが向上するメカニズムは次のように考えられる。多孔性誘電体シートは液滴と繊維の接触によってエレクトレット化され、そのレベルを向上させるには、その接触頻度を増すことが必要である。液体として水を、また多孔性誘電体シートとしてポリプロピレン不織布を用いる場合、水はポリプロピレンとの親和性がほとんどないため、低圧力で噴射するのみでは水滴が不織布内部まで透過しにくく、接触頻度が不十分である。逆に高圧力で噴射すると接触頻度は増すが、不織布にピンホールが開きやすくなり、濾材としての特性が著しく損なわれる結果を招く。そこで網状支持体の下方を減圧状態とすることにより、水滴を不織布内部にまで十分に透過させることができる。このとき不織布の下の網状支持体の通気度が50〜400cm3/cm2/秒であることが最も重要である。通気度が大きすぎる(網状体のヤーン間空隙サイズが大きすぎる)と、大きな水滴のまま不織布を貫通してしまう。このことは大きな水滴のまま不織布内部を透過するため接触頻度が増えにくいだけでなく、低水圧であっても不織布にピンホールが開きやすくなる。通気度が50〜400cm3/cm2/秒の網状支持体を用いると、比較的小さな水滴が不織布内部を透過するとともに、網状支持体からの水滴の跳ね返りが大きくなることにより、より接触頻度が増える。また水滴が小さいためピンホールが開きにくい。一方、通気度が小さすぎると水滴が透過しにくくなって接触頻度が低下するため、エレクトレット化レベル向上には繋がらない。
【0021】
液体噴射処理を施す前に行う多孔性誘電体シートの前処理として、直流コロナ荷電処理を行うことが好ましい。直流コロナ荷電処理を行うことによって予めシート表層部分に電荷を蓄積させておけば、噴射処理によりシート内部のみを荷電すればよいため、少ない処理回数で短時間に、かつ、高度にエレクトレット化することができる。
【0022】
多孔性誘電体シートに液体噴射処理した後の乾燥方法については、従来公知の方法がいずれも使用可能である。例えば、熱風乾燥法、真空乾燥法、自然乾燥法等の方法が適用可能である。これらのうちでも熱風乾燥法は、連続処理が可能であるため好ましい。熱風乾燥法の場合、乾燥温度としてはエレクトレットを消失させない程度の温度にする必要がある。好ましくは120℃以下、より好ましくは100℃以下、さらに好ましくは80℃以下にするのがよい。また、熱風乾燥前に、予備乾燥として、ニップロール、吸水ロール、サクション吸引等によって過剰な水分を取り除いておくと、より好ましい。
【0023】
以下に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
【0024】
(多孔性誘電体シート)
メルトフローインデックス1000のポリプロピレン樹脂100重量部に対してヒンダードフェノール系安定剤Irganox1010を0.1重量部配合し、メルトブロー法により目付30g/m2、平均繊維径2.5μmのメルトブロー不織布を作製した。これを多孔性誘電体シートとした。
【0025】
(液体噴射処理)
上記メルトブロー不織布を表1に示した種々の通気度を有する支持体に載せ、不織布の上方2cmに位置する直径0.1mmφ、ピッチ1mmのノズルから、1〜4MPaの圧力で水溶液噴射処理を行った。ここで使用した水溶液は、一般的な水道水を二段の逆浸透膜処理、次いでイオン交換膜処理を施した高純度の水に、アンモニア(pKa=9.2)を5pmm添加したものである。支持体の搬送速度を10m/分とし、ノズル直下の網状体の下方を600mmAqの減圧状態とした。この処理を不織布の表裏について各2回ずつ行った。その後この不織布を70℃の熱風オーブン中に1分間滞留させて乾燥した。
【0026】
(直流コロナ荷電処理)
上記メルトブロー不織布を、アルミ平板の接地極上に敷いた厚み0.5mmのシリコンシート上に置き、多孔性誘電体シート上方1cmに設置した針状電極を用いて+15kVの直流高電圧を10秒間印加した。
【0027】
(支持体の通気度測定)
JIS−L1096に記載のフランジール形試験機を用いて測定した。
【0028】
(ヤーン径、メッシュ、空間率)
網状支持体を走査型電子顕微鏡で観察して、ヤーン径およびメッシュを測定した。またヤーン間で囲まれる空隙の面積を測定し、1インチ当たりの面積率を空間率として計算した。
【0029】
(濾過特性の評価)
圧力損失(PD)は、エレクトレット濾材試料をダクト内に設置し、濾材通過線速度が10cm/秒になるようコントロールし、エレクトレット濾材上流、下流の静圧差を圧力計で読み取り求めた。また粒子捕集効率E(%)の評価は粒子径0.3μmのDOP粒子を用い、10cm/秒にて行った。圧力損失PD(mmAq)と粒子捕集効率E(%)を用いて、下記数式より濾材品質係数QFを算出した。
【0030】
【数2】
【0031】
(実施例1〜3、比較例1〜2)
予め直流コロナ荷電処理を行ったポリプロピレンメルトブロー不織布を、表1に示した特性を有するポリエチレンテレフタレート製網状支持体に載せ、下方を減圧吸引しながら、圧力1MPa若しくは4MPaで前記アンモニア水溶液を噴射して実施例1〜3および比較例1〜2のエレクトレット濾材試料を作製した。濾過特性評価結果を表2に示した。
【0032】
(比較例3)
表1に示す通り、支持体を通気度0cm3/cm2/秒のポリエチレンテレフタレート製平板に代えた以外は上記と同様にして比較例3のエレクトレット濾材試料を作製した。濾過特性評価結果を表2に示した。
【0033】
(比較例4〜5)
予め直流コロナ荷電処理を行ったポリプロピレンメルトブロー不織布を実施例1と同じ支持体(通気度220cm3/cm2/秒)に載せ、下方での減圧吸引を行わずに圧力1MPa、4MPaで比較例4〜5のエレクトレット濾材試料を作製した。濾過特性評価結果を表2に示した。
【0034】
(比較例6)
予め直流コロナ荷電処理を行わない以外は実施例1と同様の方法で比較例6のエレクトレット濾材試料を作製した。濾過特性評価結果を表2に示した。
【0035】
【表1】
【0036】
【表2】
【0037】
実施例のエレクトレット濾材試料では何れも粒子捕集効率が99%以上と高く、濾材品質係数QFも高い値を示した。一方、比較例のエレクトレット濾材試料では粒子捕集効率、QFとも実施例に比べて低いレベルであった。
【0038】
【発明の効果】
