JP2004053166A - Air-cooled type refractory wall - Google Patents
Air-cooled type refractory wall Download PDFInfo
- Publication number
- JP2004053166A JP2004053166A JP2002212727A JP2002212727A JP2004053166A JP 2004053166 A JP2004053166 A JP 2004053166A JP 2002212727 A JP2002212727 A JP 2002212727A JP 2002212727 A JP2002212727 A JP 2002212727A JP 2004053166 A JP2004053166 A JP 2004053166A
- Authority
- JP
- Japan
- Prior art keywords
- steel plate
- refractory
- cooling air
- air
- anchor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、都市ごみ等の廃棄物を焼却処理するごみ焼却炉や高温ガス煙道等の空冷型耐火壁の改良に関するものであり、簡単な耐火壁構造でもって確実にクリンカの付着や熱損傷の発生を防止できるようにした空冷型耐火壁に関するものである。
【0002】
【従来の技術】
ごみ焼却炉に於いては、従前から炉壁内面にクリンカが発生、付着するのを防止するために各種の対策が採られている。例えば、(イ)クリンカの発生し易い場所の炉壁に耐熱性・耐付着性に優れた炭化珪素質耐火物を用いる方法、(ロ)炉壁そのものを水冷壁構造にする方法、(ハ)蒸気の噴霧により雰囲気温度を低下させる方法及び(ニ)再循環ガスを用いた抑制燃焼により異常燃焼の発生を押える等の方法が、クリンカの発生防止策として用いられてきた。
【0003】
しかし、近年、焼却すべき都市ごみ等が著しく高カロリー化しており、また、ごみ焼却炉の側でも、ダイオキシン対策用の燃焼管理が要請されることにより、炉の燃焼温度が高温化される傾向にある。
その結果、ごみ焼却炉では、必然的にクリンカの発生、付着に起因するトラブルが増加することになり、特にストーカ式焼却炉では、クリンカの付着によってストーカ上のごみの送りが阻害されることにより、炉内のごみ燃焼が不安定になるのが重大な問題となりつつある。何故なら、ごみの燃焼が不安定になると、ダイオキシン等の有害物質を生ずるからである。
【0004】
尚、炉壁耐火物の内面にクリンカが発生、付着することに起因するこの種のトラブルは、ストーカ式ごみ焼却炉だけに特有の問題ではなく、流動層式ごみ焼却炉やごみ溶融処理炉、高温ガス煙道等に於いても、同様のトラブルが生ずる虞れのあることは勿論である。
【0005】
上述のように、ダイオキシン対策を達成するためには、ごみ焼却炉の燃焼を安定させることが第1の要件であり、そのためには、先ず炉壁内面にクリンカが発生、付着するのを確実に防止することが必要となってくる。
【0006】
一方、ボイラ設備を備えた大型ごみ焼却炉では、ボイラ水管をごみ焼却炉の燃焼室まで立下げ、所謂水冷壁構造の燃焼室とすることにより、燃焼室内壁面へのクリンカの発生、付着を防止するようにしている。
しかし、ボイラ設備を備えていないごみ焼却炉等では他の方策によりクリンカの発生、付着を防止する必要があり、一般的には、図3及び図4のような所謂空冷型耐火壁Bが使用されている。
【0007】
即ち、図3の空冷型耐火壁Bは、内側鋼板1の外面側に適宜寸法の四角状枠体2を溶接固着すると共に鋼板1から複数の支持ボルト3を突設させ、枠体2内へ挿着した成型煉瓦等の耐火物成型体4を支持ボルト3及びこれに螺着したナット5等により引止め固定することにより、耐火物壁体6を形成すると共に、前記内側鋼板1と適宜の間隔を置いて外側鋼板7を設け、両鋼板1、7の間の空間を冷却用空気Aの通路8とすることにより、空冷型耐火壁Bが形成されており、耐火物成形体4を支持固定する内側鋼板1の裏面側が冷却用空気Aにより冷却される構成となっている。
尚、図3に於いて9は充填耐火物、10は外部ケーシング、11は外側鋼板7と外部ケーシング10間に設けた断熱材である。
【0008】
また、図4の空冷型耐火壁Bでは、支持構造物12に、耐火物成型体4を固定するための支持金物3を備えた支持用枠体13を固定し、当該支持用枠体13に支持金物35等を介して成型煉瓦体や普通煉瓦体から成る耐火物成形体4を引止め固定することにより、耐火物壁体6を形成すると共に、前記支持用枠体13と一定の間隔を置いて外側鋼板7を配設し、耐火物壁体6の裏面側と外側鋼板7との間を冷却用空気通路8とすることにより、空冷型耐火壁Bが形成されており、耐火物成型体4の裏面側が冷却空気Aにより直接冷却される構成となっている。
【0009】
