【0001】
【産業上の利用分野】
本発明は、携帯移動性を特徴とする携帯電話機、パーソナルコンピューター、ディジタルカメラ,電動工具、電動ロボット等機器全般の分野で、その利便性を著しく高める物として広く利用できる。即ちそれらの駆動に用いられる充電放電可能ないわゆる2次電池に、いつでもどこでも手軽にかつ大容量の再充電ができるため、従来よりはるかに長時間安心して安定な電源が得られるようになる。
【0002】
【従来の技術】
従来、本発明と似たものとして、予め高容量の1次電池あるいは2次電池を内包させ応急的に放電終了した外部の2次電池に再充電させるものはあった。しかしこれらはその容量に限りがあり比較的少数回の実用にしか耐えられなかった。また、その充電電圧も適正に制御されにくく2次電池の性能を損なう恐れもあった。また、小型の燃料電池そのものを携帯移動機器に組み込みこれに適宜燃料を補充するものも検討されつつあるが、この場合機器本体は従来のものとは構造仕様を変更する必要があり、機器の汎用性が損なわれ、かつ概して複雑、高価で大きくなる傾向にあり水蒸気やガス等の排気対応も必要で利便性に欠け易かった。
【0003】
【発明が解決しようとする課題】
上述のように従来は本発明が目的とするような適正な充電器は無かったので、2次電池およびその応用商品では携帯移動して使用中放電が進んで使用途中での作動停止や能力低下が発生した場合充電器を使えないため、予備の電池が無い限り使用不能となり大変不便であった。また、近年携帯機器の多くは高性能化により消費電力が増加しつつあるため、電池の放電はより早くなる傾向があり、どこでもすぐにしかも比較的大容量で用いられる本発明のような充電器が求められていた。
【0004】
【課題を解決するための手段】
本発明は、主に燃料電池素子が発電だけでなく逆に直流電気を印加されると水を電気分解する逆作用を利用し、目的とする2次電池等に印加するに充分な電気量を予め市売電力による電気分解で得られた水素を水素燃料の形態で蓄え携帯移動可能な充電装置とするものである。同時に非携帯移動時の通常形態では市売電力との併用使用も可能としその利便性を飛躍的に向上させようとしている。いずれの場合も制御部でそれぞれ最適の電気制御を行う。また、水から得られる水素が燃料電池の燃料となるため生成物(排気)はやはり水(水蒸気)のみであるため再利用され、原則的に外部から別の燃料を補給する必要はない。また電気分解時に発生する酸素は選択的に大気中に排気されるが無害であり、従来小型の燃料電池で生じている排気の課題は発生しない。
【0005】
【発明実施の形態】
この目的のため燃料電池素子にはその電池として作動する時燃料となり、電気分解時には水素ガスを生成する水素側通路および電極(負極)はこの水素を貯蔵する部分につながり、他方対極側の通路および電極(正極)は電池時には酸素(大気)と生成水(蒸気)をまた電気分解時には水および生成酸素を通す。前者の生成水素貯蔵部分には水素貯蔵合金等を設ける。また、後者の酸素は生成後は水(蒸気)と分離されて大気中に放出され、電池発電時は逆に大気より取り込まれる。ここに燃料電池素子が電池として働きその電極より直流電気が発生している時は制御部で適宜電圧調整して電源出力部より2次電池に伝える。また、逆に電極に適当な直流電圧が制御部を通して印加される時燃料電池は供給される水を電気分解する。この電力は市売の交流電気より得られ前記制御部で最適の直流電気に変換される。なお、燃料電池素子に出入りする水は液体状で別の部分に貯蔵されるが電気分解作動時は加熱されて蒸気状で供給され、逆に電池として発電作動時には蒸気状で発生してきたものを冷却凝縮させて液状にし蓄えられる。
【0006】この時制御部はシステム全体の制御を行うが特に電気分解時の電極への直流電気の印加や発電時の2次電池充電用直流電気の出力は精細な制御を必要とする。ここに場合により制御部は市売電力を直接上記直流電気出力に平行して加味できるように設定される。このため、市売電力の入手できる際は従来の充電器のように使用できる。
【0007】ここにこれらの構成要素を適宜選択構成して全体として一体の装置としてまとめ携帯移動可能とすることは容易でその利便性が高まる。
【0008】
【実施例】
以下、本発明を図1に示す実施例について説明する。図において(1)は燃料電池、(2)は水、(3)は水素、(4)は酸素、(5)は制御部、(6)は交流電源入力部、(7)は直流電源出力部、(10)は充電器本体および(20)は2次電池を示す。
【0009】
今1例として、図1に本発明の概念図を示す。燃料電池(1)は例えば固体高分子型(PEFC)を用いる時これに水(2)を導きこの電極間に適正な直流電気を印加すると電気分解が生じこの両極(負極と正極)でそれぞれ水素と酸素が発生する。この発生した水素(3)はこの容器に貯蔵する。この例では容器内部に水素貯蔵合金を設けこれに吸蔵させる。この作用は発生水素の圧力と温度の制御で容易に行え、この際交流電源入力部(6)より得られた電気を制御部(5)で直流に変換される。またこの時発生する酸素(4)は図のように蓄えることも可能であるが、実用的にはここより分離器(図示せず)を通して大気に放出される。なお、同図の細線の矢印はこの作用時の電気及び気体の流れを模式的に示す。次に燃料電池(1)に先ほど蓄えた水素(3)をその負極側(図示せず)に、同様酸素(4)を正極側(図示せず)に導くと相応な直流電気が発生(発電)される。この時正極側には水が反応生成物として発生する。温度等の関係から燃料電池内では蒸気状であるが水(2)容器内には冷却(図示せず)して液状で貯留される。発生した電気は制御部(5)で直流の適正電圧に変換され直流電源出力部(7)に送られる。これにより充電器本体(10)から外部の2次電池(20)に接続すれば充電が可能となる。また、前述のごとく酸素(4)は大気中より取り入れることも実用的である。なお、同図中の2重線の矢印は前述と同様に発電時の電気及び気体の流れを示す。
【0010】
また、制御部(5)は交流電源入力部(6)より得た電気を直接直流電源出力部(7)に燃料電池(1)を介さず変換して出力するように設定する。上述の水(2)の生成が未完もしくは不十分な時や、市売電力を利用した方が有利な際補完的に作動する。
【0011】
また、本例以外に交流電源入力部(6)には、場合により太陽電池発電装置や自動車のバッテリープラグから電力を得たり、出力電源を交流にしたり、水(2)は適宜補充できるようにすること等はこの応用展開可能である。なお、燃料電池もPEFC以外でも同様機能を有すれば使用可能である。
