[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004053839A - Light switching device - Google Patents

Light switching device Download PDF

Info

Publication number
JP2004053839A
JP2004053839A JP2002209970A JP2002209970A JP2004053839A JP 2004053839 A JP2004053839 A JP 2004053839A JP 2002209970 A JP2002209970 A JP 2002209970A JP 2002209970 A JP2002209970 A JP 2002209970A JP 2004053839 A JP2004053839 A JP 2004053839A
Authority
JP
Japan
Prior art keywords
movable
movable body
electrode
support beam
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002209970A
Other languages
Japanese (ja)
Inventor
Kaneo Yachi
矢地 兼雄
Shinji Kobayashi
小林 真司
Masaya Tamura
田村 昌弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002209970A priority Critical patent/JP2004053839A/en
Publication of JP2004053839A publication Critical patent/JP2004053839A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a voltage which is applied among movable electrodes and fixed electrodes to be set at a low voltage value and to miniaturize the whole body of a light switching device and to raise the reliability of the device by stabilizing switching operations of rays of light. <P>SOLUTION: A mirror part 13 for switching rays of light is formed at a movable body 12 which is made to be able be displaced on a substrate 11. The movable body 12 is supported by movable supporting beams 14, 16 which prolong to both sides of the left side and the right side. The movable supporting beams 14, 16 are arranged by being inclined obliquely with respect to the movable body 12 and they are formed as movable electrodes 15, 17. Fixed electrodes 18, 19, 22, 23 which are opposed to these movable electrodes 15, 17 with each other while holding them from both sides of the displacement direction of the body 12 are arranged respectively at both sides of the left side and the right side of the body 12. The fixed electrodes 18 and 19 and the fixed electrodes 22 and 23 are formed respectively in shape forming roughly chevron shape so that an inter-electrode distance becomes smaller gradually as the distance is away farther from the body 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えばミラー等を用いて光の進路を切換える構成とした光スイッチ装置に関し、特に、電極間の静電力を用いて光の切換動作を行うようにした光スイッチ装置に関する。
【0002】
【従来の技術】
一般に、マイクロマシニング技術を用いることによって基板上に各種の微小な静電アクチュエータを形成し、この静電アクチュエータにより光の進路を切換える構成とした光スイッチ装置は知られている。
【0003】
そこで、この種の従来技術による光スイッチ装置について、図6ないし図8を参照して説明する。
【0004】
図中、1は光スイッチ装置のベースとなる基板を示し、該基板1は、例えばガラス材料によって数ミリ程度の大きさをもって四角形状に形成されている。そして、基板1は平坦な表面を有し、後述の可動体2は基板1の表面に沿って矢示A,B方向に進退されるものである。
【0005】
2は基板1上に設けられた可動体で、該可動体2は、基板1の表面に沿って前進,後退方向(図6中に示す矢示A,B方向)に延びる細長棒状体として形成されている。そして、可動体2の一端側には、後述する光学装置7の切換えを行う光切換部としてのミラー部3が設けられ、該ミラー部3の表面は、金属膜をメッキ、蒸着、スパッタ等の手段を用いて成膜し、鏡面仕上げされている。
【0006】
4は可動体2の他端側に弾性変形可能に設けられた支持梁で、該支持梁4は、長さ方向の両端側が基板1上に固定される固定部4A,4Aとなり、支持梁4の長さ方向中間部には可動体2の他端側が一体形成されている。そして、支持梁4は、基板1に対し可動体2を片持ち状態で支え、可動体2が矢示A,B方向に変位するのを許すものである。
【0007】
ここで、可動体2(ミラー部3を含む)および支持梁4は、後述の可動電極5、固定電極6と共に、例えば単結晶または多結晶のシリコン材料を用いてエッチング加工(マイクロマシニング技術)等を施すことにより形成され、これらは可動電極5と固定電極6との間で静電引力を発生させる静電アクチュエータを構成するものである。
【0008】
5,5は可動体2の前,後方向と交差する左,右両側に一体形成された可動電極、6,6は該各可動電極5と対向配置された固定電極を示し、これらの可動電極5、固定電極6は、櫛歯型電極からなり、電圧が印加されたときには両者の間に静電引力が発生するものである。
【0009】
そして、可動体2は、可動電極5と固定電極6との間に発生する静電引力により支持梁4を弾性的に撓み変形させ、矢示A方向(前進方向)に駆動される。また、可動体2は、可動電極5、固定電極6に対する電圧印加(通電)を解除したときに、支持梁4の弾性復元力により矢示B方向(後退方向)に変位するものである。
【0010】
7は基板1上に設けられた光学装置で、該光学装置7は、発光部7A,7Bと受光部7C,7Dとからなり、これらの発光部7A,7Bと受光部7C,7Dにはそれぞれ光ファイバ(図示せず)等が接続されている。そして、発光部7Aは受光部7Cに向けて矢示C方向に光ビームを発射し、発光部7Bは受光部7Dに向けて矢示D方向に光ビームを発射するものである。
【0011】
この場合、発光部7A,7Bと受光部7C,7Dとは、矢示C,D方向の光ビームが約90度の角度で交差する方向に配置されている。そして、可動体2が図6、図7に示す位置にあるときには、発光部7A,7Bから発射された光ビームに対してミラー部3が後退した位置に留まるので、矢示C,D方向の光ビームは受光部7C,7Dで受光される。
【0012】
一方、可動体2が矢示A方向に変位してミラー部3が図8に示す位置まで進出したときには、発光部7A,7Bから発射された光ビームがミラー部3によって反射される。これにより、発光部7Aから発射された光ビームは、矢示C方向から矢示D′方向へと光の進路が切換えられ、受光部7Dによって受光される。
【0013】
また、発光部7Bから発射された光ビームは、ミラー部3で反射されることにより矢示D方向から矢示C′方向へと光の進路が切換えられ、受光部7Cによって受光されるものである。
【0014】
従来技術による光スイッチ装置は、上述の如き構成を有するもので、次に、そのスイッチング動作について説明する。
【0015】
まず、可動電極5と固定電極6との間に電圧を印加するまでは、可動体2が図6に示す後退位置にあり、ミラー部3は矢示C,D方向の光ビームから矢示B方向に後退した位置に留まる。
【0016】
そして、発光部7A,7Bから発射された矢示C,D方向の光ビームは受光部7C,7Dで受光され、このときには発光部7Aと受光部7Cとの間で光通信等が行われると共に、発光部7Bと受光部7Dとの間で光通信等が行われる。
【0017】
次に、可動電極5と固定電極6との間に、例えば数10ボルトの電圧を印加すると、可動電極5と固定電極6との間に静電引力が発生し、この静電引力によって可動電極5が固定電極6側に吸引され、可動体2は支持梁4を弾性的に撓み変形させつつ矢示A方向に駆動される。
【0018】
そして、可動体2が矢示A方向に変位してミラー部3が図8に示す矢示A方向の前進位置まで進出したときには、発光部7Aからの光ビームがミラー部3により反射されるため、このときの光ビームは矢示D′方向へと進路が切換えられ、発光部7Aと受光部7Dとの間で光通信等が行われる。また、発光部7Bからの光ビームは、ミラー部3で反射されることにより矢示C′方向へと進路が切換えられ、発光部7Bと受光部7Cとの間で光通信等が行われる。
【0019】
次に、この状態で電極5,6間の電圧印加(通電)を解除すると、前述した静電引力が失効し可動体2は支持梁4の弾性復元力により矢示B方向に変位する。これにより、可動体2が図6中に示す後退位置に復帰し、ミラー部3は矢示C,D方向の光ビームから矢示B方向に後退した位置に戻るので、発光部7Aと受光部7Cとの間、発光部7Bと受光部7Dとの間で再び光通信等が行われるものである。
【0020】
【発明が解決しようとする課題】
ところで、上述した従来技術では、発光部7A,7Bと受光部7C,7Dとの間で光ビームの切換動作(スイッチング動作)を安定して行うために、ミラー部3を光のビーム径よりも大きく(例えば、矢示A方向に50〜100μm程度)変位させることが要求される。
【0021】
そして、このためには図6に示す可動電極5と固定電極6との間の電極間距離Lを、例えば50〜100μm以上の寸法に形成する必要が生じる。しかし、この状態で可動体2を矢示A,B方向に例えば50μm程度変位させるためには、可動電極5と固定電極6との間に印加する電圧を、例えば数10ボルトまで昇圧しなければならない。
【0022】
このために従来技術では、例えば10ボルト程度の電源電圧を昇圧回路等を用いて数10ボルトまで昇圧するようにしており、昇圧回路等を付加することにより回路構成が複雑化し、製造コストが嵩むばかりでなく、全体を小型化しコンパクトに形成することが難しいという問題がある。
【0023】
また、印加電圧を下げるためには可動電極5と固定電極6との櫛歯電極数を増加させる等の対策が考えられる。しかし、可動電極5と固定電極6との櫛歯電極数を増加するためには、可動電極5と固定電極6をさらに大なる寸法で形成しなければならず、これに伴って基板1の面積も大きくする必要が生じるので、装置全体が大型化するという問題がある。
【0024】
一方、例えば米国特許第6,303,885号等では、可動体を変位可能に支持する梁を弾性体からなるバックリングにより構成し、電極間の静電力により可動体を変位させて静電力を解除した後にも、この変位状態をバックリングの弾性力で維持できるようにした2つの安定位置をもつ小型スイッチ装置が提案されている。
【0025】
しかし、このスイッチ装置では、バックリングを2つの安定位置間で変位させるのに大きな静電力が必要となり、これによって高い印加電圧が要求されるために、昇圧回路等の回路構成が複雑化し、製造コストが嵩むばかりでなく、全体を小型化しコンパクトに形成することが難しいという問題がある。
【0026】
本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、可動電極と固定電極とに印加する電圧を低い電圧に設定できると共に、全体を小型化でき、光の切換動作を安定させ信頼性を向上することができるようにした光スイッチ装置を提供することにある。
【0027】
【課題を解決するための手段】
上述した課題を解決するために、請求項1の発明による光スイッチ装置は、光の進路に対して前進,後退することにより光の切換動作を行う可動体と、該可動体を前,後方向に変位可能に支持する可動支持梁により構成され、該可動体の変位方向に対し交差する左,右方向に伸長して設けられた可動電極と、前記可動体の変位方向の両側から該可動電極を挟んで互いに対向して設けられ、該可動電極との間に発生する静電力で該可動電極を駆動することにより前記可動体を前,後方向に変位させる一対の固定電極とからなり、該一対の固定電極は、前記可動電極を挟んだ電極間距離が前記可動体に近い位置で最も大きく前記可動体から離れるに従って漸次小さくなるように配置してなる構成を採用している。
【0028】
このように構成することにより、一対の固定電極のうちいずれか一方の固定電極と可動電極との間に電圧を印加すると、これらの電極間に静電力を発生させて可動電極を駆動することができ、これによって可動体を光の進路に対し進退させる前,後方向に変位させ、光の切換動作を行うことができる。また、一対の固定電極は可動電極を挟んだ電極間距離が、可動体に近い方の端部で大きく、可動体から離れるに従って漸次小さくなる配置であるため、固定電極と可動電極との間には、まず可動体から離れた方の端部に大きな静電力を発生でき、この静電力により可動電極を固定電極に近付けるように駆動できる。これにより、可動体に近い方の端部側でも可動電極を固定電極に近付けるように駆動できるので、低い印加電圧でも可動体の変位量を大きくすることができ、該可動体を光の進路に対し十分な変位量をもって進退させることができる。
【0029】
また、請求項2の発明によると、可動電極を構成する可動支持梁は、一対の固定電極のうちいずれか一方の固定電極に沿って斜めに傾けて伸長する構成としている。
【0030】
これにより、可動電極を構成する可動支持梁には一対の固定電極間で斜めに揺動するような駆動力(静電力)を与えることができ、可動支持梁を揺動方向の一側と他側とに選択的に保持しつつ、可動体を光の進路に対する前進位置と後退位置との2位置で安定して保持することができる。
【0031】
また、請求項3の発明によると、可動電極を構成する可動支持梁は、可動体に連結される一方の端部を弾性変形可能な連結部とし、前記可動体から離れた他方の端部を固定端とする構成としている。
【0032】
この場合には、可動支持梁が一対の固定電極間で斜めに揺動するときに、可動支持梁の連結部は、揺動方向の中間位置で弾性変形が最大となり、この弾性変形量が揺動方向の一側と他側とで小さくなるように形成することによって、可動支持梁を揺動方向の一側と他側とに選択的に保持することができ、可動支持梁(可動体)に2つの安定位置を与えることができる。
【0033】
さらに、請求項4の発明によると、可動支持梁は可動体を基板の表面から離間した状態に連結部を介して保持し、前記可動支持梁の固定端は前記基板上に固定して設ける構成としている。
【0034】
これにより、可動体を可動支持梁を介して基板上に変位可能に配置することができ、可動体を基板の表面に沿ってほぼ平行に変位させつつ、この可動体を光の進路に対し十分な変位量をもって進退させるように駆動できる。また、これらの可動体、可動支持梁(可動電極)および一対の固定電極は、例えばシリコン材料にエッチング処理を施すことによってそれぞれ容易に加工でき、任意な形状に形成することができる。
【0035】
【発明の実施の形態】
以下、本発明による実施の形態による光スイッチ装置を添付図面に従って詳細に説明する。なお、本実施の形態では、前述した従来技術と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