本発明の製造方法によれば、従来公知の液体噴射によるエレクトレット化濾材の製造方法よりも、エレクトレット化レベルを向上させることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an electret filter medium including a step of injecting a liquid onto a porous dielectric sheet, and particularly to a method for improving the level of electret filtration.
[0002]
[Prior art]
A method of injecting a liquid onto the surface of a dielectric to convert it into an electret is already known. For example, Japanese Patent Application Laid-Open No. 55-138223 discloses a technique of forming an electret by injecting a liquid such as water or carbon tetrachloride at a high pressure (10 kg / cm 2 , 20 kg / cm 2, etc.) onto a polymer dielectric film. It has been disclosed. However, this publication does not describe a measure for improving the electretization level of the porous sheet-shaped dielectric.
[0003]
Japanese Patent Publication No. Hei 9-501604 discloses a method for producing an electret filter medium in which a jet of water or a stream of water drops impinges on a nonwoven web of non-conductive thermoplastic microfibers. Although there is a description in this publication of the shape of the spray orifice, the water pressure, the number of treatments, etc., the means for supporting the nonwoven web is only described as a porous sieve or fabric, which improves the electretization level. There is hardly any specific description about the manufacturing method.
[0004]
[Problems to be solved by the invention]
The present invention has been achieved as a result of intensive studies on a method of manufacturing an electret filter medium including a step of injecting a liquid into a porous dielectric sheet, and has been achieved. An object of the present invention is to provide a method for producing a sufficiently and highly electret electret filter medium.
[0005]
Means to be Solved by the Invention
The present invention is a method for producing an electret filter medium including a step of injecting a liquid onto a porous dielectric sheet, wherein the porous dielectric sheet is placed on a net-like support having an air permeability of 50 to 400 cm 3 / cm 2 / sec. This is a production method in which a liquid is jetted from above and the lower part of the mesh support is depressurized.
[0006]
A preferred embodiment of the present invention is a method for producing an electret filter medium, wherein the liquid is an aqueous solution containing at least one organic or inorganic compound having an acid dissociation index (pKa) of 3.0 or more.
[0007]
A preferred embodiment of the present invention is a method for producing an electret filter medium in which a porous dielectric sheet is subjected to a DC corona charging treatment before the liquid jetting step.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The porous dielectric sheet in the present invention is a fiber sheet such as a woven fabric, a knitted fabric, a nonwoven fabric, and a composite thereof, and is preferably a microfiber nonwoven fabric such as a melt blown nonwoven fabric.