尚、図4の空冷型耐火壁Bに於いては、耐火物成型体4は熱膨張の逃げが可能なシール構造を用いて引止め固定されており、各耐火物成型体4の裏面側は、前述のように冷却用空気Aにより直接冷却されている。
また、図4に於いて、14は冷却空気入口、15は冷却空気出口であり、且つ外側鋼板7の外表面側には図3の場合と同様に、外部ケーシング10及び断熱材11等が設けられている。
【0010】
【発明が解決しようとする課題】
前記図3及び図4の空冷型耐火壁は、何れもクリンカの生成、付着をある程度有効に防止することができ、優れた実用的効用を有するものである。しかし、当該空冷型耐火壁にも、下記のように解決すべき多くの問題が残されている。
例えば図3の空冷型耐火壁では、耐火物成型体4を支持ボルト3を介して内側鋼板1の外表面側へ接当固定する構造としているため、耐火物成型体4や内側鋼板1、支持ボルト3に熱サイクルが加わることにより、内側鋼板1と耐火物成型体4との接当面に間隙が生じることになる。その結果、熱伝導性が悪化して耐火物成型体(煉瓦)4の外表面の温度が上昇し、クリンカの生成、付着を防止する機能が低下してクリンカの付着が生じたり、煉瓦体の焼損、割れ、脱落等が多発することになる。
【0011】
また、前記図4の空冷型耐火壁に於いては、耐火物成型体(煉瓦)4の裏面側を直接空冷しているため、経時的な熱伝導性の劣化は発生せず、その結果、耐火物成型体4の外表面温度の上昇によるクリンカの発生、付着等も生じない。
【0012】
しかし、耐火物成型体4の熱膨脹を逃げるためのシール構造は、経時的な劣化を生ずることになり、このシール性の劣化が起ると、冷却用空気Aが炉内に漏れ込むことになり、漏れ込み部分に於いて異常燃焼が生じて部分的な温度上昇が生ずることになる。その結果、温度の上昇部分にクリンカの付着が生じたり、或いは耐火物成型体(煉瓦)4の焼損が生ずることになる。また、漏れ空気の侵入により、炉の燃焼空気量の制御が乱されることになり、安定燃焼を行ない難くくなると云う事象が現実に発生している。
【0013】
本発明は、従前の空冷型耐火壁に於ける上述の如き問題、即ち(a)内側鋼板と耐火物成型体の接当面に隙間が生じ、熱伝導性が経時的に悪化すること及び(b)耐火物成型体のシール性能が経時的に悪化し、炉内へ洩れ込んだ冷却用空気により燃焼が不安定となること等の問題を解決し、簡単な構造の空冷型炉壁でもって安価に炉壁を形成することができ、しかも壁面へのクリンカの付着や燃焼の不安定化を確実に防止できるようにした空冷型耐火壁を提供せんとするものである。
【0014】
【課題を解決するための手段】
請求項1の発明は、冷却用空気入口14と冷却用空気出口15を備えた横断面形状が長方形の密閉状の鋼板製箱体19と、前記鋼板製箱体19の内側鋼板1を貫通せしめてその基端部を箱体19の内方に固定すると共に頭部を内側鋼板1の外方へ突出せしめたアンカー20と、前記内側鋼板1の外面にアンカー20を包み込む状態で一定の厚さに充填固着した不定形耐火物21と、前記鋼板製箱体19の外側鋼板7の外面側に断熱材11を介設して配設した外側ケーシング10とから形成され、冷却用空気入口14から供給した冷却用空気Aにより、内側鋼板1及びアンカー20を介して不定形耐火物21を冷却することを発明の基本構成とするものである。
【0015】
請求項2の発明は、請求項1の発明に於いて鋼板製箱体19を、内部に内側鋼板1と間隔を置いて平行状に配設した仕切鋼板16を有し、当該仕切鋼板16と内側鋼板1及び外側鋼板7との間を夫々冷却用空気Aの通路8a・8bとした鋼板製箱体19とすると共に、アンカー20の基端部を仕切鋼板16へ固着して冷却用空気により直接アンカー20を冷却するようにしたものである。
【0016】
請求項3の発明は、請求項1又は請求項2の発明に於いて不定形耐火物21を、内側鋼板1の表面に所望の厚みに充填し乾燥固化して形成するようにしたものである。
【0017】
【発明の実施の形態】
以下、図面に基づいて本発明の一実施形態を説明する。
図1は、本発明の実施形態に係る空冷型耐火壁の縦断面概要図であり、図2はその横断面概要図である。尚、図1及び図2に於いて、前記図3及び図4と同一の部材には、これと同じ参照番号が付されている。
尚、図1及び図2に於いて1は内側鋼板、7は外側鋼板、8は冷却用空気通路、10は外部ケーシング、11は断熱材、14は冷却空気入口、15は冷却空気出口、16は仕切鋼板、17aは上部鋼板、17bは下部鋼板、18a・18bは側部鋼板、19は鋼板製箱体、20はアンカー、21は不定形耐火物、22は冷却用空気の送風機である。
【0018】
図1及び図2を参照して、本発明に係る空冷型耐火壁Bは耐火物壁体6と、その外側に配設した外部ケーシング10及び断熱材11等から形成されている。また、前記耐火物壁体6は、内側鋼板1、外側鋼板7、仕切鋼板16、上部鋼板17a、下部鋼板17b、側部鋼板18a・18b等より形成した横断面形状が四角状の密閉型鋼板製箱体19と、アンカー20及び不定形耐火物21等から構成されている。
【0019】
前記鋼板製箱体19の内部には、内側鋼板1と一定の間隔を置いてこれと平行状に仕切鋼板16が設けられており、当該仕切鋼板16と内側鋼板1及び外側鋼板7との間に流通路8a・8bが形成されている。