【0036】
ここで、図1ないし図3は本発明の第1の実施の形態を示している。図中、11は光スイッチ装置のベースとなる基板で、該基板11は、従来技術で述べた基板1とほぼ同様に構成され、ガラス材料等を用いて数ミリ程度の大きさの四角形状に形成されている。
【0037】
12は基板11上に設けられた可動体で、該可動体12は、基板11の表面に沿って前進,後退方向(図1中に示す矢示A,B方向)に延びる細長棒状体として形成され、その一端側には従来技術で述べたミラー部3とほぼ同様に、光の進路に対して進退されるミラー部13が設けられている。
【0038】
しかし、この場合の可動体12は、後述する複数の可動支持梁14,16を用いて、例えば4点で変位可能に支持されることにより、ミラー部13と反対側の他端側が自由端となって形成されている。なお、可動体12は、後述する可動支持梁14,16の本数を増やすことにより、例えば6点以上で変位可能に支持してもよく、これによって後述の静電引力を増大できるものである。
【0039】
そして、可動体12(ミラー部13を含む)および各可動支持梁14,16等は、後述の固定電極18,19,22,23と共に、例えば単結晶または多結晶のシリコン材料を用いてマイクロマシニング技術によるエッチング加工等を施すことにより形成されている。
【0040】
14,14は可動体12の左,右両側に設けられた第1の可動支持梁で、該各可動支持梁14は、可動体12が変位する前,後方向(矢示A,B方向)に対し交差する左,右方向で、後述する一対の固定電極18,19のうち例えば固定電極18に沿って斜めに傾いて伸長するように形成され、図1に例示する如く可動体12と垂直に交差する左,右方向へと伸長した基準線E−Eに対し傾き角θ分だけ斜めに傾いて配置されている。
【0041】
ここで、可動支持梁14の一方の端部は、例えば略U字状またはコ字状に屈曲して形成された連結部14Aとなり、該連結部14Aは、ミラー部13から矢示B方向に予め決められた寸法だけ離れた位置で可動支持梁14を可動体12に一体に連結している。
【0042】
そして、この連結部14Aは、後述の可動電極15と固定電極18,19との間に発生する静電引力等の外力により容易に弾性変形し、可動支持梁14が固定電極18,19間で基準線E−Eの前,後に、例えば傾き角θの2倍に相当する揺動角(2×θ)をもって揺動するのを許すものである。
【0043】
また、可動支持梁14の他方の端部(可動体12から離れた端部)は、基板11上に固定して設けられる固定端としての固定部14Bとなっている。そして、左,右の可動支持梁14,14は、図2に示すように基板11上に可動体12を隙間S(例えば、数μm程度)をもって浮かした状態で、該可動体12を左,右両側から矢示A,B方向に変位可能に支持しているものである。
【0044】
そして、可動支持梁14は、後述の如く固定部14Bを中心として前,後(例えば、矢示A,B方向)に揺動するときに、揺動方向の一側(図1に示す位置)と揺動方向の他側(図3に示す位置)において連結部14Aの弾性変形量が最も小さくなり、揺動方向の中間位置(例えば、基準線E−Eに対応した位置)では連結部14Aの弾性変形量がほぼ最大となるものである。
【0045】
このため、可動支持梁14は、連結部14Aが大きく弾性変形する揺動方向の中間位置で留まることはなく、連結部14Aの弾性変形量がほぼ最小となる揺動方向の一側と他側とのいずれか一方に選択的に位置保持されるようになる。これによって可動支持梁14には、可動体12の前進位置と後退位置に対応する2つの安定した保持位置が与えられるものである。
【0046】
15,15は可動支持梁14,14にそれぞれ形成された第1の可動電極で、該各可動電極15は、例えば可動支持梁14の連結部14Aと固定部14Bとの間に位置してほぼ直線状に延びる可動支持梁14の主要部分により構成されている。そして、可動電極15は、後述の固定電極18,19との間で対向電極を構成し、対向面積に対応した静電力を後述の如く発生するものである。
【0047】
16,16は可動体12の左,右両側に設けられた第2の可動支持梁で、該第2の可動支持梁16は、第1の可動支持梁14とほぼ同様に構成され、連結部16Aと固定部16Bとを有している。しかし、これらの第2の可動支持梁16,16は、可動体12の長さ方向(前,後方向)で第1の可動支持梁14,14から離れた位置に配設されている。
【0048】
そして、これらの第2の可動支持梁16,16は、前,後方向に離れた第1の可動支持梁14,14と共に可動体12を左,右両側から合計4点で変位可能に支持し、基板11の表面に沿って棒状に延びた可動体12が矢示A,B方向に安定して変位するのを補償している。
【0049】
17,17は可動支持梁16,16にそれぞれ形成された第2の可動電極で、該各可動電極17は、例えば可動支持梁16の連結部16Aと固定部16Bとの間に位置してほぼ直線状に延びる可動支持梁16の主要部分により構成されている。そして、可動電極17は、後述の固定電極22,23との間で対向電極を構成し、対向面積に対応した静電力を後述の如く発生するものである。
【0050】
18,19は第1の可動電極15と対向電極を構成する第1の固定電極で、該第1の固定電極18,19は、図1、図3に示す如く基板11上に設けられ、可動体12の変位方向である矢示A,B方向(前,後方向)の両側から可動支持梁14(可動電極15)を挟むように互いに対向配置されている。
【0051】
そして、これらの固定電極18,19は、前記基準線E−Eに対して可動支持梁14の傾き角θにほぼ対応する角度分だけそれぞれ斜めに傾いて配設され、固定電極18,19間の電極間距離は、可動体12に近い方の一方の端部18A,19A側で最大となり、可動体12から離れた他方の端部18B,19B側で最小となっている。
【0052】
即ち、固定電極18,19は、図1に示す基準線E−Eに対してほぼ対称となる略「ハ」の字形状に形成され、可動電極15を挟んで互いに対向する固定電極18,19の電極間距離が、可動体12から左,右方向に離れるに従って漸次小さくなるように配置されている。
【0053】
また、固定電極18は、図1に示す状態で可動電極15と共に平行平板型の電極として形成され、可動電極15と固定電極18との間の間隔は、例えば0.5〜10μm程度の大きさに後述のストッパ20を介して設定されるものである。なお、これらの可動電極15と固定電極18,19は、平行平板型の電極構造に限るものではなく、例えば従来技術で述べた可動電極5、固定電極6と同様に櫛歯型電極として形成してもよいものである。
【0054】
ここで、可動電極15と固定電極18,19は、例えば10ボルト以下の電圧が外部から印加されると、両者の間に静電引力が発生する。そして、電極15,19間に電圧を印加したときには、両者の間の間隔が最も狭い固定電極19の端部19B側と可動電極15との間に大きな静電引力が発生する。
【0055】
これにより、可動支持梁14は固定電極19の端部19B側に引付けられるように固定部14Bを中心として矢示A方向に揺動される。そして、この揺動に応じて可動電極15は固定電極19との対向面積が漸次増大されるため、電極15,19間の静電引力が漸次増加する。これによって、可動支持梁14は、図3に示すように固定電極19とほぼ正対する位置まで矢示A方向に揺動(駆動)される。
【0056】
このように、可動支持梁14が一対の固定電極18,19間で矢示A方向に揺動するときには、可動支持梁14の連結部14Aが揺動方向の中間位置(例えば、基準線E−Eに対応した位置)で弾性的に最も大きく撓み変形し、可動支持梁14が図3に示す如く固定電極19とほぼ正対する位置まで揺動したときには、連結部14Aの撓み量(弾性変形量)が小さくなる。
【0057】
このため、図3に示す可動支持梁14の揺動位置で可動電極15、固定電極19間への電圧印加(通電)を解除したとしても、可動支持梁14は、矢示B方向に戻るような弾性復元力を発生することはなく、図3に示す位置に安定した状態で保持されるものである。
【0058】
また、図3に示す状態で可動電極15と固定電極18との間に電圧を印加したときには、両者の間の間隔が最も狭い固定電極18の端部18B側と可動電極15との間に大きな静電引力が発生し、可動支持梁14は固定電極18の端部18B側に引付けられるように固定部14Bを中心として矢示B方向に揺動されるものである。
【0059】
そして、この場合も可動電極15は固定電極18との対向面積が揺動に応じて漸次増大されるため、電極15,18間の静電引力が漸次増加するようになり、これによって、可動支持梁14は、図1に示す如く固定電極18とほぼ正対する位置まで矢示B方向に揺動(駆動)される。
【0060】
そして、可動支持梁14の連結部14Aは、揺動方向の一側(例えば、図1に示す位置)と揺動方向の他側(例えば、図3に示す位置)とで弾性変形量が最も小さくなるため、可動支持梁14を揺動方向の一側と他側とに選択的に保持することができ、可動支持梁14(可動体12)に2つの安定した保持位置を与えることができるものである。
【0061】
20,20,…は基板11上に設けられた変位規制部としてのストッパで、これらのストッパ20は、図1に示すように固定電極18に近接した位置に配置され、可動支持梁14の揺動を規制するものである。そして、ストッパ20は、図1に示す如く可動支持梁14に当接することにより、可動電極15が固定電極18に接触して電気的に短絡(ショート)するのを防ぐものである。
【0062】
21,21,…は基板11上に設けられた他の変位規制部としてのストッパで、これらのストッパ21は、図3に示す如く固定電極19に近接した位置に配置され、可動支持梁14の揺動を規制するものである。そして、ストッパ21は、図3に示すように可動支持梁14に当接することにより、可動電極15が固定電極19に接触して電気的に短絡(ショート)するのを防ぐものである。
【0063】
22,23は第2の可動電極17と対向電極を構成する第2の固定電極で、該第2の固定電極22,23は、前述した第1の固定電極18,19とほぼ同様に構成され、可動体12の変位方向である矢示A,B方向(前,後方向)の両側から可動支持梁16(可動電極17)を挟むように互いに対向して基板11上に設けられている。
【0064】
そして、これらの固定電極22,23は、前述した第1の固定電極18,19と同様に可動支持梁14(可動支持梁16)の傾き角θにほぼ対応する角度分だけそれぞれ斜めに傾いて配設され、固定電極22,23間の電極間距離は、可動体12に近い方の一方の端部22A,23A側で最大となり、可動体12から離れた他方の端部22B,23B側で最小となっている。
【0065】
この場合、固定電極22は、図1に示す状態で可動電極17と共に平行平板型の電極として形成され、可動電極17と固定電極22との間の間隔は、例えば0.5〜10μm程度の大きさに後述のストッパ24を介して設定されるものである。なお、これらの可動電極17と固定電極22,23は、平行平板型の電極構造に限るものではなく、例えば従来技術で述べた可動電極5、固定電極6と同様に櫛歯型電極として形成してもよいものである。
【0066】
そして、固定電極22,23間に配置された可動支持梁16についても、連結部16Aの弾性変形量が、揺動方向の一側(例えば、図1に示す位置)と揺動方向の他側(例えば、図3に示す位置)とで最も小さくなるため、可動支持梁16を揺動方向の一側と他側とに選択的に保持することができ、可動支持梁16(可動体12)に2つの安定した保持位置を与えることができるものである。
【0067】
24,24,…は基板11上に設けられた変位規制部としてのストッパで、これらのストッパ24は、図1に示すように固定電極22に近接した位置に配置され、可動支持梁16の揺動を規制するものである。そして、ストッパ24は、図1に示す如く可動支持梁16に当接することにより、可動電極17が固定電極22に接触して電気的に短絡(ショート)するのを防ぐものである。
【0068】
25,25,…は基板11上に設けられた他の変位規制部としてのストッパで、これらのストッパ25は、図3に示す如く固定電極23に近接した位置に配置され、可動支持梁16の揺動を規制するものである。そして、ストッパ25は、図3に示すように可動支持梁16に当接することにより、可動電極17が固定電極23に接触して電気的に短絡(ショート)するのを防ぐものである。
【0069】
本実施の形態による光スイッチ装置は、上述の如き構成を有するもので、次にそのスイッチング動作について説明する。
【0070】
まず、図1に示す初期状態では、全ての電圧印加を停止(解除)することにより、第1,第2の可動支持梁14,16が固定電極18,22に微小隙間を介して対向し、それぞれのストッパ20,24に当接した状態で安定した保持位置に留まるようになり、これにより可動体12は矢示B方向の後退位置(ストロークエンド)に保持される。
【0071】
そして、可動体12が図1に示す後退位置にあるときには、ミラー部13も矢示B方向に後退した位置に留まるので、図7に例示したように発光部7A,7Bから発射された矢示C,D方向の光ビームは受光部7C,7Dで受光され、このときには発光部7Aと受光部7Cとの間で光通信等が行われると共に、発光部7Bと受光部7Dとの間で光通信等が行われる。
【0072】
次に、可動体12を矢示A方向に前進させるときには、各可動支持梁14,16の可動電極15,17と固定電極19,23との間に、例えば10ボルト以下の電圧を印加する。これにより、第1の可動電極15と固定電極19との間に静電引力が発生し、可動電極15が固定電極19側に吸引される。また、第2の可動電極17と固定電極23との間にも静電引力が発生し、可動電極17が固定電極23側に吸引される。
【0073】
そして、第1の可動電極15と固定電極19との間では、両者の間の間隔が最も狭い固定電極19の端部19B側と可動電極15との間に最も大きな静電引力が発生することにより、第1の可動支持梁14が固定電極19の端部19B側に引付けられるように固定部14Bを中心として矢示A方向に揺動され、この揺動に応じて第1の可動電極15は固定電極19との対向面積が漸次増大される。
【0074】
このため、これらの電極15,19間では静電引力が漸次増加することによって、第1の可動支持梁14は、図3に示す如く固定電極19とほぼ正対する位置まで矢示A方向に揺動(駆動)される。そして、第1の可動支持梁14がストッパ21に当接する位置まで揺動したときに、連結部14Aの弾性変形量がほぼ最小となる。
【0075】
また、第2の可動電極17と固定電極23との間でも、両者の間の間隔が最も狭い固定電極23の端部23B側と可動電極17との間に最も大きな静電引力が発生することにより、第2の可動支持梁16が固定電極23の端部23B側に引付けられるように固定部16Bを中心として矢示A方向に揺動され、この揺動に応じて第2の可動電極17は固定電極23との対向面積が漸次増大される。
【0076】
このため、これらの電極17,23間では静電引力が漸次増加することによって、第2の可動支持梁16は、図3に示す如く固定電極23とほぼ正対する位置まで矢示A方向に揺動(駆動)される。そして、第2の可動支持梁16がストッパ25に当接する位置まで揺動したときに、連結部16Aの弾性変形量がほぼ最小となる。
【0077】
この結果、図3に示す第1,第2の可動支持梁14、16の揺動位置で可動電極15、17と固定電極19,23とに対する電圧印加を解除したとしても、第1,第2の可動支持梁14,16は、矢示B方向に戻るような弾性復元力を発生することはなく、図3に示す位置に安定した状態で保持される。
【0078】
そして、このときには可動体12が図3に示す矢示A方向に前進位置に保持され、ミラー部13が矢示A方向のストロークエンドまで進出するため、図8に例示した如く発光部7A,7Bからの光ビームが矢示D′,C′方向に反射され、このときには発光部7Aと受光部7Dとの間で光通信等が行われると共に、発光部7Bと受光部7Cとの間でも光通信等が行われる。
【0079】
一方、可動体12を図1に示す初期位置(後退位置)に戻すときには、第1の可動支持梁14側で電極15,18間に電圧を印加し、第2の可動支持梁16側では電極17,22間に電圧を印加する。
【0080】
そして、これらの電極15,18間と電極17,22間とにそれぞれ発生する静電引力により、可動電極15,17を固定電極18,22側に向けて矢示B方向に揺動させ、このときの可動支持梁14,16の揺動に応じて可動体12を矢示B方向に変位(後退)させる。
【0081】
これにより、ミラー部13が矢示B方向に後退した位置に戻るので、再び図7に例示したように発光部7Aと受光部7Cとの間、発光部7Bと受光部7Dとの間でそれぞれ光通信等を行うことができる。