[0009]
The porous dielectric sheet as the charged body may have a configuration of one sheet or a stack of a plurality of sheets. Further, in order to increase the sheet strength, a reinforcing material such as a spun bond may be laminated and subjected to a liquid jet treatment.
[0010]
The material of the porous dielectric sheet may be composed of one kind or a plurality of kinds, but it is preferable to include at least one kind of material having a volume resistivity of 10 14 Ωcm or more from the viewpoint of charge retention. If the porous dielectric sheet is made of only a material having a volume resistivity of less than 10 14 Ωcm, it is difficult to accumulate electric charges and cannot be highly electretized. Further, there is a problem that the charge life is extremely shortened. Specific materials include polyolefin, polyester, polylactic acid, polycarbonate, polyvinyl chloride, polyvinylidene chloride, and the like. Polyolefin is preferable, and polypropylene is particularly preferable.
[0011]
When the porous dielectric sheet in the present invention is a melt blown nonwoven fabric made of polypropylene, the basis weight is 5 to 100 g / m 2 , preferably 10 to 60 g / m 2 . The average fiber diameter is from 1 to 20 μm, preferably from 1 to 10 μm.
[0012]
In the present invention, when a liquid is sprayed on the porous dielectric sheet, the porous dielectric sheet is placed on a mesh support having an air permeability of 50 to 400 cm 3 / cm 2 / sec. It is important to reduce the pressure below the support. The air permeability is measured using a flanger type tester described in JIS-L1096. The mesh support is specifically a porous structure made of a woven metal or plastic yarn, and has a woven shape such as plain weave, twill weave, and satin weave. Examples of the metal material include stainless steel and bronze, and examples of the plastic material include polypropylene, polyester, polyurethane, nylon, and polyphenylene sulfide. The air permeability depends on the yarn diameter, mesh (number of yarns per inch), porosity, and the like. To exemplify each preferable range, the yarn diameter is 0.05 to 0.4 mm, the mesh is 30 to 120 mesh, and the porosity is 5 to 30%. Outside of these ranges, it is difficult to control the air permeability to 50 to 400 cm 3 / cm 2 / sec.
[0013]
The liquid is ejected from a nozzle having a number of orifices along the width direction of the sheet, which is provided several cm above the porous dielectric sheet, at a pressure sufficient for the liquid to pass through the sheet. The pressure sufficient to pass depends on the basis weight of the porous dielectric sheet. For example, if the basis weight is 5 to 20 g / m 2 , 0.3 to 2 MPa, 20 to 50 g / m 2 , 0.6 to 3 MPa, and 50 to 100 g / m 2 , 1 to 4 MPa Preferably, there is. If the pressure is too high, a pinhole will open in the porous dielectric sheet, and the filtration performance will decrease. If the liquid cannot sufficiently pass through the porous dielectric sheet because the pressure is too low, the porous dielectric sheet cannot be highly electretized. The nozzle is preferably one in which orifices having a diameter of 0.05 to 0.2 mm are arranged in one or more rows at a pitch of 0.5 to 3 mm. In addition, by making the net-like support movable, and by transporting the porous dielectric sheet in the longitudinal direction, the spraying process can be continuously performed. The transport speed is not particularly limited, but a preferred range is 1 to 100 m / min. Further, the optimum number of times of spraying and the processing surface (one side or both sides) are not particularly limited because they depend on the basis weight and average fiber diameter of the porous dielectric sheet.
[0014]
In addition, it is preferable that the lower part of the mesh support is reduced in pressure by using an exhaust blower or the like at the same time as the liquid is injected. The suction negative pressure is not particularly limited, but is preferably 200 to 2000 mmAq. When the pressure is reduced, the liquid can sufficiently pass through the porous dielectric sheet, and the porous dielectric sheet can be highly electretized.
[0015]
In the present invention, the liquid to be sprayed on the porous dielectric sheet is preferably water, and more preferably an aqueous solution containing at least one organic or inorganic compound having an acid dissociation index (pKa) of 3.0 or more. The acid dissociation index (pKa) is calculated from the acid dissociation constant (Ka) according to the following equation. The term “acid dissociation constant (Ka)” as used herein refers to the acid dissociation constant (Ka) in water at normal temperature and normal pressure.