また、当該鋼板製箱体19の外側の下部には、前記流通路8a・8bに連通する冷却用空気入口14と冷却用空気出口15が夫々形成されている。
【0020】
前記アンカー20は、その頭部を炉内側へ突出せしめた状態で、内側鋼板1を貫通して配設されており、その基端部は仕切鋼板16の内側面へ固定されている。
【0021】
前記不定形耐火物21は炭化珪素質耐火物等から形成されており、アンカー20により内側鋼板1の外面へ密着固定されている。即ち、前記内側鋼板1の炉内側へ、アンカー20の頭部を包み込みした状態で耐火材の混練物を所定の厚みに積層充填し、その後これを乾燥固化させることにより、不定形耐火物21が形成されている。
尚、不定形耐火物21を形成するための施工法そのものは公知であるため、ここではその説明を省略する。
【0022】
前記不定形耐火物21の材質は、耐熱性、耐食性、固着性及び高伝熱性を具備するものであれば如何なる材質のものであってもよく、本実施形態では炭化珪素質耐火物やマグネシア−クロム系耐火物、アルミナ系耐火物、シリカ系耐火物等が使用されている。
また、本実施形態に於いては図示されていないが、鋼板製箱体19の内部には補強用のリブが適宜に設けられていることは勿論である。
更に、図1の実施形態では、本発明の空冷型耐火壁をストーカ式ごみ焼却炉の炉壁とする場合について述べているが、本発明に係る空冷型耐火壁は流動層炉や溶融処理炉の炉壁としても使用でき、また、高温排ガス通路の壁体にも適用することが出来る。
【0023】
送風機22からの冷却用空気Aは、空気入口14から鋼板製箱体19内へ流入し、仕切鋼板16と内側鋼板1との間に形成された空気通路8a内を上方へ向けて流通し、内側鋼板1を介して不定形耐火物21を冷却すると共に、アンカー20の基部を直接に冷却することにより、アンカー20を介して不定形耐火物21を冷却する。
空気通路8a内を上昇することにより加熱された冷却用空気Aは、上部鋼板17の近傍で反転し、通路8bを下降したあと、空気出口15から外部へ導出されて行く。
【0024】
【発明の効果】
本発明に於いては、アンカー20を固定した鋼板製箱体19の内側鋼板1の炉内側表面へ不定形耐火物21を積層固着し、当該不定形耐火物21をアンカー20により内側鋼板1へ固定保持すると共に、内側鋼板1と仕切鋼板16との間に冷却用空気Aを流し、内側鋼板1及び冷却用空気通路8a内へ突出せしめたアンカー20の基端部を介して、不定形耐火物21を冷却する構成としている。
その結果、不定形耐火物21が冷却用空気Aにより効率よく冷却されると共に、耐火物成型体4を使用する場合に比較して不定形耐火物21が内側鋼板1の外表面へより堅固に固着されて両者の間に隙間が生じないため、不定形耐火物の冷却性能が経時的に悪化することがない。
これにより、本発明に係る冷却型耐火壁では、耐火材の表面にクリンカーが生成、付着することが無くなる。その結果、焼却炉内のごみの流れが阻害されたり、燃焼状態が不安定になることが皆無となり、ダイオキシン対策をより確実に達成することが可能となる。
本発明は上述の通り優れた実用的効用を奏するものである。
【図面の簡単な説明】
【図1】本発明の実施形態に係る空冷型耐火壁の一部分の縦断面概要図である。
【図2】図1の空冷型耐火壁の一部分の横断面概要図である。
【図3】従前の空冷型耐火壁の一例を示す縦断面概要図である。
【図4】従前の空冷型耐火壁の他の例を示す縦断面概要図である。
【符号の説明】
Aは冷却用空気、Bは空冷型耐火壁、1は内側鋼板、6は耐火物壁体、7は外側鋼板、8は冷却用空気通路、10は外部ケーシング、11は断熱材、14は冷却空気入口、15は冷却空気出口、16は仕切鋼板、17aは上部鋼板、17bは下部鋼板、18a・18bは側部鋼板、19は鋼板製箱体、20はアンカー、21は不定形耐火物、22は送風機。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement of an air-cooled fire wall such as a refuse incinerator for incinerating waste such as municipal solid waste or a high-temperature gas flue. The present invention relates to an air-cooled fire-resistant wall capable of preventing the occurrence of cracks.
[0002]
[Prior art]