【0082】
かくして、本実施の形態による光スイッチ装置は、可動体12の左,右両側にそれぞれ前,後に離間して配置する第1,第2の可動支持梁14,16を、傾き角θ分だけ予め斜めに傾けて設けると共に、これらの可動支持梁14,16により可動電極15,17を形成する構成としている。
【0083】
そして、これらの可動電極15(17)を可動体12の変位方向両側から挟んで互いに対向する固定電極18,19(22,23)は、可動体12の左,右両側に位置し、その電極間距離が可動体12から離れるに従って漸次小さくなるようにそれぞれ略「ハ」の字状をなす形状に形成している。
【0084】
これにより、例えば可動電極15と固定電極18,19との間には、電圧印加時に、まず可動体12から離れた方の端部18B,19B側に大きな静電力を発生でき、この静電力により可動電極15を固定電極18,19の端部18B,19B側に近付けるように揺動(駆動)できる。
【0085】
この結果、可動電極15と固定電極18,19との対向面積を、可動支持梁14の揺動に応じて漸次大きくできると共に、これに応じて可動電極15と固定電極18,19との間の静電引力を漸次増大することができ、可動体12に近い方の端部18A,19A側でも可動電極15を固定電極18,19に近付けるように駆動できる。
【0086】
また、例えば可動電極17と固定電極22,23との間でも、可動支持梁16の揺動に応じて対向面積を漸次大きくできると共に、これに応じて可動電極17と固定電極22,23との間の静電引力を漸次増大することができ、可動体12に近い方の端部22A,23A側でも可動電極15を固定電極18,19に近付けるように駆動できる。
【0087】
これにより、可動体12の変位量を大きくすることができ、該可動体12を光の進路に対し十分な変位量をもって矢示A,B方向に進退させることができる。また、このときに可動電極15(17)と固定電極18,19(22,23)との間に印加する電圧を、例えば10ボルト以下まで下げることができ、従来技術で述べたように高い電圧を印加する必要がなくなり、電源側の回路構成等を簡略化することができる。
【0088】
そして、可動体12を矢示A,B方向のストロークエンドとなる前進位置と後退位置とに位置保持するときには、全ての電圧印加を解除し、可動電極15(17)と固定電極18,19(22,23)との間の静電引力を失効させた場合でも、ミラー部13を矢示A,B方向に大きく進退させたいずれか一方の状態に、位置保持することができ、図7、図8に例示した発光部7A,7Bと受光部7C,7Dとの間における光ビームの切換動作を、給電停止時にも安定して行うことができる。
【0089】
従って、本実施の形態によれば、可動電極15(17)と固定電極18,19(22,23)との間に印加する電圧を10ボルト以下の低い電圧に設定でき、小電力化、省エネルギ化を図ることができると共に、光ビームの切換えを安定して行うことができる。
【0090】
そして、上記構成を採用することにより、可動電極15,17および固定電極18,19,22,23等の電極構造を大型化することなく、全体を小型化することができ、光スイッチ装置としての信頼性を確実に向上できる。
【0091】
また、可動体12、可動支持梁14,16(可動電極15,17)および固定電極18,19,22,23等を、単結晶または多結晶のシリコン材料を用いて形成している。
【0092】
このため、このシリコン材料にマイクロマシニング技術によるエッチング処理等を施すことによって、可動体12、可動支持梁14,16(可動電極15,17)および固定電極18,19,22,23等をそれぞれ微細に加工して成形でき、当該光スイッチ装置を数ミリ程度の大きさをもって小型の装置として形成することができる。
【0093】
次に、図4は本発明の第2の実施の形態を示し、本実施の形態の特徴は、可動体の左,右両側に延びる可動支持梁を予め湾曲させて形成すると共に、該可動支持梁を前,後方向両側から挟んで対向する一対の固定電極も、可動支持梁に対応して互いに逆向きに反るように湾曲させて形成する構成としたことにある。
【0094】
なお、本実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
【0095】
図中、31,31は可動体12の左,右両側に設けられた第1の可動支持梁を示し、該各可動支持梁31は、第1の実施の形態で述べた可動支持梁14とほぼ同様に構成され、連結部31Aおよび固定部31Bを有している。そして、第1の可動支持梁31は、連結部31Aと固定部31Bとの間に位置しほぼ直線状に延びる主要部分が第1の可動電極32を構成している。
【0096】
しかし、この場合の可動支持梁31は、可動体12と垂直に交わる基準線E−Eに対し予め斜めに湾曲して形成されている。これにより可動電極32は、後述する固定電極35,36との対向面積が斜めに湾曲した分だけ拡大され、これに応じて静電引力を大きくできるものである。
【0097】
33,33は可動体12の左,右両側に設けられた第2の可動支持梁で、該第2の可動支持梁33は、第1の可動支持梁31とほぼ同様に斜めに湾曲して形成され、連結部33Aと固定部33Bとを有している。そして、第2の可動支持梁33は、連結部33Aと固定部33Bとの間に位置しほぼ直線状に延びる主要部分が第2の可動電極34を構成している。
【0098】
しかし、これらの第2の可動支持梁33,33は、可動体12の長さ方向(前,後方向)で第1の可動支持梁31,31から離れた位置に配設されている。そして、これらの第2の可動支持梁33,33は、前,後方向に離れた第1の可動支持梁31,31と共に可動体12を左,右両側から合計4点で変位可能に支持しているものである。
【0099】
35,36は第1の可動電極32と対向電極を構成する第1の固定電極で、該第1の固定電極35,36は、第1の実施の形態で述べた固定電極18,19とほぼ同様に構成され、可動体12の変位方向である矢示A,B方向(前,後方向)の両側から可動支持梁31(可動電極32)を挟むように互いに対向配置されている。
【0100】
しかし、これらの固定電極35,36は、基準線E−Eを中心にして互いに逆向きに反返るように斜めに湾曲して形成され、その曲率は可動支持梁32の曲率にほぼ対応している。そして、固定電極35,36間の電極間距離は、可動体12に近い方の一方の端部35A,36A側で最大となり、可動体12から離れた他方の端部35B,36B側で最小となっているものである。
【0101】
37,37,…は基板11上に設けられた変位規制部としてのストッパで、これらのストッパ37は、固定電極35に近接した位置に配置され、可動支持梁31の揺動を規制するものである。そして、ストッパ37は、図4に示す如く可動支持梁31に当接することにより、可動電極32が固定電極35に接触して電気的に短絡(ショート)するのを防ぐものである。
【0102】
38,38,…は基板11上に設けられた他の変位規制部としてのストッパで、これらのストッパ38は、固定電極36に近接した位置に配置され、可動支持梁31の揺動を規制することにより、可動電極32が固定電極36に接触して電気的に短絡(ショート)するのを防ぐものである。
【0103】
39,40は第2の可動電極34と対向電極を構成する第2の固定電極で、該第2の固定電極39,40は、前述した第1の固定電極35,36とほぼ同様に構成され、可動体12の変位方向である矢示A,B方向(前,後方向)の両側から可動支持梁33(可動電極34)を挟むように互いに対向して基板11上に設けられている。
【0104】
そして、これらの固定電極39,40は、前述した第1の固定電極35,36と同様に可動支持梁31(可動支持梁33)にほぼ対応する曲率でそれぞれ逆向きに斜めに湾曲して形成され、固定電極39,40間の電極間距離は、可動体12に近い方の一方の端部39A,40A側で最大となり、可動体12から離れた他方の端部39B,40B側で最小となっている。
【0105】
41,41,…は基板11上に設けられた変位規制部としてのストッパで、これらのストッパ41は、固定電極39に近接した位置に配置され、可動支持梁33の揺動を規制するものである。そして、ストッパ41は、図4に示す如く可動支持梁33に当接することにより、可動電極34が固定電極39に接触して電気的に短絡(ショート)するのを防ぐものである。
【0106】
42,42,…は基板11上に設けられた他の変位規制部としてのストッパで、これらのストッパ42は、固定電極40に近接した位置に配置され、可動支持梁33の揺動を規制することにより、可動電極34が固定電極40に接触して電気的に短絡(ショート)するのを防ぐものである。
【0107】
かくして、このように構成される本実施の形態でも、前述した第1の実施の形態とほぼ同様の作用効果を得ることができる。
【0108】
しかし、本実施の形態では、第1,第2の可動支持梁31,33を予め斜めに湾曲させて形成すると共に、これに対向する第1,第2の固定電極35,36,39,40についても、可動支持梁31,33にほぼ対応して斜めに湾曲させる構成としている。
【0109】
このため、図4に示す初期状態(可動体12の後退位置)から可動支持梁31,33の可動電極32,34と固定電極36,40との間に電圧を印加したときに、例えば第1の可動電極32と固定電極36との間では、両者の間隔が最も狭い固定電極36の端部36B側と可動電極32との間に、より大きな静電引力を発生することができ、第1の可動支持梁31が固定電極36の端部36B側に固定部31Bを中心として矢示A方向に揺動される初期変位の静電引力を確実に増大できる。
【0110】
また、例えば第2の可動電極34と固定電極40との間でも、両者の間隔が最も狭い固定電極40の端部40B側と可動電極34との間に、より大きな静電引力を発生することができ、第2の可動支持梁33が固定電極40の端部40B側に固定部33Bを中心として矢示A方向に揺動される初期変位の静電引力を確実に増大できる。
【0111】
従って、本実施の形態では、第1,第2の可動支持梁31,33および固定電極35,36,39,40を斜めに湾曲させた形状に形成することにより、初期変位に対する静電引力を効果的に増大でき、可動体12の変位量を確実に大きくすることができる。
【0112】
次に、図5は本発明の第3の実施の形態を示し、本実施の形態の特徴は、可動支持梁の連結部を、可動体の左,右両側から略コ字状をなして突出する形状に形成したことにある。
【0113】
なお、本実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
【0114】
図中、51,51は可動体12の左,右両側に設けられた第1の可動支持梁を示し、該各可動支持梁51は、第1の実施の形態で述べた可動支持梁14とほぼ同様に構成され、連結部51Aおよび固定部51Bを有している。そして、第1の可動支持梁51は、連結部51Aと固定部51Bとの間に位置しほぼ直線状に延びる主要部分が第1の可動電極52を構成している。
【0115】
しかし、この場合の可動支持梁51は、可動体12に対する連結部51Aが可動体12の左,右両側から、略コ字状または略U字状をなして外向きに突出する形状に形成されている点で異なるものである。
【0116】
そして、可動支持梁51の連結部51Aは、可動支持梁51が一対の固定電極18,19間で矢示A方向または矢示B方向に揺動するときに、揺動方向の中間位置(例えば、基準線E−Eに対応した位置)で弾性的に最も大きく撓み変形し、可動支持梁51が固定電極18,19とほぼ正対する位置まで揺動したときには、連結部51Aの撓み量(弾性変形量)が小さくなるものである。
【0117】
53,53は可動体12の左,右両側に設けられた第2の可動支持梁で、該第2の可動支持梁53は、第1の可動支持梁51とほぼ同様に構成され、連結部53Aと固定部53Bとを有している。そして、第2の可動支持梁53は、連結部53Aと固定部53Bとの間に位置しほぼ直線状に延びる主要部分が第2の可動電極54を構成している。
【0118】
そして、この場合でも、可動支持梁53の連結部53Aが、可動体12の左,右両側から略コ字状または略U字状をなして外向きに突出する形状に形成され、これらの連結部53Aは、可動支持梁53の揺動に応じて弾性的に撓み変形するものである。
【0119】
かくして、このように構成される本実施の形態でも、前述した第1の実施の形態とほぼ同様の作用効果を得ることができ、小電力化、省エネルギ化を図ることができる。
【0120】
なお、前記第2の実施の形態で用いた可動支持梁31,33についても、第3の実施の形態で述べた図5に示す可動支持梁51,53の連結部51A,53Aとほぼ同様に、可動体12の左,右両側から略コ字状または略U字状をなして外向きに突出する形状の連結部を採用してもよい。
【0121】
また、前記第1の実施の形態では、基板11上に設けた変位規制部としての各ストッパ20,21,24,25により可動支持梁14,16の揺動範囲を規制し、可動電極15,17と固定電極18,19,22,23との電気的な短絡を防止するものとして説明した。
【0122】
しかし、本発明はこれに限るものではなく、例えば可動電極15,17と固定電極18,19,22,23との対向面のうちいずれか一方の面側に部分的に絶縁被膜を形成し、これらの絶縁被膜により可動電極15,17と固定電極18,19,22,23との電気的な短絡を防止する構成としてもよく、これによってストッパ20,21,24,25を廃止してもよいものである。そして、この点は第2,第3の実施の形態についても同様である。
【0123】
さらに、前記各実施の形態においては、可動体12の一端側にミラー部13を形成し、発光部7A,7Bと受光部7C,7Dとの間で光ビームの進路をミラー部13により反射させて切換える場合を例に挙げて説明した。
【0124】
しかし、本発明はこれに限るものではなく、例えばミラー部13の位置に遮光板等のシャッタを光切換部として設け、光の光路をON,OFFさせる光シャッタ等のスイッチ装置に適用してもよいものである。
【0125】
【発明の効果】
以上詳述した通り、請求項1に記載の発明によれば、光の進路に対して前進,後退することにより光の切換動作を行う可動体と、該可動体を変位可能に支持する可動支持梁により構成され該可動体に対して左,右方向に延びる可動電極と、前記可動体の変位方向の両側から該可動電極を挟んで互いに対向して設けられ該可動電極との間に発生する静電力で該可動電極を駆動する一対の固定電極とを備え、該一対の固定電極は前記可動電極を挟んだ電極間距離が前記可動体から離れるに従って漸次小さくなるように構成しているので、固定電極と可動電極との間には電圧印加時に、まず可動体から離れた方の端部に大きな静電力を発生でき、この静電力により可動電極を固定電極に近付けるように駆動しつつ、両者の対向面積を漸次増大させ、可動体に近い方の端部側でも可動電極を固定電極に近付けるように駆動できる。
【0126】
従って、可動体の変位量を確実に大きくすることができ、該可動体を光の進路に対し十分な変位量をもって前,後方向へと進退させることができる。また、可動電極と固定電極との間に印加する電圧を低い電圧に設定でき、全体を小型化できると共に、光の切換動作を安定させ信頼性を向上することができる。
【0127】
また、請求項2に記載の発明は、可動電極を構成する可動支持梁を、一対の固定電極のうちいずれか一方の固定電極に沿って斜めに傾いて伸長するように形成する構成としているので、可動電極を構成する可動支持梁には一対の固定電極間で斜めに揺動するような駆動力(静電力)を与えることができ、可動支持梁を揺動方向の一側と他側とに選択的に保持しつつ、可動体を光の進路に対する前進位置と後退位置との2位置で安定して保持することができる。これにより、電圧印加を停止(解除)したときにも、可動体を前進位置と後退位置とのいずれか一方の位置に選択的に位置保持することができる。
【0128】
また、請求項3に記載の発明によると、可動電極を構成する可動支持梁は、可動体に連結される一方の端部を弾性変形可能な連結部とし、前記可動体から離れた他方の端部を固定端とする構成としているから、可動支持梁が一対の固定電極間で斜めに揺動するときに、可動支持梁の連結部は、揺動方向の中間位置で弾性変形が最大となり、この弾性変形量が揺動方向の一側と他側とで小さくなるように形成することによって、可動支持梁を揺動方向の一側と他側とに選択的に位置保持することができ、可動支持梁(可動体)に2つの安定位置を与えることができる。
【0129】