[0016]
(Equation 1)
[0017]
Here, in the case of a compound having multi-stage dissociation equilibrium, it is essential that the smallest acid dissociation index (pKa) is 3.0 or more. When an aqueous solution containing only a compound having an acid dissociation index (pKa) smaller than 3.0 is used, the porous dielectric sheet cannot be highly electretized. Specific examples of preferred organic or inorganic compounds include carboxylic acids, carboxylate salts, ammonia, ammonium salts, amines, carbonates, hydrogencarbonates, hypochlorites, etc., and particularly preferably at room temperature and normal pressure. Ammonia, which is volatile. Surfactants and organic solvents not only increase the permeability of the aqueous solution into the porous dielectric sheet, but also form a coating on the surface of the porous dielectric sheet and prevent the porous dielectric sheet from becoming highly electret. , Should not be contained in the aqueous solution.
[0018]
Concentration in the aqueous solution of the organic and inorganic compounds varies depending the compound is 1 to 10 5 ppm. If it is 1 ppm or less, the effect is insufficient because it is not highly electretized. Conversely, if it is more than 10 5 ppm, the electric conductivity of the aqueous solution increases and the electric charge accumulated in the nonwoven fabric flows out. Cannot be electretized.
[0019]
The porous dielectric sheet of the present invention preferably contains additives such as a hindered phenol-based stabilizer, a sulfur-based stabilizer, a phosphorus-based stabilizer, a fatty acid metal salt, and a crystal nucleating agent. By containing these additives, the electret properties of the porous dielectric sheet are dramatically improved. The content of these additives is 0.025 to 5 parts by weight, preferably 0.05 to 3 parts by weight, and most preferably 0.1 to 1 part by weight based on 100 parts by weight of the porous dielectric sheet. Department. If the content is small, the effect of forming electrets is not sufficient. Conversely, if the content is large, the effect is saturated and bleed out is not preferable.
[0020]
The mechanism by which the level of electretization is improved by using a mesh support having an air permeability of 50 to 400 cm 3 / cm 2 / sec and reducing the pressure below the mesh support is considered as follows. The porous dielectric sheet is electretized by the contact between the droplets and the fibers, and it is necessary to increase the frequency of the contact to improve the level. When water is used as the liquid and polypropylene non-woven fabric is used as the porous dielectric sheet, water has little affinity with polypropylene. It is enough. Conversely, when jetting at a high pressure, the frequency of contact increases, but pinholes tend to open in the nonwoven fabric, which results in a significant impairment of the characteristics as a filter medium. Therefore, by setting the pressure below the mesh support to a reduced pressure state, water droplets can sufficiently penetrate into the nonwoven fabric. At this time, it is most important that the air permeability of the mesh support under the nonwoven fabric is 50 to 400 cm 3 / cm 2 / sec. When the air permeability is too large (the inter-yarn void size of the mesh body is too large), the nonwoven fabric penetrates as a large water droplet. This means that large water droplets penetrate the inside of the non-woven fabric, so that the contact frequency is not easily increased, and pinholes are easily formed in the non-woven fabric even at a low water pressure. When a mesh support having an air permeability of 50 to 400 cm 3 / cm 2 / sec is used, relatively small water droplets penetrate the inside of the nonwoven fabric, and the splash of water droplets from the mesh support increases, so that the contact frequency becomes higher. Increase. Also, since the water droplets are small, it is difficult to open a pinhole. On the other hand, if the air permeability is too small, water droplets are difficult to permeate and the frequency of contact is reduced, which does not lead to an improvement in electretization level.
[0021]
It is preferable to perform a DC corona charging process as a pre-process of the porous dielectric sheet performed before performing the liquid jetting process. If the electric charge is accumulated in the surface layer of the sheet in advance by performing the DC corona charging process, only the inside of the sheet needs to be charged by the spraying process. Can be.
[0022]
As a drying method after performing the liquid jetting treatment on the porous dielectric sheet, any conventionally known method can be used. For example, a method such as a hot air drying method, a vacuum drying method, and a natural drying method can be applied. Among them, the hot air drying method is preferable because continuous processing is possible. In the case of the hot air drying method, the drying temperature needs to be a temperature at which the electret is not lost. The temperature is preferably 120 ° C. or lower, more preferably 100 ° C. or lower, and further preferably 80 ° C. or lower. It is more preferable to remove excess water by nip rolls, water absorption rolls, suction suction, or the like as preliminary drying before hot air drying.