In refuse incinerators, various measures have conventionally been taken to prevent clinker from being generated and adhered to the inner wall of the furnace wall. For example, (a) a method of using a silicon carbide refractory having excellent heat resistance and adhesion resistance for a furnace wall in a place where clinker is easily generated, (b) a method of using a water wall structure for the furnace wall itself, and (c). A method of lowering the ambient temperature by spraying steam and a method of suppressing the occurrence of abnormal combustion by (d) suppression combustion using recirculated gas have been used as measures to prevent the occurrence of clinker.
[0003]
However, in recent years, municipal solid waste to be incinerated has become extremely high in calories, and the combustion temperature of the incinerator tends to increase due to the demand for dioxin-related combustion management on the incinerator side. It is in.
As a result, troubles caused by clinker generation and adhesion inevitably increase in refuse incinerators, and in particular, in stoker-type incinerators, clinker adhesion hinders the sending of garbage on the stoker. However, instability of refuse combustion in the furnace is becoming a serious problem. This is because when the combustion of refuse becomes unstable, harmful substances such as dioxin are generated.
[0004]
In addition, this type of trouble caused by clinker generation and adhesion on the inner surface of the furnace wall refractory is not only a problem unique to the stoker type incinerator, but also a fluidized bed type incinerator, a refuse melting furnace, Of course, a similar trouble may occur in a high-temperature gas flue or the like.
[0005]
As described above, the first requirement is to stabilize combustion in a refuse incinerator in order to achieve dioxin countermeasures. For that purpose, first, make sure that clinker is generated and adhered to the inner wall of the furnace wall. It is necessary to prevent it.
[0006]
On the other hand, in large-scale waste incinerators equipped with boiler equipment, the boiler water pipe is lowered to the combustion chamber of the waste incinerator, and a so-called water-cooled wall combustion chamber is used to prevent the generation and adhesion of clinkers to the combustion chamber wall. I am trying to do it.