さらに、請求項4に記載の発明によると、可動支持梁は可動体を基板の表面から離間した状態に連結部を介して保持し、前記可動支持梁の固定端は前記基板上に固定して設ける構成としているので、可動体を可動支持梁を介して基板上に変位可能に配置することができ、可動体を基板の表面に沿ってほぼ平行に変位させつつ、この可動体を光の進路に対し十分な変位量をもって進退させるように駆動することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による光スイッチ装置を示す平面図である。
【図2】第1の可動支持梁と可動体等とを図1中の矢示II−II方向からみた断面図である。
【図3】可動体を前進位置に変位させた状態を示す図1とほぼ同様の平面図である。
【図4】第2の実施の形態による光スイッチ装置を示す平面図である。
【図5】第3の実施の形態による光スイッチ装置を示す平面図である。
【図6】従来技術による光スイッチ装置を示す平面図である。
【図7】図6中の光学装置等を拡大して示す平面図である。
【図8】ミラー部により光ビームの進路を切換えた状態を示す図7と同様の平面図である。
【符号の説明】
7 光学装置
7A,7B 発光部
7C,7D 受光部
11 基板
12 可動体
13 ミラー部(光切換部)
14,31,51 第1の可動支持梁
14A,16A,31A,33A,51A,53A 連結部
14B,16B,31B,33B,51B,53B 固定部(固定端)
15,32,52 第1の可動電極
16,33,53 第2の可動支持梁
17,34,54 第2の可動電極
18,19,35,36 第1の固定電極
20,21,24,25,37,38,41,42 ストッパ
22,23,39,40 第2の固定電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical switch device configured to switch a light path using, for example, a mirror or the like, and particularly to an optical switch device configured to perform a light switching operation using an electrostatic force between electrodes.
[0002]
[Prior art]
2. Description of the Related Art In general, there is known an optical switch device having a configuration in which various minute electrostatic actuators are formed on a substrate by using a micromachining technology, and a path of light is switched by the electrostatic actuator.
[0003]
Therefore, this type of conventional optical switch device will be described with reference to FIGS.
[0004]
In the figure, reference numeral 1 denotes a substrate serving as a base of the optical switch device, and the substrate 1 is formed in a square shape with a size of about several millimeters by, for example, a glass material. The substrate 1 has a flat surface, and a movable body 2 described later is advanced and retracted in the directions of arrows A and B along the surface of the substrate 1.
[0005]
Reference numeral 2 denotes a movable body provided on the substrate 1. The movable body 2 is formed as an elongated rod-like body extending in the forward and backward directions (the directions of arrows A and B shown in FIG. 6) along the surface of the substrate 1. Have been. At one end of the movable body 2, there is provided a mirror section 3 as a light switching section for switching an optical device 7, which will be described later. The surface of the mirror section 3 is formed by plating a metal film, vapor deposition, sputtering or the like. The film is formed using a means and is mirror-finished.
[0006]
Reference numeral 4 denotes a support beam provided at the other end of the movable body 2 so as to be elastically deformable. The support beam 4 serves as fixed portions 4A, 4A whose both ends in the length direction are fixed on the substrate 1, and The other end of the movable body 2 is integrally formed at the middle part in the length direction. The support beam 4 supports the movable body 2 in a cantilever state with respect to the substrate 1 and allows the movable body 2 to be displaced in the directions of arrows A and B.
[0007]
Here, the movable body 2 (including the mirror section 3) and the support beam 4 are etched together with a movable electrode 5 and a fixed electrode 6, which will be described later, using, for example, a single-crystal or polycrystalline silicon material (micromachining technology) or the like. And these constitute an electrostatic actuator that generates an electrostatic attraction between the movable electrode 5 and the fixed electrode 6.
[0008]
Reference numerals 5 and 5 denote movable electrodes integrally formed on the left and right sides intersecting the front and rear directions of the movable body 2, and reference numerals 6 and 6 denote fixed electrodes opposed to the respective movable electrodes 5. 5. The fixed electrode 6 is composed of a comb-shaped electrode, and when a voltage is applied, an electrostatic attraction is generated between the two.
[0009]
Then, the movable body 2 elastically bends and deforms the support beam 4 by an electrostatic attraction generated between the movable electrode 5 and the fixed electrode 6, and is driven in a direction indicated by an arrow A (forward direction). The movable body 2 is displaced in the direction of arrow B (retreating direction) by the elastic restoring force of the support beam 4 when the voltage application (energization) to the movable electrode 5 and the fixed electrode 6 is released.
[0010]
Reference numeral 7 denotes an optical device provided on the substrate 1. The optical device 7 includes light emitting units 7A and 7B and light receiving units 7C and 7D. These light emitting units 7A and 7B and light receiving units 7C and 7D are respectively provided. An optical fiber (not shown) and the like are connected. The light emitting unit 7A emits a light beam in the direction of arrow C toward the light receiving unit 7C, and the light emitting unit 7B emits a light beam in the direction of arrow D toward the light receiving unit 7D.
[0011]
In this case, the light emitting units 7A and 7B and the light receiving units 7C and 7D are arranged in a direction where the light beams in the directions indicated by arrows C and D intersect at an angle of about 90 degrees. When the movable body 2 is at the position shown in FIGS. 6 and 7, the mirror unit 3 stays at the position where the mirror unit 3 is retracted with respect to the light beams emitted from the light emitting units 7A and 7B. The light beam is received by the light receiving units 7C and 7D.
[0012]
On the other hand, when the movable body 2 is displaced in the direction of arrow A and the mirror section 3 advances to the position shown in FIG. 8, the light beams emitted from the light emitting sections 7A and 7B are reflected by the mirror section 3. As a result, the light beam emitted from the light emitting unit 7A switches its light path from the arrow C direction to the arrow D 'direction, and is received by the light receiving unit 7D.
[0013]
The light beam emitted from the light emitting unit 7B is reflected by the mirror unit 3, whereby the light path is switched from the direction of arrow D to the direction of arrow C ', and is received by the light receiving unit 7C. is there.
[0014]
The optical switch device according to the related art has the above-described configuration. Next, the switching operation will be described.
[0015]
First, until a voltage is applied between the movable electrode 5 and the fixed electrode 6, the movable body 2 is at the retracted position shown in FIG. Stays in the position retracted in the direction.
[0016]
The light beams in the directions indicated by arrows C and D emitted from the light emitting units 7A and 7B are received by the light receiving units 7C and 7D. At this time, optical communication and the like are performed between the light emitting units 7A and 7C. Optical communication is performed between the light emitting unit 7B and the light receiving unit 7D.
[0017]
Next, when a voltage of, for example, several tens of volts is applied between the movable electrode 5 and the fixed electrode 6, an electrostatic attraction is generated between the movable electrode 5 and the fixed electrode 6, and the electrostatic attraction is generated by the electrostatic attraction. 5 is attracted to the fixed electrode 6 side, and the movable body 2 is driven in the arrow A direction while elastically bending and deforming the support beam 4.