[0023]
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0024]
(Porous dielectric sheet)
0.1 parts by weight of a hindered phenol-based stabilizer Irganox 1010 was blended with 100 parts by weight of a polypropylene resin having a melt flow index of 1000, and a melt-blown nonwoven fabric having a basis weight of 30 g / m 2 and an average fiber diameter of 2.5 μm was prepared by a melt blow method. . This was used as a porous dielectric sheet.
[0025]
(Liquid jet processing)
The above melt-blown nonwoven fabric was placed on a support having various air permeability shown in Table 1, and an aqueous solution injection treatment was performed at a pressure of 1 to 4 MPa from a nozzle having a diameter of 0.1 mm and a pitch of 1 mm located 2 cm above the nonwoven fabric. . The aqueous solution used here was obtained by adding 5 pmm of ammonia (pKa = 9.2) to high-purity water that had been subjected to two-stage reverse osmosis membrane treatment and then ion exchange membrane treatment of general tap water. . The conveying speed of the support was set to 10 m / min, and the lower part of the mesh immediately below the nozzle was reduced to 600 mmAq. This treatment was performed twice on each of the front and back sides of the nonwoven fabric. Thereafter, the nonwoven fabric was kept in a hot air oven at 70 ° C. for 1 minute and dried.
[0026]
(DC corona charging process)
The melt-blown non-woven fabric was placed on a 0.5 mm-thick silicon sheet laid on a ground electrode of an aluminum flat plate, and a DC high voltage of +15 kV was applied for 10 seconds using a needle electrode placed 1 cm above the porous dielectric sheet. .
[0027]
(Measurement of air permeability of support)
It measured using the flanger type tester of JIS-L1096.
[0028]
(Yarn diameter, mesh, porosity)
The reticulated support was observed with a scanning electron microscope to measure the yarn diameter and the mesh. Further, the area of the void surrounded between the yarns was measured, and the area ratio per inch was calculated as the space ratio.
[0029]
(Evaluation of filtration characteristics)
The pressure loss (PD) was determined by placing an electret filter medium sample in a duct, controlling the linear velocity of the filter medium passage to 10 cm / sec, and reading the static pressure difference upstream and downstream of the electret filter medium with a pressure gauge. The evaluation of the particle collection efficiency E (%) was performed at 10 cm / sec using DOP particles having a particle diameter of 0.3 μm. Using the pressure loss PD (mmAq) and the particle collection efficiency E (%), a filter medium quality factor QF was calculated from the following equation.
[0030]
(Equation 2)
[0031]
(Examples 1-3, Comparative Examples 1-2)
The polypropylene melt-blown non-woven fabric previously subjected to the DC corona charging treatment is placed on a polyethylene terephthalate net-like support having the characteristics shown in Table 1, and the ammonia aqueous solution is sprayed at a pressure of 1 MPa or 4 MPa while suctioning the lower portion under reduced pressure. Electret filter medium samples of Examples 1 to 3 and Comparative Examples 1 and 2 were produced. Table 2 shows the evaluation results of the filtration characteristics.
[0032]
(Comparative Example 3)
As shown in Table 1, an electret filter medium sample of Comparative Example 3 was prepared in the same manner as above except that the support was replaced by a polyethylene terephthalate flat plate having an air permeability of 0 cm 3 / cm 2 / sec. Table 2 shows the evaluation results of the filtration characteristics.
[0033]
(Comparative Examples 4 and 5)
A polypropylene melt-blown nonwoven fabric previously subjected to a DC corona charging treatment was placed on the same support (permeability: 220 cm 3 / cm 2 / sec) as in Example 1, and Comparative Example 4 was applied at a pressure of 1 MPa and 4 MPa without performing vacuum suction at the bottom. ~ 5 electret filter medium samples were prepared. Table 2 shows the evaluation results of the filtration characteristics.
[0034]
(Comparative Example 6)
An electret filter medium sample of Comparative Example 6 was produced in the same manner as in Example 1 except that the DC corona charging treatment was not performed in advance. Table 2 shows the evaluation results of the filtration characteristics.
[0035]
[Table 1]
[0036]
[Table 2]
[0037]
In each of the electret filter medium samples of the examples, the particle collection efficiency was as high as 99% or more, and the filter medium quality factor QF also showed a high value. On the other hand, in the electret filter medium sample of the comparative example, both the particle collection efficiency and the QF were lower than those in the example.
[0038]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the manufacturing method of this invention, the electretization level can be improved compared with the conventionally known manufacturing method of the electretized filter medium by liquid injection.