However, in a refuse incinerator or the like not equipped with a boiler facility, it is necessary to prevent the generation and adhesion of clinkers by other measures. Generally, a so-called air-cooled refractory wall B as shown in FIGS. 3 and 4 is used. Have been.
[0007]
That is, the air-cooled refractory wall B of FIG. 3 has a
In FIG. 3,
[0008]
In the air-cooled refractory wall B of FIG. 4, a
[0009]
In the air-cooled refractory wall B shown in FIG. 4, the refractory molded
4, 14 is a cooling air inlet, 15 is a cooling air outlet, and an
[0010]
[Problems to be solved by the invention]
Each of the air-cooled refractory walls shown in FIGS. 3 and 4 can effectively prevent clinker generation and adhesion to some extent, and has excellent practical utility. However, the air-cooled refractory wall still has many problems to be solved as described below.
For example, the air-cooled refractory wall shown in FIG. 3 has a structure in which the
[0011]
Further, in the air-cooled refractory wall of FIG. 4 described above, since the back side of the refractory molded body (brick) 4 is directly air-cooled, thermal conductivity does not deteriorate over time. No clinker is generated or adhered due to a rise in the outer surface temperature of the refractory molded
[0012]
However, the sealing structure for escaping the thermal expansion of the refractory molded
[0013]
The present invention relates to the above-mentioned problems in the conventional air-cooled refractory wall, that is, (a) a gap is formed between the inner steel sheet and the contact surface between the refractory molding and heat conductivity deteriorates with time; ) Resolves the problem that the sealing performance of the refractory molding deteriorates over time and the combustion air becomes unstable due to the cooling air leaked into the furnace. It is an object of the present invention to provide an air-cooled fire-resistant wall in which a furnace wall can be formed on the wall, and adhesion of a clinker to the wall surface and instability of combustion can be reliably prevented.
[0014]
[Means for Solving the Problems]
According to the first aspect of the present invention, a closed
[0015]
The invention of
[0016]
According to a third aspect of the present invention, in the first or second aspect, the irregular-shaped refractory 21 is formed by filling the surface of the
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic vertical cross-sectional view of an air-cooled fire-resistant wall according to an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view thereof. 1 and 2, the same members as those in FIGS. 3 and 4 are denoted by the same reference numerals.
1 and 2, 1 is an inner steel plate, 7 is an outer steel plate, 8 is a cooling air passage, 10 is an outer casing, 11 is a heat insulating material, 14 is a cooling air inlet, 15 is a cooling air outlet, and 16 is a cooling air outlet. Is a partition steel plate, 17a is an upper steel plate, 17b is a lower steel plate, 18a and 18b are side steel plates, 19 is a steel plate box, 20 is an anchor, 21 is an irregular refractory, and 22 is a blower for cooling air.
[0018]
1 and 2, an air-cooled refractory wall B according to the present invention includes a
[0019]
Inside the
Further, a cooling
[0020]
The
[0021]
The irregular-shaped refractory 21 is formed of a silicon carbide-based refractory or the like, and is tightly fixed to the outer surface of the
In addition, since the construction method itself for forming the irregular-shaped refractory 21 is known, the description thereof is omitted here.
[0022]
The material of the amorphous refractory 21 may be any material as long as it has heat resistance, corrosion resistance, sticking property, and high heat conductivity. In the present embodiment, the silicon carbide refractory or magnesia material is used. Chrome-based refractories, alumina-based refractories, silica-based refractories, and the like are used.
Although not shown in the present embodiment, it is a matter of course that reinforcing ribs are appropriately provided inside the
Further, in the embodiment of FIG. 1, the case where the air-cooled refractory wall of the present invention is used as a furnace wall of a stoker-type incinerator is described, but the air-cooled refractory wall according to the present invention is a fluidized-bed furnace or a melting furnace. And can be applied to a wall of a high-temperature exhaust gas passage.