[0018]
When the movable body 2 is displaced in the arrow A direction and the mirror section 3 advances to the forward position in the arrow A direction shown in FIG. 8, the light beam from the light emitting section 7A is reflected by the mirror section 3. The path of the light beam at this time is switched in the direction of arrow D ', and optical communication and the like are performed between the light emitting unit 7A and the light receiving unit 7D. The light beam from the light emitting section 7B is reflected by the mirror section 3, whereby the course is switched in the direction of arrow C ', and optical communication or the like is performed between the light emitting section 7B and the light receiving section 7C.
[0019]
Next, when the voltage application (energization) between the electrodes 5 and 6 is released in this state, the above-mentioned electrostatic attraction becomes invalid, and the movable body 2 is displaced in the direction of arrow B by the elastic restoring force of the support beam 4. As a result, the movable body 2 returns to the retracted position shown in FIG. 6, and the mirror unit 3 returns to the position retracted in the direction indicated by the arrow B from the light beams in the directions indicated by the arrows C and D. Optical communication and the like are performed again between the light emitting unit 7C and the light emitting unit 7B and the light receiving unit 7D.
[0020]
[Problems to be solved by the invention]
By the way, in the above-described conventional technology, the mirror unit 3 is set to be larger than the light beam diameter in order to stably perform the light beam switching operation (switching operation) between the light emitting units 7A and 7B and the light receiving units 7C and 7D. A large displacement (for example, about 50 to 100 μm in the direction of arrow A) is required.
[0021]
For this purpose, it is necessary to form the distance L between the movable electrode 5 and the fixed electrode 6 shown in FIG. However, in this state, in order to displace the movable body 2 in the directions indicated by arrows A and B, for example, by about 50 μm, the voltage applied between the movable electrode 5 and the fixed electrode 6 must be increased to, for example, several tens of volts. No.
[0022]
For this reason, in the prior art, for example, a power supply voltage of about 10 volts is boosted to several tens of volts by using a booster circuit or the like. Adding a booster circuit or the like complicates the circuit configuration and increases the manufacturing cost. In addition, there is a problem that it is difficult to make the entire device small and compact.
[0023]
Further, in order to reduce the applied voltage, measures such as increasing the number of comb electrodes between the movable electrode 5 and the fixed electrode 6 are considered. However, in order to increase the number of comb electrodes between the movable electrode 5 and the fixed electrode 6, the movable electrode 5 and the fixed electrode 6 must be formed with even larger dimensions. Therefore, there is a problem that the size of the entire apparatus increases.
[0024]
On the other hand, for example, in US Pat. No. 6,303,885 or the like, a beam that supports a movable body so as to be displaceable is constituted by a buckling made of an elastic body, and the movable body is displaced by an electrostatic force between electrodes to reduce the electrostatic force. A small switch device having two stable positions has been proposed in which this displacement state can be maintained by the elastic force of the buckling even after the release.
[0025]
However, in this switch device, a large electrostatic force is required to displace the buckling between the two stable positions, and a high applied voltage is required. In addition to the increase in cost, there is a problem that it is difficult to reduce the size of the entire device and make it compact.
[0026]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the related art, and an object of the present invention is to set a voltage applied to a movable electrode and a fixed electrode to a low voltage, reduce the size of the whole, and perform a light switching operation. It is an object of the present invention to provide an optical switch device which can stabilize the temperature and improve the reliability.
[0027]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, an optical switch device according to the first aspect of the present invention includes a movable body that performs a light switching operation by moving forward and backward with respect to a light path, and moving the movable body forward and backward. And a movable electrode extending in the left and right directions intersecting the direction of displacement of the movable body, and the movable electrode extending from both sides in the direction of displacement of the movable body. And a pair of fixed electrodes that are displaced in the forward and backward directions by driving the movable electrode with an electrostatic force generated between the movable electrode and the movable electrode. The pair of fixed electrodes has a configuration in which the distance between the electrodes sandwiching the movable electrode is largest at a position near the movable body, and is gradually reduced as the distance from the movable body increases.
[0028]
With this configuration, when a voltage is applied between one of the pair of fixed electrodes and the movable electrode, an electrostatic force is generated between these electrodes to drive the movable electrode. Thus, the movable body can be displaced in the backward and forward directions before the movable body advances and retreats with respect to the path of light, thereby performing the light switching operation. In addition, the pair of fixed electrodes has an arrangement in which the distance between the electrodes sandwiching the movable electrode is large at the end closer to the movable body and gradually decreases as the distance from the movable body increases, so that the distance between the fixed electrode and the movable electrode is small. First, a large electrostatic force can be generated at the end remote from the movable body, and the movable electrode can be driven to approach the fixed electrode by this electrostatic force. This allows the movable electrode to be driven closer to the fixed electrode even on the end side closer to the movable body, so that the amount of displacement of the movable body can be increased even with a low applied voltage, and the movable body can be moved along the light path. On the other hand, it can be advanced and retracted with a sufficient displacement amount.
[0029]
According to the second aspect of the present invention, the movable support beam constituting the movable electrode is configured to extend obliquely along one of the pair of fixed electrodes.
[0030]
This makes it possible to apply a driving force (electrostatic force) such that the movable support beam that constitutes the movable electrode swings obliquely between the pair of fixed electrodes, and moves the movable support beam to one side in the swing direction. The movable body can be stably held at two positions, that is, a forward position and a backward position with respect to the light path, while selectively holding the movable member on the side.
[0031]
According to the third aspect of the present invention, the movable support beam forming the movable electrode has one end connected to the movable body as an elastically deformable connection part, and the other end separated from the movable body as the other end. It is configured to be a fixed end.
[0032]
In this case, when the movable support beam swings obliquely between the pair of fixed electrodes, the elastic deformation of the connecting portion of the movable support beam becomes maximum at the intermediate position in the swing direction, and the amount of elastic deformation is changed. The movable support beam can be selectively held on one side and the other side in the swing direction by being formed to be smaller on one side and the other side in the moving direction, and the movable support beam (movable body) Can be given two stable positions.
[0033]
Further, according to the invention of claim 4, the movable supporting beam holds the movable body via the connecting portion in a state of being separated from the surface of the substrate, and the fixed end of the movable supporting beam is fixedly provided on the substrate. And
[0034]
Thus, the movable body can be displaceably disposed on the substrate via the movable support beam, and the movable body is displaced substantially parallel to the surface of the substrate while sufficiently moving the movable body with respect to the light path. It can be driven to move forward and backward with a large displacement amount. The movable body, the movable support beam (movable electrode), and the pair of fixed electrodes can be easily processed by, for example, etching a silicon material, and can be formed into an arbitrary shape.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an optical switch device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In the present embodiment, the same components as those of the above-described related art are denoted by the same reference numerals, and description thereof will be omitted.
[0036]
Here, FIGS. 1 to 3 show a first embodiment of the present invention. In the figure, reference numeral 11 denotes a substrate serving as a base of the optical switch device. The substrate 11 is configured in substantially the same manner as the substrate 1 described in the related art, and is formed into a square shape of about several millimeters using a glass material or the like. Is formed.
[0037]
Reference numeral 12 denotes a movable body provided on the substrate 11, and the movable body 12 is formed as an elongated rod-like body extending in the forward and backward directions (the directions of arrows A and B shown in FIG. 1) along the surface of the substrate 11. A mirror 13 is provided at one end of the mirror 13 so as to move forward and backward with respect to the light path, similarly to the mirror 3 described in the related art.
[0038]
However, the movable body 12 in this case is displaceably supported at, for example, four points by using a plurality of movable support beams 14 and 16 described later, so that the other end opposite to the mirror unit 13 is a free end. It is formed. The movable body 12 may be displaceably supported at, for example, six or more points by increasing the number of movable support beams 14 and 16 described later, thereby increasing electrostatic attraction described later.
[0039]
The movable body 12 (including the mirror portion 13) and the movable support beams 14, 16 and the like, together with fixed electrodes 18, 19, 22, 23, which will be described later, are micro-machined using, for example, a single crystal or polycrystalline silicon material. It is formed by performing an etching process or the like by a technique.
[0040]
Reference numerals 14 and 14 denote first movable support beams provided on both the left and right sides of the movable body 12, respectively. The movable support beams 14 are moved before and after the movable body 12 is displaced (directions indicated by arrows A and B). For example, a pair of fixed electrodes 18 and 19 to be described later are formed to extend obliquely obliquely along the fixed electrode 18 in a left and right direction intersecting with the movable body 12 as shown in FIG. Are inclined obliquely by a tilt angle θ with respect to a reference line EE extending leftward and rightward.
[0041]
Here, one end of the movable support beam 14 is a connecting portion 14A formed by bending in, for example, a substantially U-shape or a U-shape, and the connecting portion 14A is moved from the mirror portion 13 in the direction of arrow B. The movable support beam 14 is integrally connected to the movable body 12 at a position separated by a predetermined dimension.
[0042]
The connecting portion 14A is easily elastically deformed by an external force such as an electrostatic attraction generated between the movable electrode 15 and the fixed electrodes 18 and 19, which will be described later. Before and after the reference line EE, it is possible to swing with a swing angle (2 × θ) corresponding to, for example, twice the tilt angle θ.
[0043]
The other end of the movable support beam 14 (the end separated from the movable body 12) is a fixed portion 14B as a fixed end fixedly provided on the substrate 11. The left and right movable support beams 14, 14 move the movable body 12 left and right while floating the movable body 12 on the substrate 11 with a gap S (for example, about several μm) as shown in FIG. It is supported so as to be displaceable in the directions of arrows A and B from both right sides.
[0044]
When the movable support beam 14 swings forward and backward (for example, in directions indicated by arrows A and B) around the fixed portion 14B as described later, one side of the swing direction (the position shown in FIG. 1). On the other side of the swinging direction (the position shown in FIG. 3), the amount of elastic deformation of the connecting portion 14A becomes smallest, and at an intermediate position in the swinging direction (for example, a position corresponding to the reference line EE), the connecting portion 14A is formed. Is almost maximum.
[0045]
For this reason, the movable support beam 14 does not stay at an intermediate position in the swinging direction in which the connecting portion 14A is largely elastically deformed, and one side and the other side in the swinging direction in which the amount of elastic deformation of the connecting portion 14A is substantially minimized. The position is selectively held by either one of the above. Thus, the movable support beam 14 is provided with two stable holding positions corresponding to the forward position and the retracted position of the movable body 12.
[0046]
Reference numerals 15, 15 denote first movable electrodes formed on the movable support beams 14, respectively. Each of the movable electrodes 15 is located between, for example, the connecting portion 14 </ b> A and the fixed portion 14 </ b> B of the movable support beam 14. It is constituted by a main portion of a movable support beam 14 extending linearly. The movable electrode 15 forms a counter electrode with fixed electrodes 18 and 19 described later, and generates an electrostatic force corresponding to a facing area as described later.
[0047]
Reference numerals 16 and 16 denote second movable support beams provided on both the left and right sides of the movable body 12, and the second movable support beam 16 is configured substantially in the same manner as the first movable support beam 14, and includes a connecting portion. 16A and a fixing portion 16B. However, these second movable support beams 16, 16 are arranged at positions separated from the first movable support beams 14, 14 in the length direction (front and rear directions) of the movable body 12.
[0048]
The second movable support beams 16, 16 support the movable body 12 together with the first movable support beams 14, 14 separated in the front and rear directions so as to be displaceable at a total of four points from both the left and right sides. The movable body 12 extending in a bar shape along the surface of the substrate 11 compensates for the stable displacement in the directions indicated by arrows A and B.
[0049]
Reference numerals 17, 17 denote second movable electrodes formed on the movable support beams 16, respectively. Each of the movable electrodes 17 is located, for example, between the connecting portion 16 </ b> A and the fixed portion 16 </ b> B of the movable support beam 16. It is constituted by a main part of a movable support beam 16 extending linearly. The movable electrode 17 forms a counter electrode with fixed electrodes 22 and 23 described later, and generates an electrostatic force corresponding to a facing area as described later.
[0050]
Reference numerals 18 and 19 denote first fixed electrodes constituting a first movable electrode 15 and a counter electrode. The first fixed electrodes 18 and 19 are provided on the substrate 11 as shown in FIGS. The movable support beams 14 (movable electrodes 15) are opposed to each other so as to sandwich the movable support beam 14 (movable electrode 15) from both sides in directions indicated by arrows A and B (front and rear directions) which are the displacement directions of the body 12.
[0051]
The fixed electrodes 18 and 19 are disposed obliquely with respect to the reference line EE by an angle substantially corresponding to the tilt angle θ of the movable support beam 14, and the fixed electrodes 18 and 19 are disposed between the fixed electrodes 18 and 19. Is maximum on one end 18A, 19A side closer to the movable body 12, and is minimum on the other end 18B, 19B side remote from the movable body 12.
[0052]
That is, the fixed electrodes 18 and 19 are formed in a substantially “C” shape that is substantially symmetric with respect to the reference line EE shown in FIG. Are arranged so that the distance between the electrodes gradually decreases as the distance from the movable body 12 to the left and right increases.