【発明の効果】
以上説明したように、本発明によれば比較的簡単な構造で燃料の補充なしで、また補充するとしても水だけでよいので簡略に主に2次電池の充電をいつでもどこでも可能とすることができ、ほとんど電池切れを心配することなく2次電池応用機器を使えるようになる。特に可燃性の燃料における規制や安全対策が不要で、しかも有害な排気生成物が無いので安心して使える。また、当然ながら2次電池使用機器には特別の加工や改良は不要で従来のまま使用できることも大きな効用である。また、この充電装置で充電しながら2次電池使用機器を作動させることも可能となるので両者を実質上一体的に作動させることもでき利便性は格段に向上できる。
【図面の簡単な説明】
【図1】本発明に関わる概念図を示す。
【符号の説明】
(1) 燃料電池
(2) 水
(3) 水素
(4) 酸素
(5) 制御部
(6) 交流電源入力部
(7) 直流電源出力部
(10) 充電器本体
(20) 2次電池[0001]
[Industrial applications]
INDUSTRIAL APPLICABILITY The present invention can be widely used as a device that remarkably enhances its convenience in general fields such as a mobile phone, a personal computer, a digital camera, an electric tool, and an electric robot characterized by portable mobility. That is, the so-called rechargeable secondary battery used for driving them can be recharged easily and with a large capacity anytime, anywhere, so that a stable power source can be obtained with much longer ease than before.
[0002]
[Prior art]
Conventionally, as similar to the present invention, there has been one in which a high-capacity primary battery or a secondary battery is included in advance and an external secondary battery that has been discharged immediately is recharged. However, they had limited capacity and could only withstand a relatively small number of applications. Also, the charging voltage is difficult to be properly controlled, and the performance of the secondary battery may be impaired. In addition, studies are underway to incorporate a small fuel cell itself into a portable mobile device and replenish it with fuel as appropriate, but in this case, the structure of the device itself must be changed from that of the conventional one, and In addition, they tend to be deteriorated, and generally tend to be complicated, expensive, and large, and need to cope with exhaust of water vapor, gas, and the like, so that they lack convenience.
[0003]
[Problems to be solved by the invention]
As described above, conventionally, there has been no appropriate charger as the object of the present invention. Therefore, in the case of secondary batteries and their applied products, the portable batteries are moved and the discharge during use is advanced, and the operation is stopped or the performance is reduced during use. In the event of occurrence, the charger cannot be used, so that the battery cannot be used unless there is a spare battery, which is very inconvenient. In recent years, the power consumption of many portable devices has been increasing due to higher performance, so that battery discharge tends to be faster, and a charger such as the present invention used immediately and anywhere with a relatively large capacity. Was required.