[0023]
The cooling air A from the
The cooling air A heated by ascending in the
[0024]
【The invention's effect】
In the present invention, the irregular refractory 21 is laminated and fixed to the furnace inner surface of the
As a result, the amorphous refractory 21 is efficiently cooled by the cooling air A, and the amorphous refractory 21 is more firmly attached to the outer surface of the
Thereby, in the cooling type refractory wall according to the present invention, clinker is not generated and adhered to the surface of the refractory material. As a result, the flow of the refuse in the incinerator is not hindered and the combustion state is not unstable, so that the dioxin countermeasures can be more reliably achieved.
The present invention has excellent practical utility as described above.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a part of an air-cooled fire-resistant wall according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view of a part of the air-cooled refractory wall of FIG.
FIG. 3 is a schematic longitudinal sectional view showing an example of a conventional air-cooled fire-resistant wall.
FIG. 4 is a schematic longitudinal sectional view showing another example of the conventional air-cooled fire-resistant wall.
[Explanation of symbols]
A is cooling air, B is an air-cooled refractory wall, 1 is an inner steel plate, 6 is a refractory wall, 7 is an outer steel plate, 8 is a cooling air passage, 10 is an outer casing, 11 is a heat insulating material, and 14 is cooling. An air inlet, 15 is a cooling air outlet, 16 is a partition steel plate, 17a is an upper steel plate, 17b is a lower steel plate, 18a and 18b are side steel plates, 19 is a steel plate box, 20 is an anchor, 21 is an irregular refractory, 22 is a blower.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002212727A JP2004053166A (en) | 2002-07-22 | 2002-07-22 | Air-cooled type refractory wall |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002212727A JP2004053166A (en) | 2002-07-22 | 2002-07-22 | Air-cooled type refractory wall |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004053166A true JP2004053166A (en) | 2004-02-19 |
Family
ID=31935573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002212727A Pending JP2004053166A (en) | 2002-07-22 | 2002-07-22 | Air-cooled type refractory wall |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004053166A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012102981A (en) * | 2010-11-15 | 2012-05-31 | Jfe Engineering Corp | Melting furnace for gasifying waste |
JP2012225568A (en) * | 2011-04-20 | 2012-11-15 | Pan Pacific Copper Co Ltd | Structure for cooling firebrick of converter, and method for cooling the same |
WO2013044373A1 (en) * | 2011-09-29 | 2013-04-04 | Hatch Ltd. | Furnace with refractory bricks that define cooling channels for gaseous media |
CN103256618A (en) * | 2013-05-24 | 2013-08-21 | 无锡华光锅炉股份有限公司 | Furnace wall pothook |
CN103352903A (en) * | 2013-07-11 | 2013-10-16 | 宜兴市中环耐火材料有限公司 | Aluminum soldering scratch nail used for incinerator water-cooled wall |
CN103672919A (en) * | 2013-05-17 | 2014-03-26 | 上海康恒环境股份有限公司 | Method for controlling pressure of air cooling walls of household rubbish incinerator |
CN103994444A (en) * | 2014-05-14 | 2014-08-20 | 无锡华光锅炉股份有限公司 | Cooling device for furnace walls of waste incineration boiler |
WO2015074003A1 (en) * | 2013-11-15 | 2015-05-21 | Allied Mineral Products, Inc. | High temperature reactor refractory systems |
JP5970597B1 (en) * | 2015-10-16 | 2016-08-17 | 株式会社プランテック | Refractory material cooling structure, incinerator |
JP5970598B1 (en) * | 2015-10-27 | 2016-08-17 | 株式会社プランテック | Refractory material cooling structure, incinerator |
KR101696111B1 (en) * | 2015-12-21 | 2017-01-24 | 주식회사 포스코 | Partition wall for annealing furnace |
JP2017155971A (en) * | 2016-02-29 | 2017-09-07 | 三菱日立パワーシステムズ株式会社 | Boiler and refractory structure of boiler |
CN111662729A (en) * | 2020-06-17 | 2020-09-15 | 武汉钢铁有限公司 | Composite construction coke jar with self sealss |