[0053]
In addition, the fixed electrode 18 is formed as a parallel plate type electrode together with the movable electrode 15 in the state shown in FIG. 1, and the distance between the movable electrode 15 and the fixed electrode 18 is, for example, about 0.5 to 10 μm. Are set via a stopper 20 described later. Note that the movable electrode 15 and the fixed electrodes 18 and 19 are not limited to the parallel plate type electrode structure, but may be formed as a comb-shaped electrode like the movable electrode 5 and the fixed electrode 6 described in the related art. It may be.
[0054]
Here, when a voltage of, for example, 10 volts or less is externally applied to the movable electrode 15 and the fixed electrodes 18 and 19, an electrostatic attraction is generated between the two. When a voltage is applied between the electrodes 15 and 19, a large electrostatic attraction is generated between the movable electrode 15 and the end 19 </ b> B of the fixed electrode 19 having the narrowest distance between them.
[0055]
Thereby, the movable support beam 14 is swung in the direction of arrow A about the fixed portion 14B so as to be attracted to the end portion 19B side of the fixed electrode 19. The movable electrode 15 gradually increases the area of the movable electrode 15 facing the fixed electrode 19 in response to the swing, so that the electrostatic attraction between the electrodes 15 and 19 gradually increases. As a result, the movable support beam 14 is swung (driven) in the direction indicated by the arrow A to a position substantially facing the fixed electrode 19 as shown in FIG.
[0056]
As described above, when the movable support beam 14 swings between the pair of fixed electrodes 18 and 19 in the direction indicated by the arrow A, the connecting portion 14A of the movable support beam 14 is moved to an intermediate position in the swing direction (for example, the reference line E− (Position corresponding to E), when the movable support beam 14 swings to a position almost directly facing the fixed electrode 19 as shown in FIG. ) Becomes smaller.
[0057]
Therefore, even if the voltage application (energization) between the movable electrode 15 and the fixed electrode 19 is released at the swing position of the movable support beam 14 shown in FIG. 3, the movable support beam 14 returns in the direction of arrow B. It does not generate a large elastic restoring force and is held in a stable state at the position shown in FIG.
[0058]
When a voltage is applied between the movable electrode 15 and the fixed electrode 18 in the state shown in FIG. 3, the distance between the movable electrode 15 and the fixed electrode 18 is large between the end 18 B side of the fixed electrode 18 and the movable electrode 15. An electrostatic attraction is generated, and the movable support beam 14 is swung in the direction of arrow B about the fixed portion 14B so as to be attracted to the end 18B side of the fixed electrode 18.
[0059]
In this case as well, since the area of the movable electrode 15 facing the fixed electrode 18 is gradually increased in accordance with the swing, the electrostatic attraction between the electrodes 15 and 18 is gradually increased. The beam 14 is swung (driven) in a direction indicated by an arrow B to a position substantially opposite to the fixed electrode 18 as shown in FIG.
[0060]
The connecting portion 14A of the movable support beam 14 has the least amount of elastic deformation between one side in the swinging direction (for example, the position shown in FIG. 1) and the other side in the swinging direction (for example, the position shown in FIG. 3). Since the movable support beam 14 is small, the movable support beam 14 can be selectively held on one side and the other side in the swinging direction, and two stable holding positions can be given to the movable support beam 14 (the movable body 12). Things.
[0061]
Are stoppers provided on the substrate 11 as displacement control portions. These stoppers 20 are arranged at positions close to the fixed electrode 18 as shown in FIG. The movement is regulated. The stopper 20 contacts the movable support beam 14 as shown in FIG. 1 to prevent the movable electrode 15 from contacting the fixed electrode 18 and causing an electrical short circuit.
[0062]
Are stoppers provided on the substrate 11 as other displacement restricting portions. These stoppers 21 are arranged at positions close to the fixed electrode 19 as shown in FIG. The swing is regulated. The stopper 21 contacts the movable support beam 14 as shown in FIG. 3 to prevent the movable electrode 15 from contacting the fixed electrode 19 and electrically short-circuiting.
[0063]
Reference numerals 22 and 23 denote second fixed electrodes constituting a second movable electrode 17 and a counter electrode. The second fixed electrodes 22 and 23 have substantially the same configuration as the first fixed electrodes 18 and 19 described above. The movable support 12 is provided on the substrate 11 so as to oppose each other so as to sandwich the movable support beam 16 (movable electrode 17) from both sides in the directions indicated by arrows A and B (forward and backward), which are the directions of displacement of the movable body 12.
[0064]
These fixed electrodes 22 and 23 are inclined obliquely by an angle substantially corresponding to the inclination angle θ of the movable support beam 14 (movable support beam 16), similarly to the first fixed electrodes 18 and 19 described above. The distance between the fixed electrodes 22 and 23 between the fixed electrodes 22 and 23 is maximized at one end 22A or 23A closer to the movable body 12, and at the other end 22B or 23B away from the movable body 12. It is the smallest.
[0065]
In this case, the fixed electrode 22 is formed as a parallel plate type electrode together with the movable electrode 17 in the state shown in FIG. 1, and the distance between the movable electrode 17 and the fixed electrode 22 is, for example, about 0.5 to 10 μm. This is set via a stopper 24 described later. Note that the movable electrode 17 and the fixed electrodes 22 and 23 are not limited to the parallel plate type electrode structure, but are formed as comb-shaped electrodes like the movable electrode 5 and the fixed electrode 6 described in the related art. It may be.
[0066]
Also, with respect to the movable support beam 16 disposed between the fixed electrodes 22 and 23, the elastic deformation amount of the connecting portion 16A is one side in the swing direction (for example, the position shown in FIG. 1) and the other side in the swing direction. (For example, the position shown in FIG. 3), the movable support beam 16 can be selectively held on one side and the other side in the swinging direction, and the movable support beam 16 (the movable body 12) Can be provided with two stable holding positions.
[0067]
Are stoppers provided on the substrate 11 as displacement control portions. These stoppers 24 are arranged at positions close to the fixed electrode 22 as shown in FIG. The movement is regulated. The stopper 24 abuts on the movable support beam 16 as shown in FIG. 1 to prevent the movable electrode 17 from contacting the fixed electrode 22 to be electrically short-circuited.
[0068]
Are stoppers provided on the substrate 11 as other displacement restricting portions. These stoppers 25 are arranged at positions close to the fixed electrode 23 as shown in FIG. The swing is regulated. The stopper 25 contacts the movable support beam 16 as shown in FIG. 3, thereby preventing the movable electrode 17 from contacting the fixed electrode 23 and electrically short-circuiting.
[0069]
The optical switch device according to the present embodiment has the above-described configuration. Next, the switching operation will be described.
[0070]
First, in the initial state shown in FIG. 1, by stopping (releasing) the application of all voltages, the first and second movable support beams 14 and 16 face the fixed electrodes 18 and 22 with a small gap therebetween. The movable member 12 is held at the retracted position (stroke end) in the direction indicated by the arrow B in a state where the movable member 12 stays at the stable holding position in a state of contacting the respective stoppers 20 and 24.
[0071]
When the movable body 12 is at the retracted position shown in FIG. 1, the mirror unit 13 also stays at the position retracted in the direction of arrow B, so that the arrows emitted from the light emitting units 7A and 7B as illustrated in FIG. The light beams in the C and D directions are received by the light receiving units 7C and 7D. At this time, optical communication and the like are performed between the light emitting unit 7A and the light receiving unit 7C, and the light is transmitted between the light emitting unit 7B and the light receiving unit 7D. Communication and the like are performed.
[0072]
Next, when the movable body 12 is advanced in the direction of arrow A, a voltage of, for example, 10 volts or less is applied between the movable electrodes 15, 17 of the movable support beams 14, 16 and the fixed electrodes 19, 23. Thereby, an electrostatic attraction is generated between the first movable electrode 15 and the fixed electrode 19, and the movable electrode 15 is attracted to the fixed electrode 19 side. Further, an electrostatic attraction is also generated between the second movable electrode 17 and the fixed electrode 23, and the movable electrode 17 is attracted to the fixed electrode 23 side.
[0073]
Then, between the first movable electrode 15 and the fixed electrode 19, the largest electrostatic attraction is generated between the end 19B side of the fixed electrode 19 and the movable electrode 15 where the distance between them is the smallest. As a result, the first movable support beam 14 is swung in the direction of arrow A about the fixed portion 14B so as to be attracted to the end 19B side of the fixed electrode 19, and the first movable electrode 14 is responsive to the swing. 15 is such that the area facing the fixed electrode 19 is gradually increased.
[0074]
For this reason, the electrostatic attraction gradually increases between these electrodes 15 and 19, so that the first movable support beam 14 swings in the direction of arrow A to a position almost directly facing the fixed electrode 19 as shown in FIG. It is moved (driven). When the first movable support beam 14 swings to a position where it comes into contact with the stopper 21, the amount of elastic deformation of the connecting portion 14A becomes substantially minimum.
[0075]
Also, between the second movable electrode 17 and the fixed electrode 23, the largest electrostatic attraction occurs between the movable electrode 17 and the end 23 </ b> B of the fixed electrode 23 having the narrowest distance therebetween. As a result, the second movable support beam 16 is swung in the direction of arrow A about the fixed portion 16B so as to be attracted to the end portion 23B side of the fixed electrode 23, and the second movable electrode 16 is responsive to the swing. Reference numeral 17 indicates that the area facing the fixed electrode 23 is gradually increased.
[0076]
For this reason, the electrostatic attraction gradually increases between these electrodes 17 and 23, so that the second movable support beam 16 swings in the direction of arrow A to a position almost directly facing the fixed electrode 23 as shown in FIG. It is moved (driven). Then, when the second movable support beam 16 swings to a position where it comes into contact with the stopper 25, the amount of elastic deformation of the connecting portion 16A becomes substantially minimum.
[0077]
As a result, even if the voltage application to the movable electrodes 15, 17 and the fixed electrodes 19, 23 is released at the swing position of the first and second movable support beams 14, 16 shown in FIG. The movable support beams 14 and 16 do not generate an elastic restoring force that returns in the direction of arrow B, and are stably held at the position shown in FIG.
[0078]
At this time, since the movable body 12 is held at the forward position in the direction indicated by the arrow A shown in FIG. 3, and the mirror portion 13 advances to the stroke end in the direction indicated by the arrow A, the light emitting units 7A and 7B as illustrated in FIG. Is reflected in the directions indicated by arrows D 'and C'. At this time, optical communication or the like is performed between the light emitting unit 7A and the light receiving unit 7D, and light is also transmitted between the light emitting unit 7B and the light receiving unit 7C. Communication and the like are performed.
[0079]
On the other hand, when returning the movable body 12 to the initial position (retracted position) shown in FIG. 1, a voltage is applied between the electrodes 15 and 18 on the first movable support beam 14 side, and an electrode is applied on the second movable support beam 16 side. A voltage is applied between 17 and 22.
[0080]
Then, the movable electrodes 15, 17 are swung in the direction of arrow B toward the fixed electrodes 18, 22 by electrostatic attraction generated between the electrodes 15, 18 and between the electrodes 17, 22, respectively. The movable body 12 is displaced (retracted) in the direction of arrow B in accordance with the swing of the movable support beams 14 and 16 at this time.
[0081]
As a result, the mirror unit 13 returns to the position where the mirror unit 13 is retracted in the direction of the arrow B, and as shown in FIG. 7 again, between the light emitting unit 7A and the light receiving unit 7C, and between the light emitting unit 7B and the light receiving unit 7D. Optical communication or the like can be performed.
[0082]
Thus, in the optical switch device according to the present embodiment, the first and second movable support beams 14 and 16 that are disposed separately on the left and right sides of the movable body 12 in front and behind, respectively, are previously adjusted by the tilt angle θ. The movable electrodes 15 and 17 are formed by these movable support beams 14 and 16 while being provided obliquely.
[0083]
The fixed electrodes 18, 19 (22, 23) facing each other with the movable electrode 15 (17) sandwiched from both sides in the displacement direction of the movable body 12 are located on the left and right sides of the movable body 12, Each of them is formed in a substantially “C” shape so that the distance becomes gradually smaller as the distance from the movable body 12 increases.
[0084]
Thus, for example, when a voltage is applied between the movable electrode 15 and the fixed electrodes 18 and 19, a large electrostatic force can be generated on the end portions 18B and 19B that are farther away from the movable body 12, and this electrostatic force can be used. The movable electrode 15 can be rocked (driven) so as to approach the ends 18B and 19B of the fixed electrodes 18 and 19.
[0085]
As a result, the opposing area between the movable electrode 15 and the fixed electrodes 18 and 19 can be gradually increased in accordance with the swing of the movable support beam 14, and accordingly, the distance between the movable electrode 15 and the fixed electrodes 18 and 19 can be increased. The electrostatic attraction can be gradually increased, and the movable electrode 15 can also be driven closer to the fixed electrodes 18 and 19 on the ends 18A and 19A closer to the movable body 12.
[0086]
Further, for example, between the movable electrode 17 and the fixed electrodes 22 and 23, the opposing area can be gradually increased in accordance with the swing of the movable support beam 16, and the movable electrode 17 and the fixed electrodes 22 and 23 are correspondingly increased. The electrostatic attraction between the movable electrodes 12 can be gradually increased, and the movable electrodes 15 can be driven to be closer to the fixed electrodes 18 and 19 also on the ends 22A and 23A closer to the movable body 12.