[0004]
[Means for Solving the Problems]
The present invention mainly utilizes the adverse effect of electrolyzing water when a fuel cell element is applied not only with power generation but also with direct current electricity, thereby providing a sufficient amount of electricity to be applied to a target secondary battery or the like. The present invention is intended to provide a portable mobile charging device in which hydrogen obtained in advance by electrolysis using market power is stored in the form of hydrogen fuel. At the same time, in the normal mode of non-portable travel, it can be used in combination with city power, and the convenience is greatly improved. In each case, the control unit performs optimal electric control. Further, since hydrogen obtained from water is used as fuel for the fuel cell, the product (exhaust gas) is also reused because it is only water (steam), so that it is not necessary to supply another fuel from outside in principle. Oxygen generated at the time of electrolysis is selectively exhausted to the atmosphere, but is harmless, and does not have the problem of exhaustion that has conventionally occurred in small fuel cells.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
For this purpose, the fuel cell element becomes a fuel when operating as a cell, and a hydrogen-side passage and an electrode (negative electrode) for generating hydrogen gas during electrolysis are connected to a portion for storing the hydrogen, while a passage on the other electrode side is formed. The electrode (positive electrode) passes oxygen (atmosphere) and generated water (steam) during a battery and water and generated oxygen during electrolysis. A hydrogen storage alloy or the like is provided in the former generated hydrogen storage portion. After the generation, the oxygen is separated from water (steam) and released into the atmosphere, and is taken in from the atmosphere during battery power generation. When the fuel cell element functions as a battery and direct current electricity is generated from its electrode, the voltage is appropriately adjusted by the control unit and transmitted to the secondary battery from the power output unit. Conversely, when an appropriate DC voltage is applied to the electrodes through the control unit, the fuel cell electrolyzes the supplied water. This electric power is obtained from commercial AC electricity and is converted into optimal DC electricity by the control unit. Water entering and exiting the fuel cell element is stored in a separate part in a liquid state, but is heated and supplied in the form of steam during electrolysis operation. It is cooled and condensed and stored in a liquid state.
At this time, the control unit controls the entire system, but in particular, the application of DC power to the electrodes during electrolysis and the output of DC power for charging the secondary battery during power generation require precise control. In this case, the control unit is set so that the market power can be directly added in parallel with the DC electric output. For this reason, when the market power is available, it can be used like a conventional charger.
Here, it is easy and convenient to select and configure these components as appropriate to collectively form an integrated device and make it portable and portable.
[0008]
【Example】
Hereinafter, the present invention will be described with reference to an embodiment shown in FIG. In the figure, (1) is a fuel cell, (2) is water, (3) is hydrogen, (4) is oxygen, (5) is a control unit, (6) is an AC power input unit, and (7) is a DC power output. , (10) indicates a charger main body, and (20) indicates a secondary battery.
[0009]
FIG. 1 shows a conceptual diagram of the present invention as an example. For example, when a polymer electrolyte fuel cell (PEFC) is used, water (2) is introduced into the fuel cell (1), and when appropriate DC electricity is applied between the electrodes, electrolysis occurs, and hydrogen is generated at both electrodes (negative electrode and positive electrode). And oxygen is generated. The generated hydrogen (3) is stored in this container. In this example, a hydrogen storage alloy is provided inside the container and occluded therein. This operation can be easily performed by controlling the pressure and temperature of the generated hydrogen. At this time, the electricity obtained from the AC power input unit (6) is converted into DC by the control unit (5). The oxygen (4) generated at this time can be stored as shown in the figure, but practically, it is released to the atmosphere through a separator (not shown). In addition, the thin-line arrows in the figure schematically show the flow of electricity and gas during this operation. Next, when the hydrogen (3) previously stored in the fuel cell (1) is led to its negative electrode side (not shown) and the oxygen (4) is similarly led to its positive electrode side (not shown), appropriate DC electricity is generated (power generation). ) Is done. At this time, water is generated as a reaction product on the positive electrode side. Although it is in a vapor state in the fuel cell due to the temperature and the like, it is cooled (not shown) and stored in a liquid state in the water (2) container. The generated electricity is converted into an appropriate DC voltage by the control unit (5) and sent to the DC power output unit (7). As a result, charging is possible by connecting the charger main body (10) to an external secondary battery (20). As described above, it is also practical to introduce oxygen (4) from the atmosphere. It should be noted that the double-line arrows in the figure indicate the flow of electricity and gas during power generation, as described above.
[0010]
Further, the control unit (5) is set so that the electricity obtained from the AC power input unit (6) is converted and output directly to the DC power output unit (7) without passing through the fuel cell (1). It operates complementarily when the generation of the water (2) is incomplete or insufficient, or when it is more advantageous to use city power.
[0011]
In addition to the present example, the AC power input unit (6) may be provided with power from a solar cell power generator or a battery plug of an automobile, output power may be set to AC, or water (2) may be appropriately replenished as necessary. It is possible to develop this application. In addition, a fuel cell other than PEFC can be used as long as it has a similar function.
【The invention's effect】
As described above, according to the present invention, the rechargeable battery can be simply charged anytime and anywhere simply by using a relatively simple structure without fuel replenishment, and even when replenishing, only water is required. This will make it possible to use secondary battery-applied devices with almost no fear of running out of batteries. In particular, there is no need for regulations and safety measures for flammable fuels, and there is no harmful exhaust products, so it can be used with confidence. Also, it is of course a great advantage that the secondary battery-equipped device does not require any special processing or improvement and can be used as it is conventionally. Further, since it becomes possible to operate the device using the secondary battery while charging with this charging device, both can be operated substantially integrally, and the convenience can be remarkably improved.
[Brief description of the drawings]
FIG. 1 shows a conceptual diagram according to the present invention.
[Explanation of symbols]
(1) Fuel cell (2) Water (3) Hydrogen (4) Oxygen (5) Control unit (6) AC power input unit (7) DC power output unit (10) Charger body (20) Secondary battery