-
2002
- 2002-07-22 JP JP2002212727A patent/JP2004053166A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012102981A (en) * | 2010-11-15 | 2012-05-31 | Jfe Engineering Corp | Melting furnace for gasifying waste |
JP2012225568A (en) * | 2011-04-20 | 2012-11-15 | Pan Pacific Copper Co Ltd | Structure for cooling firebrick of converter, and method for cooling the same |
US9347708B2 (en) | 2011-09-29 | 2016-05-24 | Hatch Ltd. | Furnace with refractory bricks that define cooling channels for gaseous media |
WO2013044373A1 (en) * | 2011-09-29 | 2013-04-04 | Hatch Ltd. | Furnace with refractory bricks that define cooling channels for gaseous media |
US9863707B2 (en) | 2011-09-29 | 2018-01-09 | Hatch Ltd. | Furnace with refractory bricks that define cooling channels for gaseous media |
CN103672919A (en) * | 2013-05-17 | 2014-03-26 | 上海康恒环境股份有限公司 | Method for controlling pressure of air cooling walls of household rubbish incinerator |
CN103256618A (en) * | 2013-05-24 | 2013-08-21 | 无锡华光锅炉股份有限公司 | Furnace wall pothook |
CN103352903A (en) * | 2013-07-11 | 2013-10-16 | 宜兴市中环耐火材料有限公司 | Aluminum soldering scratch nail used for incinerator water-cooled wall |
WO2015074003A1 (en) * | 2013-11-15 | 2015-05-21 | Allied Mineral Products, Inc. | High temperature reactor refractory systems |
US10190823B2 (en) | 2013-11-15 | 2019-01-29 | Allied Mineral Products, Inc. | High temperature reactor refractory systems |
CN103994444A (en) * | 2014-05-14 | 2014-08-20 | 无锡华光锅炉股份有限公司 | Cooling device for furnace walls of waste incineration boiler |
JP5970597B1 (en) * | 2015-10-16 | 2016-08-17 | 株式会社プランテック | Refractory material cooling structure, incinerator |
JP5970598B1 (en) * | 2015-10-27 | 2016-08-17 | 株式会社プランテック | Refractory material cooling structure, incinerator |
KR101696111B1 (en) * | 2015-12-21 | 2017-01-24 | 주식회사 포스코 | Partition wall for annealing furnace |
JP2017155971A (en) * | 2016-02-29 | 2017-09-07 | 三菱日立パワーシステムズ株式会社 | Boiler and refractory structure of boiler |
CN111662729A (en) * | 2020-06-17 | 2020-09-15 | 武汉钢铁有限公司 | Composite construction coke jar with self sealss |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004053166A (en) | Air-cooled type refractory wall | |
CN108613555A (en) | The method of metallurgical furnace and the existing flame retardant coating of repacking for smelting mineral | |
US5154139A (en) | Refractory tube block | |
JPS61195208A (en) | Incinerator | |
JP3950349B2 (en) | Water-cooled wall structure of stoker-type incinerator | |
EP3124862B1 (en) | Heat transfer tube for fluidized-bed boiler | |
JP2001108381A (en) | Hot air heater | |
JP4015409B2 (en) | Furnace wall structure to prevent clinker adhesion in a waste combustion furnace | |
CN212537859U (en) | Water-cooling furnace wall of garbage incinerator | |
JP3897664B2 (en) | Structure to prevent excessive deformation of refractory material structures | |
JPH0534430U (en) | Side wall structure of garbage incinerator | |
CN111536530A (en) | Water-cooling furnace wall of garbage incinerator | |
JP3586599B2 (en) | Waste incinerator with boiler | |
JP3806530B2 (en) | Incinerator wall structure | |
JP3164755B2 (en) | Air cooling wall structure of incinerator | |
KR102522883B1 (en) | Heat transfer tube for fluidized-bed boiler | |
JP5350838B2 (en) | Waste incinerator stoker furnace | |
CN216079834U (en) | Portable maintenance type RTO incinerator | |
JP2003202100A (en) | Surface temperature lowering method | |
JP3765555B2 (en) | Fluidized bed combustor | |
JP2788175B2 (en) | Refractory mounting device | |
JPH07225016A (en) | Sidewall structure of incinerator and refractory brick | |
JPH087226Y2 (en) | Grate cooling system | |
KR960009440Y1 (en) | Anti-transformation gas cooler for an incinerator | |
JP2001304524A (en) | Waste heat recovery apparatus in melting furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050207 |
|
A977 | Report on retrieval |
Effective date: 20070205 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070720 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071109 |