[0087]
Thus, the displacement of the movable body 12 can be increased, and the movable body 12 can be moved forward and backward in the directions of the arrows A and B with a sufficient displacement with respect to the path of light. Further, at this time, the voltage applied between the movable electrode 15 (17) and the fixed electrodes 18, 19 (22, 23) can be reduced to, for example, 10 volts or less, and as described in the related art, a high voltage is applied. Need not be applied, and the circuit configuration and the like on the power supply side can be simplified.
[0088]
When the movable body 12 is held at the forward position and the backward position, which are the stroke ends in the directions indicated by arrows A and B, all the voltages are released, and the movable electrode 15 (17) and the fixed electrodes 18, 19 ( 22 and 23), the mirror unit 13 can be held in one of the states where the mirror unit 13 is largely moved back and forth in the directions of arrows A and B. The switching operation of the light beam between the light emitting units 7A and 7B and the light receiving units 7C and 7D illustrated in FIG. 8 can be stably performed even when the power supply is stopped.
[0089]
Therefore, according to the present embodiment, the voltage applied between the movable electrode 15 (17) and the fixed electrodes 18, 19 (22, 23) can be set to a low voltage of 10 volts or less, reducing power consumption and saving. Energy can be achieved, and the light beam can be switched stably.
[0090]
By adopting the above configuration, the entire structure can be reduced without increasing the size of the electrode structure of the movable electrodes 15, 17 and the fixed electrodes 18, 19, 22, 23, etc. Reliability can be reliably improved.
[0091]
In addition, the movable body 12, the movable support beams 14, 16 (movable electrodes 15, 17), the fixed electrodes 18, 19, 22, 23, and the like are formed using a single crystal or polycrystalline silicon material.
[0092]
Therefore, the movable body 12, the movable support beams 14, 16 (movable electrodes 15, 17), the fixed electrodes 18, 19, 22, 23, and the like are finely formed by subjecting the silicon material to an etching process using a micromachining technique. The optical switch device can be formed as a small device having a size of about several millimeters.
[0093]
Next, FIG. 4 shows a second embodiment of the present invention. The feature of this embodiment is that a movable support beam extending to both the left and right sides of the movable body is formed by being curved in advance, and the movable support beam is formed. A pair of fixed electrodes opposed to each other with the beam sandwiched from both the front and rear directions are also formed to be curved so as to warp in opposite directions to correspond to the movable support beam.
[0094]
Note that, in the present embodiment, the same components as those in the above-described first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0095]
In the figure, reference numerals 31 and 31 denote first movable support beams provided on the left and right sides of the movable body 12, respectively. The movable support beams 31 are the same as the movable support beams 14 described in the first embodiment. It has substantially the same configuration, and has a connecting portion 31A and a fixing portion 31B. The main portion of the first movable support beam 31 that is located between the connecting portion 31A and the fixed portion 31B and extends substantially linearly constitutes the first movable electrode 32.
[0096]
However, the movable support beam 31 in this case is formed to be curved obliquely in advance with respect to a reference line EE that intersects perpendicularly with the movable body 12. As a result, the movable electrode 32 is enlarged by an amount corresponding to the obliquely curved area of the movable electrode 32 facing the fixed electrodes 35 and 36 described later, and the electrostatic attraction can be increased accordingly.
[0097]
Reference numerals 33, 33 denote second movable support beams provided on both the left and right sides of the movable body 12, and the second movable support beam 33 is obliquely curved in substantially the same manner as the first movable support beam 31. It has a connecting portion 33A and a fixing portion 33B. The main portion of the second movable support beam 33 that is located between the connecting portion 33A and the fixed portion 33B and extends substantially linearly constitutes the second movable electrode 34.
[0098]
However, these second movable support beams 33, 33 are arranged at positions separated from the first movable support beams 31, 31 in the length direction (front and rear directions) of the movable body 12. The second movable support beams 33, 33 support the movable body 12 together with the first movable support beams 31, 31 separated in the forward and rearward directions so as to be displaceable at a total of four points from the left and right sides. Is what it is.
[0099]
Reference numerals 35 and 36 denote first fixed electrodes constituting a first movable electrode 32 and a counter electrode. The first fixed electrodes 35 and 36 are substantially the same as the fixed electrodes 18 and 19 described in the first embodiment. The movable support beams 31 (movable electrodes 32) are arranged to face each other from both sides in directions indicated by arrows A and B (front and rear directions) which are the directions of displacement of the movable body 12.
[0100]
However, these fixed electrodes 35 and 36 are formed to be obliquely curved so as to return in opposite directions about the reference line EE, and the curvature thereof substantially corresponds to the curvature of the movable support beam 32. I have. The distance between the fixed electrodes 35 and 36 is maximum at one end 35A, 36A closer to the movable body 12 and minimum at the other end 35B, 36B away from the movable body 12. Is what it is.
[0101]
Are stoppers provided on the substrate 11 as displacement restricting portions. These stoppers 37 are arranged at positions close to the fixed electrode 35 and restrict the swing of the movable support beam 31. is there. The stopper 37 contacts the movable support beam 31 as shown in FIG. 4 to prevent the movable electrode 32 from contacting the fixed electrode 35 and thereby electrically short-circuiting.
[0102]
Are stoppers provided on the substrate 11 as other displacement restricting portions. These stoppers 38 are arranged at positions close to the fixed electrode 36, and restrict the swing of the movable support beam 31. This prevents the movable electrode 32 from contacting the fixed electrode 36 and electrically short-circuiting.
[0103]
Reference numerals 39 and 40 denote second fixed electrodes constituting the second movable electrode 34 and the counter electrode. The second fixed electrodes 39 and 40 are configured in substantially the same manner as the first fixed electrodes 35 and 36 described above. The movable support beams 33 (movable electrodes 34) are provided on the substrate 11 so as to face each other from both sides in directions indicated by arrows A and B (front and rear directions) which are displacement directions of the movable body 12.
[0104]
These fixed electrodes 39 and 40 are formed to be obliquely curved in opposite directions at curvatures substantially corresponding to the movable support beams 31 (movable support beams 33), similarly to the first fixed electrodes 35 and 36 described above. The distance between the fixed electrodes 39 and 40 is maximum at one end 39A, 40A closer to the movable body 12, and minimum at the other end 39B, 40B away from the movable body 12. Has become.
[0105]
Reference numerals 41, 41, ... denote stoppers provided on the substrate 11 as displacement restricting portions. These stoppers 41 are arranged at positions close to the fixed electrodes 39, and restrict the swing of the movable support beam 33. is there. The stopper 41 prevents the movable electrode 34 from contacting the fixed electrode 39 and electrically short-circuiting (short circuit) by abutting on the movable support beam 33 as shown in FIG.
[0106]
Are stoppers provided on the substrate 11 as other displacement restricting portions. These stoppers 42 are arranged at positions close to the fixed electrode 40, and restrict the swing of the movable support beam 33. This prevents the movable electrode 34 from contacting the fixed electrode 40 and electrically short-circuiting.
[0107]
Thus, also in the present embodiment configured as described above, it is possible to obtain substantially the same operation and effect as in the first embodiment described above.
[0108]
However, in the present embodiment, the first and second movable support beams 31 and 33 are formed to be obliquely curved in advance, and the first and second fixed electrodes 35, 36, 39, and 40 opposed thereto are formed. Is also obliquely curved substantially corresponding to the movable support beams 31 and 33.
[0109]
For this reason, when a voltage is applied between the movable electrodes 32, 34 of the movable support beams 31, 33 and the fixed electrodes 36, 40 from the initial state (retracted position of the movable body 12) shown in FIG. Between the movable electrode 32 and the fixed electrode 36, a larger electrostatic attraction can be generated between the movable electrode 32 and the end 36 </ b> B side of the fixed electrode 36 where the distance between them is the smallest. Can reliably increase the electrostatic attraction of the initial displacement in which the movable support beam 31 swings in the direction of arrow A about the fixed portion 31B toward the end 36B of the fixed electrode 36.
[0110]
Further, for example, even between the second movable electrode 34 and the fixed electrode 40, a larger electrostatic attraction is generated between the movable electrode 34 and the end 40 </ b> B side of the fixed electrode 40 where the distance between the two is narrowest. Thus, the electrostatic attraction of the initial displacement in which the second movable support beam 33 swings in the direction of arrow A about the fixed portion 33B toward the end 40B of the fixed electrode 40 can be reliably increased.
[0111]
Therefore, in the present embodiment, by forming the first and second movable support beams 31 and 33 and the fixed electrodes 35, 36, 39 and 40 into obliquely curved shapes, the electrostatic attractive force with respect to the initial displacement is reduced. The displacement can be increased effectively, and the displacement of the movable body 12 can be reliably increased.
[0112]
Next, FIG. 5 shows a third embodiment of the present invention. The feature of this embodiment is that the connecting portion of the movable support beam is projected in a substantially U-shape from both the left and right sides of the movable body. It is formed in the shape which does.
[0113]
Note that, in the present embodiment, the same components as those in the above-described first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0114]
In the figure, reference numerals 51 and 51 denote first movable support beams provided on both left and right sides of the movable body 12, respectively. The movable support beams 51 are the same as the movable support beams 14 described in the first embodiment. It has substantially the same configuration, and has a connecting portion 51A and a fixing portion 51B. The main portion of the first movable support beam 51 which is located between the connecting portion 51A and the fixed portion 51B and extends substantially linearly constitutes the first movable electrode 52.
[0115]
However, the movable support beam 51 in this case is formed in a shape in which the connecting portion 51A to the movable body 12 projects outwardly in a substantially U-shape or a substantially U-shape from both the left and right sides of the movable body 12. Are different.
[0116]
When the movable support beam 51 swings between the pair of fixed electrodes 18 and 19 in the direction indicated by the arrow A or the direction indicated by the arrow B when the movable support beam 51 swings between the pair of fixed electrodes 18 and 19, the connecting portion 51A is positioned at an intermediate position (e.g. At the position corresponding to the reference line EE), when the movable support beam 51 swings to a position almost directly facing the fixed electrodes 18 and 19, the amount of bending (elasticity) of the connecting portion 51A. (Deformation amount).
[0117]
Reference numerals 53, 53 denote second movable support beams provided on both the left and right sides of the movable body 12, and the second movable support beam 53 is configured substantially in the same manner as the first movable support beam 51, and includes a connecting portion. 53A and a fixing portion 53B. The main portion of the second movable support beam 53 that is located between the connecting portion 53A and the fixed portion 53B and extends substantially linearly constitutes the second movable electrode 54.
[0118]
Also in this case, the connecting portion 53A of the movable support beam 53 is formed in a substantially U-shape or a U-shape to project outward from both the left and right sides of the movable body 12, and these connecting portions are connected. The portion 53 </ b> A elastically bends and deforms in response to the swing of the movable support beam 53.
[0119]
Thus, also in the present embodiment configured as described above, it is possible to obtain substantially the same operation and effect as in the first embodiment described above, and it is possible to reduce power consumption and energy consumption.
[0120]
Note that the movable support beams 31, 33 used in the second embodiment are almost the same as the connecting portions 51A, 53A of the movable support beams 51, 53 shown in FIG. 5 described in the third embodiment. Alternatively, a connecting portion having a substantially U-shaped or substantially U-shaped shape and protruding outward from both the left and right sides of the movable body 12 may be employed.
[0121]
In the first embodiment, the swing range of the movable support beams 14 and 16 is regulated by the stoppers 20, 21, 24, and 25 serving as displacement regulation portions provided on the substrate 11, and the movable electrodes 15 and 16 are controlled. The description has been made on the assumption that an electrical short circuit between the fixed electrode 17 and the fixed electrodes 18, 19, 22, 23 is prevented.
[0122]
However, the present invention is not limited to this. For example, an insulating coating is partially formed on one of the opposing surfaces of the movable electrodes 15 and 17 and the fixed electrodes 18, 19, 22 and 23, These insulating coatings may be configured to prevent an electrical short circuit between the movable electrodes 15, 17 and the fixed electrodes 18, 19, 22, 23, whereby the stoppers 20, 21, 24, 25 may be eliminated. Things. This is the same for the second and third embodiments.
[0123]
Further, in each of the above-described embodiments, the mirror 13 is formed at one end of the movable body 12, and the path of the light beam is reflected by the mirror 13 between the light emitting units 7A and 7B and the light receiving units 7C and 7D. The case where the switching is performed has been described as an example.
[0124]
However, the present invention is not limited to this. For example, a shutter such as a light shielding plate may be provided at the position of the mirror unit 13 as a light switching unit, and the present invention may be applied to a switch device such as an optical shutter for turning on and off the optical path of light. Good thing.
[0125]
【The invention's effect】
As described in detail above, according to the first aspect of the present invention, a movable body that performs a light switching operation by moving forward and backward with respect to a light path, and a movable support that displaceably supports the movable body. A movable electrode constituted by a beam and extending leftward and rightward with respect to the movable body is provided between the movable electrode and the movable electrode provided opposite to each other with the movable electrode interposed therebetween from both sides in the displacement direction of the movable body. A pair of fixed electrodes that drive the movable electrode with electrostatic force, and the pair of fixed electrodes is configured so that the distance between the electrodes sandwiching the movable electrode gradually decreases as the distance from the movable body increases, When a voltage is applied between the fixed electrode and the movable electrode, a large electrostatic force can first be generated at the end remote from the movable body, and the electrostatic force is used to drive the movable electrode closer to the fixed electrode. Gradually increase the facing area of It can be driven even to approach the movable electrode to the fixed electrode in the closer end of the the body.
[0126]
Therefore, the displacement of the movable body can be reliably increased, and the movable body can be moved forward and backward with a sufficient displacement with respect to the path of light. In addition, the voltage applied between the movable electrode and the fixed electrode can be set to a low voltage, the whole can be reduced in size, and the switching operation of light can be stabilized to improve the reliability.
[0127]
Further, the invention according to claim 2 is configured such that the movable support beam that constitutes the movable electrode is formed so as to extend obliquely along one of the pair of fixed electrodes. In addition, a driving force (electrostatic force) that swings obliquely between a pair of fixed electrodes can be applied to the movable support beam that constitutes the movable electrode, and the movable support beam is moved between one side and the other side in the swing direction. And the movable body can be stably held at two positions, that is, the forward position and the backward position with respect to the light path. Thus, even when the voltage application is stopped (released), the movable body can be selectively held at one of the forward position and the backward position.
[0128]
According to the third aspect of the present invention, in the movable support beam forming the movable electrode, one end connected to the movable body is an elastically deformable connection portion, and the other end separated from the movable body. Since the portion is configured as a fixed end, when the movable support beam swings obliquely between the pair of fixed electrodes, the connecting portion of the movable support beam has the maximum elastic deformation at an intermediate position in the swing direction, By forming the elastic deformation amount to be smaller on one side and the other side in the swing direction, the movable support beam can be selectively held on one side and the other side in the swing direction, Two stable positions can be given to the movable supporting beam (movable body).
[0129]
Further, according to the invention as set forth in claim 4, the movable support beam holds the movable body at a distance from the surface of the substrate via the connecting portion, and the fixed end of the movable support beam is fixed on the substrate. Since the movable body can be displaced on the substrate via the movable support beam, the movable body can be displaced almost in parallel along the surface of the substrate while moving the movable body along the light path. Can be driven to move forward and backward with a sufficient amount of displacement.
[Brief description of the drawings]
FIG. 1 is a plan view showing an optical switch device according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a first movable support beam, a movable body, and the like, as viewed in a direction indicated by arrows II-II in FIG.
FIG. 3 is a plan view substantially similar to FIG. 1 showing a state where a movable body is displaced to a forward position.
FIG. 4 is a plan view showing an optical switch device according to a second embodiment.
FIG. 5 is a plan view showing an optical switch device according to a third embodiment.
FIG. 6 is a plan view showing an optical switch device according to the related art.
FIG. 7 is an enlarged plan view showing the optical device and the like in FIG. 6;
FIG. 8 is a plan view similar to FIG. 7, showing a state where the course of the light beam is switched by a mirror unit.
[Explanation of symbols]
7 Optical device
7A, 7B light emitting section
7C, 7D light receiving section
11 Substrate
12 movable body
13 Mirror part (light switching part)
14, 31, 51 First movable support beam
14A, 16A, 31A, 33A, 51A, 53A Connecting part
14B, 16B, 31B, 33B, 51B, 53B Fixed part (fixed end)
15, 32, 52 First movable electrode
16, 33, 53 Second movable support beam
17, 34, 54 Second movable electrode
18, 19, 35, 36 First fixed electrode
20, 21, 24, 25, 37, 38, 41, 42 Stopper
22, 23, 39, 40 Second fixed electrode

Claims (4)

光の進路に対して前進,後退することにより光の切換動作を行う可動体と、
該可動体を前,後方向に変位可能に支持する可動支持梁により構成され、該可動体の変位方向に対し交差する左,右方向に伸長して設けられた可動電極と、
前記可動体の変位方向の両側から該可動電極を挟んで互いに対向して設けられ、該可動電極との間に発生する静電力で該可動電極を駆動することにより前記可動体を前,後方向に変位させる一対の固定電極とからなり、
該一対の固定電極は、前記可動電極を挟んだ電極間距離が前記可動体に近い位置で最も大きく前記可動体から離れるに従って漸次小さくなるように配置する構成としてなる光スイッチ装置。
A movable body that performs a light switching operation by moving forward and backward with respect to the light path;
A movable electrode formed of a movable support beam for supporting the movable body so as to be displaceable in the front and rear directions, and extending in left and right directions crossing the displacement direction of the movable body;
The movable body is provided facing each other with the movable electrode interposed therebetween from both sides in the displacement direction of the movable body, and the movable body is driven forward and backward by driving the movable electrode with an electrostatic force generated between the movable body and the movable body. Consisting of a pair of fixed electrodes
An optical switch device having a configuration in which the pair of fixed electrodes are arranged such that the distance between the electrodes sandwiching the movable electrode is largest at a position near the movable body and gradually decreases as the distance from the movable body increases.
前記可動電極を構成する可動支持梁は、前記一対の固定電極のうちいずれか一方の固定電極に沿って斜めに傾けて伸長する構成としてなる請求項1に記載の光スイッチ装置。The optical switch device according to claim 1, wherein the movable support beam forming the movable electrode is configured to extend obliquely and obliquely along one of the pair of fixed electrodes. 前記可動電極を構成する可動支持梁は、前記可動体に連結される一方の端部を弾性変形可能な連結部とし、前記可動体から離れた他方の端部を固定端とする構成としてなる請求項1または2に記載の光スイッチ装置。The movable support beam constituting the movable electrode is configured such that one end connected to the movable body is an elastically deformable connection portion, and the other end away from the movable body is a fixed end. Item 3. The optical switch device according to item 1 or 2. 前記可動支持梁は前記可動体を基板の表面から離間した状態に前記連結部を介して保持し、前記可動支持梁の固定端は前記基板上に固定して設ける構成としてなる請求項3に記載の光スイッチ装置。4. The movable support beam according to claim 3, wherein the movable body holds the movable body at a distance from the surface of the substrate via the connecting portion, and a fixed end of the movable support beam is fixedly provided on the substrate. 5. Optical switch device.
JP2002209970A 2002-07-18 2002-07-18 Light switching device Pending JP2004053839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002209970A JP2004053839A (en) 2002-07-18 2002-07-18 Light switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002209970A JP2004053839A (en) 2002-07-18 2002-07-18 Light switching device

Publications (1)

Publication Number Publication Date
JP2004053839A true JP2004053839A (en) 2004-02-19

Family

ID=31933653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209970A Pending JP2004053839A (en) 2002-07-18 2002-07-18 Light switching device

Country Status (1)

Country Link
JP (1) JP2004053839A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859370B2 (en) 2004-03-31 2010-12-28 Sharp Kabushiki Kaisha Electrostatic actuator
JP2012168562A (en) * 2005-02-23 2012-09-06 Pixtronix Inc Method and device for placing display in operation
JP2012238000A (en) * 2005-02-23 2012-12-06 Pixtronix Inc Display device
WO2013057759A1 (en) * 2011-10-19 2013-04-25 富士通株式会社 Electrical device having movable electrode
US9082353B2 (en) 2010-01-05 2015-07-14 Pixtronix, Inc. Circuits for controlling display apparatus
US9087486B2 (en) 2005-02-23 2015-07-21 Pixtronix, Inc. Circuits for controlling display apparatus
US9116344B2 (en) 2008-10-27 2015-08-25 Pixtronix, Inc. MEMS anchors
US9128277B2 (en) 2006-02-23 2015-09-08 Pixtronix, Inc. Mechanical light modulators with stressed beams
US9135868B2 (en) 2005-02-23 2015-09-15 Pixtronix, Inc. Direct-view MEMS display devices and methods for generating images thereon
US9134552B2 (en) 2013-03-13 2015-09-15 Pixtronix, Inc. Display apparatus with narrow gap electrostatic actuators
US9177523B2 (en) 2005-02-23 2015-11-03 Pixtronix, Inc. Circuits for controlling display apparatus
US9176318B2 (en) 2007-05-18 2015-11-03 Pixtronix, Inc. Methods for manufacturing fluid-filled MEMS displays
US9229222B2 (en) 2005-02-23 2016-01-05 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
US9261694B2 (en) 2005-02-23 2016-02-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US9336732B2 (en) 2005-02-23 2016-05-10 Pixtronix, Inc. Circuits for controlling display apparatus
US9500853B2 (en) 2005-02-23 2016-11-22 Snaptrack, Inc. MEMS-based display apparatus

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859370B2 (en) 2004-03-31 2010-12-28 Sharp Kabushiki Kaisha Electrostatic actuator
US9229222B2 (en) 2005-02-23 2016-01-05 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
US9261694B2 (en) 2005-02-23 2016-02-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US9177523B2 (en) 2005-02-23 2015-11-03 Pixtronix, Inc. Circuits for controlling display apparatus
JP2012238000A (en) * 2005-02-23 2012-12-06 Pixtronix Inc Display device
US9336732B2 (en) 2005-02-23 2016-05-10 Pixtronix, Inc. Circuits for controlling display apparatus
JP2014098924A (en) * 2005-02-23 2014-05-29 Pixtronix Inc Method and apparatus for actuating display
US9274333B2 (en) 2005-02-23 2016-03-01 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
JP2012212149A (en) * 2005-02-23 2012-11-01 Pixtronix Inc Method and apparatus for actuating display
JP2012168562A (en) * 2005-02-23 2012-09-06 Pixtronix Inc Method and device for placing display in operation
US9135868B2 (en) 2005-02-23 2015-09-15 Pixtronix, Inc. Direct-view MEMS display devices and methods for generating images thereon
JP2012212150A (en) * 2005-02-23 2012-11-01 Pixtronix Inc Method for manufacturing display device
US9500853B2 (en) 2005-02-23 2016-11-22 Snaptrack, Inc. MEMS-based display apparatus
US9087486B2 (en) 2005-02-23 2015-07-21 Pixtronix, Inc. Circuits for controlling display apparatus
US9128277B2 (en) 2006-02-23 2015-09-08 Pixtronix, Inc. Mechanical light modulators with stressed beams
US9176318B2 (en) 2007-05-18 2015-11-03 Pixtronix, Inc. Methods for manufacturing fluid-filled MEMS displays
US9182587B2 (en) 2008-10-27 2015-11-10 Pixtronix, Inc. Manufacturing structure and process for compliant mechanisms
US9116344B2 (en) 2008-10-27 2015-08-25 Pixtronix, Inc. MEMS anchors
US9082353B2 (en) 2010-01-05 2015-07-14 Pixtronix, Inc. Circuits for controlling display apparatus
US8901709B2 (en) 2011-10-19 2014-12-02 Fujitsu Limited Electrical device having movable electrode
CN103843089A (en) * 2011-10-19 2014-06-04 富士通株式会社 Electrical device having movable electrode
WO2013057759A1 (en) * 2011-10-19 2013-04-25 富士通株式会社 Electrical device having movable electrode
CN103843089B (en) * 2011-10-19 2016-09-21 富士通株式会社 There is the movable electrical equipment of movable electrode
US9134552B2 (en) 2013-03-13 2015-09-15 Pixtronix, Inc. Display apparatus with narrow gap electrostatic actuators

Similar Documents

Publication Publication Date Title
JP2004053839A (en) Light switching device
JP4178327B2 (en) Buckling actuator
US6914712B2 (en) Mirror device, optical switch, electronic instrument and mirror device driving method
US6362556B1 (en) Electrically actuated optical switch having a surface pivotable Mirror
KR100312432B1 (en) Optical Switch using Micro Structures
JP2004246324A (en) Electrostatic type actuator
JP2005011795A (en) Non-fixing electrostatic active form micro electric machine system switch
EP1139141A2 (en) Microelectromechanical devices having brake assemblies therein to control movement of optical shutters and other movable elements
US11467414B2 (en) See-through display device
US7477219B2 (en) Micro-mirror and method
TWI471601B (en) Vorrichtung zum ablenken von lichtstrahlen
JP4813061B2 (en) Light switch
JP2005227591A (en) Electrostatic type actuator
WO2003027751A1 (en) Optical switch and optical switch array
JP5160299B2 (en) Micro movable device and driving method thereof
JP4491064B2 (en) Optical path changing device, optical switch, and optical head
US20030178912A1 (en) Electrostatically operated device
US6490073B2 (en) Microactuator for optical switching and method for fabricating the same
JP4003063B2 (en) Mirror device, optical switch, electronic device, and mirror device driving method
US10962765B1 (en) Large motion latching microelectromechanical displacement structures
JP2003241117A (en) Optical switch device
JP2005221903A (en) Mirror system and optical switch
JP2005141103A (en) Optical switch
JP2000206426A (en) Spatial optical modulation element
US20070068308A1 (en) MEMS actuator